WorldWideScience

Sample records for nanowire surface plasmons

  1. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nanowire using a Green's function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well......-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling. Udgivelsesdato: 27 August...

  2. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  3. Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

    International Nuclear Information System (INIS)

    Wu Ping; Xu Wen; Li Long-Long; Lu Tie-Cheng; Wu Wei-Dong

    2014-01-01

    We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector q z = q max beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra- and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  5. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yichao; Yuan, Jun; Yin, Ge; Ma, Yungui, E-mail: yungui@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058 (China); He, Sailing [State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, S-100 44 Stockholm (Sweden)

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  6. Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Davydov, Valery A.; Agafonov, Viatcheslav N.

    2017-01-01

    Silicon vacancy (SiV) centers in diamonds have emerged as a very promising candidate for quantum emitters due to their narrow emission line resulting in their indistinguishability. While many different quantum emitters have already been used for the excitation of various propagating plasmonic modes......, the corresponding exploitation of SiV centers has remained so far uncharted territory. Here, we report on the excitation of surface plasmon modes supported by silver nanowires using SiV centers in nanodiamonds. The coupling of SiV center fluorescence to surface plasmons is observed, when a nanodiamond situated...

  7. New surface plasmon polariton waveguide based on GaN nanowires

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Lasers are nowadays widely used in industry, in hospitals and in many devices that we have at home. Random laser development is challenging given its high threshold and low integration. Surface plasmon polariton (SPP can improve random laser characteristics because of its ability to control diffraction. In this study, we establish a random laser structural model with silicon-based parcel GaN nanowires. The GaN nanowire gain and enhanced surface plasmon increase population inversion level. Our laser model is based on random particle scattering feedback mechanism, nanowire use, and surface plasmon enhancement effect, which causes stochastic laser emergence. Analysis shows that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. We also investigate emergent laser performance for a more limited light field capacity and lower threshold. Keywords: Random laser, Surface plasmon polariton, Feedback mechanism, Low threshold, Subwavelength constraints

  8. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    Science.gov (United States)

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  9. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  10. Looking into meta-atoms of plasmonic nanowire metamaterial

    KAUST Repository

    Tsai, Kuntong

    2014-09-10

    Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.

  11. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  12. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  13. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  14. Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing

    KAUST Repository

    Marinaro, Giovanni

    2018-05-17

    In this paper, we propose the use of a standing nanowires array, constituted by plasmonic active gold wires grown on iron disks, and partially immersed in a supporting alumina matrix, for surface-enhanced Raman spectroscopy applications. The galvanic process was used to fabricate nanowires in pores of anodized alumina template, making this device cost-effective. This fabrication method allows for the selection of size, diameter, and spatial arrangement of nanowires. The proposed device, thanks to a detailed design analysis, demonstrates a broadband plasmonic enhancement effect useful for many standard excitation wavelengths in the visible and NIR. The trigonal pores arrangement gives an efficiency weakly dependent on polarization. The devices, tested with 633 and 830 nm laser lines, show a significant Raman enhancement factor, up to around 6 × 10⁴, with respect to the flat gold surface, used as a reference for the measurements of the investigated molecules.

  15. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  16. Direct Photonic-Plasmonic Coupling and Routing in Single Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Rouxue; Pausauskie, Peter; Huang, Jiaxing; Yang, Piedong

    2009-10-20

    Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode confinement and lower losses as compared with fabricated metal structures. However, rational and versatile integration of Ag nanowires with other active and passive optical components, as well as Ag nanowire based optical routing networks, has yet to be achieved. Here, we demonstrate that SPPs can be excited simply by contacting a silver nanowire with a SnO2 nanoribbon that serves both as an unpolarized light source and a dielectric waveguide. The efficient coupling makes it possible to measure the propagation-distance-dependent waveguide spectra and frequency-dependent propagation length on a single Ag nanowire. Furthermore, we have demonstrated prototypical photonic-plasmonic routing devices, which are essential for incorporating low-loss Ag nanowire waveguides as practical components into high-capacity photonic circuits.

  17. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  18. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.

    Science.gov (United States)

    Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2011-02-09

    We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.

  19. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Luchan; Zhou, Y. Norman, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Zou, Guisheng; Liu, Lei, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Duley, Walt W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-05-16

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO{sub 2} structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO{sub 2} resulting in the modification of both surfaces and an increase in wettability of TiO{sub 2}, facilitating the interconnection of Ag and TiO{sub 2} nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO{sub 2} in the contact region between the Ag and TiO{sub 2} nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO{sub 2} nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  20. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Science.gov (United States)

    Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman

    2016-05-01

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  1. Visualizing hybridized quantum plasmons in coupled nanowires

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jensen, Kristian Lund; Mortensen, N. Asger

    2013-01-01

    of the dynamical dielectric function, which is computed using time-dependent density functional theory (TDDFT). For freestanding wires, the energy of both surface and bulk plasmon modes deviate from the classical result for low wire radii and high momentum transfer due to effects of electron spill-out, nonlocal......˚ separation, this mode is replaced by a charge-transfer plasmon, which blue shifts with decreasing separation in agreement with experiment and marks the onset of the strong tunneling regime....

  2. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  3. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  4. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  5. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  6. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...

  7. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  8. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  9. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  10. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  11. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  12. Dye gain gold NW array of surface plasmon polariton waveguide

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. At present in the single visible light frequency, the optical gain method of constraint SPP on metal nanowires structure reported less. We design the gold nanowire array structure, consisting of PMMA and R6G dye molecules as gain, by 488 nm pump in the middle of the nanowires position for wide range of light, use symmetry broken overcome that momentum does not match the photonic and SPP energy conversion. Theoretical analysis shows that dyes provide coherent optical feedback, resulting in nanowires face will observe laser properties of surface plasmons. Feature analysis: the incident light and pump joint strength is greater than the sum of strength which is the incident light, pump respectively. Under the effect of dye molecules gain effective, length of SPP transmission can increase 1 µm. The results achieved in a single optical frequency of stimulated radiation, application of dye optical gain can achieve continuous gain effect. This is for the future development of plasma amplifier and the wavelength laser. Keywords: SPP, Stimulated radiation, Gold nanowires array, Dye molecules

  13. ELS-LEED-study of low-dimensional plasmons in DySi2 layers and nanowires

    International Nuclear Information System (INIS)

    Rugeramigabo, Eddy Patrick

    2007-01-01

    Low-dimensional dysprosium silicide metal systems grown on Si have been characterized by means of energy loss spectroscopy of low energy electron diffraction. The several silicide phases depending on the growth conditions have been observed. Moreover collective charge excitations were clearly detected and identified as low-dimensional plasmons which have a different dispersion compared to the well known bulk and surface plasmons. Dy-silicide has been grown on Si(111) by means of molecular beam epitaxy. Due to its small lattice mismatch (-0.3%) to Si(111), Dy-silicide grows in epitaxial high quality crystalline layers. In the submonolayer regime, many silicide phases coexist until the silicide coverage approaches 1ML, and shows the characteristic 1 x 1 diffraction pattern with the stoichiometry DySi 2 . With further increasing of the coverage, the silicide turns to the multilayer phase. The collective electronic excitations in the monolayer structure have been found to have a 2D-character. Accordingly the plasmon dispersion reaches zero in the long-wavelength limit (at vanishing wave number q) and shows a √(q) behaviour until it entered the domain of strong damping. When grown on Si (001) the Dy-silicide formed an array of parallel nanowires, in the direction normal to the dimer row direction and their length was limited by the crossing of another nanowire. A structure dependent energy loss was observed: the energy loss were only sufficiently intense when the 7 x 2 reconstruction has formed. An possibility of creating vast area with only parallel nanowires in one direction was performed on vicinal Si(001) with four degree miscut. At the same coverage where the 7 x 2 reconstruction occurs on flat Si(001), it was surprising that, besides the 7 x 2 periodicity, the diffraction pattern revealed a mixture of phases, with periodicities ranging from the 10 x 2 to that of the 7 x 2, which was observed as the limit of shifting reflex positions. We were able to confirm the

  14. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  15. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bialiayeu, A; Albert, J; Bottomley, A; Prezgot, D; Ianoul, A

    2012-01-01

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ∼100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre. (paper)

  16. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...

  17. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  18. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  19. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Jauho, Antti-Pekka

    2012-01-01

    We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking...... it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal...

  20. Progress in surface plasmon subwavelength optics

    International Nuclear Information System (INIS)

    Zhang Douguo; Wang Pei; Jiao Xiaojin; Tang Lin; Lu Yonghua; Ming Hai

    2005-01-01

    Now great attention is being paid to the potential applications of surface plasmon polaritons (SPPs) in data storage, light generation, microscopy and bio-photonics. The authors review the properties of SPPs and topics of recent interest in surface plasmon subwavelength optics. (author)

  1. New applications of surface plasmon resonance technology

    International Nuclear Information System (INIS)

    Zhang Tianhao; Yin Meirong; Fang Zheyu; Yang Haidong; Yang Jia; Yang Huizhan; Kang Huizhen; Yang Dapeng; Lu Yanzhen

    2005-01-01

    Surface plasmon resonance technology is reviewed and its new applications in various fields are described. These fields include surface plasmon resonance sensors, near-field scanning optical microscopy, thin film optics and thickness measurement, holography, precise measurement of angles, and Q switching. (authors)

  2. 3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Manera, M. G.; Colombelli, A.; Resta, V.; Taurino, A.; Cesaria, M.; Leo, C.; Convertino, A.; Klini, A.; Perrone, A.; Rella, R.; Martino, M.

    2016-05-01

    Silica two-dimensional substrates and nanowires (NWs) forests have been successfully decorated with Au nanoparticles (NPs) through laser ablation by using a pulsed ArF excimer laser, for sensor applications. A uniform coverage of both substrate surfaces with NPs has been achieved controlling the number of laser pulses. The annealing of the as-deposited particles resulted in a uniform well-defined distribution of spherical NPs with an increased average diameter up to 25 nm. The deposited samples on silica NWs forest present a very good plasmonic resonance which resulted to be very sensitive to the changes of the environment (ethanol/water solutions with increasing concentration of ethanol) allowing the detection of changes on the second decimal digit of the refractive index, demonstrating its potentiality for further biosensing functionalities.

  3. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  4. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    Science.gov (United States)

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  5. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  6. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  7. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.

    2012-02-05

    Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  9. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  10. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  11. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  12. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian

    2015-10-02

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  13. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian; Ló pez-De-Luzuriaga, José M.; Monge, Miguel; Elena Olmos, M.; Rodrí guez-Castillo, Marí a; Cormary, Benoî t; Soulantica, Katerina; Sestu, Matteo; Falqui, Andrea

    2015-01-01

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  14. Numerical modelling of surface plasmonic polaritons

    Science.gov (United States)

    Mansoor, Riyadh; AL-Khursan, Amin Habbeb

    2018-06-01

    Extending optoelectronics into the nano-regime seems problematic due to the relatively long wavelengths of light. The conversion of light into plasmons is a possible way to overcome this problem. Plasmon's wavelengths are much shorter than that of light which enables the propagation of signals in small size components. In this paper, a 3D simulation of surface plasmon polariton (SPP) excitation is performed. The Finite integration technique was used to solve Maxwell's equations in the dielectric-metal interface. The results show how the surface plasmon polariton was generated at the grating assisted dielectric-metal interface. SPP is a good candidate for signal confinement in small size optoelectronics which allow high density optical integrated circuits in all optical networks.

  15. Low-frequency active surface plasmon optics on semiconductors

    NARCIS (Netherlands)

    Gómez Rivas, J.; Kuttge, M.; Kurz, H.; Haring Bolivar, P.; Sánchez-Gil, J.A.

    2006-01-01

    A major challenge in the development of surface plasmon optics or plasmonics is the active control of the propagation of surface plasmon polaritons (SPPs). Here, we demonstrate the feasibility of low-frequency active plasmonics using semiconductors. We show experimentally that the Bragg scattering

  16. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  17. Plasma-plasmonics synergy in the Ga-catalyzed growth of Si-nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Giuseppe Valerio, E-mail: giuseppevalerio.bianco@cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Giangregorio, Maria M.; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Kim, Tong-Ho; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Bruno, Giovanni, E-mail: giovanni.bruno@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy)

    2012-06-05

    This paper reports on the growth of Si nanowires (NWs) by SiH{sub 4}/H{sub 2} plasmas using the non-noble Ga-nanoparticles (NPs) catalysts. A comparative investigation of conventional Si-NWs vapour-liquid-solid (VLS) growth catalyzed by Au NPs is also reported. We investigate the use of a hydrogen plasma and of a SiH{sub 4}/H{sub 2} plasma for removing Ga oxide shell and for enhancing the Si dissolution into the catalyst, respectively. By exploiting the Ga NPs surface plasmon resonance (SPR) sensitivity to their surface chemistry, the SPR characteristic of Ga NPs has been monitored by real time spectroscopic ellipsometry in order to control the hydrogen plasma/Ga NPs interaction and the involved processes (oxide removal and NPs dissolution by volatile gallium hydride). Using in situ laser reflectance interferometry the metal catalyzed Si NWs growth process has been investigated to find the effect of the plasma activation on the growth kinetics. The role of atomic hydrogen in the NWs growth mechanism and, in particular, in the SiH{sub 4} dissolution into the catalysts, is discussed. We show that while Au catalysts because of the re-aggregation of NPs yields NWs that do not correspond to the original size of the Au NPs catalyst, the NWs grown by the Ga catalyst retains the diameter dictated by the size of the Ga NPs. Therefore, the advantage of Ga NPs as catalysts for controlling NWs diameter is demonstrated.

  18. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  19. Focus Issue on surface plasmon photonics introduction

    DEFF Research Database (Denmark)

    Levy, Uriel; Berini, Pierre; Maier, Stefan A.

    2015-01-01

    The 7th International Conference on Surface Plasmon Photonics (SPP7) was held in Jerusalem, Israel from May 31st to June 5th, 2015. This independent series of biennial conferences is widely regarded as the premier series in the field, and the 7th edition maintained the tradition of excellence...

  20. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  1. Asymmetric transmission of surface plasmon polaritons

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 043805 ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : one-way duffarction grating * scattering * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.042, year: 2012

  2. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a

  3. Compact surface plasmon-enhanced fluorescence biochip

    Czech Academy of Sciences Publication Activity Database

    Toma, K.; Vala, Milan; Adam, Pavel; Homola, Jiří; Knoll, W.; Dostálek, J.

    2013-01-01

    Roč. 21, č. 8 (2013), s. 10121-10132 ISSN 1094-4087 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Surface plasmons * Diffraction gratings * Biological sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  4. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  5. Detection of the ODMR signal of a nitrogen vacancy centre in nanodiamond in propagating surface plasmons

    Science.gov (United States)

    Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min

    2018-02-01

    We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.

  6. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  7. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  8. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  9. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  10. The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires

    International Nuclear Information System (INIS)

    Joyce, Hannah J; Baig, Sarwat A; Parkinson, Patrick; Davies, Christopher L; Boland, Jessica L; Herz, Laura M; Johnston, Michael B; Tan, H Hoe; Jagadish, Chennupati

    2017-01-01

    Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400–2100 cm 2 V −1 s −1 ) and ultrashort charge carrier lifetimes (1–5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump–terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell–Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3  ×  10 6 cm s −1 . We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities. (paper)

  11. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  12. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dazhi_li@hotmail.com [Institute for Laser Technology, Suita, Osaka 565-0871 (Japan); Wang, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Nakajima, M. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hashida, M. [Advanced Research Center for Beam Science, ICR, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Wei, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Ako, Hyogo 678-1205 (Japan)

    2016-06-03

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation. - Highlights: • An approach to extract terahertz radiation from graphene surface plasmon polaritons is presented. • A sidewall configuration is proposed to lift the surface plasmon mode. • Harmonics of surface plasmon polaritons are possible to radiate.

  13. Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors.

    Science.gov (United States)

    Chen, Po-Han; Hsieh, Chin-Hua; Chen, Sheng-Yu; Wu, Chen-Hwa; Wu, Yi-Jen; Chou, Li-Jen; Chen, Lih-Juann

    2010-09-08

    Gold-peapodded Ga(2)O(3) nanowires were fabricated successfully in a well-controlled manner by thermal annealing of core-shell gold-Ga(2)O(3) nanowires. During the heating process, the core gold nanowires were broken up into chains of nanoparticles at sufficiently high temperature by the mechanism of Rayleigh instability. In addition, the size, shape, and interspacing between the particles can be manipulated by varying the annealing time and/or the forming gas. The plasmonic behaviors of these nanostructures are investigated by optical spectroscopy. A single nanowire optical device was designed, and its photonic characteristics were investigated. A remarkably high on/off photocurrent ratio in response to a 532 nm Nd:YAG laser light was found. As the size of the particle (pea) increases, the corresponding spectra are red-shifted. In addition, morphological changes of the peas lead to a distinct spectral response. The results may usher in the diverse applications in optoelectronics and biosensing devices with peapod nanostructures.

  14. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain

  15. Surface plasmon resonance application for herbicide detection

    Science.gov (United States)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  16. Interference of Multiple Surface Plasmon Polaritons

    International Nuclear Information System (INIS)

    Wang, Dapeng; Yuan, Xiaocong; Lin, Jiao

    2017-01-01

    Benefiting from strongly electromagnetic confinement and enhancement effects, surface plasmon polaritons (SPPs) hold great promises for tailoring light on micro and nanoscale. By contrast with previous efforts which massively concentrate on localized SPP mode, we investigated the propagating SPPs in this paper. A number of symmetrical gratings on metal surface are employed to excite multiple SPPs. Interestingly, the exotic interfering phenomena have been observed. They show good agreement with free-space interferences and take advantage of precise controllability. These findings will be promising in the applications of optical tweezers and SPP lithography. (paper)

  17. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  18. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  19. Multiplexed infrared plasmonic surface lattice resonances

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2018-01-01

    We demonstrate that arrays of flat gold nanodisks with rectangular lattices can support a tunable hybrid frequency gap formed by the surface lattice resonances in the substrate ((+1, 0)sub) and the superstrate ((-1, 0)sup). For a certain polarization, rotation of the arrays reduces this gap, forming a band crossing (degenerate state) wherein both surface lattice resonances happen around a single wavelength (˜1300 nm). This highlights a situation wherein hybridization of the Rayleigh anomaly with localized surface plasmon resonances with different multipolar natures happens around the same wavelength. We demonstrate that for a different polarization of the incident light the arrays support the formation of a photonic-plasmonic state at about 1650 nm. Our results show that as the projection of the wave vector of the incident light on the planes of the nanodisk arrays increases, within a given wavelength range, the (+1, 0) mode of this state becomes amplified. Under this condition, this mode can undergo a significant blue shift without broadening, while its amplitude increases.

  20. Near-field investigation of surface plasmon polaritons

    NARCIS (Netherlands)

    Jose, J.

    2010-01-01

    The interaction of light with metals contains a resonant phenomenon called the Surface Plasmon Resonance (SPR), at which the free electrons in the metal collectively oscillate. This collective oscillation of the free electrons, called Surface Plasmon Polaritons (SPPs), is highly sensitive to the

  1. High-resolution biosensor based on localized surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Šípová, Hana; Kvasnička, Pavel; Galler, N.; Krenn, J. R.; Homola, Jiří

    2012-01-01

    Roč. 20, č. 1 (2012), s. 672-680 ISSN 1094-4087 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * surface plasmon resonance * localized surface plasmon Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  2. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  3. In-surface confinement of topological insulator nanowire surface states

    International Nuclear Information System (INIS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-01-01

    The bandstructures of [110] and [001] Bi 2 Te 3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects

  4. In-surface confinement of topological insulator nanowire surface states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fan W., E-mail: fanchen@purdue.edu [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); Jauregui, Luis A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Tan, Yaohua [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Klimeck, Gerhard [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Chen, Yong P. [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States)

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  5. In-surface confinement of topological insulator nanowire surface states

    Science.gov (United States)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  6. The Role of Surface Passivation in Controlling Ge Nanowire Faceting.

    Science.gov (United States)

    Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A

    2015-12-09

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.

  7. Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing

    KAUST Repository

    Marinaro, Giovanni; Das, Gobind; Giugni, Andrea; Allione, Marco; Torre, Bruno; Candeloro, Patrizio; Kosel, Jü rgen; Di Fabrizio, Enzo M.

    2018-01-01

    , tested with 633 and 830 nm laser lines, show a significant Raman enhancement factor, up to around 6 × 10⁴, with respect to the flat gold surface, used as a reference for the measurements of the investigated molecules.

  8. Surface Plasmon Waves on Thin Metal Films.

    Science.gov (United States)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  9. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  10. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  11. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...... charge prediction, we show how ligand induced changes in conformation of two model proteins, both being ligand binding domains from glutamate receptors, can lead to changes in electrostatic potential predicted to be sufficient for NW sensing. Finally we, demonstrate how InAs nanowires can....... In part I - “Surface Patterning” - glass and gold surfaces serve as spatially encoded immobilization supports for patterning of recombinant proteins and organic monolayers. First, we combine micro-contact printing with a reactive SNAP-tag protein to establish a general platform for templated protein...

  12. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Yang, Quanlong; Tian, Chunxiu; Xu, Yuehong; Zhang, Jianbing; Zhao, Hongwei; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling

  13. Complementary structure for designer localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2015-11-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field. Here, based on Babinet's principle, we propose a Babinet-inverted, or complementary MSS whose electric/magnetic mode profiles match the magnetic/electric mode profiles of MSS. This complementarity of mode profiles allows mapping the magnetic field distribution of magnetic LSP mode profile on MSS by measuring the electric field distribution of the corresponding mode on complementary MSS. Experiment at microwave frequencies also demonstrate the use of complementary MSS in sensing refractive-index change in the environment.

  14. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  15. Fundamental aspects of surface plasmon polaritons at terahertz frequencies

    NARCIS (Netherlands)

    Gómez Rivas, J.; Zhang, Y.; Berrier, A.; Saeedkia, D.

    2013-01-01

    We present in this chapter an introduction to the field of terahertz (THz) plasmonics. The characteristics of surface plasmon polaritons (SPPs) are determined by the complex permittivity of conductors. Therefore, we introduce the Drude model to describe the permittivity of conductors at THz

  16. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  17. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Toma, Andrea; Francardi, Marco; Malerba, Mario; Alabastri, Alessandro; Proietti Zaccaria, Remo; Stockman, Mark Mark; Di Fabrizio, Enzo M.

    2013-01-01

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  18. Demonstration of a variable plasmonic beam splitter

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Andersen, Ulrik Lund

    2014-01-01

    In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire such tha......In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire...... such that surface plasmons can evanescently couple. In our experiment, we are able to tune the coupling strength from one nano-wire to another by adjusting the gap with the aid of the atomic force microscope. Numerical calculations of the coupling strength are carried out, which support the values found...

  19. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  20. Screening model for nanowire surface-charge sensors in liquid

    DEFF Research Database (Denmark)

    Sørensen, Martin Hedegård; Mortensen, Asger; Brandbyge, Mads

    2007-01-01

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers....

  1. Nanowire surface fastener fabrication on flexible substrate

    Science.gov (United States)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  2. Screening effect on the polaron by surface plasmons

    Science.gov (United States)

    Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team

    2011-03-01

    Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  3. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  4. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  5. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  6. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  7. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha [Italian Institute of Technology, Nanostructure Division (Italy); Baranov, Dmitry [University of Colorado at Boulder, Department of Chemistry and Biochemistry (United States); Di Fabrizio, Enzo [King Abdullah University Science and Technology (KAUST), PSE and BESE Divisions (Saudi Arabia); Krahne, Roman, E-mail: roman.krahne@iit.it [Italian Institute of Technology, Nanostructure Division (Italy)

    2013-05-15

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 10{sup 5} with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl{sub 3} concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers.

  8. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  9. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  10. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  11. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  12. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  13. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  14. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    International Nuclear Information System (INIS)

    Toma, M.

    2012-01-01

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10 -7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  15. A classroom theory of the surface plasmon polariton

    International Nuclear Information System (INIS)

    Barchiesi, Dominique

    2012-01-01

    Surface plasmon resonance, also called the surface plasmon polariton, is an attractive illustration of basic electromagnetism. The investigation of this phenomenon in textbooks is often confusing for undergraduate students. The link between classical concepts of resonance and the solution of the problem is proposed in this work to clarify the procedure. The relationship with the course of solid state physics is proposed using the dispersion curves. The experimental setups are also mentioned. (paper)

  16. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    Science.gov (United States)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  17. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  18. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-01-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy–Bessel–Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light–matter interaction and optical sensing performance. (paper)

  19. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  20. Long-range surface plasmons for high-resolution surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Nenninger, G. G.; Tobiška, Petr; Homola, Jiří; Yee, S. S.

    B74, 1/3 (2001), s. 145-151 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Grant - others:Department of Defense(US) DAAD13-99-C-0032 Institutional research plan: CEZ:AV0Z2067918 Keywords : sensors * surface plasmons * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  1. Few-cycle surface plasmon enhanced electron acceleration

    International Nuclear Information System (INIS)

    Racz, P.; Lenner, M.; Kroo, N.; Farkas, Gy.; Dombi, P.; Takao Fuji; Krausz, F.; Irvine, S.E.; Elezzabi, A.Y.

    2010-01-01

    Complete text of publication follows. It is possible to generate high-quality ultrafast electron beams with keV energy based on surface plasmon-enhanced electron acceleration. The beam generated this way can be also used to investigate ultrafast phenomena in the plasmon field. For the better understanding of the temporal behavior of these ultrafast surface processes we carried out time-resolved experiments with 5.5 fs laser pulses for the first time. In this experiment, we executed an autocorrelation measurement with an ultra-broadband interferometer. By generating surface plasmons at the output of the interferometer, we measured the plasmonic photocurrent as a function of the delay between the interferometer arms. Figure (a) shows a typical measured result, and figure (b) shows the fourth order calculated autocorrelation function of the 5.5 fs long laser pulse, corresponding to the fourth order nonlinearity of the electron emission process. According to the correspondence of these two curves, we can also state that the length of the generated surface plasmon pulse is only 2-3 optical cycles. As a further experiment, we executed spectrally resolved measurements of the electron beam at higher intensities. According to these results, it is possible to reach electron beams with keV energy in the few-cycle regime too. It was found that the field strength of the surface plasmons is x 7 to x 30 higher than that of the focused laser pulse.

  2. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands.

    Science.gov (United States)

    Nguyen, Huy A; Banerjee, Progna; Nguyen, Duc; Lyding, Joseph W; Gruebele, Martin; Jain, Prashant K

    2018-04-19

    An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.

  3. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  4. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  5. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect......We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic...

  6. Channel surface plasmons in a continuous and flat graphene sheet

    Science.gov (United States)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  7. Surface plasmon polariton Wannier-Stark ladder

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A. A.; Méndez, E.R.

    2014-01-01

    Roč. 39, č. 6 (2014), s. 1613-1616 ISSN 0146-9592 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Finite difference time domain method * Electromagnetic wave polarization * Plasmons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  8. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zeyu; Yang, Tian, E-mail: tianyang@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-18

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  9. Surface plasmon transmission through discontinuous conducting surfaces: Plasmon amplitude modulation by grazing scattered fields

    Energy Technology Data Exchange (ETDEWEB)

    Mayoral-Astorga, L. A.; Gaspar-Armenta, J. A.; Ramos-Mendieta, F. [Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora, 83190 México (Mexico)

    2016-04-15

    We have studied numerically the diffraction of a surface plasmon polariton (SPP) when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the second slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD) method with a grid size λ/100.

  10. Ion neutralization at metal surfaces by surface-plasmon excitation

    International Nuclear Information System (INIS)

    Almulhem, A.A.

    1988-01-01

    Electron capture by ions scattered from metal surfaces is usually assumed to occur via resonance tunneling or Auger neutralization. A new mechanism is proposed, wherein a surface plasmon is excited during the electron capture. The Fock-Tani transformation is used to transform the Hamiltonian into a form which explicitly contains a term that corresponds to this process. Using this term, the matrix elements are calculated analytically and used to evaluate the transition rate as a function of distance from the surface. Since this is a rearrangement process, the matrix element contains an orthogonalization term. The theory is applied to the scattering of protons from an aluminum surface in which the proton captures an electron into the 1s state. From the results obtained for the transition rate and neutral fractions, it is concluded that this process is important, at least in the low energy region. When the calculations are done with the orthogonalization term in the matrix element neglected, the transition rate and neutral fraction increased appreciably. This shows the importance of this term, and implies that it cannot be neglected as was done in other theories of neutralization at metal surfaces

  11. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  12. Nucleic acid detection with surface plasmon resonance using cationic latex

    NARCIS (Netherlands)

    de Vries, E.F.A.; Schasfoort, Richardus B.M.; van der Plas, J.; Greve, Jan

    1994-01-01

    An affinity sensor based on Surface Plasmon Resonance (SPR) was used to detect nucleic acids. SPR is an optical technique that is able to detect small changes in the refractive index of the immediate vicinity of a metal surface. After a specific amplification of DNA, achieved using the polymerase

  13. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect...... and electric dipole moments supported by the dielectric nanoantenna....

  14. p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Wang, Q; Liu, X; Kibria, M G; Zhao, S; Nguyen, H P T; Li, K H; Mi, Z; Gonzalez, T; Andrews, M P

    2014-09-07

    Micro-Raman scattering and X-ray photoelectron spectroscopy were employed to investigate Mg-doped GaN nanowires. With the increase of Mg doping level, pronounced Mg-induced local vibrational modes were observed. The evolution of longitudinal optical phonon-plasmon coupled mode, together with detailed X-ray photoelectron spectroscopy studies, show that the near-surface region of nanowires can be transformed from weakly n-type to p-type with the increase of Mg doping.

  15. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy.

    Science.gov (United States)

    Joyce, Hannah J; Wong-Leung, Jennifer; Yong, Chaw-Keong; Docherty, Callum J; Paiman, Suriati; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B

    2012-10-10

    Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

  16. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...

  17. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  18. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.

    Science.gov (United States)

    Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R

    2010-01-15

    Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.

  19. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying; Li, Shaoxian; Xu, Quan; Tian, Chunxiu; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Ouyang, Chunmei; Han, Jiaguang; Zhang, Weili

    2017-01-01

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  20. Low density lipoprotein sensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Pandey, M.K.; Gupta, Vinay; Malhotra, B.D.

    2009-01-01

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m o /μM.

  1. Low density lipoprotein sensor based on surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Sumana, G.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2009-11-30

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m{sup o}/{mu}M.

  2. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    International Nuclear Information System (INIS)

    Talebi, Nahid; Shahabadi, Mahmoud

    2010-01-01

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  3. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Nahid; Shahabadi, Mahmoud, E-mail: n.talebi@ece.ut.ac.i [Photonics Research Laboratory, Center of Excellence for Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2010-04-07

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  4. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  5. Hyperbolic and Plasmonic Properties of Silicon/Ag Aligned Nanowire Arrays

    Science.gov (United States)

    2013-06-17

    Cleveland, J. D. Caldwell, E. Foos, J. Niinistö, and M. Ritala, “Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin...M. Leskela, “ Plasma -enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011). 52. O. J. Glembocki, S. M. Prokes...all principal components of the dielectric permittivity tensor are positive, the iso-frequency surface is “closed” and forms a spheroid or ellipsoid

  6. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  7. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  8. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  9. Surface plasmon quantum cascade lasers as terahertz local oscillators

    NARCIS (Netherlands)

    Hajenius, M.; Khosropanah, P.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Barbieri, S.; Dhillon, S.; Filloux, P.; Sirtori, C.; Ritchie, D. A.; Beere, H. E.

    2008-01-01

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto

  10. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn

    2006-01-01

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  11. Surface plasmon resonance sensing of nucleic acids: A review

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Homola, Jiří

    -, č. 773 (2013), s. 9-23 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Surface plasmon resonance * Nucleic acid * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 4.517, year: 2013

  12. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  13. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  14. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  15. Functionalised Silver Nanowire Structures

    International Nuclear Information System (INIS)

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  16. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    Science.gov (United States)

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  17. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    place when silicon nanowires reacted with 2,2,2-trifluoroethyl acrylate, and reductive deposition reaction occurred in the ... detection of fM level of protein. 14 and DNA. 15 ... surfaces can be easily modified to act as both elec- tron-transfer ...

  19. Surface plasmon observed for carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Stadelmann, P A [Ecole Polytechnique Federale, Lausanne (Switzerland); Peng, J L; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp{sup 2}/sp{sup 3} bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing {<=} about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs.

  20. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  1. Generation and Controlled Routing of Single Plasmons on a Chip

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Huck, Alexander

    2014-01-01

    We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...... size between the wires with an atomic force microscope. By numerical methods, we estimate the splitting ratios for different gap sizes, and the results support the values obtained in the experiment.......We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...

  2. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  3. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  4. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  5. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Lopez-royo, Francisco; Yang, Yang; Zayats, Anatoly

    2017-01-01

    that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold

  6. Arsenic Sulfide Nanowire Formation on Fused Quartz Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, J.; Riley, B.J.; Johnson, B.R.; Sundaram, S.K.

    2005-01-01

    Arsenic sulfide (AsxSy) nanowires were synthesized by an evaporation-condensation process in evacuated fused quartz ampoules. During the deposition process, a thin, colored film of AsxSy was deposited along the upper, cooler portion of the ampoule. The ampoule was sectioned and the deposited film analyzed using scanning electron microscopy (SEM) to characterize and semi-quantitatively evaluate the microstructural features of the deposited film. A variety of microstructures were observed that ranged from a continuous thin film (warmer portion of the ampoule), to isolated micron- and nano-scale droplets (in the intermediate portion), as well as nanowires (colder portion of the ampoule). Experiments were conducted to evaluate the effects of ampoule cleaning methods (e.g. modify surface chemistry) and quantity of source material on nanowire formation. The evolution of these microstructures in the thin film was determined to be a function of initial pressure, substrate temperature, substrate surface treatment, and initial volume of As2S3 glass. In a set of two experiments where the initial pressure, substrate thermal gradient, and surface treatment were the same, the initial quantity of As2S3 glass per internal ampoule volume was doubled from one test to the other. The results showed that AsxSy nanowires were only formed in the test with the greater initial quantity of As2S3 per internal ampoule volume. The growth data for variation in diameter (e.g. nanowire or droplet) as a function of substrate temperature was fit to an exponential trendline with the form y = Aekx, where y is the structure diameter, A = 1.25×10-3, k = 3.96×10-2, and x is the temperature with correlation coefficient, R2 = 0.979, indicating a thermally-activated process.

  7. Computer screen photo-excited surface plasmon resonance imaging.

    Science.gov (United States)

    Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar

    2008-09-12

    Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.

  8. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  9. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  10. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  11. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    This thesis addresses the lack of an efficient semiconductor light source at green emission colours. Considering InGaN based quantum-well (QW) light-emitters and light-emitting diodes (LEDs), various ways of applying surface plasmonics and nano-patterning to improve the efficiency, are investigated....... By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs......-QW coupling does not necessarily lead to emission enhancement. The findings of this work show that the scattering and absorption properties of NPs play a crucial role in determining whether the implementation will improve or degrade the optical performance. By applying these principles, a novel design...

  12. Monitoring RAYT activity by surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Špringer, Tomáš; Nečasová, Iva; Nunvář, Jaroslav; Schneider, Bohdan; Homola, Jiří

    2015-01-01

    Roč. 407, č. 14 (2015), s. 3985-3993 ISSN 1618-2642 R&D Projects: GA ČR GAP305/12/1801 Grant - others:GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:67985882 ; RVO:86652036 Keywords : Surface plasmon resonance * Biosensor * REP-associated tyrosine transposase Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.125, year: 2015

  13. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  14. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  15. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  16. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Karasová, L.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    2001-01-01

    Roč. 74, 1/3 (2001), s. 100-105 ISSN 0925-4005 R&D Projects: GA ČR GA102/99/0549; GA AV ČR KSK2055603 Institutional research plan: CEZ:AV0Z4050913 Keywords : optical sensors * surface plasmon resonance * immunosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  17. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  18. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  19. A simulation of laser energy absorption by nanowired surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  20. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  1. Visualizing Surface Plasmons with Photons, Photoelectrons, and Electrons

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, Patrick Z.; Abellan Baeza, Patricia; Gong, Yu; Hage, F. S.; Cottom, J.; Joly, Alan G.; Brydson, R.; Ramasse, Q. M.; Hess, Wayne P.

    2016-06-21

    Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint sub-nanometer spatial and sub-femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes over the relevant length and time scales. In this mini-review, we briefly highlight different techniques we employ to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

  2. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  3. Non-spectroscopic surface plasmon sensor with a tunable sensitivity

    International Nuclear Information System (INIS)

    Wen, Qiuling; Han, Xu; Hu, Chuang; Zhang, Jiasen

    2015-01-01

    We demonstrate a non-spectroscopic surface plasmon sensor with a tunable sensitivity which is based on the relationship between the wave number of surface plasmon polaritons (SPPs) on metal film and the refractive index of the specimen in contact with the metal film. A change in the wave number of the SPPs results in a variation in the propagation angle of the leakage radiation of the SPPs. A reference light is used to interfere with the leakage radiation, and the refractive index of the specimen can be obtained by measuring the period of the interference fringes. The sensitivity of the sensor can be tuned by changing the incident direction of the reference light and this cannot be realized by conventional surface plasmon sensors. For a reference angle of 1.007°, the sensitivity and resolution of the sensor are 4629 μm/RIU (RIU stands for refractive index unit) and 3.6 × 10 −4 RIU, respectively. In addition, the sensor only needs a monochromatic light source, which simplifies the measurement setup and reduces the cost

  4. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  5. Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps

    International Nuclear Information System (INIS)

    Park, Woojin; Jo, Gunho; Hong, Woong-Ki; Yoon, Jongwon; Choe, Minhyeok; Ji, Yongsung; Kim, Geunjin; Kahng, Yung Ho; Lee, Kwanghee; Lee, Takhee; Lee, Sangchul; Wang, Deli

    2011-01-01

    We investigated the enhanced photoresponse of ZnO nanowire transistors that was introduced with surface-roughness-induced traps by a simple chemical treatment with isopropyl alcohol (IPA). The enhanced photoresponse of IPA-treated ZnO nanowire devices is attributed to an increase in adsorbed oxygen on IPA-induced surface traps. The results of this study revealed that IPA-treated ZnO nanowire devices displayed higher photocurrent gains and faster photoswitching speed than transistors containing unmodified ZnO nanowires. Thus, chemical treatment with IPA can be a useful method for improving the photoresponse of ZnO nanowire devices.

  6. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  7. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  8. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  9. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  10. Inelastic electron holography: First results with surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Roeder; Hannes, Lichte [Triebenberg Labor, Institute for Structure Physics, TU Dresden, 01062 Dresden (Germany)

    2011-07-01

    Inelastic interaction and wave optics seem to be incompatible in that inelastic processes destroy coherence, which is the fundamental requirement for holography. In special experiments it is shown that energy transfer larger than some undoubtedly destroys coherence of the inelastic electron with the elastic remainder. Consequently, the usual inelastic processes, such as phonon-, plasmon- or inner shell-excitations with energy transfer of several out to several, certainly produce incoherence with the elastic ones. However, it turned out that within the inelastic wave, *newborn* by the inelastic process, there is a sufficiently wide area of coherence for generating *inelastic holograms*. This is exploited to create holograms with electrons scattered at surface-plasmons, which opens up quantum mechanical investigation of these inelastic processes.

  11. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  12. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  13. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  14. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Kajikawa, Kotaro

    2015-01-01

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  15. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  16. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed; Guenneau, Sé bastien; Bagci, Hakan

    2013-01-01

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  17. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  18. Timoshenko beam model for buckling of piezoelectric nanowires with surface effects

    Science.gov (United States)

    2012-01-01

    This paper investigates the buckling behavior of piezoelectric nanowires under distributed transverse loading, within the framework of the Timoshenko beam theory, and in the presence of surface effects. Analytical relations are given for the critical force of axial buckling of nanowires by accounting for the effects of surface elasticity, residual surface tension, and transverse shear deformation. Through an example, it is shown that the critical electric potential of buckling depends on both the surface stresses and piezoelectricity. This study may be helpful in the characterization of the mechanical properties of nanowires and in the calibration of the nanowire-based force sensors. PMID:22453063

  19. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  20. Launching focused surface plasmon in circular metallic grating

    International Nuclear Information System (INIS)

    Kumar, Pawan; Tripathi, V. K.; Kumar, Ashok; Shao, X.

    2015-01-01

    The excitation of focused surface plasma wave (SPW) over a metal–vacuum interface embedded with circular surface grating is investigated theoretically. The normally impinged radiation imparts oscillatory velocity to free electrons that beats with the surface ripple to produce a nonlinear current, driving the SPW. As SPW propagates, it gets focused. The focused radiation has a maximum at the centre of grating and decreases beyond the centre due to diffraction. The amplitude of SPW is fixed for a given groove depth and increases rapidly around the resonance frequency. The intensity at the focus point depends on dimensions of the grating. It increases with the radiation frequency approaching the surface plasmon resonance. The scheme has potential applications for photonic devices and surface enhanced Raman scattering

  1. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  2. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Misawa, H.; Qiu, J.

    2012-01-01

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al 2 O 3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al 2 O 3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al 2 O 3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Surface roughness induced electron mobility degradation in InAs nanowires

    International Nuclear Information System (INIS)

    Wang Fengyun; Yip, Sen Po; Han, Ning; Fok, KitWa; Lin, Hao; Hou, Jared J; Dong, Guofa; Hung, Tak Fu; Chan, K S; Ho, Johnny C

    2013-01-01

    In this work, we present a study of the surface roughness dependent electron mobility in InAs nanowires grown by the nickel-catalyzed chemical vapor deposition method. These nanowires have good crystallinity, well-controlled surface morphology without any surface coating or tapering and an excellent peak field-effect mobility up to 15 000 cm 2 V −1 s −1 when configured into back-gated field-effect nanowire transistors. Detailed electrical characterizations reveal that the electron mobility degrades monotonically with increasing surface roughness and diameter scaling, while low-temperature measurements further decouple the effects of surface/interface traps and phonon scattering, highlighting the dominant impact of surface roughness scattering on the electron mobility for miniaturized and surface disordered nanowires. All these factors suggest that careful consideration of nanowire geometries and surface condition is required for designing devices with optimal performance. (paper)

  4. Radiative decay of surface plasmons on nonspherical silver particles

    International Nuclear Information System (INIS)

    Little, J.W.; Ferrell, T.L.; Callcott, T.A.; Arakawa, E.T.

    1982-01-01

    We have studied the radiation emitted by electron-bombarded silver particles. Electron micrographs have shown that the particles, obtained by heating thin (5 nm) silver films, were oblate (flattened) with minor axes aligned along the substrate normal. The characteristic wavelength obtained by bombarding these particles with 15-keV electrons was found to vary with angle of photon emission. We have modeled this wavelength shift as a result of the mixture of radiation from dipole and quadrupole surface-plasmon oscillations on oblate spheroids. Experimental observations of the energy, polarization, and angular distribution of the emitted radiation are in good agreement with theoretical calculations

  5. Novel spectral fiber optic sensor based on surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří; Čtyroký, Jiří; Brynda, Eduard

    B74, 1/3 (2001), s. 106-111 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  6. Ultrahigh resolution long range surface plasmon-based sensor

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří

    2007-01-01

    Roč. 123, č. 1 (2007), s. 10-12 ISSN 0925-4005 R&D Projects: GA ČR GP202/04/P141; GA ČR GA203/02/1326; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323; US FDA (US) FD-U-002250 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * refractive index Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.934, year: 2007

  7. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection

    Directory of Open Access Journals (Sweden)

    Yoochan Hong

    2012-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is induced by incident light when it interacts with noble metal nanoparticles that have smaller sizes than the wavelength of the incident light. Recently, LSPR-based nanobiosensors were developed as tools for highly sensitive, label-free, and flexible sensing techniques for the detection of biomolecular interactions. In this paper, we describe the basic principles of LSPR-based nanobiosensing techniques and LSPR sensor system for biomolecule sensing. We also discuss the challenges using LSPR nanobiosensors for detection of biomolecules as a biomarker.

  8. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded......), and a bend loss of ~5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-mm-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0...

  9. A fast and accurate surface plasmon resonance system

    Science.gov (United States)

    Espinosa Sánchez, Y. M.; Luna Moreno, D.; Noé Arias, E.; Garnica Campos, G.

    2012-10-01

    In this work we propose a Surface Plasmon Resonance (SPR) system driven by Labview software which produces a fast, simple and accuracy measurements of samples. The system takes 2000 data in a range of 20 degrees in 20 seconds and 0.01 degrees of resolution. All the information is sent from the computer to the microcontroller as an array of bytes in hexadecimal format to be analyzed. Besides to using the system in SPR measurement is possible to make measurement of the critic angle, and Brewster angle using the Abeles method.

  10. Surface plasmons in metallic nanoparticles: fundamentals and applications

    International Nuclear Information System (INIS)

    Garcia, M A

    2011-01-01

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  11. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  12. Silver Nanowire Arrays : Fabrication and Applications

    OpenAIRE

    Feng, Yuyi

    2016-01-01

    Nanowire arrays have increasingly received attention for their use in a variety of applications such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and electrodes for photoelectric devices. However, until now, large scale fabrication of device-suitable metallic nanowire arrays on supporting substrates has seen very limited success. This thesis describes my work rst on the development of a novel successful processing route for the fabrication of uniform noble metallic (e.g. A...

  13. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  14. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  15. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  16. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  17. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  18. Tunable surface plasmon instability leading to emission of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii, E-mail: aiurov@chtm.unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Pan, Wei [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.

  19. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  20. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  1. Surface plasmon resonance sensing: from purified biomolecules to intact cells.

    Science.gov (United States)

    Su, Yu-Wen; Wang, Wei

    2018-04-12

    Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.

  2. Charge pumping in InAs nanowires by surface acoustic waves

    NARCIS (Netherlands)

    Roddaro, Stefano; Strambini, Elia; Romeo, Lorenzo; Piazza, Vincenzo; Nilsson, Kristian; Samuelson, Lars; Beltram, Fabio

    2010-01-01

    We investigate the interaction between surface acoustic waves on a piezoelectric LiNbO3 substrate and charge carriers in InAs nanowire transistors. Interdigital transducers are used to excite electromechanical waves on the chip surface and their influence on the transport in the nanowire devices is

  3. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  4. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  5. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  6. Surface effects on static bending of nanowires based on non-local elasticity theory

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2015-10-01

    Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.

  7. Making metals transparency for white light by surface plasmons

    Science.gov (United States)

    Peng, Ru-Wen; Huang, Xian-Rong; Fan, Ren-Hao; Li, Jia; Hu, Qing; Wang, Mu

    2012-02-01

    We demonstrate both experimentally and theoretically that metallic gratings consisting of narrow slits become transparent for extremely broad bandwidths under oblique incidence. This phenomenon can be explained by a concrete picture in which the incident wave drives free electrons on the conducting surfaces and part of the slit walls to form surface plasmons (SPs). The SPs then propagate on the slit walls but are abruptly discontinued by the bottom edges to form oscillating charges that emit the transmitted wave. This picture explicitly demonstrates the conversion between light and SPs and indicates clear guidelines for enhancing SP excitation and propagation. Making structured metals transparent may lead to a variety of applications. References: Xian-Rong Huang, Ru-Wen Peng, and Ren-Hao Fan, Phys. Rev. Lett. (2010)105, 243901; and Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Jia Li, Qing Hu, and Mu Wang, manuscript prepared(2011).

  8. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  9. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  10. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  11. Trends in interfacial design for surface plasmon resonance based immunoassays

    International Nuclear Information System (INIS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  12. Trends in interfacial design for surface plasmon resonance based immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Dhesingh Ravi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2007-12-07

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  13. First-principles study of surface plasmons on Ag(111) and H/Ag(111)

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2011-01-01

    Linear-response time-dependent density functional theory is used to investigate the relation between molecular bonding and surface plasmons for the model system H/Ag(111). We employ an orbital-dependent exchange-correlation functional to obtain a correct description of the Ag 3d band, which...... is crucial to avoid overscreening the plasmon by the s-d interband transitions. For the clean surface, this approach reproduces the experimental plasmon energies and dispersion to within 0.15 eV. Adsorption of hydrogen shifts and damps the Ag(111) surface plasmon and induces a new peak in the loss function...... at 0.6 eV below the Ag(111) plasmon peak. This feature originates from interband transitions between states located on the hydrogen atoms and states on the Ag surface atoms....

  14. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    International Nuclear Information System (INIS)

    Osman, Bilgen; Uzun, Lokman; Beşirli, Necati; Denizli, Adil

    2013-01-01

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases

  15. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, M.N.; Carlen, Edwin; van den Berg, Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  16. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  17. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  18. Pass-band reconfigurable spoof surface plasmon polaritons

    Science.gov (United States)

    Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun

    2018-04-01

    In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

  19. Surface plasmon quantum cascade lasers as terahertz local oscillators.

    Science.gov (United States)

    Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E

    2008-02-15

    We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.

  20. Nonlocal surface plasmons by Poisson Green's function matching

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J

    2006-01-01

    The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field

  1. Engineering surface plasmon based fiber-optic sensors

    International Nuclear Information System (INIS)

    Dhawan, Anuj; Muth, John F.

    2008-01-01

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors

  2. Engineering surface plasmon based fiber-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, Anuj [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States)], E-mail: muth@unity.ncsu.edu

    2008-04-15

    Ordered arrays of nanoholes with subwavelength diameters, and submicron array periodicity were fabricated on the tips of gold-coated optical fibers using focused ion beam (FIB) milling. This provided a convenient platform for evaluating extraordinary transmission of light through subwavelength apertures and allowed the implementation of nanostructures for surface plasmon engineered sensors. The fabrication procedure was straightforward and implemented on single mode and multimode optical fibers as well as etched and tapered fiber tips. Control of the periodicity and spacing of the nanoholes allowed the wavelength of operation to be tailored. Large changes in optical transmission were observed at the designed wavelengths, depending on the surrounding refractive index, allowing the devices to be used as fiber-optic sensors.

  3. Surface effects on the thermal conductivity of silicon nanowires

    Science.gov (United States)

    Li, Hai-Peng; Zhang, Rui-Qin

    2018-03-01

    Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

  4. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  5. A dielectric matrix calculation of the surface-plasmon energy for the silicon (100) surface

    International Nuclear Information System (INIS)

    Forsyth, A.J.; Smith, A.E.; Josefsson, T.W.

    1996-01-01

    Full text: As an extension of previous work, we present preliminary calculations for the dielectric properties of the silicon (100) surface. In particular, the |q|→0 and |q|=2π/a(1,0,0) surface loss function, and corresponding surface plasmon energies have been calculated within a simple model for the silicon surface. The results have been obtained from the Adler and Wiser dielectric matrix (DM). The bandstructure used for the calculation was based on the highly successful empirical pseudopotential method of Cohen and Chelikovsky. We have used a 59 plane wave basis for the bandstructure, and have chosen a DM size of 59 x 59. Results are compared and contrasted with volume plasmon calculations, free electron calculations and experiment

  6. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  7. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  8. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Liu, Changxu; Zhao, Yunfeng; Liu, Zhaohui; Hedhili, Mohamed N.; Fratalocchi, Andrea; Han, Yu

    2015-01-01

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here

  9. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  10. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  11. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  12. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  13. Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands

    Science.gov (United States)

    Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.

    2010-01-01

    We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619

  14. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  15. Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes

    KAUST Repository

    Sun, Haiding

    2017-12-19

    Spontaneously-grown, self-aligned AlGaN nanowire ultraviolet light emitting diodes still suffer from low efficiency partially because of the strong surface recombination caused by surface states, i.e., oxidized surface and high density surface states. Several surface passivation methods have been introduced to reduce surface non-radiative recombination by using complex and toxic chemicals. Here, we present an effective method to suppress such undesirable surface recombination of the AlGaN nanowires via diluted potassium hydroxide (KOH) solution; a commonly used chemical process in semiconductor fabrication which is barely used as surface passivation solution in self-assembled nitride-based nanowires. The transmission electron microscopy investigation on the samples reveals almost intact nanowire structures after the passivation process. We demonstrated an approximately 49.7% enhancement in the ultraviolet light output power after 30-s KOH treatment on AlGaN nanowires grown on titanium-coated silicon substrates. We attribute such a remarkable enhancement to the removal of the surface dangling bonds and oxidized nitrides (Ga-O or Al-O bonds) at the surface as we observe the change of the carrier lifetime before and after the passivation. Thus, our results highlight the possibility of employing this process for the realization of high performance nanowire UV emitters.

  16. Formation of Ag nanowires on graphite stepped surfaces. A DFT study

    Science.gov (United States)

    Ambrusi, Rubén E.; García, Silvana G.; Pronsato, María E.

    2015-01-01

    We investigate the feasibility of obtaining silver nanowires on graphite stepped surfaces theoretically, using density functional theory calculations. Three layer slabs are used to model graphite surfaces with and without defects. Adsorption energies for Ag atoms on graphite surfaces were calculated showing the preference of Ag adatoms to locate on the steps, forming linear structures like nanowires. An analysis of the charge densities and projected densities of states for different structures is also performed.

  17. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  18. Surface plasmon polariton nanocavity with ultrasmall mode volume

    Science.gov (United States)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  19. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

    Science.gov (United States)

    Chen, Kai; Leong, Eunice Sok Ping; Rukavina, Michael; Nagao, Tadaaki; Liu, Yan Jun; Zheng, Yuebing

    2015-06-01

    Molecular plasmonics explores and exploits the molecule-plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

  20. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions

    Directory of Open Access Journals (Sweden)

    Chen Kai

    2015-06-01

    Full Text Available Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP. Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

  1. Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory

    International Nuclear Information System (INIS)

    Song, F.; Huang, G.L.

    2009-01-01

    The surface stress effects on bending behavior of nanowires have recently attracted a lot of attention. In this letter, the incremental deformation theory is first applied to study the surface stress effects upon the bending behavior of the nanowires. Different from other linear continuum approaches, the local geometrical nonlinearity of the Lagrangian strain is considered, therefore, the contribution of the surface stresses is naturally derived by applying the Hamilton's principle, and influence of the surface stresses along all surfaces of the nanowires is captured. It is first shown that the surface stresses along all surfaces have contribution not only on the effective Young's modulus of the nanowires but also on the loading term in the governing equation. The predictions of the effective Young's modulus and the resonance shift of the nanowires from the current method are compared with those from the experimental measurement and other existing approaches. The difference with other models is discussed. Finally, based on the current theory, the resonant shift predictions by using both the modified Euler-Bernoulli beam and the modified Timoshenko beam theories of the nanowires are investigated and compared. It is noticed that the higher vibration modes are less sensitive to the surface stresses than the lower vibration modes.

  2. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    Science.gov (United States)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  3. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  4. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen; Farhat, Mohamed; Askarpour, Amir Nader; Tymchenko, Mykhailo; Alù , Andrea

    2014-01-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a 'one-atom-thick' graphene monolayer is typically

  5. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan; Ghulam Saber, Md.; Alsunaidi, Mohammad

    2016-01-01

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known

  6. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  7. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  8. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  9. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhu, Wenqi; Crozier, Kenneth B

    2014-10-14

    Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed within narrow gaps or at sharp tips, as predicted by the classical electromagnetic theory. Only recently has it become appreciated that quantum mechanical effects could emerge as the feature size approaches atomic length-scale. Here we experimentally demonstrate, through observations of surface-enhanced Raman scattering, that the emergence of electron tunnelling at optical frequencies limits the maximum achievable plasmonic enhancement. Such quantum mechanical effects are revealed for metallic nanostructures with gap-widths in the single-digit angstrom range by correlating each structure with its optical properties. This work furthers our understanding of quantum mechanical effects in plasmonic systems and could enable future applications of quantum plasmonics.

  10. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Homola, Jiří; Miler, Miroslav

    2005-01-01

    Roč. 107, č. 1 (2005), s. 154-161 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] R&D Projects: GA ČR(CZ) GA102/03/0633 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * surface plasmons Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.646, year: 2005

  11. Quantum bus of metal nanoring with surface plasmon polaritons

    International Nuclear Information System (INIS)

    Lin Zhirong; Guo Guoping; Tu Tao; Li Haiou; Zou Changling; Ren Xifeng; Guo Guangcan; Chen Junxue; Lu Yonghua

    2010-01-01

    We develop an architecture for distributed quantum computation using quantum bus of plasmonic circuits and spin qubits in self-assembled quantum dots. Deterministic quantum gates between two distant spin qubits can be reached by using an adiabatic approach in which quantum dots couple with highly detuned plasmon modes in a metallic nanoring. Plasmonic quantum bus offers a robust and scalable platform for quantum optics experiments and the development of on-chip quantum networks composed of various quantum nodes, such as quantum dots, molecules, and nanoparticles.

  12. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  13. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  14. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  15. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  17. Wavelength selectivity of on-axis surface plasmon laser filters

    International Nuclear Information System (INIS)

    Harmer, S W; Townsend, P D

    2002-01-01

    Excitation of surface plasmons on a metal substrate, via the attenuated total reflection method can theoretically offer preferential absorption of light at one particular wavelength, whilst reflecting the nearby spectrum. Normally this 'filtering' action is limited to removal of p-polarized light, and the acceptance angle of such a filtering device is very narrow, which limits practical applications, such as separation of fundamental and laser harmonics. The possibility of avoiding this angular precision is explored by considering the complex permittivity of metal composites. By using a two or more layer structure, as opposed to a single metal substrate, the acceptance angle of the device can be broadened, by a factor of about 15 times. An example is discussed for separation of the fundamental and harmonics from a Nd : YAG laser. Variants of the structure allow the design of an in-line transmission filter for the various wavelengths with sufficient angular tolerance to include focusing lenses. Avoidance of laser ablation of the metal is discussed

  18. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  19. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  20. Applications of small surface plasmon resonance sensors for biochemical monitoring

    Science.gov (United States)

    Masson, Jean-Francois; Battaglia, Tina M.; Beaudoin, Stephen; Booksh, Karl S.

    2004-12-01

    The development of small surface plasmon resonance (SPR) sensors to detect biological markers for myocardial ischemia (MI), spinal muscular atrophy (SMA), and wound healing was achieved at low ng/mL and in less than 10 minutes. The markers of interest for MIs are myoglobin (MG) and cardiac Troponin I (cTnI). The limits of detection for these markers are respectively 600 pg/mL and 1.4 ng/mL in saline solution. To study SMA, the level of survival motor neuron protein (SMN) was investigated. A limit of detection of 990 pg/mL was achieved for the detection of SMN. The interactions of SMN with MG decreased the signal for both SMN and MG. Interleukin 6 and tumor necrosis factor alpha (TNFa) were investigated to monitor wound healing. The sensor's performance in more complex solutions, e.g.: serum, showed a large non-specific signal. Modifying the support on which the antibodies are attached improved the sensor's stability in serum by a factor of 5. To achieve this non-specific binding (NSB) reduction, different polysaccharides, biocompatible polymers and short chain thiols were investigated.

  1. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  2. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  3. Surface sensitization mechanism on negative electron affinity p-GaN nanowires

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-03-01

    The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.

  4. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    International Nuclear Information System (INIS)

    Liang, Huawei; Ruan, Shuangchen; Zhang, Min; Su, Hong; Li, Irene Ling

    2015-01-01

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices

  5. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huawei; Ruan, Shuangchen, E-mail: scruan@szu.edu.cn; Zhang, Min; Su, Hong; Li, Irene Ling [Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060 (China)

    2015-08-31

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices.

  6. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  7. Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering

    International Nuclear Information System (INIS)

    Khanal, D. R.; Levander, A. X.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.

    2011-01-01

    We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy α particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.

  8. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  9. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    Science.gov (United States)

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  10. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  11. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  12. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichloroph......A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  13. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    Science.gov (United States)

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  14. Electron Transport Properties of Ge nanowires

    Science.gov (United States)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  15. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  16. Influence of nanoparticle–graphene separation on the localized surface plasmon resonances of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masoudian Saadabad, Reza, E-mail: masoudian-reza@yahoo.com, E-mail: rms@mail.usb.ac.ir; Aporvari, Ahmad Shafiei [University of Sistan and Baluchestan, Department of Physics (Iran, Islamic Republic of); Shirdel-Havar, Amir Hushang [Golestan University, Department of Physics (Iran, Islamic Republic of); Havar, Majid Shirdel [University of Kashan, Department of Physics (Iran, Islamic Republic of)

    2016-01-15

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4-nm-radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  17. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming

    2017-12-05

    Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Excitation of surface and volume plasmons in a metal nanosphere by fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Kostin, V. A.; Pavlichenko, I. A. [University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)

    2016-03-15

    Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding

  19. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    Science.gov (United States)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  20. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  2. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    Science.gov (United States)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  3. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  4. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence

    Directory of Open Access Journals (Sweden)

    Zhi-Min Liao

    2012-06-01

    Full Text Available It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescence properties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

  5. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    Science.gov (United States)

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  6. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR sensor applications

    Directory of Open Access Journals (Sweden)

    Samsuri Nurul Diyanah

    2017-01-01

    Full Text Available Gold nanoparticles (GNPs have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  7. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  8. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  9. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  10. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime.

    Science.gov (United States)

    Chu, Ming-Wen; Sharma, Pradeep; Chang, Ching-Pin; Liou, Sz Chian; Tsai, Kun-Tong; Wang, Juen-Kai; Wang, Yuh-Lin; Chen, Cheng Hsuan

    2009-06-10

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (approximately 30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at approximately 3.5 eV (approximately 355 nm) and approximately 7.0 eV (approximately 177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  11. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime

    International Nuclear Information System (INIS)

    Chu, M-W; Chang, C-P; Liou, S C; Wang, J-K; Chen, C H; Sharma, Pradeep; Tsai, K-T; Wang, Y-L

    2009-01-01

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (∼30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at ∼3.5 eV (∼355 nm) and ∼7.0 eV (∼177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  12. Scattering of surface plasmons on graphene by a discontinuity in surface conductivity

    International Nuclear Information System (INIS)

    Rejaei, Behzad; Khavasi, Amin

    2015-01-01

    The scattering of graphene surface plasmons from an arbitrary, one-dimensional discontinuity in graphene surface conductivity is treated analytically by an exact solution of the quasi-static integral equation for surface current density in the spectral domain. It is found that the reflection and transmission coefficients are not governed by the Fresnel formulas obtained by means of the effective medium approach. Furthermore, the reflection coefficient generally exhibits an anomalous reflection phase, which has so far only been reported for the particular case of reflection from abrupt edges. This anomalous phase becomes frequency-independent in the regime where the effect of inter-band transitions on graphene conductivity is negligible. The results are in excellent agreement with full-wave electromagnetic simulations, and can serve as a basis for the analysis of inhomogeneous graphene layers with a piecewise-constant conductivity profile. (paper)

  13. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed; Chen, Pai Yen; Guenneau, Sebastien; Bagci, Hakan

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed

  14. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  15. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Marchesini, Gerardo R.; Bremer, Maria G. E. G.; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices - the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave

  16. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Rebe-Raz, S.; Marchesini, G.R.; Bremer, M.G.E.G.; Colpo, P.; Garcia, C.P.; Guidetti, G.; Norde, W.; Rossi, F.

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices – the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave

  17. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  18. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2016-01-01

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  19. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires

    International Nuclear Information System (INIS)

    Neretina, S; Devenyi, G A; Preston, J S; Mascher, P; Hughes, R A; Sochinskii, N V

    2008-01-01

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires

  20. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  1. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  2. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael, E-mail: Michael.Kaniber@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany and Nanosystems Initiative Munich, Schellingstraße 4, 80799 München (Germany)

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  3. Hybrid plasmonic waveguide in a metal V-groove

    Directory of Open Access Journals (Sweden)

    Zhao-xian Chen

    2014-01-01

    Full Text Available We propose and investigate a type of hybrid plasmonic waveguide in a metal V-groove. A high-permittivity nanowire was placed in the metal channel covered with a dielectric film of lower permittivity. Deeper sub-wavelength confinement and much longer propagation distance were achieved in comparison with conventional channel plasmonic waveguides. The overall performance was improved as compared with the conventional hybrid plasmonic structure based on a flat metal surface. Finite element analysis showed that both the mode propagation and field profile can be adjusted by changing the nanowire radius and film thickness. Some benefits, such as a reduced scattering loss caused by the surface roughness, are also expected owing to the unique mode profile. The proposed approach has potential for application in high-level photonic integration.

  4. Photocurrent enhancement of graphene photodetectors by photon tunneling of light into surface plasmons

    Science.gov (United States)

    Maleki, Alireza; Cumming, Benjamin P.; Gu, Min; Downes, James E.; Coutts, David W.; Dawes, Judith M.

    2017-10-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance the photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from {λ }0=570 {{nm}} to {λ }0=730 {{nm}}. Although the device is not optimized, the photocurrent excited with incident p-polarized light (which excites resonant surface plasmons) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s- and p-polarizations) with increased photothermal current. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers in the graphene near the metallic edge. In addition, we show that the polarity of the photocurrent reverses across the gap as the incident light spot moves across the gap. Graphene-based photodetectors offer a simple architecture which can be fabricated on dielectric waveguides to exploit the plasmonic photocurrent enhancement of the evanescent field. Applications for these devices include photodetection, optical sensing and direct plasmonic detection.

  5. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, J; Huang, Y [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 (United States); Ryu, S Y; Paik, U [Division of Materials Science and Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Hwang, K-C [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Rogers, J A, E-mail: y-huang@northwestern.edu, E-mail: jrogers@uiuc.edu [Department of Materials Science and Engineering, Frederick-Seitz Materials Research Laboratory and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61801 (United States)

    2010-02-26

    A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

  6. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates

    International Nuclear Information System (INIS)

    Xiao, J; Huang, Y; Ryu, S Y; Paik, U; Hwang, K-C; Rogers, J A

    2010-01-01

    A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

  7. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman; Fu, Hui-chun; Priante, Davide; Duran Retamal, Jose Ramon; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idris A.; Mitra, Somak; Roqan, Iman S.; Ooi, Boon S.; He, Jr-Hau

    2017-01-01

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  8. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  9. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  10. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting

    KAUST Repository

    Varadhan, Purushothaman

    2017-02-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of −31 mA/cm at −0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  11. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  12. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hao; Li, Yan; Cui, Hai-Bo; Yang, Hong; Gong, Qi-Huang [Peking University, State Key Laboratory for Mesoscopic Physics and Department of Physics, Beijing (China)

    2009-11-15

    The design, fabrication, and characterization of dielectric-loaded surface plasmon-polariton nanowave-guides on a gold film are presented. The nanostructures are produced by two-photon polymerization with femtosecond laser pulses, and the minimum ridge height is {proportional_to}170 nm. Leakage radiation microscopy shows that these surface plasmon-polariton waveguides are single mode with strong mode confinement at the wavelength of 830 nm. The experimental results are in good agreement with the simulation by the effective-index method. (orig.)

  13. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  14. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  15. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  16. Color selectivity of surface-plasmon holograms illuminated with white light.

    Science.gov (United States)

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2013-09-20

    By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO(2) and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.

  17. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  18. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  19. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    Science.gov (United States)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  20. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    International Nuclear Information System (INIS)

    Le, Thi Thanh Tuyen; Tran, Phu Duy; Pham, Xuan Tung; Tong, Duy Hien; Dang, Mau Chien

    2010-01-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO 2 , polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days

  1. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    Science.gov (United States)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  2. Theory of surface second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  3. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    Science.gov (United States)

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  4. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  5. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  6. Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; de Lasson, Jakob Rosenkrantz; Beleggia, Marco

    2014-01-01

    The dependence of surface plasmon coupling on the distance between two nanoparticles (dimer) is the basis of nanometrology tools such as plasmon rulers. Application of these nanometric rulers requires an accurate description of the scaling of the surface plasmon resonance (SPR) wavelength...... with distance. Here, we have applied electron energy-loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) imaging to investigate the relationship between the SPR wavelength of gold and silver nanosphere dimers (radius R) and interparticle distance (d) in the range 0.1R .... Instead, within the range 0.1R gold and silver dimers. Despite this common power dependence, consistently larger SPR wavelength shifts are registered for silver for a given change in d, implying...

  7. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    Science.gov (United States)

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Near-field Spectroscopy of Surface Plasmons in Flat Gold Nanoparticles

    International Nuclear Information System (INIS)

    Achermann, Marc; Shuford, Kevin L.; Schatz, George C.; Dahanayaka, D.H.; Bumm, Lloyd A; Klimov, Victor I.

    2007-01-01

    We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes

  9. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  10. Influence of surface pre-treatment on the electronic levels in silicon MaWCE nanowires.

    Science.gov (United States)

    Venturi, Giulia; Castaldini, Antonio; Schleusener, Alexander; Sivakov, Vladimir; Cavallini, Anna

    2015-05-15

    Deep level transient spectroscopy (DLTS) was performed on n-doped silicon nanowires grown by metal-assisted wet chemical etching (MaWCE) with gold as the catalyst in order to investigate the energetic scheme inside the bandgap. To observe the possible dependence of the level scheme on the processing temperature, DLTS measurements were performed on the nanowires grown on a non-treated Au/Si surface and on a thermally pre-treated Au/Si surface. A noticeable modification of the configuration of the energy levels was observed, induced by the annealing process. Based on our results on these MaWCE nanowires and on literature data about deep levels in bulk silicon, some hypotheses were advanced regarding the identification of the defects responsible of the energy levels revealed.

  11. Geometric effects on surface states in topological insulator Bi2Te3 nanowire

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillman; Povolotskyi, Michael; Klimeck, Gerhard

    2012-02-01

    Bismuth Telluride (BT) is a 3D topological insulator (TI) with surface states that have energy dispersion linear in momentum and forms a Dirac cone at low energy. In this work we investigate the surface properties of a BT nanowire and demonstrate the existence of TI states. We also show how such states vanish under certain geometric conditions. An atomistic model (sp3d5s* TB) is used to compute the energy dispersion in a BT nanowire. Penetration depth of the surface states is estimated by ratio of Fermi velocity and band-gap. BT possesses a tiny band-gap, which creates small localization of surface states and greater penetration in to the bulk. To offset this large spatial penetration, which is undesirable to avoid a direct coupling between surfaces, we expect that bigger cross-sections of BT nanowires would be needed to obtain stable TI states. Our numerical work validates this prediction. Furthermore, geometry of the nanowire is shown to influence the TI states. Using a combined analytical and numerical approach our results reveal that surface roughness impact electronic structure leading to Rashba type splits along z-direction. Cylindrical and square cross-sections are given as illustrative examples.

  12. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    Science.gov (United States)

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  14. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    Science.gov (United States)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  15. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  16. Detection of bisphenol A using a novel surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Piliarik, Marek; Šteinbachová, M.; Flegelová, Z.; Černohorská, H.; Homola, Jiří

    2010-01-01

    Roč. 398, č. 5 (2010), s. 1963-1966 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * endocrine disruptor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.841, year: 2010

  17. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  18. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  19. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  20. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Bocková, Markéta; Homola, Jiří

    2010-01-01

    Roč. 26, č. 4 (2010), s. 1656-1661 ISSN 0956-5663 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Protein array * Cancer marker Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.361, year: 2010

  1. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  2. Surface plasmon resonance sensor for detection of bisphenol A in drinking water

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Homola, Jiří

    2010-01-01

    Roč. 151, č. 1 (2010), s. 177-179 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * drinking water Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  3. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    DEFF Research Database (Denmark)

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...

  4. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  5. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    ) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon...

  6. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  7. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of...

  8. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  9. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio betw...

  10. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  11. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  12. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  13. Surface Plasmon Resonance biosensor analysis as a useful tool in FBDD

    NARCIS (Netherlands)

    Retra, K.; Irth, H.; van Muijlwijk- Koezen, J.E.

    2010-01-01

    SPR (Surface Plasmon Resonance) biosensor instruments are more and more equipped to sensitively measure the binding characteristics of small molecules to their target. Via SPR biosensor measurements, not only the affinity of compounds but also other features such as the kinetics and thermodynamics

  14. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  15. Giant enhancement of sum-frequency yield by surface-plasmon excitation

    NARCIS (Netherlands)

    van der Ham, E. W. M.; Vrehen, Q. H. F.; Eliel, E. R.; Yakovlev, V. A.; Valieva, E. V.; Kuzik, L. A.; Petrov, J. E.; Sychugov, V. A.; van der Meer, A. F. G.

    1999-01-01

    We show experimentally that the radiation generated in infrared-visible sum-frequency mixing at an air-silver interface can be greatly enhanced when the visible input beam excites a surface plasmon-polariton at the interface. With either a prism or a grating used to couple the visible radiation with

  16. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  17. Modelling and characterisation of surface plasmon based sensors for the detection of E. coli

    Czech Academy of Sciences Publication Activity Database

    Rajarajan, M.; Dar, T.; Themistos, Ch.; Rahman, A.; Grattan, K.; Homola, Jiří

    2009-01-01

    Roč. 56, č. 4 (2009), s. 564-571 ISSN 0950-0340 Institutional research plan: CEZ:AV0Z20670512 Keywords : SPR sensor * long-range surface plasmon * bacterium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.942, year: 2009

  18. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  19. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  20. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite diff...

  1. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu; Li, Guanghai; Kong, Lingbing; Huang, Yizhong; Wu, Tao

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young's modulus of single-crystalline Co

  2. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  3. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, Seyedeh Mehri, E-mail: M_hamidi@sbu.ac.ir [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Mosaeii, Babak; Afsharnia, Mina [Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Aftabi, Ali [Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor. - Highlights: • The magneto-optical properties of aligned multilayer nanowires has been investigated. • We see the sufficient sensitivity in magneto-optical surface plasmon resonance of Ni and Co nanowires. • The magnetic modulation mechanism in Ni/Co multilayer has been changed by angular modulation. • The magnetization modulation of the excitation angle accompanying the SPP wave vector modulation takes place in each nanodisk of multilayer.

  4. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  5. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    Science.gov (United States)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  6. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    International Nuclear Information System (INIS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-01-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. (topical review)

  7. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    Science.gov (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  8. Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures

    Science.gov (United States)

    Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.

    2018-03-01

    Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.

  9. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  10. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  12. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.

    Science.gov (United States)

    Mehfuz, R; Chowdhury, F A; Chau, K J

    2012-05-07

    We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

  13. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  14. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  15. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  16. Hybrid surface platform for the simultaneous detection of proteins and DNA using a surface plasmon resonance (SPR) imaging sensor

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Ladd, J.; Taylor, A.; Shaoyi, J.

    2008-01-01

    Roč. 80, č. 11 (2008), s. 4231-4236 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * DNA-directed immobilization * protein array Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.712, year: 2008

  17. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  18. Novel multichannel surface plasmon resonance photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.

    2016-04-01

    In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.

  19. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  20. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  1. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  2. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  3. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  4. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Science.gov (United States)

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  5. FDTD analysis of Aluminum/a-Si:H surface plasmon waveguides

    Science.gov (United States)

    Lourenço, Paulo; Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela

    2018-02-01

    The large majority of surface plasmon resonance based devices use noble metals, namely gold or silver, in their manufacturing process. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver's lower stability can be overcome through the deposition of an alumina layer, for instance. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, it is considered a cost-effective approach through the selection of aluminum as the plasmonic material and hydrogenated amorphous silicon instead of its crystalline counterpart. This surface plasmon resonance device relies on Fano resonance to improve its response to refractive index deviations of the surrounding environment. Fano resonance is highly sensitive to slight changes of the medium, hence the reason we incorporated this interference phenomenon in the proposed device. We report the results obtained when conducting Finite-Difference Time Domain algorithm based simulations on this metal-dielectric-metal structure when the active metal is aluminum, gold and silver. Then, we evaluate their sensitivity, detection accuracy and resolution, and the obtained results for our proposed device show good linearity and similar parameter performance as the ones obtained when using gold or silver as plasmonic materials.

  6. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui

    2018-05-07

    A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  8. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    Science.gov (United States)

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  9. Development of an X-ray detector using surface plasmon resonance

    International Nuclear Information System (INIS)

    Kunieda, Y.; Nagashima, K.; Hasegawa, N.; Ochi, Y.

    2009-01-01

    A new X-ray detector using surface plasmon resonance (SPR) is proposed. The detector consists of a prism coated with a thin metal film and semiconductor film. Optical laser pulse induces SPR condition on the metal surface, and synchronized X-ray pulse which is absorbed into the semiconductor film can be detected by measuring the change of the resonance condition of the surface plasmon. The expected time and spatial resolution of this detector is better than that of conventional X-ray detectors by combining this SPR measurement with ultra-short laser pulse as the probe beam. Our preliminary investigation using Au and ZnSe coated prism implies this scheme works well as the detector for the ultra-short X-ray pulse.

  10. Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Wu, S.Y.

    2009-01-01

    A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals at the f......A surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) is reported. We show that the polarization parameters of a laser beam, tan , cos and ellipse orientation angle , can be directly measured by detecting the modulation signals...... at the first and second harmonics of the modulated frequency under a certain birefringence geometry. This leads to accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling biosensing applications. Our experimental results confirm...

  11. Electrical and optical characterization of surface passivation in GaAs nanowires.

    Science.gov (United States)

    Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B

    2012-09-12

    We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.

  12. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.; Ruffo, Riccardo; Hong, Seung Sae; Cui, Yi

    2009-01-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte

  13. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  14. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad; Alsunaidi, Mohammad A.

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi

  15. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.

    Science.gov (United States)

    Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C

    2010-03-10

    We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.

  16. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  17. Surface and volume photoemission of hot electrons from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.

    2014-01-01

    We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions.......We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions....

  18. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  19. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    International Nuclear Information System (INIS)

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  20. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  1. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  2. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    Science.gov (United States)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  3. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    Science.gov (United States)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  4. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  5. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    Science.gov (United States)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  6. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  7. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis......We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate...... photoemission rate and transition absorption for nanoparticles surrounded by various media with a broad range of permittivities and show that photoemission rate and transition absorption follow the same dependence on the permittivity. Thus, we conclude that transition absorption is responsible...

  8. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    International Nuclear Information System (INIS)

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  9. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance

    Science.gov (United States)

    Hashemi Zadeh, Sakineh; Rashidi-Huyeh, Majid; Palpant, Bruno

    2017-10-01

    Owing to their remarkable optical properties, noble metals' nanoparticles are proposed for many applications. Controlling the temperature dependence of these properties may then appear to be of great relevance. In this paper, we investigate the thermo-optical properties of silver nanoparticles. Different silver nanocolloids were prepared with different surface plasmon resonance modes. The thermo-extinction spectra of the colloidal solutions were then evaluated by measuring the extinction spectra at different temperatures. This reveals a typical peak-valley profile around each surface plasmon resonance mode. Mie theory was used to study theoretically the impact of nanoparticle size on the thermo-optical properties. The results allow us to interpret properly the experimental findings.

  10. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  11. Localized surface plasmon modes in a system of two interacting metallic cylinders

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Vergeles, Sergey S.; Vorobev, Petr E.

    2012-01-01

    We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions of geomet......We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions...... of geometrical characteristics of the system and Ohmic losses in the metal. The results of numerical simulations were systematically compared with the analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into account the retardation effects. We also...

  12. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  13. A new surface plasmon resonance sensor for high-throughput screening applications

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Vaisocherová, Hana; Homola, Jiří

    2005-01-01

    Roč. 20, č. 10 (2005), s. 2104-2110 ISSN 0956-5663 R&D Projects: GA ČR(CZ) GA102/03/0633; GA AV ČR(CZ) KSK2067107 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.463, year: 2005

  14. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  15. Surface plasmon resonance: advances of label-free approaches in the analysis of biological samples

    Czech Academy of Sciences Publication Activity Database

    Riedel, Tomáš; Majek, P.; Rodriguez-Emmenegger, Cesar; Brynda, Eduard

    2014-01-01

    Roč. 6, č. 24 (2014), s. 3325-3336 ISSN 1757-6180 R&D Projects: GA ČR(CZ) GBP205/12/G118; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : surface plasmon resonance sensors * polymer brushes * human serum samples Subject RIV: CE - Biochemistry Impact factor: 3.003, year: 2014

  16. Detection of botulinum neurotoxins in buffer and hney using a surface plasmon resonance (SPR) sensor

    Czech Academy of Sciences Publication Activity Database

    Ladd, J.; Taylor, A.; Homola, Jiří; Jiang, S.

    2008-01-01

    Roč. 130, č. 1 (2008), s. 129-134 ISSN 0925-4005 Grant - others:US FDA(US) FD-U-002250; National Science Foundation(US) CBET-0528605 Institutional research plan: CEZ:AV0Z20670512 Source of funding: N - neverejné zdroje ; N - neverejné zdroje Keywords : surface plasmons * biosensors * toxicology Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.122, year: 2008

  17. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    Science.gov (United States)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  18. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Chen, S.; Taylor, A. D.; Homola, Jiří; Hock, B.; Jiang, S.

    2005-01-01

    Roč. 107, č. 1 (2005), s. 193-201 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CTS-0092699 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.646, year: 2005

  19. Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Eyderman, Sergey; Vanwolleghem, M.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 045403 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP205/10/0046 Grant - others:GA MŠk(CZ) MP0702 Institutional support: RVO:67985882 Keywords : one-way electromegnetic waveguide * magneto-optic photonic crystal * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.767, year: 2012

  20. Toward single-molecule detection with sensors based on propagating surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Kvasnička, Pavel; Chadt, Karel; Vala, Milan; Bocková, Markéta; Homola, Jiří

    2012-01-01

    Roč. 37, č. 2 (2012), s. 163-165 ISSN 0146-9592 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA MŠk(CZ) LH11102 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * single molecule * surface plasmon microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.385, year: 2012

  1. Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Chadtová Song, Xue; Gedeonová, Erika; Levová, K.; Kalousová, M.; Zima, T.; Homola, Jiří

    2016-01-01

    Roč. 408, č. 26 (2016), s. 7265-7269 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GBP205/12/G118 Grant - others:AV ČR(CZ) AP1101 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985882 Keywords : Nanoparticles * Blood sample * Surface plasmon resonance Subject RIV: BO - Biophysics Impact factor: 3.431, year: 2016

  2. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  3. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Mrkvová, Kateřina; Piliarik, Marek; Jinoch, P.; Šteinbachová, M.; Homola, Jiří

    2007-01-01

    Roč. 22, č. 6 (2007), s. 1020-1026 ISSN 0956-5663 R&D Projects: GA ČR GA102/03/0633; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.061, year: 2007

  4. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration

    Czech Academy of Sciences Publication Activity Database

    Bulíř, Jiří; Zikmund, Tomáš; Novotný, Michal; Lančok, Ján; Fekete, Ladislav; Juha, Libor

    2016-01-01

    Roč. 122, č. 4 (2016), s. 1-7, č. článku 412. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : local surface plasmon resonance * luminescence * XUV laser * LiF Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  5. Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Eyderman, Sergey; Vanwolleghem, M.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 045403 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP205/10/0046 Grant - others:GA MŠk(CZ) MP0702 Institutional support: RVO:67985882 Keywords : one-way electromegnetic waveguide * magneto- optic photonic crystal * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.767, year: 2012

  6. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  7. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  8. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  9. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Science.gov (United States)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  10. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  11. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  12. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    Science.gov (United States)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.

  13. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  14. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces

    Science.gov (United States)

    Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.

    2017-11-01

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  15. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    Science.gov (United States)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  16. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Science.gov (United States)

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  17. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  18. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  19. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsiao, Chun-I. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsu, Wen-Dung, E-mail: wendung@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China)

    2014-01-15

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  20. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young\\'s modulus of single-crystalline Co nanowires investigated by in situ X-ray diffraction measurements. Diameter-dependent initial longitudinal elongation of the nanowires is observed and ascribed to the anisotropic surface stress due to the Poisson effect, which serves as the basis for mechanical measurements. As the nanowire diameter decreases, a transition from the "smaller is softer" regime to the "smaller is tougher" regime is observed in the Young\\'s modulus of the nanowires, which is attributed to the competition between the elongation softening and the surface stiffening effects. Our work demonstrates a new nondestructive method capable of measuring the initial surface strain and estimating the Young\\'s modulus of single crystalline nanowires, and provides new insights on the size effect. © 2013 The Royal Society of Chemistry.

  1. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film

    International Nuclear Information System (INIS)

    Zhang Zu-Yin; Wang Li-Na; Hu Hai-Feng; Li Kang-Wen; Ma Xun-Peng; Song Guo-Feng

    2013-01-01

    We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  3. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  4. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  5. Analysis of surface states in ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    Shao, Ye; Yoon, Jongwon; Kim, Hyeongnam; Lee, Takhee; Lu, Wu

    2014-01-01

    Highlights: • The electron transport in ZnO nanowire FETs is space charged limited below a trap temperature. • Metallic contacts to ZnO nanowires exhibit non-linear behavior with a Schottky barrier height of ∼0.35 eV. • The surface state density is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2 . • The trap activation energy is ∼0.26 eV. - Abstract: Nanowires (NWs) have attracted considerable interests for scaled electronic and optoelectronic device applications. However, NW based semiconductor devices normally suffer from surface states due to the existence of dangling bonds or surface reconstruction. Because of their large surface-to-volume ratio, surface states in NWs can easily affect the metallic contacts to NWs and electron transport in NW. Here, we present ZnO NW surface analysis by performing current–voltage characterization on ZnO NW Schottky barrier field effect transistors with different metal contacts (Ti, Al, Au) at both room temperature and cryogenic temperature. Our results show that three metal contacts are all Schottky contacts to ZnO NWs due to surface states. Our further study reveals: (a) the surface states related Schottky barrier height (SBH) can be extracted from a back to back Schottky diodes model and the SBH values are in the range of 0.34–0.37 eV for three metal contacts; (b) the trap activation energy determined from the Arrhenius plots of different Schottky metal contacts is in the range of 0.23–0.29 eV, which is oxygen vacancies related; and (c) based on the space-charge-limited model, the surface state density of ZnO NW is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2

  6. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  7. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  8. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  9. Surface plasmon enhancement in gold nanoparticles in the presence of an optical gain medium: an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, K; Sreekanth, K V; Sidharthan, R; Murukeshan, V M [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xing Bengang, E-mail: mmurukeshan@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2011-10-26

    The localized surface plasmon (LSP) enhancement in a gold nanoparticle is demonstrated in this paper. The enhancement of LSP is influenced by both size and the dielectric gain medium surrounding the nanoparticles. The nanoparticle is found to induce plasmonic enhancement of varying degrees depending on its size, and it is inferred that a gold nanoparticle of size 60 nm exhibits the maximum LSP for 532 nm excitation. Singularity due to cancellation of SP loss by an infinite gain medium and LSP enhancement are studied using a pump-probe Rayleigh scattering experiment. Gold nanoparticles of average size 60 nm exhibit the lowest threshold power to observe Rayleigh scattering. Furthermore, compared with the bare nanoparticles, a 12.5 fold enhancement of LSP is observed when the nanoparticle of average size 60 nm is kept in the gain medium.

  10. Design and Simulation of Surface Plasmon Resonance Sensors for Environmental Monitoring

    Science.gov (United States)

    Mahmood, Aseel I.; Ibrahim, Rawa Kh; Mahmood, Aml I.; Ibrahim, Zainab Kh

    2018-05-01

    In this work a Surface Plasmon Resonance (SPR) sensor based on Photonic Crystal Fiber (PCF) infiltrated with water samples has been proposed. To accurate detection of the sample properties, gold is used as plasmonic material. The air holes of PCF has been infiltrated with water samples, the optical properties of these samples has been taken from samples collected from Al-Qadisiya and Wathba lab. (east Tigris, Wathba, and Al-Rasheed) water projects at Baghdad- Iraq. Finite Element Method (FEM) has been used to study the sensor performance and fiber properties. From the numerical investigation we get maximum sensitivity circa 164.3 nm/RIU in the sensing range of 1.33 (of STD water) to 1.3431 (of river sample). The proposed sensor could be developed to detect f various high refractive index (RI) chemicals like the heavy metals in water.

  11. Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes

    International Nuclear Information System (INIS)

    Lee, Changhwan; Nedrygailov, Ievgen I; Keun Lee, Young; Lee, Hyosun; Young Park, Jeong; Ahn, Changui; Jeon, Seokwoo

    2015-01-01

    Au–TiO_2–Ti nanodiodes with a metal–insulator–metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO_2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au–TiO_2–Ti nanodiodes, and (2) reducing the thickness of the TiO_2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO_2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed. (paper)

  12. On the Effect of Dipole-Dipole Interactions on the Quantum Statistics of Surface Plasmons in Multiparticle Spaser Systems

    Science.gov (United States)

    Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.

    2018-04-01

    The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.

  13. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  14. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy

    International Nuclear Information System (INIS)

    Joyce, Hannah J; Docherty, Callum J; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B; Gao Qiang; Tan, H Hoe; Jagadish, Chennupati

    2013-01-01

    We have performed a comparative study of ultrafast charge carrier dynamics in a range of III–V nanowires using optical pump–terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm 2 V −1 s −1 , which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s −1 . This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10 5   cm s −1 . These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices. (paper)

  15. Production of nanopoints and nanowires of silver at the surface of Si(557)

    International Nuclear Information System (INIS)

    Zhachuk, R.A.; Tijs, S.A.; Ol'shanetskij, B.Z.

    2004-01-01

    Formation of the silver nanostructures at the room temperature on the Si(557) surface containing the regular atomic stages of three interplanar distances in the height is studied through the methods of the scanning tunnel microscopy and electron Auger-spectroscopy. It is established that the oxygen adsorbed by the silicon surface from the residual atmosphere in the vacuum chamber effects the shape of the formed silver islands. The silver nanostructures of the nanowire-type, extended along the stage edges or nanopoints ordered in lines parallel to the stage edges may be formed depending on the quantity of the oxygen adsorbed on the surface [ru

  16. Surface- and interface-plasmon modes on small semiconducting spheres

    International Nuclear Information System (INIS)

    Ugarte, D.; Colliex, C.; Trebbia, P.

    1992-01-01

    The study of the electronic properties of small particles is of major interest because of their intriguing physicochemical properties. The very small electron probes available in scanning transmission electron microscopes offer unique capabilities for investigating small particles with subnanometer spatial resolution. The correlation between electron-energy-loss spectra and energy-filtered images is of great help in pinpointing the excitations under study. This paper presents a theoretical and experimental study of collective excitation modes in the bulk and at the interfaces and surfaces of small spherical silicon particles covered with a thin oxide coating. Among other results, our experimental measurements have shown that there exists a surface-mode excitation at 3--4 eV, precisely localized on the external surface of the oxide layer. Classical dielectric theory is used in interpreting these results, by invoking the presence of an ultrathin conductive layer

  17. Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: Electrostatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Nilesh Kumar; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, Delhi-110016 (India)

    2016-05-23

    We have systematically study the nano-plasmonic coupling to the perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) dielectric media in terms of surface plasmon resonance. The surface plasmon resonances are exhibited by the metal nanoparticles which is the electromagnetic excitation conduction electron when it is irradiated by incident light photon. Tunable behaviour of SPRs can be utilized to enhance the absorption of photon inside the surrounding environment in the wavelength range 300 to 800 nm. We have been selected two different types of nanogeometry such as coated and non-coated metal nanoparticles (radii ranges from 10 to 15 nm) to understand the plasmonic interaction to the dielectric media. Finally, we have observed that the coated nanogeometry is more preferable as compared to non-coated system to analyse the tunability of SPR peaks.

  18. Photonic band gap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of ~20 nm centered at 1550 nm. The possibilities...

  19. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  20. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  1. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  2. Imagerie de plasmons de surface et d’électrons chauds par thermoréflectance pompe-sonde femtoseconde

    OpenAIRE

    Lozan , Olga

    2015-01-01

    In this work we explored the ultrafast dynamics of photo-excited hot electrons in plasmonic structures. The particular interest of this field resides on the fact surface plasmons (SP), because of their unrivaled temporal and spatial characteristics, provide a technological route for ultrafast information processes at the nanoscale. In this context, this manuscript provides a comprehension and the harnessing of one of the major limitation of the SP-based technologies : absorption losses by Jou...

  3. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Ikhsanov, Renat S.

    2014-01-01

    in the surface mechanism, which leads to a substantial (by similar to 5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken...... for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931....... In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism...

  4. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    Science.gov (United States)

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-11

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  5. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  6. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  7. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide

    International Nuclear Information System (INIS)

    Zhu, Qiong-gan; Wang, Zhi-guo; Tan, Wei

    2014-01-01

    The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal (MDM) surface plasmon polariton (SPP) waveguide is investigated theoretically using Green's function method. Our result suggests that the gain and loss parameters influence the amplitude and phase of the fields localized in the two cavities. For the case of balanced gain and loss, the fields of the two cavities are always of equi-amplitude but out of phase. A plasmon induced transparency (PIT)-like transmission peak can be achieved by the destructive interference of two fields with anti-phase. For the case of unbalanced gain and loss, some unexpected responses of structure are generated. When the gain is more than the loss, the system response is dissipative at around the resonant frequency of the two cavities, where the sum of reflectance and transmittance becomes less than one. This is because the lossy cavity, with a stronger localized field, makes the main contribution to the system response. When the gain is less than the loss, the reverse is true. It is found that the metal loss dissipates the system energy but facilitates the gain cavity to make a dominant effect on the system response. This mechanism may have a potential application for optical amplification and for a plasmonic waveguide switch. (paper)

  8. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Romero, M.J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  9. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  10. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  11. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    International Nuclear Information System (INIS)

    Abel, B.; Aslan, K.

    2012-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  13. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  14. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  15. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  16. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  17. Early stages of Cs adsorption mechanism for GaAs nanowire surface

    Science.gov (United States)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu

    2018-03-01

    In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.

  18. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    Science.gov (United States)

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  19. Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Sihao [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Liu, Lei, E-mail: liu1133_cn@sina.com.cn [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Kong, Yike [Department of Optoelectronic Technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology Nanjing, 210094 (China); Wang, Honggang; Wang, Meishan [School of Information and Electrical Engineering, Ludong University, Yantai 264025 (China)

    2016-11-30

    Highlights: • B{sub N} is the most stable adsorption site. • Work function is reduced after Cs adsorption. • Surface atomic structures are reconstructed. • Surface states near fermi level is contributed to the hybridization of Cs 5s state with Ga 4p and N 2p state. • NEA surface is demonstrated after Cs adsorption on GaN nanowire surface. - Abstract: Based on first-principle study, the adsorption mechanism of Cs on (100) crystal plane of GaN nanowire surface with coverage of 1/12 monolayer is explored. It is discovered that the most stable adsorption site is B{sub N} because of its lowest adsorption energy. The work function of GaN nanowire surface is reduced by 1.69 eV and will be further reduced with increasing Cs adsorption, which promotes the development of negative electron affinity (NEA) state of the materials. Furthermore, Cs adatom will make a great influence on the surface atomic structure, oppositely, little influence on the center atomic structure. There appears a dipole moment valued −6.93 Debye on the nanowire surface contributed to the formation the heterojunction on the surface, which is beneficial to the photoelectrons liberation. After Cs adsorption, the valence band and conduction band both move to lower energy side. The surface states mainly result from the hybridization of Cs 5s state with Ga 4p state and N 2p state. This study can help us to further experiment on the Cs adsorption processing on GaN nanowire and improve the photoemission performance of GaN nanowire devices.

  20. Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research

    International Nuclear Information System (INIS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Honggang; Wang, Meishan

    2016-01-01

    Highlights: • B N is the most stable adsorption site. • Work function is reduced after Cs adsorption. • Surface atomic structures are reconstructed. • Surface states near fermi level is contributed to the hybridization of Cs 5s state with Ga 4p and N 2p state. • NEA surface is demonstrated after Cs adsorption on GaN nanowire surface. - Abstract: Based on first-principle study, the adsorption mechanism of Cs on (100) crystal plane of GaN nanowire surface with coverage of 1/12 monolayer is explored. It is discovered that the most stable adsorption site is B N because of its lowest adsorption energy. The work function of GaN nanowire surface is reduced by 1.69 eV and will be further reduced with increasing Cs adsorption, which promotes the development of negative electron affinity (NEA) state of the materials. Furthermore, Cs adatom will make a great influence on the surface atomic structure, oppositely, little influence on the center atomic structure. There appears a dipole moment valued −6.93 Debye on the nanowire surface contributed to the formation the heterojunction on the surface, which is beneficial to the photoelectrons liberation. After Cs adsorption, the valence band and conduction band both move to lower energy side. The surface states mainly result from the hybridization of Cs 5s state with Ga 4p state and N 2p state. This study can help us to further experiment on the Cs adsorption processing on GaN nanowire and improve the photoemission performance of GaN nanowire devices.