WorldWideScience

Sample records for nanotubes nanocrystal forms

  1. Photoresponse of hybrids made of carbon nanotubes and CdTe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zebli, Bernd; Vieyra, Hugo A.; Kotthaus, Joerg P. [Department fuer Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitaet Muenchen, Geschwister-Scholl-Platz 1, 80539 Munich (Germany); Carmeli, Itai [Department of Chemistry and Biochemistry, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hartschuh, Achim [Department fuer Chemie, Physikalische Chemie, Butenandtstr. 5-13 E, 81377 Munich (Germany); Holleitner, Alexander W. [Walter-Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2008-07-01

    We observe that the photoresponse of single-walled carbon nanotubes can be adjusted by the absorption characteristics of colloidal CdTe nanocrystals, which are bound to the side-walls of the carbon nanotubes via molecular recognition. To this end, the hybrid systems are characterized using charge transport measurements under resonant optical excitation of the carbon nanotubes and nanocrystals, respectively. We investigate the photoresponse of both ensembles of hybrid systems and single carbon-nanotube-nanocrystal-hybrids. The data suggest a bolometrically induced increase of the current in the carbon nanotubes, which is due to photon absorption in the nanocrystals.

  2. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  3. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    Science.gov (United States)

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  4. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids

    International Nuclear Information System (INIS)

    Gao Chao; Li Wenwen; Jin Yizheng; Kong Hao

    2006-01-01

    A facile and efficient aqueous phase-based strategy to synthesize carbon nanotube (CNT)/silver nanocrystal nanohybrids at room temperature is reported. In the presence of carboxyl group functionalized or poly(acrylic acid)- (PAA-) grafted CNTs, silver nanoparticles were in situ generated from AgNO 3 aqueous solution, without any additional reducing agent or irradiation treatment, and readily attached to the CNT convex surfaces, leading to the CNT/Ag nanohybrids. The produced silver nanoparticles were determined to be face-centred cubic silver nanocrystals by scanning transmission electron microscopy (STEM), electron diffraction (ED) and x-ray powder diffraction (XRD) analyses. Detailed experiments showed that this strategy can also be applied to different CNTs, including single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), multiwalled carbon nanotubes (MWNTs), and polymer-functionalized CNTs. The nanoparticle sizes can be controlled from 2 nm to 10-20 nm and the amount of metal deposited on CNT surfaces can be as high as 82 wt%. Furthermore, large-scale (10 g or more) CNT/Ag nanohybrids can be prepared via this approach without the decrease of efficiency and quality. This approach can also be extended to prepare Au single crystals by CNTs. The facile, efficient and large-scale availability of the nanohybrids makes their tremendous potential realizable and developable

  5. Fabrication of Fischer-Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes

    NARCIS (Netherlands)

    Casavola, Marianna; Hermannsdoerfer, Justus; de Jonge, Niels; Dugulan, A. Iulian; de Jong, Krijn P.

    2015-01-01

    The fabrication of supported catalysts consisting of colloidal iron oxide nanocrystals with tunable size, geometry, and loadinghomogeneously dispersed on carbon nanotube (CNT) supportsis described herein. The catalyst synthesis is performed in a two-step approach. First, colloidal iron and iron

  6. Semiconductor nanocrystals formed in SiO2 by ion implantation

    International Nuclear Information System (INIS)

    Zhu, J.G.; White, C.W.; Budai, J.D.; Withrow, S.P.; Chen, Y.

    1994-11-01

    Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO 2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO 2 . Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO 2

  7. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.

    Science.gov (United States)

    Yang, Dongjiang; Liu, Hongwei; Liu, Long; Sarina, Sarina; Zheng, Zhanfeng; Zhu, Huaiyong

    2013-11-21

    Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.

  8. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  9. In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Ruofei; Xia, Guofeng; Shen, Shuiyun; Zhu, Fengjuan; Jiang, Fengjing; Zhang, Junliang

    2015-01-01

    Graphical abstract: In-situ soft-templated LFP nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs), exhibited superior electrochemical performance due to the synergetic effect between CNTs and CNSs, which form interconnected conductive network for fast transport of both electrons and lithium ions. - Highlights: • LFP nanocrystals were in-situ synthesized on interconnected CNTs/CNSs framework with an in-situ soft-templated method. • LFP@CNTs/CNSs exhibited superior rate capability and cycling stability, due to interconnected conductive network for fast transport of both electrons and lithium ions. • The synergetic effect between CNTs and CNSs on the electrochemical performance of LFP electrode was demonstrated by a systematically electrochemical study compared with LFP/CNSs and LFP/CNTs. - Abstract: Lithium ion phosphate (LiFePO 4 ) nanocrystals are successfully in-situ grown on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs) with a soft-templated method, which involves the multi-constituent co-assembly of a triblock copolymer, CNTs, resol and precursors of LFP followed by thermal treatment. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and N 2 adsorption-desorption techniques are used to characterize the structure and morphology of the as-synthesized materials. When used as the cathode of lithium ion batteries, the LFP@CNTs/CNSs composite exhibits superior rate capability and cycling stability, compared with the samples modified only with CNSs (designated as LFP/CNSs) or with CNTs (designated as LFP/CNTs). This is mainly attributed to the synergetic effect between CNTs and CNSs caused by their unique structure, which forms interconnected conductive network for fast transport of both electrons and lithium ions, and thus remarkably improves the electrode kinetics. Firstly, nano-sized LFP are in-situ grown on the

  10. Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Song, Huawei; Li, Na; Cui, Hao; Wang, Chengxin

    2014-01-01

    A facile way towards high rate and long lifespan anode materials based on SnO 2 and commercial multiwalled carbon nanotubes (MWCNTs) is readily achieved through a combination of activation and hydrothermal treatment. The former endows the MWCNTs with abundant hydrophilic radicals, while the latter guarantees intimate connection between SnO 2 and MWCNTs; eventually, monodisperse SnO 2 nanocrystals ca. 3 nm are firmly anchored on the MWCNTs without agglomeration. When used for lithium ion batteries (LIBs) anodes, the hybrid composite exhibits excellent cycling capability with high reversible capacity about 700 mAh g −1 (based on total weight of the composite) for 150 cycles at 0.1 A g −1 superior to both components involved. Besides large rates of 5 A g −1 with recoverable initial reversible capacity, it also last for more than 1000 cycles with little capacity decay, outperforming most SnO 2 based carbon nanotubes composites (SnO 2 /CNTs) so far. Insights into the electrochemical processes reveal the hybrid composite exhibits enhanced redox capacitance and interfacial capacitance in comparison with SnO 2 nanocrystals which indicate the perfect interfaces and robust structure of the hybrid composite

  11. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  12. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  13. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Dozono, Hayato

    2013-01-01

    Luminescent nanocrystals based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 , were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y 3−x Eu x NbO 7 –4ZrO 2 that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu 3+7 F 0 → 5 L 6 , and 7 F 0 → 5 D 2 excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 transitions of Eu 3+ , respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to 5 D 0 → 7 F 2 transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 ) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y 3−x Eu x NbO 7 and 50 mol% ZrO 2 was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y 3 NbO 7 showed an UV-blue and broad-band emission under excitation at 240 nm. • The emission is originated from the niobate octahedral group [NbO 6 ] 7− . • The nanocrystals showed orange and

  14. Biocompatibility of bio based calcium carbonate nanocrystals ...

    African Journals Online (AJOL)

    Background: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance ...

  15. In-situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Du, G

    2007-01-01

    nanoparticles on SiOx support show crystalline lattice fringe contrast and high deformability before and during nanotube formation. A single-walled carbon nanotube nucleates by lift-off of a carbon cap. Cap stabilization and nanotube growth involve the dynamic reshaping of the catalyst nanocrystal itself...

  16. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    Science.gov (United States)

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  18. Carbon nanotubes and methods of forming same at low temperature

    Science.gov (United States)

    Biris, Alexandru S.; Dervishi, Enkeleda

    2017-05-02

    In one aspect of the invention, a method for growth of carbon nanotubes includes providing a graphitic composite, decorating the graphitic composite with metal nanostructures to form graphene-contained powders, and heating the graphene-contained powders at a target temperature to form the carbon nanotubes in an argon/hydrogen environment that is devoid of a hydrocarbon source. In one embodiment, the target temperature can be as low as about 150.degree. C. (.+-.5.degree. C.).

  19. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  20. Facile template-directed synthesis of carbon-coated SnO2 nanotubes with enhanced Li-storage capabilities

    International Nuclear Information System (INIS)

    Zhu, Xiaoshu; Zhu, Jingyi; Yao, Yinan; Zhou, Yiming; Tang, Yawen; Wu, Ping

    2015-01-01

    Herein, a novel type of carbon-coated SnO 2 nanotubes has been designed and synthesized through a facile two-step hydrothermal approach by using ZnO nanorods as templates. During the synthetic route, SnO 2 nanocrystals and carbon layer have been uniformly deposited on the rod-like templates in sequence, meanwhile ZnO nanorods could be in situ dissolved owing to the generated alkaline and acidic environments during hydrothermal coating of SnO 2 nanocrystals and hydrothermal carbonization of glucose, respectively. When utilized as an anode material in lithium-ion batteries, the carbon-coated SnO 2 nanotubes manifests markedly enhanced Li-storage capabilities in terms of specific capacity and cycling stability in comparison with bare SnO 2 nanocrystals. - Graphical abstract: Display Omitted - Highlights: • C-coated SnO 2 nanotubes prepared via facile ZnO-nanorod-templated hydrothermal route. • Unique morphological and structural features toward lithium storage. • Enhanced Li-storage performance in terms of specific capacity and cycling stability

  1. Formation of the distributed NiSiGe nanocrystals nonvolatile memory formed by rapidly annealing in N2 and O2 ambient

    International Nuclear Information System (INIS)

    Hu, Chih-Wei; Chang, Ting-Chang; Tu, Chun-Hao; Chiang, Cheng-Neng; Lin, Chao-Cheng; Chen, Min-Chen; Chang, Chun-Yen; Sze, Simon M.; Tseng, Tseung-Yuen

    2010-01-01

    In this work, electrical characteristics of the Ge-incorporated Nickel silicide (NiSiGe) nanocrystals memory device formed by the rapidly thermal annealing in N 2 and O 2 ambient have been studied. The trapping layer was deposited by co-sputtering the NiSi 2 and Ge, simultaneously. Transmission electron microscope results indicate that the NiSiGe nanocrystals were formed obviously in both the samples. The memory devices show obvious charge-storage ability under capacitance-voltage measurement. However, it is found that the NiSiGe nanocrystals device formed by annealing in N 2 ambient has smaller memory window and better retention characteristics than in O 2 ambient. Then, related material analyses were used to confirm that the oxidized Ge elements affect the charge-storage sites and the electrical performance of the NCs memory.

  2. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    Science.gov (United States)

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  3. Nanocrystals Technology for Pharmaceutical Science.

    Science.gov (United States)

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  5. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    Science.gov (United States)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  6. Encapsulated Silicon Nanocrystals Formed in Silica by Ion Beam Synthesis

    International Nuclear Information System (INIS)

    Choi, Han Woo; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Hong, Wan; Ji, Young Yong

    2004-01-01

    The photoluminescence (PL) emission of Si nanocrystals synthesized by 400 keV Si ion implanted in SiO 2 is studied as a function of ion dose and annealing time. The formation of nanocrystals at around 600 nm from the surface was confirmed by RBS and HRTEM, and the Si nanocrystals showed a wide and very intense PL emission at 700-900 nm. The intensity of this emission showed a typical behaviour with a fast transitory increase to reach a saturation with the annealing time, however, the red shift increased continuously because of the Ostwald ripening. The oversaturation of dose derived a decrease of PL intensity because of the diminishment of quantum confinement. A strong enhancement of PL intensity by H passivation was confirmed also, and the possible mechanism is discussed

  7. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    Science.gov (United States)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  8. Self-aggregation of magnetic semiconductor EuS nanocrystals

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Hasegawa, Yasuchika; Kamikubo, Hironari; Kataoka, Mikio; Kawai, Tsuyoshi

    2009-01-01

    Controlled formation of aggregates having organized structure of cube-shaped EuS nanocrystals is reported. The EuS aggregates in liquid media (methanol) were obtained by means of van der Waals interaction between EuS nanocrystals. The packing structure of the EuS aggregates is characterized with transmission electron microscopy (TEM) and small angle X-ray scattering measurements (SAXS). TEM image indicates the EuS nanocrystals form self-aggregated 2D orthogonal lattice structure. The diffraction peak of (111) of SAXS profile shows that the cube-shaped EuS form 3D cubic superlattice. We successfully demonstrated that the aggregates of cube-shaped EuS nanocrystals formed cubic stacking structure.

  9. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  10. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging

    Energy Technology Data Exchange (ETDEWEB)

    Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo; Harder, Ross; Huang, Michael H.; Robinson, Ian K.

    2016-06-23

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  11. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  12. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    +, which results in an enhancement of the magnetocrystalline anisotropy. As a result the complex ferri-magnetic properties of the nanocrystals become detectable at room temperature, whereas they were greatly restricted to cryogenic temperatures before the cation exchange. The improvements achieved by the cation exchange widens the applicability of the iron-oxide nanocrystals for spin based magneto-electronics applications. A related post synthetic treatment to the iron exchange is the galvanic exchange, applied in chapter 3 to transform Sn nanocrystals into Ag-Sn intermetallic alloys. These alloys are of high interest for catalytic applications and batteries. The special case of Sn nanocrystals appeared to be highly interesting due to the metal/metal-oxide core/shell nature of these nanocrystals. The naturally formed SnO2 shell, which spontaneously forms as soon the nanocrystals are exposed to air, plays a decisive role in the galvanic exchange process. While it appears to be permeable for Ag ions, enabling the desired galvanic transformation of the nanocrystal core to an AgSn alloy, it effectively protects the nanocrystals core from other metals, including nobel metals. These processes were evidenced in this work in detail by in-situ experiments, performed by synchrotron X-ray diffraction and proven by transmission electron microscopy. That the ion exchange can be used also for direct synthesis of chalcogenide semiconductor nanocrystals is shown in chapter 4. In this case the cation exchange reaction has been used for the in-situ synthesis of highly reactive metal precursors, which subsequently react with chalcogenides to form 2-4 nm small nanocrystals. Encouraging results were obtained for silver chalcogenides, representing 'green' alternatives to the commonly used infrared nanocrystals based on semiconductors containing toxic elements such as Pb and Hg. In this chapter only my own contribution to the work is described, namely the synthesis strategy, because further

  13. Anodic Titania Nanotube Arrays Sensitized with Mn- or Co-Doped CdS Nanocrystals

    International Nuclear Information System (INIS)

    Smith, York R.; Gakhar, Ruchi; Merwin, Augustus; Mohanty, Swomitra K.; Chidambaram, Dev; Misra, Mano

    2014-01-01

    Highlights: • Mn or Co doped CdS where synthesized and deposited onto TiO 2 nanotubular arrays. • Synthesis and deposition were achieved simultaneously using SILAR method. • Various characterization techniques demonstrate lattice incorporation of dopant. • Photoelectrochemical performance was analyzed using AM 1.5 irradiation. • Dopants increases depletion width of CdS and increase photoelectrochemical responses. - Abstract: The use of doped luminescent nanocrystals or quantum dots have mainly been explored for imaging applications; however, recently they have gained interest in solar energy conversion applications due to long electron lifetimes, tunable band gaps and emission by compositional control. In this study, we have examined the application of Mn or Co doped CdS nanocrystals as a sensitizing layer over titania nanotubular arrays synthesized via electrochemical anodization in photoelectrochemical applications. The doped and undoped CdS nanocrystals were simultaneously synthesized and deposited onto the titania surface by adoption of a successive ion layer adsorption-reaction (SILAR) method. Various characterization methods indicate lattice incorporation of the dopant within CdS. The addition of dopants to CdS was found to improve the photoelectrochemical performance by increasing the depletion width of the CdS nanocrystals and reducing recombination losses of charge carriers

  14. Development Considerations for Nanocrystal Drug Products.

    Science.gov (United States)

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  15. Organization of silicon nanocrystals by localized electrochemical etching

    International Nuclear Information System (INIS)

    Ayari-Kanoun, Asma; Drouin, Dominique; Beauvais, Jacques; Lysenko, Vladimir; Nychyporuk, Tetyana; Souifi, Abdelkader

    2009-01-01

    An approach to form a monolayer of organized silicon nanocrystals on a monocrystalline Si wafer is reported. Ordered arrays of nanoholes in a silicon nitride layer were obtained by combining electron beam lithography and plasma etching. Then, a short electrochemical etching current pulse led to formation of a single Si nanocrystal per each nanohole. As a result, high quality silicon nanocrystal arrays were formed with well controlled and reproducible morphologies. In future, this approach can be used to fabricate single electron devices.

  16. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  17. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  18. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  19. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong

    2015-01-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO 2 nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO 2 nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO 2 nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO 2 nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO 2 nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO 2 nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO 2 nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO 2 nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO 2 nanotubes. • The highest cell density was observed on 470 nm diameter TiO 2 nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface

  20. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  1. Metallic Carbon Nanotubes and Ag Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  2. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    Science.gov (United States)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  3. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  4. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  5. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  6. Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst

    International Nuclear Information System (INIS)

    Zhu, Chengquan; Li, Yuren; Su, Qing; Lu, Bingan; Pan, Jiaqi; Zhang, Jiawang; Xie, Erqing; Lan, Wei

    2013-01-01

    Highlights: •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes are prepared by a facile electrospinning technique. •The formation mechanism of heterojunction tubes is proposed for self-polymer-templates action. •SnO 2 /Fe 2 O 3 nano-heterojunction-tubes show high photocatalytic activity under visible light irradiation. •The reasons for the high photocatalytic activity are investigated in detail. -- Abstract: Herein SnO 2 /Fe 2 O 3 heterojunction nanotubes are prepared by a facile electrospinning technique. The heterojunction nanotubes with a diameter of about 200 nm uniformly distribute SnO 2 and Fe 2 O 3 nanocrystals and present the obvious interfaces between them, which form perfect SnO 2 /Fe 2 O 3 nano-heterojunctions. A possible mechanism based on self-polymer-templates is proposed to explain the formation of SnO 2 /Fe 2 O 3 heterojunction nanotubes. The heterojunction nanotubes show high photocatalytic activity for the degradation of RhB dye under visible light irradiation. The prepared SnO 2 /Fe 2 O 3 heterojunction nanotubes can also be applied to other fields such as sensor, lithium-ion batteries

  7. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  8. Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Das, Prajna P; Mohapatra, Susanta K; Misra, Mano

    2008-01-01

    Efficient photoelectrolysis of water to generate hydrogen (H 2 ) can be carried out by designing photocatalysts with good absorption as well as charge transport properties. One dimensional (1D), self-organized titania (TiO 2 ) nanotubes are known to have excellent charge transport properties and TiO 2 nanoparticles (NPs) are good for better photon absorption. This paper describes the synthesis of a composite photocatalyst combining the above two properties of TiO 2 nanocomposites with different morphologies. TiO 2 NPs (5-9 nm nanocrystals form 500-700 nm clusters) have been synthesized from TiCl 4 precursor on TiO 2 nanotubular arrays (∼80 nm diameter and ∼550 nm length) synthesized by the sonoelectrochemical anodization method. This TiO 2 nanotube-nanoparticle composite photoanode has enabled obtaining of enhanced photocurrent density (2.2 mA cm -2 ) as compared with NTs (0.9 mA cm -2 ) and NPs (0.65 mA cm -2 ) alone.

  9. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  10. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  11. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  12. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  13. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  14. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  15. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.; Kamaev, G. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Purkrt, A.; Remes, Z. [Institute of Physics ASCR (Czech Republic); Fajgar, R. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Stuchliková, T. H.; Stuchlik, J. [Institute of Physics ASCR (Czech Republic)

    2016-07-15

    Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR) range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.

  16. Co-Au core-shell nanocrystals formed by sequential ion implantation into SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Hoy, B.; Johannessen, B.; Dunn, S. G.; Foran, G. J.; Ridgway, M. C.

    2006-01-01

    Co-Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO 2 . The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au-Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions

  17. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  18. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    Science.gov (United States)

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  19. Impact of growth temperature on the crystal habits, forms and structures of VO2 nanocrystals

    International Nuclear Information System (INIS)

    Loeffler, Stefan; Auer, Erwin; Lugstein, Alois; Bertagnolli, Emmerich; Weil, Matthias

    2011-01-01

    We investigated the impact of the process temperature on the habits, forms and crystal structure of VO 2 nanocrystals grown by a vapor-transport method on (0001) quartz substrates. Four distinct growth regimes were discerned: orthorhombic nanowires, sheets, hemispheres, and nanowires with a monoclinic structure. The nanostructures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). I/V characterization of individual nanowires was enabled by Ti/Au contact formation via electron beam lithography and lift-off techniques. The expected metal-insulator transition (MIT) was found in monoclinic VO 2 nanowires. (orig.)

  20. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  1. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  2. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias; Choi, Joshua J.; Smilgies, Detlef-M.

    2009-01-01

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  3. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  4. Fundamental absorption edge of NiO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V.I., E-mail: visokolov@imp.uran.ru [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Druzhinin, A.V. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation); Kim, G.A. [Institute of Organic Synthesis Ural Branch of RAS, S. Kovalevskaya Street 20, 620990 Yekaterinburg (Russian Federation); Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E. [Institute of Metal Physics, Ural Branch of RAS, S. Kovalevskaya Street 18, 620990 Yekaterinburg (Russian Federation)

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge.

  5. Fundamental absorption edge of NiO nanocrystals

    International Nuclear Information System (INIS)

    Sokolov, V.I.; Druzhinin, A.V.; Kim, G.A.; Gruzdev, N.B.; Yermakov, A.Ye.; Uimin, M.A.; Byzov, I.V.; Shchegoleva, N.N.; Vykhodets, V.B.; Kurennykh, T.E.

    2013-01-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5–4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p—d charge transfer transitions form the fundamental absorption edge

  6. Pulsed ion-beam induced nucleation and growth of Ge nanocrystals on SiO2

    International Nuclear Information System (INIS)

    Stepina, N. P.; Dvurechenskii, A. V.; Armbrister, V. A.; Kesler, V. G.; Novikov, P. L.; Gutakovskii, A. K.; Kirienko, V. V.; Smagina, Zh. V.; Groetzschel, R.

    2007-01-01

    Pulsed low-energy (200 eV) ion-beam induced nucleation during Ge deposition on thin SiO 2 film was used to form dense homogeneous arrays of Ge nanocrystals. The ion-beam action is shown to stimulate the nucleation of Ge nanocrystals when being applied after thin Ge layer deposition. Temperature and flux variation was used to optimize the nanocrystal size and array density required for memory device. Kinetic Monte Carlo simulation shows that ion impacts open an additional channel of atom displacement from a nanocrystal onto SiO 2 surface. This results both in a decrease in the average nanocrystal size and in an increase in nanocrystal density

  7. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  8. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  9. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  10. Inhibition of palm oil oxidation by zeolite nanocrystals.

    Science.gov (United States)

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  11. Thermal expansion producing easier formation of a black phosphorus nanotube from nanoribbon on carbon nanotube

    Science.gov (United States)

    Cao, Jing; Cai, Kun

    2018-02-01

    As a novel one-dimensional material having excellent electrical properties, a black phosphorus (BP) nanotube has wide potential applications in nanodevices. A BP nanotube has not yet, however, been discovered in experiments or fabricated via chemical synthesis. In this study, the feasibility of forming a nanotube from a parallelogram nanoribbon upon a carbon nanotube (CNT) at different temperatures is discussed through the use of molecular dynamics simulations. Results obtained demonstrate that an ideal BP nanotube from the same nanoribbon can be obtained via self-assembly on a CNT at 50 K or lower temperature. At temperatures between 50-100 K, the BP nanotube formed from a single ribbon has defects at both ends. When the temperature is higher than 100 K, it is difficult to obtain a BP nanotube of high quality. It is discovered that when the ribbon can only wind upon the same CNT at low temperature, it may form into an ideal nanotube by increasing the temperature of the system. The reason is that the BP ribbon has a higher thermal expansion than the CNT under the same temperature difference.

  12. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai; Zhang, Lianbin; Hedhili, Mohamed N.; Zhang, Hongnan; Wang, Peng

    2013-01-01

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so

  13. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    Science.gov (United States)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  14. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  15. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  16. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal molecule bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.

  17. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte

  18. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  19. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  20. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment

    International Nuclear Information System (INIS)

    Xian-Gao, Zhang; Kun-Ji, Chen; Zhong-Hui, Fang; Xin-Ye, Qian; Guang-Yuan, Liu; Xiao-Fan, Jiang; Zhong-Yuan, Ma; Jun, Xu; Xin-Fan, Huang; Jian-Xin, Ji; Fei, He; Kuang-Bao, Song; Jun, Zhang; Hui, Wan; Rong-Hua, Wang

    2010-01-01

    A nonvolatile memory device with nitrided Si nanocrystals embedded in a Boating gate was fabricated. The uniform Si nanocrystals with high density (3 × 10 11 cm −2 ) were deposited on ultra-thin tunnel oxide layer (∼ 3 nm) and followed by a nitridation treatment in ammonia to form a thin silicon nitride layer on the surface of nanocrystals. A memory window of 2.4 V was obtained and it would be larger than 1.3 V after ten years from the extrapolated retention data. The results can be explained by the nitrogen passivation of the surface traps of Si nanocrystals, which slows the charge loss rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    Science.gov (United States)

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  2. The structure of carbon nanotubes formed of graphene layers L4-8, L5-7, L3-12, L4-6-12

    Science.gov (United States)

    Shapovalova, K. E.; Belenkov, E. A.

    2017-11-01

    We geometrically calculate the optimized structure of nanotubes based on the graphene layers, using the method of molecular mechanics MM+. It was found that only the nanotubes, based on the graphene layers L4-8, L5-7, L3-12, L4-6-12, have a cylindrical form. Calculations of the sublimation energy, carried out using the semi-empirical quantum-mechanic method PM3, show that energy increases with the increase of nanotube diameters.

  3. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  4. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  5. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  6. Study of the photodissociation of a CdSe nanocrystal beam by means of photoluminescence and Raman scattering

    CERN Document Server

    Orii, T; Onari, S; Kaito, S I; Arai, T

    1997-01-01

    We developed an apparatus that enables us to perform optical measurements of nanocrystals suspended in vacuum. CdSe nanocrystals were produced by a gas evaporation method, and nanocrystal beams were then formed using an inert-gas flow with differential pumping. We measured photoluminescence spectra of the nanocrystal beams with excitations of various photon energies and powers. For a low excitation power, edge emission of the CdSe nanocrystal beam was observed. With increase of the laser power, Raman lines of Se dimers emitted due to the photodissociation of CdSe nanocrystals were observed. It was found that the thresholds of the excitation laser fluence for the photodissociation of CdSe nanocrystals were much smaller than the thresholds of laser fluence for the laser-induced emission of Se atoms from bulk CdSe. The electronic process is dominant in the photodissociation of CdSe nanocrystals whose surfaces are completely free. We suggest that the effective supply of carriers confined in nanocrystals to the su...

  7. Fabrication of highly oriented D03-Fe3Si nanocrystals by solid-state dewetting of Si ultrathin layer

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Nakagawa, Tatsuhiko; Machida, Nobuya; Shigematsu, Toshihiko; Nakao, Motoi; Sudoh, Koichi

    2013-01-01

    In this paper, highly oriented nanocrystals of Fe 3 Si with a D0 3 structure are fabricated on SiO 2 using ultrathin Si on insulator substrate. First, (001) oriented Si nanocrystals are formed on the SiO 2 layer by solid state dewetting of the top Si layer. Then, Fe addition to the Si nanocrystals is performed by reactive deposition epitaxy and post-deposition annealing at 500 °C. The structures of the Fe–Si nanocrystals are analyzed by cross-sectional transmission electron microscopy and nanobeam electron diffraction. We observe that Fe 3 Si nanocrystals with D0 3 , B2, and A2 structures coexist on the 1-h post-annealed samples. Prolonged annealing at 500 °C is effective in obtaining Fe 3 Si nanocrystals with a D0 3 single phase, thereby promoting structural ordering in the nanocrystals. We discuss the formation process of the highly oriented D0 3 -Fe 3 Si nanocrystals on the basis of the atomistic structural information. - Highlights: • Highly oriented Fe–Si nanocrystals (NCs) are fabricated by reactive deposition. • Si NCs formed by solid state dewetting of Si thin layers are used as seed crystals. • The structures of Fe–Si NCs are analyzed by nanobeam electron diffraction. • Most of Fe–Si NCs possess the D0 3 structure after post-deposition annealing

  8. Ge nanocrystals formed by furnace annealing of Ge(x)[SiO2](1-x) films: structure and optical properties

    Science.gov (United States)

    Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2017-07-01

    Ge(x)[SiO2](1-x) (0.1  ⩽  x  ⩽  0.4) films were deposited onto Si(0 0 1) or fused quartz substrates using co-evaporation of both Ge and SiO2 in high vacuum. Germanium nanocrystals were synthesized in the SiO2 matrix by furnace annealing of Ge x [SiO2](1-x) films with x  ⩾  0.2. According to electron microscopy and Raman spectroscopy data, the average size of the nanocrystals depends weakly on the annealing temperature (700, 800, or 900 °C) and on the Ge concentration in the films. Neither amorphous Ge clusters nor Ge nanocrystals were observed in as-deposited and annealed Ge0.1[SiO2]0.9 films. Infrared absorption spectroscopy measurements show that the studied films do not contain a noticeable amount of GeO x clusters. After annealing at 900 °C intermixing of germanium and silicon atoms was still negligible thus preventing the formation of GeSi nanocrystals. For annealed samples, we report the observation of infrared photoluminescence at low temperatures, which can be explained by exciton recombination in Ge nanocrystals. Moreover, we report strong photoluminescence in the visible range at room temperature, which is certainly due to Ge-related defect-induced radiative transitions.

  9. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  10. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  11. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  12. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  13. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  14. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  15. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  16. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators

    KAUST Repository

    Xi, Yi; Song, Jinhui; Xu, Sheng; Yang, Rusen; Gao, Zhiyuan; Hu, Chenguo; Wang, Zhong Lin

    2009-01-01

    We present a systematic study of the growth of hexagonal ZnO nanotube arrays using a solution chemical method by varying the growth temperature (<100 °C), time and solution concentration. A piezoelectric nanogenerator using the as-grown ZnO nanotube arrays has been demonstrated for the first time. The nanogenerator gives an output voltage up to 35 mV. The detailed profile of the observed electric output is understood based on the calculated piezoelectric potential in the nanotube with consideration of the Schottky contact formed between the metal tip and the nanotube; and the mechanism agrees with that proposed for nanowire based nanogenerator. Our study shows that ZnO nanotubes can also be used for harvesting mechanical energy. © 2009 The Royal Society of Chemistry.

  17. Formation Mechanism of Ge Nanocrystals Embedded in SiO2 Studied by Fluorescence X-Ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Yan Wensheng; Li Zhongrui; Sun Zhihu; Wei Shiqiang; Kolobov, A. V.

    2007-01-01

    The formation mechanism of Ge nanocrystals for Ge (60 mol%) embedded in a SiO2 matrix grown on Si(001) and quartz-glass substrates was studied by fluorescence x-ray absorption fine structure (XAFS). It was found that the formation of Ge nanocrystals strongly depends on the properties of the substrate materials. In the as-prepared samples, Ge atoms exist in amorphous Ge and GeO2 phases. At the annealing temperature of 1073 K, on the quartz-glass substrate, Ge nanocrystals are only formed predominantly from the amorphous Ge phase in the as-prepared sample. However, on the Si(100) substrate the Ge nanocrystals are generated partly from amorphous Ge, and partly from GeO2 phases through the permutation reaction with Si substrate. Quantitative analysis revealed that about 10% of GeO2 in as-prepared sample permutated with Si in the wafer and formed Ge nanocrystals

  18. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    International Nuclear Information System (INIS)

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-01-01

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides

  19. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi, E-mail: yuanzhi@xmu.edu.cn; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang, E-mail: dlpeng@xmu.edu.cn [Xiamen University, Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials (China)

    2017-04-15

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  20. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  1. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  2. A single molecule switch based on two Pd nanocrystals linked

    Indian Academy of Sciences (India)

    Conducting molecule; nanocrystals; scanning tunneling microscopy; negative differential resistance. Abstract. Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd ... Current Issue : Vol.

  3. Superheating and supercooling of Ge nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Xu, Q; Sharp, I D; Yuan, C W; Yi, D O; Liao, C Y; Glaeser, A M; Minor, A M; Beeman, J W; Ridgway, M C; Kluth, P; Iii, J W Ager; Chrzan, D C; Haller, E E

    2007-01-01

    Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 deg. C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO 2 exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature

  4. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  5. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    International Nuclear Information System (INIS)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A; Resta, V; Laera, A M; Tapfer, L

    2009-01-01

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  6. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A [NNL-National Nanotechnology Laboratory, INFM, CNR, Via Arnesano, 73100 Lecce (Italy); Resta, V; Laera, A M; Tapfer, L [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: despina.fragouli@unile.it

    2009-04-15

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  7. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Yang, Hyundeok; Chang, Man; Baek, Sungkweon; Hwang, Hyunsang; Jeon, Sanghun; Kim, Juhyung; Kim, Chungwoo

    2005-01-01

    Silicon nitride with silicon nanocrystals formed by low-energy silicon plasma immersion ion implantation has been investigated as a charge trapping layer of a polycrystalline silicon-oxide-nitride-oxide-silicon-type nonvolatile memory device. Compared with the control sample without silicon nanocrystals, silicon nitride with silicon nanocrystals provides excellent memory characteristics, such as larger width of capacitance-voltage hysteresis, higher program/erase speed, and lower charge loss rate at elevated temperature. These improved memory characteristics are derived by incorporation of silicon nanocrystals into the charge trapping layer as additional accessible charge traps with a deeper effective trap energy level

  8. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  9. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    Science.gov (United States)

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  10. Palladium nanotubes formed by lipid tubule templating and their application in ethanol electrocatalysis.

    Science.gov (United States)

    Wang, Yinan; Ma, Shenghua; Su, Yingchun; Han, Xiaojun

    2015-04-13

    Palladium nanotubes were fabricated by using lipid tubules as templates for the first time in a controlled manner. The positively charged lipid 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) was doped into lipid tubules to adsorb PdCl4 (2-) on the tubule surfaces for further reduction. The lipid tubule formation was optimized by studying the growing dynamics and ethanol/water ratio. The DOTAP-doped tubules showed pH stability from 0 to 14, which makes them ideal templates for metal plating. The Pd nanotubes are open-ended with a tunable wall thickness. They exhibited good electrocatalytic performance in ethanol. Their electrochemically active surface areas were 6.5, 10.6, and 83.2 m(2)  g(-1) for Pd nanotubes with 77, 101, and 150 nm wall thickness, respectively. These Pd nanotubes have great potential in fuel cells. The method demonstrated also opens up a way to synthesize hollow metal nanotubes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  12. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  13. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  14. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  15. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  16. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  17. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  18. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    International Nuclear Information System (INIS)

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  19. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  20. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  1. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    Science.gov (United States)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  2. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application.

    Science.gov (United States)

    Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo

    2017-11-28

    A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.

  3. Fabrication of highly oriented D0{sub 3}-Fe{sub 3}Si nanocrystals by solid-state dewetting of Si ultrathin layer

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Muneyuki, E-mail: naito22@center.konan-u.ac.jp [Department of Chemistry, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501 (Japan); Nakagawa, Tatsuhiko; Machida, Nobuya; Shigematsu, Toshihiko [Department of Chemistry, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501 (Japan); Nakao, Motoi [Graduate School of Engineering, Kyushu Institute of Technology, Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan); Sudoh, Koichi [The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2013-07-31

    In this paper, highly oriented nanocrystals of Fe{sub 3}Si with a D0{sub 3} structure are fabricated on SiO{sub 2} using ultrathin Si on insulator substrate. First, (001) oriented Si nanocrystals are formed on the SiO{sub 2} layer by solid state dewetting of the top Si layer. Then, Fe addition to the Si nanocrystals is performed by reactive deposition epitaxy and post-deposition annealing at 500 °C. The structures of the Fe–Si nanocrystals are analyzed by cross-sectional transmission electron microscopy and nanobeam electron diffraction. We observe that Fe{sub 3}Si nanocrystals with D0{sub 3}, B2, and A2 structures coexist on the 1-h post-annealed samples. Prolonged annealing at 500 °C is effective in obtaining Fe{sub 3}Si nanocrystals with a D0{sub 3} single phase, thereby promoting structural ordering in the nanocrystals. We discuss the formation process of the highly oriented D0{sub 3}-Fe{sub 3}Si nanocrystals on the basis of the atomistic structural information. - Highlights: • Highly oriented Fe–Si nanocrystals (NCs) are fabricated by reactive deposition. • Si NCs formed by solid state dewetting of Si thin layers are used as seed crystals. • The structures of Fe–Si NCs are analyzed by nanobeam electron diffraction. • Most of Fe–Si NCs possess the D0{sub 3} structure after post-deposition annealing.

  4. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  5. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  6. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging.

    Science.gov (United States)

    Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2012-06-14

    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

  7. Side-by-Side In(OH3 and In2O3 Nanotubes: Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Tao Xiaojun

    2009-01-01

    Full Text Available Abstract A simple and mild wet-chemical approach was developed for the synthesis of one-dimensional (1D In(OH3 nanostructures. By calcining the 1D In(OH3 nanocrystals in air at 250 °C, 1D In2O3 nanocrystals with the same morphology were obtained. TEM results show that both 1D In(OH3 and 1D In2O3 are composed of uniform nanotube bundles. SAED and XRD patterns indicate that 1D In(OH3 and 1D In2O3 nanostructures are single crystalline and possess the same bcc crystalline structure as the bulk In(OH3 and In2O3, respectively. TGA/DTA analyses of the precursor In(OH3 and the final product In2O3 confirm the existence of CTAB molecules, and its content is about 6%. The optical absorption band edge of 1D In2O3 exhibits an evident blueshift with respect to that of the commercial In2O3 powders, which is caused by the increasing energy gap resulted from decreasing the grain size. A relatively strong and broad purple-blue emission band centered at 440 nm was observed in the room temperature PL spectrum of 1D In2O3 nanotube bundles, which was mainly attributed to the existence of the oxygen vacancies.

  8. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    Germanium nanocrystals are being extensively examined. Their unique optical properties (brought about by the quantum confinement effect) could potentially be applied in wide areas of nonlinear optics, light emission and solid state memory etc. In this paper, Ge nanocrystals embedded in a SiO2...... matrix were formed by complementary metal-oxide-semiconductor compatible technology, e.g. plasma enhanced chemical vapour deposition and annealing. Different sizes of the Ge nanocrystals were prepared and analyzed by transmission electron microscopy with respect to their size, distribution...... and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  9. High-performance supercapacitors based on nanocomposites of Nb{sub 2}O{sub 5} nanocrystals and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaolei; Chen, Zheng; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA (United States); Li, Ge [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA (United States); Department of Physics, East China Normal University, Shanghai (China); Augustyn, Veronica; Dunn, Bruce [Department of Material Science and Engineering, University of California, Los Angeles, CA (United States); Ma, Xueming [Department of Physics, East China Normal University, Shanghai (China); Wang, Ge [School of Materials Science and Engineering, University of Science and Technology, Beijing (China)

    2011-11-15

    Nanocomposites of CNTs and Nb{sub 2}O{sub 5} nanocrystals were fabricated exhibiting excellent conductivity, high specific capacitance, and large voltage window, which led to successful fabrication of asymmetric supercapacitors with high energy densities, power densities, and cycling stability. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  11. Preparation and nonlinear optical properties of indium nanocrystals in sodium borosilicate glass by the sol–gel route

    International Nuclear Information System (INIS)

    Zhong, Jiasong; Xiang, Weidong; Zhao, Haijun; Chen, Zhaoping; Liang, Xiaojuan; Zhao, Wenguang; Chen, Guoxin

    2012-01-01

    Graphical abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel methods. And the indium nanocrystals in tetragonal crystal system have formed uniformly in the glass, and the average diameter of indium nanocrystals is about 30 nm. The third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ (3) of the glass are determined to be −4.77 × 10 −16 m 2 /W, 2.67 × 10 −9 m/W, and 2.81 × 10 −10 esu, respectively. Highlights: ► Indium nanocrystals embedded in glass matrix have been prepared by sol–gel route. ► The crystal structure and composition are investigated by XRD and XPS. ► Size and distribution of indium nanocrystals is determined by TEM. ► The third-order optical nonlinearity is investigated by using Z-scan technique. -- Abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel route. The thermal stability behavior of the stiff gel is investigated by thermogravimetric (TG) and differential thermal (DTA) analysis. The crystal structure of the glass is characterized by X-ray powder diffraction (XRD). Particle composition is determined by X-ray photoelectron spectroscopy (XPS). Size and distribution of the nanocrystals are characterized by transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM). Results show that the indium nanocrystals in tetragonal crystal structure have formed in glass, and the average diameter is about 30 nm. Further, the glass is measured by Z-scan technique to investigate the nonlinear optical (NLO) properties. The third-order NLO coefficient χ (3) of the glass is determined to be 2.81 × 10 −10 esu. The glass with large third-order NLO coefficient is promising materials for applications in optical devices.

  12. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  13. Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form

    International Nuclear Information System (INIS)

    Cruz, Fernando J. A. L.; Pablo, Juan J. de; Mota, José P. B.

    2014-01-01

    Although carbon nanotubes are potential candidates for DNA encapsulation and subsequent delivery of biological payloads to living cells, the thermodynamical spontaneity of DNA encapsulation under physiological conditions is still a matter of debate. Using enhanced sampling techniques, we show for the first time that, given a sufficiently large carbon nanotube, the confinement of a double-stranded DNA segment, 5′-D( * CP * GP * CP * GP * AP * AP * TP * TP * CP * GP * CP * G)-3′, is thermodynamically favourable under physiological environments (134 mM, 310 K, 1 bar), leading to DNA-nanotube hybrids with lower free energy than the unconfined biomolecule. A diameter threshold of 3 nm is established below which encapsulation is inhibited. The confined DNA segment maintains its translational mobility and exhibits the main geometrical features of the canonical B form. To accommodate itself within the nanopore, the DNA's end-to-end length increases from 3.85 nm up to approximately 4.1 nm, due to a ∼0.3 nm elastic expansion of the strand termini. The canonical Watson-Crick H-bond network is essentially conserved throughout encapsulation, showing that the contact between the DNA segment and the hydrophobic carbon walls results in minor rearrangements of the nucleotides H-bonding. The results obtained here are paramount to the usage of carbon nanotubes as encapsulation media for next generation drug delivery technologies

  14. New crystal structures in hexagonal CuInS2 nanocrystals

    Science.gov (United States)

    Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2013-03-01

    CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.

  15. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  16. Core-shell composite metal catalysts incased into natural ceramic nanotubes

    International Nuclear Information System (INIS)

    Vinokurov, V; Berberov, A; Afonin, D; Borzaev, H; Ivanov, E; Gushchin, P; Lvov, Y

    2014-01-01

    The bimetallic halloysite nanotubes were prepared by the injection of halloysite- containing aerosols into the microwave plasma reactor. Nanotubes contain metal nanoparticles formed from the metal salt solution in the lumen of nanotubes and the iron oxide nanoparticles at the outer surface of nanotubes. Such halloysite composites may be sputtered onto the surface of the porous carrier forming the nanostructured catalyst, as was shown by the pure halloysite sputtering onto the model porous ceramic surface

  17. Deposition and characterization of IrOx nanofoils on carbon nanotube templates by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2012-01-01

    Large surface area IrO x nanofoils (IrO x NF) were deposited on multi-wall carbon nanotube (MWCNT) templates, forming IrO x /MWCNT nanocomposites, by reactive radio frequency magnetron sputtering using Ir metal target. The structural and spectroscopic properties of IrO x NF were characterized. The micrographs of field emission scanning electron microscopy showed the formation of foil-like structure for the as-deposited samples. Transmission electron microscopy analysis revealed the contiguous presence of glassy iridium oxide, iridium metal, and iridium dioxide nanocrystals in the foil. X-ray photoelectron spectroscopy analysis provided the information of the oxidation states and the stoichiometry of IrO x NF. Raman spectra revealed the amorphous-like phase of the as-deposited IrO x NF. The nanofoil structure provided ultra-high surface area for electrical charge storage which made the IrO x /MWCNT nanocomposites as an attractive candidate for the supercapacitor applications.

  18. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  19. Janus cyclic peptide-polymer nanotubes

    Science.gov (United States)

    Danial, Maarten; My-Nhi Tran, Carmen; Young, Philip G.; Perrier, Sébastien; Jolliffe, Katrina A.

    2013-11-01

    Self-assembled nanotubular structures have numerous potential applications but these are limited by a lack of control over size and functionality. Controlling these features at the molecular level may allow realization of the potential of such structures. Here we report a new generation of self-assembled cyclic peptide-polymer nanotubes with dual functionality in the form of either a Janus or mixed polymeric corona. A ‘relay’ synthetic strategy is used to prepare nanotubes with a demixing or mixing polymeric corona. Nanotube structure is assessed in solution using 1H-1H nuclear Overhauser effect spectroscopy NMR, and in bulk using differential scanning calorimetry. The Janus nanotubes form artificial pores in model phospholipid bilayers. These molecules provide a viable pathway for the development of intriguing nanotubular structures with dual functionality via a demixing or a mixing polymeric corona and may provide new avenues for the creation of synthetic transmembrane protein channel mimics.

  20. Polyallylamine-Rh nanosheet nanoassemblies-carbon nanotubes organic-inorganic nanohybrids: A electrocatalyst superior to Pt for the hydrogen evolution reaction

    Science.gov (United States)

    Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu

    2018-05-01

    Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.

  1. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  2. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  3. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    International Nuclear Information System (INIS)

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  4. Formation and transformation of the radiation-induced nearsurface color centers in sodium and lithium fluorides nanocrystals

    Science.gov (United States)

    Novikov, A. N.; Kalinov, V. S.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Voitovich, A. P.

    2017-11-01

    Near-surface color centers in sodium fluoride nanocrystals have been formed. At pre-irradiation annealing of sodium and lithium fluorides samples at temperatures of 623 K and above, the near-surface color centers in them have not been found after γ-irradiation. Annealing lithium fluoride nanocrystals with the near-surface defects leads to their transformation into bulk ones of the same composition.

  5. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-01-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF 3 @CeF 3 and TbF 3 @CeF 3 @SiO 2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO 2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF 3 @CeF 3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, ‘the products’, with an average diameter around 10 nm, showed an increase in the concentration of Tb 3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO 2 shell.Graphical Abstract

  6. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  7. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Fu

    Full Text Available Nanotubes are formed by self-assembly of α-lactalbumin milk protein following a different route than established for the hydrolysis which involves V8 enzyme, phosphate buffer and appropriate amounts of calcium at neutral pH. The resulting nanotubes are used as templates for the growth of conductive silver nanotubes. TEM, SEM-EDS, AFM and FTIR are used for characterization.

  8. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.

    Science.gov (United States)

    Morakul, Boontida; Suksiriworapong, Jiraphong; Leanpolchareanchai, Jiraporn; Junyaprasert, Varaporn Buraphacheep

    2013-11-30

    Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  10. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Jiang Linqin; Gao Lian

    2005-01-01

    Through noncovalent modification of multi-walled carbon nanotubes (MWNTs) with the dispersant of sodium dodecyl sulfate (SDS), ZnO nanocrystals-coated MWNTs composite was fabricated. The electrostatic interaction mechanism is used to illustrate the formation of ZnO/MWNTs nanocomposite. The ZnO-coated MWNTs composite shows a small blue-shift absorption compared with pure ZnO nanomaterial and preserves the electronic energy states of MWNTs. The photocatalytic experiments exhibit that this composite has a higher photocatalytic activity than ZnO bulk material or the mechanical mixture of MWNTs and ZnO

  11. Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Show, Yoshiyuki; Hirai, Akira; Almowarai, Anas; Ueno, Yutaro

    2015-12-01

    In-liquid plasma was generated in the carbon nanotube (CNT) dispersion fluid using platinum electrodes. The generated plasma spattered the surface of the platinum electrodes and dispersed platinum particles into the CNT dispersion. Therefore, the platinum nanoparticles were successfully formed on the CNT surface in the dispersion. The platinum nanoparticles were applied to the proton exchange membrane fuel cell (PEMFC) as a catalyst. The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method. - Highlights: • The platinum catalyst was successfully formed on the CNT surface in the dispersion by the in-liquid plasma method. • The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method.

  12. Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Fernando J. A. L., E-mail: fj.cruz@fct.unl.pt [Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516 (Portugal); Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pablo, Juan J. de [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Institute of Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Mota, José P. B. [Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516 (Portugal)

    2014-06-14

    Although carbon nanotubes are potential candidates for DNA encapsulation and subsequent delivery of biological payloads to living cells, the thermodynamical spontaneity of DNA encapsulation under physiological conditions is still a matter of debate. Using enhanced sampling techniques, we show for the first time that, given a sufficiently large carbon nanotube, the confinement of a double-stranded DNA segment, 5′-D({sup *}CP{sup *}GP{sup *}CP{sup *}GP{sup *}AP{sup *}AP{sup *}TP{sup *}TP{sup *}CP{sup *}GP{sup *}CP{sup *}G)-3′, is thermodynamically favourable under physiological environments (134 mM, 310 K, 1 bar), leading to DNA-nanotube hybrids with lower free energy than the unconfined biomolecule. A diameter threshold of 3 nm is established below which encapsulation is inhibited. The confined DNA segment maintains its translational mobility and exhibits the main geometrical features of the canonical B form. To accommodate itself within the nanopore, the DNA's end-to-end length increases from 3.85 nm up to approximately 4.1 nm, due to a ∼0.3 nm elastic expansion of the strand termini. The canonical Watson-Crick H-bond network is essentially conserved throughout encapsulation, showing that the contact between the DNA segment and the hydrophobic carbon walls results in minor rearrangements of the nucleotides H-bonding. The results obtained here are paramount to the usage of carbon nanotubes as encapsulation media for next generation drug delivery technologies.

  13. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  14. Applying analytical ultracentrifugation to nanocrystal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Jennifer A; Krueger, Karl M; Mayo, J T; Yavuz, Cafer T; Redden, Jacina J; Colvin, Vicki L, E-mail: colvin@rice.ed [Department of Chemistry, Rice University, 6100 Main Street, MS-60, Houston, TX 77005 (United States)

    2009-09-02

    While applied frequently in physical biochemistry to the study of protein complexes, the quantitative use of analytical ultracentrifugation (AUC) for nanocrystal analysis is relatively rare. Its application in nanoscience is potentially very powerful as it provides a measure of nanocrystal density, size and structure directly in the solution phase. Towards that end, this paper examines the best practices for applying data collection and analysis methods for AUC, geared towards the study of biomolecules, to the unique problems of nanoparticle analysis. Using uniform nanocrystals of cadmium selenide, we compared several schemes for analyzing raw sedimentation data. Comparable values of the mean sedimentation coefficients (s-value) were found using several popular analytical approaches; however, the distribution in sample s-values is best captured using the van Holde-Weischt algorithm. Measured s-values could be reproducibly collected if sample temperature and concentration were controlled; under these circumstances, the variability for average sedimentation values was typically 5%. The full shape of the distribution in s-values, however, is not easily subjected to quantitative interpretation. Moreover, the selection of the appropriate sedimentation speed is crucial for AUC of nanocrystals as the density of inorganic nanocrystals is much larger than that of solvents. Quantitative analysis of sedimentation properties will allow for better agreement between experimental and theoretical models of nanocrystal solution behavior, as well as providing deeper insight into the hydrodynamic size and solution properties of nanomaterials.

  15. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  16. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  17. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  18. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  19. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  20. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  1. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  2. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  3. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    Science.gov (United States)

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  4. Templated synthesis of metal nanorods in silica nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yadong; Gao, Chuanbo

    2018-04-10

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent for reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.

  5. The fabrication and analysis of a PbS nanocrystal:C{sub 60} bilayer hybrid photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D M N M [Solid State Electronics Laboratory, University of Michigan, Ann Arbor, MI 48109-2122 (United States); Hatton, R A [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Lutz, T [Department of Chemistry, Imperial College, London SW7 2AY (United Kingdom); Curry, R J; Silva, S R P [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: ndissa@umich.edu

    2009-06-17

    A near-infrared sensitive hybrid photovoltaic system between PbS nanocrystals (PbS-NCs) and C{sub 60} is demonstrated. Up to 0.44% power conversion efficiency is obtained under AM1.5G with a short circuit current density (J{sub sc}) of 5 mA cm{sup -2} when the PbS-NC layer is treated in anhydrous methanol. The observed J{sub sc} is found be approximately one-third of the maximum expected from this hybrid configuration, indicating the potential for further optimization. Crucial for device operation, a smooth film of nanocrystals is seen to form on the hole transporting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer deposited on the transparent electrode, facilitated through an ionic interaction between nanocrystal capping ligands and the PEDOT:PSS. The formation of the open circuit voltage in this system is seen to be influenced by an interfacial dipole formed at the hole-extracting electrode, providing insights for further optimization.

  6. Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2011-01-01

    Full Text Available Abstract Monodispersed CdS nanocrystals with controllable shape and phase have been successfully synthesized in this study by adding cationic surfactant in noninjection synthesis system. With the increase of the amount of cetyltrimethylammonium chloride (CTAC added, the shape of the CdS nanocrystals changed from spherical to multi-armed, and the phase changed from zinc-blende to wurtzite. It was found that halide ion Cl- plays a key role in the transformation, and other halide ions such as Br- can also induce similar transformation. We proposed that the strong binding between Cd2+ and halide ions reduced the reactivity of the precursors, decreased the nuclei formed in the nucleation stage, and led to the high concentration of precursor in the growth stage, resulting in the increase of size and phase transformation of CdS nanocrystals. In addition, it was found that the multi-armed CdS nanocrystals lost quantum confinement effect because of the increase of the size with the increase of the concentration of CTAC.

  7. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  8. Photoluminescence behaviors of single CdSe/ZnS/TOPO nanocrystals: Adsorption effects of water molecules onto nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Ando, Naohisa; Nishiyama, Akira; Horiuchi, Hiromi; Tani, Toshiro

    2007-01-01

    We report here the distinctive modifications of photoluminescence (PL) behaviors in single CdSe/ZnS/TOPO nanocrystals depending on their environments. Long-time traces of PL intensity from single nanocrystals have been obtained in both vacuum and a wet nitrogen atmosphere. While all of the nanocrystals in both environments exhibit PL blinking behaviors, i.e. on-off intermittency of PL intensity, as usual, some of the nanocrystals in the wet nitrogen atmosphere show significant increase in duration time of on-events. As for the duration time of blinking off-events, it is for the moment associated with the occasional events of carrier capturing at trap sites on or near the nanocrystal surfaces. We propose a model in which adsorbed water molecules at the trap sites on the nanocrystal surfaces transform them under light irradiation, which eventually decreases the occurrence of the trapping events due to their inactivation. It in turn increases the PL on-times. In addition to the drastic modification of the blinking profile, we also found that in the PL time traces some kinds of undulated behaviors, i.e. continuous and rather low frequency fluctuation of PL intensity, appear during each on-event in vacuum while they disappear totally in the wet nitrogen atmosphere. These results are also described on the basis of the inactivation model of the trap sites introduced above

  9. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  10. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    International Nuclear Information System (INIS)

    Hou Bo; Liu Yongjun; Li Yanjuan; Yuan Bo; Jia Mingfen; Jiang Fengzhi

    2012-01-01

    Highlights: ► Soft templates were found in the shape control synthesis of ZnSe nanocrystals. ► Micelle formation model in the soft templates system was proposed and proved. ► Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  11. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2

    International Nuclear Information System (INIS)

    Bonafos, C.; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R.

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO 2 layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates

  12. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  13. Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance

    Science.gov (United States)

    Li, Bangquan; Sun, Qian; Fan, Hongsheng; Cheng, Ming; Shan, Aixian; Cui, Yimin; Wang, Rongming

    2018-01-01

    A series of α-Fe2O3 nanocrystals (NCs) with fascinating morphologies, such as hollow nanoolives, nanotubes, nanospindles, and nanoplates, were prepared through a simple template-free hydrothermal synthesis process. The results showed that the morphologies could be easily controlled by SO42− and H2PO4−. Physical property analysis showed that the α-Fe2O3 NCs exhibited shape- and size-dependent ferromagnetic and optical behaviors. The absorption band peak of the α-Fe2O3 NCs could be tuned from 320 to 610 nm. Furthermore, when applied as electrode material for supercapacitor, the hollow olive-structure exhibited the highest capacitance (285.9 F·g−1) and an excellent long-term cycling stability (93% after 3000 cycles), indicating that it could serve as a candidate electrode material for a supercapacitor. PMID:29342929

  14. Preparation of aligned nanotube membranes for water and gas separation applications

    Science.gov (United States)

    Lulevich, Valentin; Bakajin, Olgica; Klare, Jennifer E.; Noy, Aleksandr

    2016-01-05

    Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.

  15. Low-frequency plasmons in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Lin, M.F.; Chuu, D.S.; Shung, K.W.

    1997-01-01

    A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nanotube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular momentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas (EGS). However, it is very different from the π plasmons in all carbon nanotubes. Intertube Coulomb interactions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modifies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting carbon nanotubes. copyright 1997 The American Physical Society

  16. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  17. Electrical device fabrication from nanotube formations

    Science.gov (United States)

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  18. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhou, Xiaosi; Wan, Li-Jun; Guo, Yu-Guo

    2013-04-18

    Hybrid anode materials for Li-ion batteries are fabricated by binding SnO2 nanocrystals (NCs) in nitrogen-doped reduced graphene oxide (N-RGO) sheets by means of an in situ hydrazine monohydrate vapor reduction method. The SnO2NCs in the obtained SnO2NC@N-RGO hybrid material exhibit exceptionally high specific capacity and high rate capability. Bonds formed between graphene and SnO2 nanocrystals limit the aggregation of in situ formed Sn nanoparticles, leading to a stable hybrid anode material with long cycle life. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  20. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  1. The study of explosive emission from carbon nanotubes

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The carbon nanotubes (CNT) found applications for high density current electron emitters. The main interest for forming of high current electron beams using CNT is high concentration of electrical field on the nanotubes and high value of yield by electrons for field emission. The experimental results for time processes of forming cathode plasma and extraction of electron beam are presented in the report

  2. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    Science.gov (United States)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  3. Spectral diffusion of quasi localized excitons in single silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joerg; Cichos, Frank [Centre for nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, Reichenhainer Street 70, 09107 Chemnitz (Germany); Borczyskowski, Christian von, E-mail: Borczyskowski@physik.tu-chemnitz.de [Centre for nanostructured Materials and Analytics, Institute of Physics, Chemnitz University of Technology, Reichenhainer Street 70, 09107 Chemnitz (Germany)

    2012-08-15

    Evolution in time of photoluminescence spectra of SiO{sub x} capped single silicon nanocrystals has been investigated by means of confocal optical spectroscopy at room temperature. Large spectral jumps between subsequent spectra of up to 40 meV have been detected leading to noticeable line broadening and variation in the electron-phonon coupling. Further, a correlation between emission energy and emission intensity has been found and discussed in terms of an intrinsic Stark effect. Anti-correlated variations of the electron-phonon coupling to Si and SiO{sub 2} phonons as a function of photoluminescence energy indicate that the nearly localized excition is to some extent coupled to phonons in the shell covering the silicon nanocrystal. However, coupling is reduced upon increasing Stark effect, while at the same time coupling to phonons of the Si core increases. - Highlights: Black-Right-Pointing-Pointer Single silicon nanocrystals are detected via confocal microscopy. Black-Right-Pointing-Pointer Photoluminescence energies fluctuate strongly in time. Black-Right-Pointing-Pointer Spectral fluctuation is described in the form of spectral diffusion. Black-Right-Pointing-Pointer Dynamic processes are strongly controlled by electron-phonon coupling.

  4. Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P., E-mail: voitovich@imaph.bas-net.by; Kalinov, V.S.; Stupak, A.P.; Novikov, A.N.; Runets, L.P.

    2015-01-15

    Lithium fluoride nanocrystals are irradiated by gamma quanta at 77 K. The radiation color centers formed in a near-surface layer of nanocrystals are studied. Absorption, luminescence and luminescence excitation spectra of the surface defects have been measured. It has been found that the luminescence excitation spectra for aggregated surface centers consist of two or three bands with not very much different intensities. Reactions of the surface centers separately with electrons and with anion vacancies have been investigated. Numbers of anion vacancies and electrons entering into the centers composition have been established and it has been found that F{sub S1}, F{sub S1}{sup −}, F{sub S2}, F{sub S2}{sup −}, F{sub S3}{sup +} and F{sub S3} types of the surface centers are formed. The degree of luminescence polarization has been defined and it has been determined that the polarization degree for F{sub S2}{sup +} centers changes sign under transition from one excitation band to another. It has been shown that during irradiation at 77 K radiation-induced defects are formed more efficiently on the surface than in the bulk. - Highlights: • Radiative color centers were fabricated in lithium fluoride nanocrystals. • The unique absorption and luminescence characteristics are inherent in the centers. • The reactions of these centers with electrons and anion vacancies were studied. • The degree of luminescence polarization was defined. • Numbers of anion vacancies and electrons forming the centers were established.

  5. Gold(I)-Alkanethiolate Nanotubes

    KAUST Repository

    Zhang, Yu Xin; Zeng, Hua Chun

    2009-01-01

    (Figure Presented) A solution approach to assembling Au(I) - alkanethiolates into nanotube structures at room temperature is presented, in which Au(I) cations and alkanethiolate ligands are coordinated into thin platelet forms that then evolve into an open tubular configuration (see figure). The organic-inorganic hybrid nature of the nanotubes, their ability to be modified, and their high stability make them of interest for practical applications. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  6. Gold(I)-Alkanethiolate Nanotubes

    KAUST Repository

    Zhang, Yu Xin

    2009-12-28

    (Figure Presented) A solution approach to assembling Au(I) - alkanethiolates into nanotube structures at room temperature is presented, in which Au(I) cations and alkanethiolate ligands are coordinated into thin platelet forms that then evolve into an open tubular configuration (see figure). The organic-inorganic hybrid nature of the nanotubes, their ability to be modified, and their high stability make them of interest for practical applications. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  7. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  8. Low-Temperature Electron Beam-Induced Transformations of Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    Cesium lead halide perovskite (CsPbX3, with X = Br, Cl, I) nanocrystals have been found to undergo severe modifications under the high-energy electron beam irradiation of a transmission electron microscope (80/200 keV). In particular, in our previous work, together with halogen desorption, Pb2+ ions were found to be reduced to Pb0 and then diffused to form lead nanoparticles at temperatures above −40 °C. Here, we present a detailed irradiation study of CsPbBr3 nanocrystals at temperatures below −40 °C, a range in which the diffusion of Pb0 atoms/clusters is drastically suppressed. Under these conditions, the irradiation instead induces the nucleation of randomly oriented CsBr, CsPb, and PbBr2 crystalline domains. In addition to the Br desorption, which accompanies Pb2+ reduction at all the temperatures, Br is also desorbed from the CsBr and PbBr2 domains at low temperatures, leading to a more pronounced Br loss, thus the final products are mainly composed of Cs and Pb. The overall transformation involves the creation of voids, which coalesce upon further exposure, as demonstrated in both nanosheets and nanocuboids. Our results show that although low temperatures hinder the formation of Pb nanoparticles in CsPbBr3 nanocrystals when irradiated, the nanocrystals are nevertheless unstable. Consequently, we suggest that an optimum combination of temperature range, electron energy, and dose rate needs to be carefully chosen for the characterization of halide perovskite nanocrystals to minimize both the Pb nanoparticle formation and the structural decomposition. PMID:28983524

  9. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  10. Nanocrystals in the glass and centers of localization of free charge carriers in the thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2012-01-01

    Conduction mechanism of doped silicate glass (DSG) based on existence of nanocrystals in the glass is proposed. These nanocrystals act as localization centers of free charge carriers. Random distribution of the nanocrystal's sizes and distances between them leads to charge transport by variable length hopping. It is shown that dopant atoms generate the narrow impurity subband of 0.03 eV in width. This subband joins close to the glass valence band top or slightly (less than 0.01 eV) separated from the last. What is why the hopping mechanism coexists with thermal activation one and at low temperatures (T -n ), 0.25 800 K) structure transitions of nanocrystals take place and conductivity of DSG decreases sharply. Beyond of the minimum of conductivity (above 1000 K) energy gap is formed between the impurity subband and the valence band top of glass, so DSG behaves like a typical semiconductor. (author)

  11. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hanyu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Wang, Haitao [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States); Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); McNamara, Bruce K.; Buck, Edgar C. [Nuclear Chemistry & Engineering Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Na, Chongzheng, E-mail: chongzheng.na@gmail.com [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States)

    2016-07-15

    Graphene-supported uranium dioxide (UO{sub 2}) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO{sub 2} nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO{sub 2} crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO{sub 2} nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO{sub 2} nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO{sub 2} nanocrystals for further investigation and development under ambient conditions. - Highlights: • UO{sub 2} nanocrystals are synthesized using polyol reduction method. • Triethylene glycol is the best reducing agent for nano-sized UO{sub 2} crystals. • UO{sub 2} nanocrystals grow on graphene through heteroepitaxy. • Graphene-supported UO{sub 2} nanocrystals can be stored in alcohols to prevent oxidation.

  12. Size effect on the SHG properties of Cu-doped CdI2 nanocrystals

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Because the optically induced second harmonic generation (SHG) is prevented by symmetry in a centrosymmetric material, one needs to form noncentrosymmetric processes in order to observe the SHG. However, one of the efficient ways to enhance the noncentrosymmetricity of a material is to dope it with an appropriate impurity and amount. We grow Cu-doped CdI 2 layered nanocrystal structures from the mixture of CdI 2 and CuI using the standard Bridgman-Stockbarger method and investigate the nano-confined effects by studying the second-order optical effect via the measurements of SHG. The second-order susceptibility for the nanocrystals is calculated and the values at liquid helium temperature range from 0.38 to 0.83 pm V -1 for the thicknesses of 10-0.8 nm respectively. The size dependence demonstrates the nano-sized quantum-confined effect with a clear increase in the SHG with decreasing the thickness of the nanocrystal or crystal temperature. Since the local electron-phonon anharmonicity is described by third-order rank tensors in disordered systems, the SHG is very similar to that one introduced for the third-order optical susceptibility. It has been confirmed by observing the large photoluminescent yield of the pure crystals. The Raman scattering spectra taken for thin nanocrystals confirm the phonon modes originating from interlayer phonons crucially responsible for the observed effects. The obtained results show that the Cu-doped CdI 2 layered nanocrystals are promising materials for applications in optoelectronic nano-devices.

  13. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  14. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C. E-mail: bonafos@el.ub.es; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO{sub 2} layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates.

  15. Evolvement of soft templates in surfactant/cosurfactant system for shape control of ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Bo [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Liu Yongjun [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Li Yanjuan [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Yuan Bo [Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China); Jia Mingfen [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Jiang Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Advanced Analysis and Measurement Center, Yunnan University, Kunming 650091 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Soft templates were found in the shape control synthesis of ZnSe nanocrystals. Black-Right-Pointing-Pointer Micelle formation model in the soft templates system was proposed and proved. Black-Right-Pointing-Pointer Different shapes of ZnSe nanocrystals were prepared and explained by proposed model. - Abstract: The evolution of soft templates in the synthesis of ZnSe nanocrystals realized through a surfactant/cosurfactant system was investigated and a micelle formation process model was proposed. Through freeze-fracture electron microscopy, it was proven that template micelles were formed in the zinc precursors. Furthermore, it was found that a long stirring period was essential for achieving the lowest energy state of the soft templates which were used for synthesizing monodisperse ZnSe quantum dots.

  16. Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy

    Directory of Open Access Journals (Sweden)

    Bassani Franck

    2011-01-01

    Full Text Available Abstract In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application.

  17. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...... the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis....

  18. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  19. Adhered Supported Carbon Nanotubes

    International Nuclear Information System (INIS)

    Johnson, Dale F.; Craft, Benjamin J.; Jaffe, Stephen M.

    2001-01-01

    Carbon nanotubes (NTs) in excess of 200 μm long are grown by catalytic pyrolysis of hydrocarbon vapors. The nanotubes grow continuously without the typical extinction due to catalyst encapsulation. A woven metal mesh supports the nanotubes creating a metal supported nanotube (MSNT) structure. The 140 μm wide mesh openings are completely filled by 70 nm diameter multiwalled nanotubes (MWNTs). The MWNTs are straight, uniform and highly crystalline. Their wall thickness is about 10 nm (30 graphite layers). The adherent NTs are not removed from the support in a Scotch tape pull test. A 12.5 cm 2 capacitor made from two MSNT structures immersed in 1 M KCl has a capacitance of 0.35 F and an equivalent series resistance of 0.18 Ω. Water flows through the MSNT at a flow velocity of 1 cm/min with a pressure drop of 15 inches of water. With the support removed, the MWNTs naturally form a carbon nanocomposite (CNC) paper with a specific area of 80 m 2 /gm, a bulk density of 0.21 g/cm 3 , an open pore fraction of 0.81, and a resistivity of 0.16 Ω-cm

  20. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    Science.gov (United States)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  1. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    International Nuclear Information System (INIS)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-01-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  2. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  3. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  4. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  5. Structural, spectroscopic and cytotoxicity studies of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grzyb, Tomasz; Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Dabrowska, Krystyna [Polish Academy of Sciences, Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy (Poland); Giersig, Michael; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2013-10-15

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO{sub 2} shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF{sub 3}@CeF{sub 3} nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, 'the products', with an average diameter around 10 nm, showed an increase in the concentration of Tb{sup 3+} ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO{sub 2} shell.Graphical Abstract.

  6. Simultaneous control of nanocrystal size and nanocrystal ...

    Indian Academy of Sciences (India)

    applications such as a photo-sensor [11]. Thus, it is desirable to have, not only a control on the size of the nanocrystals, but also an independent tunability of the ... 1-thioglycerol) in 25 ml methanol under inert atmosphere. 10 ml of 0.2 M sodium sulfide solution is then added to the reaction mixture dropwise and the reaction.

  7. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  8. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  9. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  10. Aqueous synthesis and characterization of bovine hemoglobin-conjugated cadmium sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangrui [Institute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Qin, Dezhi, E-mail: dezhiqin@163.com [College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000 (China); Du, Xian; Zhang, Li; Zhao, Ganqing; Zhang, Qiuxia; Wu, Jiulin [College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000 (China)

    2014-08-01

    Highlights: • CdS nanocrystals were synthesized by biomimetic method in bovine hemoglobin (BHb) solution. • The study of the interaction between Cd{sup 2+}/CdS and BHb. • The optical properties of BHb-conjugated CdS nanocrystals. • The synthesis process of BHb-conjugated CdS nanocrystals is facile, effective and environment friendly. • The change of secondary structure of BHb after binding to CdS nanocrystals. - Abstract: Cadmium sulfide (CdS) nanocrystals with average diameter about 5.5 nm were synthesized in aqueous solution of bovine hemoglobin (BHb) via simple biomimetic method. Powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations were used to determine the structure and morphology of CdS nanocrystals. It was revealed that amount of BHb, chelating of Cd{sup 2+} to BHb and reaction temperature were key factors in controlling shape and dispersion of CdS nanocrystals. The binding sites of BHb to CdS nanocrystals and the change of secondary structure of protein have been identified by Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy. It was found that conjugating of BHb with Cd{sup 2+} and CdS could protect nanocrystals from agglomerating. Moreover, the thermostability of BHb enhanced after conjugating with CdS nanocrystals. The interaction mechanism of BHb with Cd{sup 2+}/CdS was also proposed. The quantum-confined effect of CdS nanocrystals was confirmed by ultraviolet–visible (UV–vis) spectrum. The nanocrystals exhibited a well-defined photoluminescence (PL) emission feature at about 510 nm with narrow full width at half maximum (FWHM)

  11. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  12. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chelikowsky, James R.

    2007-01-01

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm

  13. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica

    International Nuclear Information System (INIS)

    Hyun, Changbae; Lee, Doh C; Korgel, Brian A; Lozanne, Alex de

    2007-01-01

    Chemically-synthesized FePt nanocrystals must be annealed at a high temperature (>550 deg. C) to induce the hard ferromagnetic L 1 0 phase. Unfortunately, the organic stabilizer covering these nanocrystals degrades at these temperatures and the nanocrystals sinter, resulting in the loss of control over nanocrystal size and separation in the film. We have developed a silica overcoating strategy to prevent nanocrystal sintering. In this study, 6 nm diameter FePt nanocrystals were coated with 17 nm thick shells of silica using an inverse micelle process. Magnetization measurements of the annealed FePt-SiO 2 nanocrystals indicate ferromagnetism with a high coercivity at room temperature. Magnetic force microscopy (MFM) results show that the film composed of nanocrystals behaves as a dipole after magnetization by an 8 T external field. The individual nanocrystals are modelled as single-domain particles with random crystallographic orientations. We propose that the interparticle magnetic dipole interaction is weaker than the magnetocrystalline energy in the remanent state, leading to an unusual material with no magnetic anisotropy and no domains. Films of these nanoparticles are promising candidates for magnetic media with a data storage density of ∼Tb/in 2

  14. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  15. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  16. Carbon nanotubes grown on bulk materials and methods for fabrication

    Science.gov (United States)

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  17. Hybridization of Single Nanocrystals of Cs4PbBr6 and CsPbBr3.

    Science.gov (United States)

    Weerd, Chris de; Lin, Junhao; Gomez, Leyre; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2017-09-07

    Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr 3 , its synthesis can also yield nanocrystals of Cs 4 PbBr 6 and the properties of the two are easily confused. Here, we investigate in detail the optical characteristics of simultaneously synthesized green-emitting CsPbBr 3 and insulating Cs 4 PbBr 6 nanocrystals. We demonstrate that, in this case, the two materials inevitably hybridize, forming nanoparticles with a spherical shape. The actual amount of these Cs 4 PbBr 6 nanocrystals and nanohybrids increases for synthesis at lower temperatures, i.e., the condition typically used for the development of perovskite CsPbBr 3 nanocrystals with smaller sizes. We use state-of-the-art electron energy loss spectroscopy to characterize nanoparticles at the single object level. This method allows distinguishing between optical characteristics of a pure Cs 4 PbBr 6 and CsPbBr 3 nanocrystal and their nanohybrid. In this way, we resolve some of the recent misconceptions concerning possible visible absorption and emission of Cs 4 PbBr 6 . Our method provides detailed structural characterization, and combined with modeling, we conclusively identify the nanospheres as CsPbBr 3 /Cs 4 PbBr 6 hybrids. We show that the two phases are independent of each other's presence and merge symbiotically. Herein, the optical characteristics of the parent materials are preserved, allowing for an increased absorption in the UV due to Cs 4 PbBr 6 , accompanied by the distinctive efficient green emission resulting from CsPbBr 3 .

  18. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  19. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.

    Science.gov (United States)

    Taflick, Ticiane; Schwendler, Luana A; Rosa, Simone M L; Bica, Clara I D; Nachtigall, Sônia M B

    2017-08-01

    The isolation of cellulose nanocrystals from different lignocellulosic materials has shown increased interest in academic and technological research. These materials have excellent mechanical properties and can be used as nanofillers for polymer composites as well as transparent films for various applications. In this work, cellulose isolation was performed following an environmental friendly procedure without chlorine. Cellulose nanocrystals were isolated from the exhausted acacia bark (after the industrial process of extracting tannin) with the objective of evaluating the effect of the solvent extraction steps on the characteristics of cellulose and cellulose nanocrystals. It was also assessed the effect of acid hydrolysis time on the thermal stability, morphology and size of the nanocrystals, through TGA, TEM and light scattering analyses. It was concluded that the extraction step with solvents was important in the isolation of cellulose, but irrelevant in the isolation of cellulose nanocrystals. Light scattering experiments indicated that 30min of hydrolysis was long enough for the isolation of cellulose nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Hamhuis, G. J.; Noetzel, R.

    2010-01-01

    We report the alignment of In nanocrystals on top of linear InGaAs quantum dot (QD) arrays formed by self-organized anisotropic strain engineering on GaAs (100) by molecular beam epitaxy. The alignment is independent of a thin GaAs cap layer on the QDs revealing its origin is due to local strain recognition. This enables nanometer-scale precise lateral and vertical site registration between the QDs and the In nanocrystals and arrays in a single self-organizing formation process. The plasmon resonance of the In nanocrystals overlaps with the high-energy side of the QD emission leading to clear modification of the QD emission spectrum.

  1. Effect of different precursors in the chemical synthesis of ZnO nanocrystals

    International Nuclear Information System (INIS)

    Gusatti, M.; Barroso, G.S.; Souza, D.A.R.; Rosario, J.A.; Lima, R.B.; Silva, L.A.; Riella, H.G.; Kuhnen, N.C.; Campos, C.E.M.

    2010-01-01

    This work aims to evaluate the effect of ZnCl 2 and Zn(NO 3 ) 2 .6H 2 O precursors in the synthesis of ZnO nanocrystals. The materials were obtained at a temperature of 90 deg C by a simple solochemical route. The resulting samples were characterized with respect to the determination of the formed phases, particle size and morphology, using the techniques of X-ray diffraction (XRD) and transmission electron microscopy (TEM). These characterization techniques confirmed that the sample obtained with Zn(NO 3 ) 2. 6H 2 O has hexagonal crystal structure of ZnO and dimensions in the nanoscale. However, the material formed with ZnCl 2 was composed of a mixture of the ZnO phase and another correspondent to the Zn 5 (OH) 8 Cl 2 .H 2 O phase. For both precursors, the predominant morphology of the obtained ZnO nanocrystals is rod- like structure.(author)

  2. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: 1 1 Final Progress Report Project title: Depleted Nanocrystal- Oxide Heterojunctions for High

  3. Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals.

    Science.gov (United States)

    Iafisco, Michele; Di Foggia, Michele; Bonora, Sergio; Prat, Maria; Roveri, Norberto

    2011-01-28

    Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the β-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.

  4. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Varaporn Buraphacheep Junyaprasert

    2015-02-01

    Full Text Available Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as NanoEdge™, SmartCrystal and Precipitation-lyophilization-homogenization (PLH technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.

  5. Dye-Sensitized Solar Cells Based on TiO_2 Nanotube and Shelled Arrayed Structures

    International Nuclear Information System (INIS)

    Zhang, Jie; Kusumawati, Yuly; Pauporté, Thierry

    2016-01-01

    Anatase TiO_2 nanostructure arrays were synthetized starting from a template made of self-standing ZnO NWs prepared by an electrodeposition technique. By controlling the liquid phase deposition step, the obtained structures could be varied from free-standing nanotube (NT) arrays with controlled morphology to hierarchical spiky radiating core-shell rods. The nanotubes were made of assembled nanocrystals with an average size of 7–8 nm. The structures were investigated as n-type layers in DSSCs. The efficiency was enhanced for the core-shell layer and by starting with longer initial ZnO NW templates. The limitation of the cell efficiency was shown related to the specific surface area and dye loading. The cell functioning was in-depth investigated by electrochemical impedance spectroscopy over a large applied voltage range and compared to a cell based on a nanoparticle TO_2 mesoporous layer. A slow recombination rate was found. The enhancement of electron transport with nanocrystallite size explained the conductivity results. We also found that the prepared structures presented a high charge collection efficiency.

  6. Processing of ZnO nanocrystals by solochemical technique

    International Nuclear Information System (INIS)

    Gusatti, M.; Speckhahn, R.; Silva, L.A.; Rosario, J.A.; Lima, R.B.; Kuhnen, N.C.; Riella, H.G.; Campos, C.E.M.

    2009-01-01

    In the present work, we report the synthesis of high quality ZnO nanocrystals by solochemical technique. This synthetic strategy has been shown to have advantages over other methods of producing nanostructures in terms of low cost, efficiency, simplicity and uniformity of crystal structure. Zinc chloride solution at room temperature was mixed with sodium hydroxide solution at 50°C to produce ZnO nanocrystals. Transmission electronic microscopy (TEM) and X-ray powder diffraction (XRD) were used to characterize the ZnO nanocrystals obtained. The structure of ZnO was refined by the Rietveld Method from X-ray diffraction data. These methods showed that the product consisted of pure ZnO nanocrystals and has, predominantly, a rod-like morphology. (author)

  7. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    Science.gov (United States)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  8. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  9. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Vertically aligned BCN nanotubes with high capacitance.

    Science.gov (United States)

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  11. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magneto-optical transitions in multilayer semiconductor nanocrystals

    CERN Document Server

    Climente, J; Jaskolski, W; Aliaga, J I

    2003-01-01

    Absorption spectra of chemically synthesized uniform and multilayer semiconductor nanocrystals in a magnetic field are investigated theoretically. The nanocrystals are modelled by spherical barrier/well potentials. The electron states are calculated within the effective mass model. A four-band k centre dot p Hamiltonian, accounting for the valence subband mixing, is used to obtain the hole states. The magneto-optical transition spectrum depends strongly on the size and composition of the nanocrystals. In the case of small uniform quantum dots, only the linear Zeeman splitting of the electron and hole energy levels is observed even for very strong magnetic fields. In larger nanocrystals, the quadratic magnetic interaction turns out to be important and the transition spectrum becomes complicated. The most complicated influence of the magnetic field is found in quantum dot-quantum well systems in which the lowest electron and hole states are localized in a thin spherical layer. It is shown that transitions that ...

  14. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  15. Investigation of the formation of Fe-filled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, H [Forschungszentrum Dresden-Rossendorf, PO Box 510119, D-01314 Dresden (Germany); Mueller, C; Leonhardt, A; Kutz, M C, E-mail: reuther@fzd.d [Leibniz-Institute of Solid State and Materials Research Dresden, PO Box 270116, D-01171 Dresden (Germany)

    2010-03-01

    The formation of Fe-filled carbon nanotubes by thermal decomposition of ferrocene combined with a Fe-catalyst-nanostructuring on an oxidized Si substrate is investigated in the temperature range of 1015 - 1200 K. The optimal growth conditions for aligned and homogeneous carbon nanotubes are found at 1103 K. Moessbauer spectroscopy (both in transmission geometry and CEMS) was used to analyze and quantify the different formed Fe-phases. In general, {alpha}-Fe, {gamma}-Fe and Fe{sub 3}C are found to form within the carbon nanotubes. Depending on the growth conditions their fractions vary strongly. Moreover, an alignment of the {alpha}-Fe in the tubes could be detected.

  16. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  17. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  18. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  19. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  20. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  1. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  2. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  3. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution

    KAUST Repository

    Kandiel, Tarek

    2015-03-23

    Stoichiometric and gallium-rich wurtzite Cu-Ga-S ternary nanocrystals were synthesized via a facile solution-based hot injection method using 1-dodecanethiol as a sulfur source. The use of 1-dodecanethiol was found to be essential not only as a sulfur source but also as a structure-directing reagent to form a metastable wurtzite structure. In addition, the substitution of zinc in the wurtzite gallium-rich Cu-Ga-S nanocrystals was also investigated. The obtained nanocrystals were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Electronic structures of pristine and the Zn-substituted Cu-Ga-S system were investigated using density functional theory (DFT) with HSE06 exchange-correlation functional. The calculated bandgaps accurately reflect the measured ones. The allowed electronic transitions occur upon the photon absorption from the (Cu + S) band towards the (Ga + S) one. The Zn substitution was found not to contribute to the band edge structure and hence altered the bandgaps only slightly, the direct transition nature remaining unchanged with the Zn substitution. The photocatalytic activities of H2 evolution from an aqueous Na2S/Na2SO3 solution under visible-light illumination on the synthesized nanocrystals were investigated. While the stoichiometric CuGaS2 exhibited negligible activity, the gallium-rich Cu-Ga-S ternary nanocrystals displayed reasonable activity. The optimum Zn substitution in the gallium-rich Cu-Ga-S ternary nanocrystals enhanced the H2 evolution rate, achieving an apparent quantum efficiency of >6% at 400 nm. © 2015 The Royal Society of Chemistry.

  4. In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...... nanoparticles are formed by reducing KMnO4 in an aqueous solution containing Li-ions. The reducing agent is an alcohol (here ethanol) and the reaction takes place under high pressure and temperature. The LiMn2O4 nanocrystals are unstable towards further reduction to Mn3O4 nanocrystals. Possible reaction route...

  5. Multifunctional carbon nanotubes with nanoparticles embedded in their walls

    International Nuclear Information System (INIS)

    Mattia, D; Korneva, G; Sabur, A; Friedman, G; Gogotsi, Y

    2007-01-01

    Controlled amounts of nanoparticles ranging in size and composition were embedded in the walls of carbon nanotubes during a template-assisted chemical vapour deposition (CVD) process. The encapsulation of gold nanoparticles enabled surface enhanced Raman spectroscopy (SERS) detection of glycine inside the cavity of the nanotubes. Iron oxide particles are partially reduced to metallic iron during the CVD process giving the nanotubes ferromagnetic behaviour. At high nanoparticle concentrations, particle agglomerates can form. These agglomerates or larger particles, which are only partially embedded in the walls of the nanotubes, are covered by additional carbon layers inside the hollow cavity of the tube producing hillocks inside the nanotubes, with sizes comparable to the bore of the tube

  6. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  7. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  8. Size effect on the SHG properties of Cu-doped CdI{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-12-15

    Because the optically induced second harmonic generation (SHG) is prevented by symmetry in a centrosymmetric material, one needs to form noncentrosymmetric processes in order to observe the SHG. However, one of the efficient ways to enhance the noncentrosymmetricity of a material is to dope it with an appropriate impurity and amount. We grow Cu-doped CdI{sub 2} layered nanocrystal structures from the mixture of CdI{sub 2} and CuI using the standard Bridgman-Stockbarger method and investigate the nano-confined effects by studying the second-order optical effect via the measurements of SHG. The second-order susceptibility for the nanocrystals is calculated and the values at liquid helium temperature range from 0.38 to 0.83 pm V{sup -1} for the thicknesses of 10-0.8 nm respectively. The size dependence demonstrates the nano-sized quantum-confined effect with a clear increase in the SHG with decreasing the thickness of the nanocrystal or crystal temperature. Since the local electron-phonon anharmonicity is described by third-order rank tensors in disordered systems, the SHG is very similar to that one introduced for the third-order optical susceptibility. It has been confirmed by observing the large photoluminescent yield of the pure crystals. The Raman scattering spectra taken for thin nanocrystals confirm the phonon modes originating from interlayer phonons crucially responsible for the observed effects. The obtained results show that the Cu-doped CdI{sub 2} layered nanocrystals are promising materials for applications in optoelectronic nano-devices.

  9. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    Science.gov (United States)

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    Science.gov (United States)

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  11. Self organized formation of Ge nanocrystals in multilayers

    OpenAIRE

    Zschintzsch-Dias, Manuel

    2012-01-01

    The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated...

  12. Photoluminescence from Si nanocrystals in silica: The effect of hydrogen

    International Nuclear Information System (INIS)

    Cheylan, S.; Elliman, R.G.

    2001-01-01

    The effect of H passivation on the PL emission of Si nanocrystals produced in silica by ion-implantion and annealing is shown to depend on the implant fluence. At low fluences, where the nanocrystals are small, passivation causes an enhancement of the emission intensity that is uniform over the full spectral range and therefore appears to be independent of nanocrystal size. For higher fluences, where the average size and size distribution of the nanocrystals are larger, the enhancement occurs preferentially at longer wavelengths, giving rise to a red-shift in the emission spectra. Both the enhancement and the red-shift increase monotonically with increasing fluence. These data are shown to be consistent with a model in which the probability to contain a non-radiative defect increases with nanocrystal size

  13. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  14. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  15. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  16. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  17. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  18. Optimizing the hydrogen storage in boron nitride nanotubes by defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Oezdogan, Kemal; Berber, Savas [Physics Department, Gebze Institute of Technology, Cayirova Kampusu, Gebze, 41400 Kocaeli (Turkey)

    2009-06-15

    We use ab initio density functional theory calculations to study the interaction of hydrogen with vacancies in boron nitride nanotubes to optimize the hydrogen storage capacity through defect engineering. The vacancies reconstruct by forming B-B and N-N bonds across the defect site, which are not as favorable as heteronuclear B-N bonds. Our total energy and structure optimization results indicate that the hydrogen cleaves these reconstructing bonds to form more stable atomic structures. The hydrogenated defects offer smaller charge densities that allow hydrogen molecule to pass through the nanotube wall for storing hydrogen inside the nanotubes. Our optimum reaction pathway search revealed that hydrogen molecules could indeed go through a hydrogenated defect site with relatively small energy barriers compared to the pristine nanotube wall. The calculated activation energies for different diameters suggest a preferential diameter range for optimum hydrogen storage in defective boron nitride nanotubes. (author)

  19. Annealing effects on the photoresponse properties of CdSe nanocrystal thin films

    International Nuclear Information System (INIS)

    Lou Shiyun; Zhou Changhua; Wang Hongzhe; Shen Huaibin; Cheng Gang; Du Zuliang; Zhou, Shaomin; Li Linsong

    2011-01-01

    Highlights: → The as-prepared CdSe nanocrystal films were treated at 500 deg. C for 3 h under continuous N 2 . → Annealing process removed the organic capping completely and eliminated oxide on the CdSe surface. → Thermal annealing resulted the increase of the crystallite sizes and necking the NCs. → The photoresponse speed of the CdSe nanocrystal films was improved. - Abstract: The photoresponse properties of the as-prepared and annealed close-packed CdSe nanocrystal (NC) films were investigated under laser illumination by Kelvin probe force microscopy. The annealing process improved the photoresponse speed of the CdSe NC films. The work function of the annealed CdSe NC films changed more rapidly than that of the non-annealed film in air at room temperature. Combined with X-ray photoelectron spectroscopy measurements and thermogravimetric analysis, the observed phenomena can be interpreted that annealing process removed the organic capping agents completely and eliminated oxide on the CdSe surface, which formed the tunnel barrier between NCs in the CdSe NC films. Consequently, it improved the separation rate of photoelectric charges and thus provided high speed photoresponse.

  20. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Lee, Kang; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    In this paper, Ti-Hf (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting, and subjected to heat treatment for 24 h at 1000 o C in an argon atmosphere. Formation of surface nanotubes was achieved by anodizing a Ti-Hf alloy in 1.0 M H 3 PO 4 electrolytes with small amounts of NaF at room temperature. Microstructures of the alloys and nanotube morphology were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The homogenized Ti-Hf alloys had a needle-like microstructure of α phase, and nanotubes formed on Ti-xHf alloys had the anatase phase after treatment that promoted crystallization. Uniform nanotubes formed for Hf contents up to 20 wt.%. Irregular nanotubes formed on the Ti-30Hf and Ti-40Hf alloys. The structure of the irregular layers on the Ti-30Hf and Ti-40Hf alloys had nanotubes of two sizes. Increasing the Hf content in Ti led to the formation of nanotubes with more narrow size. The pores in the nanotubes typically had a diameter ranging from 80-120 nm and a length of approximately 1.7 μm. It is concluded that nanotube morphology on Ti-Hf alloys can controlled by varying the amount of Hf.

  1. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  2. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  3. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  4. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH − ) while photo......-generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  5. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  6. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai, E-mail: wangyancai1999@163.com [Qilu University of Technology, School of Chemistry and Pharmaceutical Engineering (China)

    2016-09-15

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  7. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  8. Liquid crystalline order of carbon nanotubes

    Science.gov (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex

    2007-03-01

    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  9. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  10. Protein Adsorption and Antibacterial Behavior for Hydroxyapatite Nanocrystals Prepared by Hydrothermal Method

    OpenAIRE

    笠原, 英充; 小形, 信男; 荻原, 隆

    2005-01-01

    Homogeneous hydroxyapatite nanocrystals which have aspect ratio with more than four were synthesized by hydrothermal method. X-ray fluorescence analysis revealed that the Ca/P ratio of hydroxyapatite nanocrystals was maintaining start composition. The protein adsorption properties and bacteria-resistant of hydroxyapatite nanocrystals were investigated. The protein adsorption properties of hydroxyapatite nanocrystals were improvement after the hydrothermal treatment. Bacteria-resistant behavio...

  11. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Liu, Haifeng; Guo, Baogang

    2016-01-01

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g"−"1 at a current density of 24 mA g"−"1, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li"+ diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  12. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China); Li, Yuanli, E-mail: yuanlyl@foxmail.com [Department of Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Liu, Haifeng; Guo, Baogang [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China)

    2016-07-05

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g{sup −1} at a current density of 24 mA g{sup −1}, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li{sup +} diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  13. Nanotubes from Partially Hydrolysed α-Lactalbumin

    DEFF Research Database (Denmark)

    Geng, Xiaolu

    on the hydrolysis pattern. Increasing calcium level enhanced the effect of pH on self-assembly process, whereas the low level of a-La concentration (10 gL-1) was shown to limit the self-assembly. By tuning the rate of hydrolysis or self-assembly, via altering these three factors, one can control the formation of a......-La nanotubes and gels. In addition, by using small and wide angle X-ray scattering techniques, the structure of the a- La derived nanotubes was characterized. The results showed that the nanotubes formed under most of the conditions have a similar size with an outer diameter of 19 nm, inner diameter of 6.6 nm...

  14. Synthesis and characterization of surfactant assisted Mn2+ doped ZnO nanocrystals

    Directory of Open Access Journals (Sweden)

    N. Shanmugam

    2016-09-01

    Full Text Available We report the synthesis and characterization of Mn doped ZnO nanocrystals, both in the free standing and PVP capped particle forms. The nanocrystals size could be controlled by capping them with polyvinylpyrollidone and was estimated by X-ray diffraction and transmission electron microscopy. The chemical compositions of the products were characterized by FT-IR spectroscopy. UV–Vis absorption spectroscopy measurements reveal that the capping of ZnO leads to blue shift due to quantum confinement effect. The morphology of the particles was evaluated by Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. Both the Thermo Gravimetric Analysis (TGA and Differential Thermal Analysis (DTA curves of the ZnO show no further weight loss and thermal effect at a temperature above 510 °C.

  15. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    Science.gov (United States)

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  16. Glucose oxidase immobilization onto carbon nanotube networking

    International Nuclear Information System (INIS)

    Karachevtsev, V.A.; Glamazda, A.Yu.; Zarudnev, E.S.; Karachevtsev, M.V.; Leontiev, V.S.; Linnik, A.S.; Plokhotnichenko, A.M.; Stepanian, S.G.; Lytvyn, O.S.

    2012-01-01

    The efficient immobilization of GOX onto a carbon nanotube network through the molecular interface formed by PSE is carried out. This conclusion is based on the analysis of AFM images of the network with the adsorbed enzyme, whose globules locate mainly along a nanotube. The band corresponding to the high-frequency component of the G mode in the RR spectrum of the nanotube with adsorbed PSE is downshifted by 0.7 cm -1 relative to this band in the spectrum of pristine nanotubes. The analysis of the intensities of bands assigned to the RBM of nanotubes with adsorbed PSE in comparison with the spectrum of pristine SWNTs revealed the intensity transformation, which can be explained by a change of the resonance condition with variation of the laser energy. Thus, we concluded that PSE molecules create nanohybrids with SWNTs, which ensures the further enzyme immobilization. As the RR spectrum of an SWNT:PSE:GOX film does not essentially differ from SWNT:PSE ones, this indicates that the molecular interface (PSE) isolates the enzyme from nanotubes strongly enough. Our studies on the conductive properties of a single walled carbon nanotube network sprayed onto a quartz substrate from a solution of nanotubes in dichlorobenzene demonstrated that the I(U) dependence has nonlinear character. Most likely, the nonlinearity is related to Schottky barriers, which originate on the contact between nanotubes and the gold electrode, as well as between nanotubes with different conductivities. The deposition of bioorganic compounds (PSE and GOX) on the carbon nanotube network is accompanied by a decrease of their conductivity. Most probably, such a decrease is caused by adsorbed PSE molecules, which induce the appearance of scattering centers for charge carriers on the nanotube surface. The following GOX adsorption has practically no effect on the conductivity of the nanotube network that evidences the reliable isolation of the nanotube surface from the enzyme by means of the molecular

  17. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    Science.gov (United States)

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  18. Micromorphology and structure of vanadium oxide nanotubes

    International Nuclear Information System (INIS)

    Grigor'eva, A.V.; Anikina, A.V.; Tarasov, A.B.; Gudilin, E.A.; Knot'ko, A.V.; Volkov, V.V.; Dembo, K.A.; Tret'yakov, Yu.D.

    2006-01-01

    Complex analysis of structural features of V 2 O 5 nanotubes prepared using molecular template, i.e. hexadecyl amine-1 (HDA), was made using the methods of X-ray diffraction, electron microscopy and IR spectroscopy. It has been ascertained that the nanotubes studied are hybrid inorganic-organic material composed of periodically arranged ordered layers of V-O, forming multilayer walls and HDA molecules between them [ru

  19. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  20. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  1. Performance Parameters and Characterizations of Nanocrystals: A Brief Review

    Directory of Open Access Journals (Sweden)

    Manasi M. Chogale

    2016-08-01

    Full Text Available Poor bioavailability of drugs associated with their poor solubility limits the clinical effectiveness of almost 40% of the newly discovered drug moieties. Low solubility, coupled with a high log p value, high melting point and high dose necessitates exploration of alternative formulation strategies for such drugs. One such novel approach is formulation of the drugs as “Nanocrystals”. Nanocrystals are primarily comprised of drug and surfactants/stabilizers and are manufactured by “top-down” or “bottom-up” methods. Nanocrystals aid the clinical efficacy of drugs by various means such as enhancement of bioavailability, lowering of dose requirement, and facilitating sustained release of the drug. This effect is dependent on the various characteristics of nanocrystals (particle size, saturation solubility, dissolution velocity, which have an impact on the improved performance of the nanocrystals. Various sophisticated techniques have been developed to evaluate these characteristics. This article describes in detail the various characterization techniques along with a brief review of the significance of the various parameters on the performance of nanocrystals.

  2. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  3. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    Directory of Open Access Journals (Sweden)

    Annika Tuomela

    2016-05-01

    Full Text Available Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed.

  4. Forming of nanocrystal silicon films by implantation of high dose of H+ in layers of silicon on isolator and following fast thermal annealing

    International Nuclear Information System (INIS)

    Tyschenko, I.E.; Popov, V.P.; Talochkin, A.B.; Gutakovskij, A.K.; Zhuravlev, K.S.

    2004-01-01

    Formation of nanocrystalline silicon films during rapid thermal annealing of the high-dose H + ion implanted silicon-on-insulator structures was studied. It was found, that Si nanocrystals had formed alter annealings at 300-400 deg C, their formation being strongly limited by the hydrogen content in silicon and also by the annealing time. It was supposed that the nucleation of crystalline phase occurred inside the silicon islands between micropores. It is conditioned by ordering Si-Si bonds as hydrogen atoms are leaving their sites in silicon network. No coalescence of micropores takes place during the rapid thermal annealing at the temperatures up to ∼ 900 deg C. Green-orange photoluminescence was observed on synthesized films at room temperature [ru

  5. Colloidal nanocrystals in epitactical semiconductor structures; Kolloidale Nanokristalle in epitaktischen Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Arens, C.

    2007-10-15

    in this thesis for the first time a new method for the fabrication of semiconductor quantum-dot structures was successfully applied. thereby colloidal CdSe nanocrystals have been imbedded by means of molecular-beam epitaxy into an epitactical ZnSe crystal matrix. The properties of the epitactically overgrown nanocrystals are elaborated in this thesis. The distribution of the nanocrystals on ZnSe surfaces dependes on the stressed state of the ZnSe layer. Nanocrystals on stressed ZnSe grow in agglomerates on its surface. Individual nanocrystals however can only be deposited on relaxed ZnSe. In-situ studies by means of reflection of high-energetically diffracted electrons show in both cases that under stoichiometrical conditions the ZnSe covering layer grows two-dimensionally. It is epitactic what is proved by means of highly resolving X-ray diffraction and transmission electron microscopy. The nanocrystals are after the overgrowth with ZnSe optically activ.

  6. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    Science.gov (United States)

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  7. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  8. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    International Nuclear Information System (INIS)

    Li, Jianing; Xia, Chunzhi; Liu, Peng; Pan, Guanghui; Wang, Congwei

    2015-01-01

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B 4 C mixed powders to produce a bottom layer; then Stellite 20–TiN–B 4 C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure

  9. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianing, E-mail: jn2369@163.com [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Xia, Chunzhi [Provincial Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Liu, Peng; Pan, Guanghui; Wang, Congwei [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China)

    2015-10-05

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B{sub 4}C mixed powders to produce a bottom layer; then Stellite 20–TiN–B{sub 4}C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure.

  10. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  11. IN-SITU SYNCHROTRON PXRD STUDY OF SPINEL TYPE LiMn2O4 NANOCRYSTAL FORMATION

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...... nanoparticles are formed by reducing KMnO4 in an aqueous solution containing Li-ions. The reducing agent is an alcohol (here ethanol) and the reaction takes place under high pressure and temperature. The LiMn2O4 nanocrystals are unstable towards further reduction to Mn3O4 nanocrystals. Proposed reaction route...

  12. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    Science.gov (United States)

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  13. Insights into the microstructural and physical properties of colloidal Fe:ZnSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Yuanli [Department of Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Jiang, Linhai; Zhang, Xingquan [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-10-30

    Highlights: • We present a facile and environmentally friendly protocol to fabricate Fe:ZnSe nanocrystals. • The microstructural and physical properties of Fe:ZnSe nanocrystals were systematically investigated. • The current synthesis is dramatically simple and highly reproducible, it will facilitate the commercial scale synthesis of highly luminescent water-soluble nanocrystals with surface functionality in the near future. - Abstract: Here, we present a facile and environmentally friendly synthetic protocol to fabricate highly luminescent and water-soluble Fe:ZnSe nanocrystals in aqueous solution at low temperature. The microstructure and various physical properties (e.g., crystal structure, interplanar spacing, lattice parameter, crystalline size, lattice microstrain, intrinsic stress, X-ray density, specific surface area, dislocation density, porosity, agglomeration number) of the Fe:ZnSe nanocrystals were systematically investigated using X-ray diffraction. The particle size and morphology of the Fe:ZnSe nanocrystals were determined by transmission electron microscopy. The optical properties (e.g., absorption and photoluminescence) of the fabricated nanocrystals were explored using ultraviolet–visible absorption and photoluminescence spectroscopies, respectively. The surface functionalization of the Fe:ZnSe nanocrystals by mercaptoacetic acid ligand was evidenced by Fourier transform infrared spectroscopy. To confirm the elementary composition of the obtained nanocrystals, Energy dispersive X-ray spectroscopy was performed. To further shed light upon elemental distribution of the resulting nanocrystals, elemental mapping measurements were conducted. Moreover, the underlying mechanisms were also elucidated. As a consequence, the current investigation not only provides a deep insight into exploring the physical properties of doped nanocrystals, but also demonstrates a useful synthetic strategy for producing water-soluble and highly fluorescent doped

  14. Stability studies of CdSe nanocrystals in an aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi Lifei; Lek, Jun Yan; Liang, Yen Nan; Zhou Wenwen; Yan Qingyu; Hu Xiao; Chiang, Freddy Boey Yin; Lam, Yeng Ming [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Boothroyd, Chris, E-mail: ymlam@ntu.edu.sg [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-07-08

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH{sup -}) while photo-generated holes oxidize CdSe to Cd{sup 2+} and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments (bioimaging and dye-sensitized solar cells).

  15. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    International Nuclear Information System (INIS)

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-01-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ( 1 H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered

  16. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran (Iran, Islamic Republic of); Fereshteh, Zeinab [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered.

  17. Fabrication and characterization of CaP-coated nanotube arrays

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Chen, Jia-Ling; Liu, Yen-Ting; Lee, Tzer-Min

    2015-01-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H 3 PO 4 and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells

  18. Fabrication and characterization of CaP-coated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen; Chen, Jia-Ling [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Yen-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-03-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H{sub 3}PO{sub 4} and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells.

  19. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  20. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    International Nuclear Information System (INIS)

    Ping, Mao; Zhi-Gang, Zhang; Li-Yang, Pan; Jun, Xu; Pei-Yi, Chen

    2009-01-01

    Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3 × 10 12 cm −2 ), small size (2–4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs

  1. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  2. Solvothermal synthesis and characterization of CZTS nanocrystals

    Science.gov (United States)

    Dumasiya, Ajay; Shah, N. M.

    2017-05-01

    Cu2ZnSnS4 (CZTS) is a promising thin film absorber material for low cost solar cell applications. CZTS nanoparticle ink synthesized using solvothermal route is an attractive option to deposit absorber layer using screen printing or spin coating method in CZTS thin film solar cell. In this study we have synthesized CZTS nanocrystals using solvothermal method from aqueous solution of Copper nitrate [Cu(NO3)2], Zinc nitrate [Zn(NO3)2], tin chloride [SnCl4] and thiourea with varying concentration of Cu(NO3)2 (viz 0.82 mmol,1.4 mmol, 1.7 mmol) keeping concentrations of rest of solutions constant. As synthesized CZTS nanocrystals are characterized using Energy Dispersive Analysis of X-rays (EDAX) to verify stoichiometry of elements. Analysis of EDAX data suggests that CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole is near stoichiometric. X-ray diffraction analysis study of CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole reveals the preferred orientation of the grains in (112), (220) and (312) direction confirming Kesterite structure of CZTS.

  3. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  4. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  6. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  7. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    Science.gov (United States)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  8. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  9. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  10. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Roza, E-mail: rozas@fotonik.dtu.dk [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Kovacs, Andras [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grunberg Institute, Forschungszentrum Julich, 52425 Julich (Germany); Dan Corell, Dennis [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gritti, Claudia [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Kardynal, Beata [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); PGI-9, Forschungszentrum Julich, JARA FIT, 52425 Julich (Germany)

    2014-01-15

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active.

  11. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  12. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    OpenAIRE

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-01-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential sca...

  13. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    Science.gov (United States)

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  14. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  15. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  16. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  17. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    International Nuclear Information System (INIS)

    Alam, Parvez

    2014-01-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths. (paper)

  18. Synthesis and structural determination of twisted MoS2 nanotubes

    International Nuclear Information System (INIS)

    Santiago, P.; Schabes-Retchkiman, P.; Ascencio, J.A.; Mendoza, D.; Perez-Alvarez, M.; Espinosa, A.; Reza-SanGerman, C.; Camacho-Bragado, G.A.; Jose-Yacaman, M.

    2004-01-01

    In the present work we report the synthesis of MoS 2 nanotubes with diameters greater than 10 nm using a template method. The length and properties of these nanotubes are a direct result of the preparation method. High-resolution transmission electron microscopy is used to study the structure of these highly curved entities. Molecular dynamics simulations of MoS 2 nanotubes reveal that one of the stable forms of the nanotubes is a twisted one. The twisting of the nanotubes produces a characteristic contrast in the images, which is also studied using simulation methods. The analysis of the local contrast close to the perpendicular orientation shows geometrical arrays of dots in domain-like structures, which are demonstrated to be a product of the atomic overlapping of irregular curvatures in the nanotubes. The configuration of some of the experimentally obtained nanotubes is demonstrated to be twisted with a behavior suggesting partial plasticity. (orig.)

  19. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  20. Investigation of the photoluminescence properties of thermochemically synthesized CdS nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Molaei

    2011-03-01

    Full Text Available In this work we have synthesized CdS nanocrystals with thermochemical method. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA was used as capping agent molecule. The structure and optical property of the nanocrystals were characterized by means of XRD, TEM, UV-visible optical spectroscopy and photoluminescence (PL. X-ray diffraction (XRD and TEM analyses demonstrated hexagonal phase CdS nanocrystals with an average size around 2 nm. Synthesized nanocrystals exhibited band gap of about 3.2 eV and showed a broad band emission from 400-750 nm centered at 504 nm with a (0.27, 0.39 CIE coordinate. This emission can be attributed to recombination of an electron in conduction band with a hole trapped in Cd vacancies near to the valance band of CdS. The best attained photoluminescence quantum yield of the nanocrystals was about 12%, this amount is about 20 times higher than that for thioglycerol (TG capped CdS nanocrystals.

  1. Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane.

    Science.gov (United States)

    Alcántara, Juan Carlos Castro; Cerda Zorrilla, Mariana; Cabriales, Lucia; Rossano, Luis Manuel León; Hautefeuille, Mathieu

    2015-01-01

    We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both processes presented shiny and dark residual materials after the polymer combustion and according to micro-Raman spectroscopy of the domains, graphitic nanocrystals and carbon nanotubes have successfully been produced by the combustion of polydimethylsiloxane layers. The fabrication processes and characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi-wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly promising for the formation of carbon nanoresidues with controlled properties and in applications where high integration is desired.

  2. Magnetic susceptibility of molecular carbon: nanotubes and fullerite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A P; Haddon, R C; Zhou, O; Fleming, R M; Zhang, J; McClure, S M; Smalley, R E [AT T Bell Laboratories, Murray Hill, NJ (United States)

    1994-07-01

    Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C[sub 60] fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C[sub 60] fullerite. (1) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (2) High-resolution magnetic susceptibility data on C[sub 60] fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C[sub 60]. This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.

  3. Carbon nanotube based gecko inspired self-cleaning adhesives

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  4. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  5. The aggregation and characteristics of radiation-induced defects in lithium fluoride nanocrystals

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Korzhik, M. V.; Martynovich, E. F.; Runets, L. P.; Stupak, A. P.

    2013-02-01

    It has been established that diffusion activation energies for anion vacancies and centres ? in lithium fluoride nanocrystals are higher than those in bulk crystals. In nanocrystals, ? centres migrating in the range of the temperature close to room temperature is not observed and these centres remain stable. The ratio of centres ? and F 2 concentrations in nanocrystals is higher than in bulk crystals. A new type of colour centres, which is absent in bulk crystals, is discovered in nanocrystals.

  6. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  7. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules.

    Science.gov (United States)

    Sheikhi, A; van de Ven, T G M

    2017-08-11

    A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.

  8. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  9. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  10. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    International Nuclear Information System (INIS)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H 2 PtCl 6 in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: • A novel octapod Pt nanocrystals different from the common octapod were obtained. • The use of KI was crucial to the formation of the novel Pt octapods. • Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H 2 PtCl 6 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H 2 PtCl 6 /KI/PVP was 1/30/45

  11. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Czech Academy of Sciences Publication Activity Database

    Krivyakin, G.K.; Volodin, V.; Kochubei, S.A.; Kamaev, G.N.; Purkrt, Adam; Remeš, Zdeněk; Fajgar, Radek; Stuchlíková, The-Ha; Stuchlík, Jiří

    2016-01-01

    Roč. 50, č. 7 (2016), s. 935-940 ISSN 1063-7826 R&D Projects: GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : hydrogenated amorphous silicon * nanocrystals * laser annealing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2016

  12. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  13. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18e

  14. On formation of silicon nanocrystals under annealing SiO2 layers implanted with Si ions

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Yanovskaya, S.G.; Volodin, V.A.; Kesler, V.G.; Lejer, A.F.; Ruault, M.-O.

    2002-01-01

    Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence have been used to study the formation of silicon nanocrystals in SiO 2 implanted with Si ions. Si clusters have been formed at once in the postimplanted layers, providing the excessive Si concentration more ∼ 3 at. %. Si segregation with Si-Si 4 bonds formation is enhanced as following annealing temperature increase, however, the Raman scattering by Si clusters diminishes. The effect is explained by a transformation of the chain-like Si clusters into compact phase nondimensional structures. Segregation of Si nanoprecipitates had ended about 1000 deg C, but the strong photoluminescence typical for Si nanocrystals manifested itself only after 1100 deg C [ru

  15. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  16. Melting Behavior of Organic Nanocrystals Grown in Sol-gel Matrices

    International Nuclear Information System (INIS)

    Sanz, N.; Boudet, A.; Ibanez, A.

    2002-01-01

    We have characterized the thermal stability of organic nanocrystals grown in the pores of sol-gel matrices. The structure has been measured with transmission electron microscopy (TEM) analysis. Depending on the nature of organic molecules and sol-gel matrices, we have modified the dye-matrix interactions and the interfacial structure between nanocrystals and gel-glasses. When the dye-matrix interactions are weak (Van der Waals' bonds), the corresponding interfacial structure observed by TEM is sharp and the nanocrystals melt below the bulk melting point. On the other hand, when the dye-matrix interactions are strong (hydrogen bonds), the interfacial structure is fuzzy and a great superheating of organic nanocrystals is observed in comparison to the bulk melting point of the dye

  17. Low-cost fabrication of ternary CuInSe{sub 2} nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son

    2014-11-15

    Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (aniline and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.

  18. Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.

    2004-01-01

    Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A

  19. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  20. Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers

    Directory of Open Access Journals (Sweden)

    David F. Odetade

    2016-12-01

    Full Text Available Hydrocortisone (HC nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (v/v mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210–280 nm to 320–400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC in a stirred vial. The differential scanning calorimetry (DSC and X-ray powder diffraction (XRPD analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP, and sodium lauryl sulfate (SLS were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.

  1. Effects of additives on microstructures of titanate based nanotubes prepared by the hydrothermal process

    International Nuclear Information System (INIS)

    Kubo, Takashi; Sugimoto, Keijiro; Onoki, Takamasa; Nakahira, Atsushi; Yamasaki, Yuki

    2009-01-01

    Silica-containing TiO 2 -derived titanate nanotubes were prepared by the addition of a small amount of tetraethyl orthosilicate (TEOS) to TiO 2 -derived titanate nanotubes prepared by the hydrothermal process and a subsequent heat-treatment at 473 K in air. The microstructure and thermal behavior of synthesized silica containing TiO 2 -derived titanate nanotubes were investigated by various methods such as X-ray diffraction (XRD), X-ray absorption fine structure (XAF), and X-ray photoelectron spectroscopy (XPS). As a result, the addition of a small amount of TEOS leaded to the improvement of the thermal stability for TiO 2 -derived titanate nanotubes. XPS results revealed that Si was combined onto the surface of TiO 2 -derived titanate nanotubes, forming partial Si-O-Ti chemical bonds. Therefore, it was inferred that the thermal stability could be modified by forming partial Si-O-Ti chemical bonds at interface of silica and TiO 2 -derived titanate nanotubes. (author)

  2. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    Science.gov (United States)

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  3. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2017-02-01

    Full Text Available One of the most common methods of carbon nanotubes (CNTs synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs. It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  4. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  5. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    Science.gov (United States)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  6. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO₂ matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung [Dongguk University, Seoul (Korea, Republic of)

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm³ at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm³ at 300 K). The increased exchange integral of J₁/k{sub B} = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J₁/k{sub B} = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO₂-capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  7. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  8. PPLA-cellulose nanocrystals nanocomposite prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Paula, Everton L. de; Pereirea, Fabiano V.; Mano, Valdir

    2011-01-01

    This work reports the preparation and and characterization of a PLLA-cellulose nanocrystals nanocomposite obtained by in situ polymerization. The nanocomposite was prepared by ring opening polymerization of the lactide dimer in the presence of cellulose nanocrystals (CNCs) and the as-obtained materials was characterized using FTIR, DSC, XRD and TGA measurements. The incorporation of cellulose nanocrystals in PLLA using this method improved the thermal stability and increased the crystallinity of PLLA. These results indicate that the incorporation of CNCs by in situ polymerization improve thermal properties and has potential to improve also mechanical properties of this biodegradable polymer. (author)

  9. The infra-red photoresponse of erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Kenyon, A.J.; Bhamber, S.S.; Pitt, C.W.

    2003-01-01

    We have exploited the interaction between erbium ions and silicon nanoclusters to probe the photoresponse of erbium-doped silicon nanocrystals in the spectral region around 1.5 μm. We have produced an MOS device in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals. Upon illumination with a 1480 nm laser diode, interaction between the nanocrystals and the rare-earth ions results in a modification of the conductivity of the oxide that enables a current to flow when a voltage is applied across the oxide layer

  10. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  11. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    Science.gov (United States)

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  12. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  13. Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates

    International Nuclear Information System (INIS)

    Yuan Junhua; Chen Yuanxian; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction

  14. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  15. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  16. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    International Nuclear Information System (INIS)

    Thayanithy, Venugopal; Babatunde, Victor; Dickson, Elizabeth L.; Wong, Phillip; Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy; Moreira, André L.; Downey, Robert J.; Steer, Clifford J.; Subramanian, Subbaya; Manova-Todorova, Katia; Moore, Malcolm A.S.; Lou, Emil

    2014-01-01

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  17. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  18. Surface chemical functionalisation of epoxy photoresist-based microcantilevers with organic-coated TiO2 nanocrystals

    DEFF Research Database (Denmark)

    Ingrosso, C.; Sardella, E.; Keller, S. S.

    2012-01-01

    In this Letter, a solution-based approach has been used for chemically immobilising oleic acid (OLEA)-capped TiO2 nanocrystals (NCs) on the surface of microcantilevers formed of SU-8, a negative tone epoxy photoresist. The immobilisation has been carried out at room temperature, under visible lig...

  19. Light emission from silicon with tin-containing nanocrystals

    Directory of Open Access Journals (Sweden)

    Søren Roesgaard

    2015-07-01

    Full Text Available Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si1−x−ySnxCy, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 ∘C to 900 ∘C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈1017 cm−3 and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 ∘C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  20. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  1. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  2. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  3. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  4. Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals

    KAUST Repository

    Zhang, Yuhai

    2017-02-09

    Perovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on Cs4PbBr6, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield. These 0-D perovskite NCs exhibit high photoluminescence quantum yield (PLQY) in the colloidal form (PLQY: 65%), and, more importantly, in the form of thin film (PLQY: 54%). Notably, the latter is among the highest values reported so far for perovskite NCs in the solid form. Our work brings the 0-D phase of perovskite into the realm of colloidal NCs with appealingly high PLQY in the film form, which paves the way for their practical application in real devices.

  5. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  6. Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, P; Nguyen-Tran, Th; Djeridane, Y; Abramov, A; Johnson, E; Patriarche, G

    2007-01-01

    The synthesis of silicon nanocrystals in standard radio-frequency glow discharge systems is studied with respect to two main objectives: (i) the production of devices based on quantum size effects associated with the small dimensions of silicon nanocrystals and (ii) the synthesis of polymorphous and polycrystalline silicon films in which silicon nanocrystals are the elementary building blocks. In particular we discuss results on the mechanisms of nanocrystal formation and their transport towards the substrate. We found that silicon nanocrystals can contribute to a significant fraction of deposition (50-70%) and that they can be positively charged. This has a strong influence on their deposition because positively charged nanocrystals will be accelerated towards the substrate with energy of the order of the plasma potential. However, the important parameter with respect to the deposition of charged nanocrystals is not the accelerating voltage but the energy per atom and thus a doubling of the diameter will result in a decrease in the energy per atom by a factor of 8. To leverage this geometrical advantage we propose the use of more electronegative gases, which may have a strong effect on the size and charge distribution of the nanocrystals. This is illustrated in the case of deposition from silicon tetrafluoride plasmas in which we observe low-frequency plasma fluctuations, associated with successive generations of nanocrystals. The contribution of larger nanocrystals to deposition results in a lower energy per deposited atom and thus polycrystalline films

  7. A dual-colored bio-marker made of doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y L; Zeng, X T [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Fu, S; Kwek, L C [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Tok, A I Y; Boey, F C Y [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Lim, C S [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2008-08-27

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  8. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-01-01

    -performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a

  9. Composite Films Formed by Cellulose nanocrystals and Latex Nanoparticles: Optical, Structural, and Mechanical Properties

    Science.gov (United States)

    Vollick, Brandon McRae

    This thesis describes the preparation of iridescent, birefringent, composite films composed of cellulose nanocrystals (CNCs), latex nanoparticles (NPs) and a NP crosslinker; hexanediamine (HDA). First, aqueous suspensions were prepared with varying quantities of CNCs, NPs and HDA before equilibrating for one week. The cholesteric (Ch) phase was then cast and dried into a film. The optical, structural and mechanical properties of the film was analyzed. Second, films with identical compositions of CNCs, NPs, and HDA were fabricated in three different ways to yield films of different morphology, (i) fast drying of an isotropic suspension, yielding an isotropic film, (ii) slow drying of an isotropic suspension, yielding a partially Ch films, (iii) slow drying of an equilibrated suspension, yielding a highly Ch film. The optical and mechanical properties of the films was analyzed.

  10. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    Science.gov (United States)

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  11. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  12. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  13. Computational Design of a Carbon Nanotube Fluorofullerene Biosensor

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2012-10-01

    Full Text Available Carbon nanotubes offer exciting opportunities for devising highly-sensitive detectors of specific molecules in biology and the environment. Detection limits as low as 10−11 M have already been achieved using nanotube-based sensors. We propose the design of a biosensor comprised of functionalized carbon nanotube pores embedded in a silicon-nitride or other membrane, fluorofullerene-Fragment antigen-binding (Fab fragment conjugates, and polymer beads with complementary Fab fragments. We show by using molecular and stochastic dynamics that conduction through the (9, 9 exohydrogenated carbon nanotubes is 20 times larger than through the Ion Channel Switch ICSTM biosensor, and fluorofullerenes block the nanotube entrance with a dissociation constant as low as 37 pM. Under normal operating conditions and in the absence of analyte, fluorofullerenes block the nanotube pores and the polymer beads float around in the reservoir. When analyte is injected into the reservoir the Fab fragments attached to the fluorofullerene and polymer bead crosslink to the analyte. The drag of the much larger polymer bead then acts to pull the fluorofullerene from the nanotube entrance, thereby allowing the flow of monovalent cations across the membrane. Assuming a tight seal is formed between the two reservoirs, such a biosensor would be able to detect one channel opening and thus one molecule of analyte making it a highly sensitive detection design.

  14. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  15. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Directory of Open Access Journals (Sweden)

    Wang Yiqian

    2009-01-01

    Full Text Available Abstract Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.

  16. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  17. Electrical investigations of layer-by-layer films of carbon nanotubes

    International Nuclear Information System (INIS)

    Palumbo, M; Lee, K U; Ahn, B T; Suri, A; Coleman, K S; Zeze, D; Wood, D; Pearson, C; Petty, M C

    2006-01-01

    Single-wall carbon nanotubes (SWNTs) with anionic or cationic coatings have been prepared by exploiting the ability of certain surfactants to form a monolayer shell around the nanotube. The presence of electrically charged functional groups on the surface of the SWNT allows thin film deposition to proceed via the electrostatic layer-by-layer method. This self-assembly process was monitored using the quartz microbalance technique and Raman spectroscopy, while the morphology of the resulting thin layers was studied with atomic force microscopy. A variety of different architectures has been built up. In one arrangement, a single species of a modified SWNT (anionic or cationic) was alternated with a passive polymer to form a composite structure. A 'superlattice' architecture comprising alternating anionic and cationic modified nanotubes was also fabricated. The in-plane and out-of-plane dc conductivities of the films were measured at room temperature and contrasted with reference architectures (i.e. those containing no nanotubes). The results showed clearly that the incorporation of SWNTs into the multilayer assemblies provided electrically conductive thin films. It is suggested that the current versus voltage behaviour, particularly in the out-of-plane direction, is controlled by quantum mechanical tunnelling of carriers between the nanotubes

  18. Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties.

    Science.gov (United States)

    Ansari, Anees A; Parchur, Abdul K; Kumar, Brijesh; Rai, S B

    2016-12-01

    The design of nanostructured materials with highly stable water-dispersion and luminescence efficiency is an important concern in nanotechnology and nanomedicine. In this paper, we described the synthesis and distinct surface modification on the morphological structure and optical (optical absorption, band gap energy, excitation, emission, decay time, etc.) properties of highly crystalline water-dispersible CaF 2 :Ce/Tb nanocrystals (core-nanocrystals). The epitaxial growth of inert CaF 2 and silica shell, respectively, on their surface forming as CaF 2 :Ce/Tb@CaF 2 (core/shell) and CaF 2 :Ce/Tb@CaF 2 @SiO 2 (core/shell/SiO 2 ) nanoarchitecture. X-ray diffraction and transmission electron microscope image shows that the nanocrystals were in irregular spherical phase, highly crystalline (~20 nm) with narrow size distribution. The core/shell nanocrystals confirm that the surface coating is responsible in the change of symmetrical nanostructure, which was determined from the band gap energy and luminescent properties. It was found that an inert inorganic shell formation effectively enhances the luminescence efficiency and silica shell makes the nanocrystals highly water-dispersible. In addition, Ce 3+ /Tb 3+ -co-doped CaF 2 nanocrystals show efficient energy transfer from Ce 3+ to Tb 3+ ion and strong green luminescence of Tb 3+ ion at 541 nm( 5 D 4 → 7 F 5 ). Luminescence decay curves of core and core/shell nanocrystals were fitted using mono and biexponential equations, and R 2 regression coefficient criteria were used to discriminate the goodness of the fitted model. The lifetime values for the core/shell nanocrystals are higher than core-nanocrystals. Considering the high stable water-dispersion and intensive luminescence emission in the visible region, these luminescent core/shell nanocrystals could be potential candidates for luminescent bio-imaging, optical bio-probe, displays, staining, and multianalyte optical sensing. A newly designed CaF 2 :Ce

  19. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study

    International Nuclear Information System (INIS)

    Petrella, Andrea; Cosma, Pinalysa; Lucia Curri, M.; Rochira, Sergio; Agostiano, Angela

    2011-01-01

    Heterostructures formed of films of organic-capped ZnO and TiO 2 nanocrystals (both with the size of ca. 6 nm) and photosynthetic pigments were prepared and characterized. The surface of optically transparent electrodes (Indium Tin Oxide) was modified with nanocrystals and prepared by colloidal synthetic routes. The nanostructured electrodes were sensitized by a mixture of chlorophyll a and carotenoids. The characterization of the hybrid structures, carried out by means of steady-state optical measurements, demonstrated such class of dyes able to extend the photoresponse of the large band-gap semiconductors. The charge-transfer processes between the components of the heterojunction were investigated, and photoelectrochemical measurements taken on the sensitized ZnO and TiO 2 nanocrystals electrodes elucidated the photoactivity of the heterojunctions as a function of the dyes and of the red–ox mediator used in solution. The effect of methyl viologen as different red–ox mediator was also evaluated in order to show its effect on the heterojunction photoactivity. The overall results contributed to describe the photoelectrochemical potential of the investigated heterojunctions, highlighting a higher response of the dye-sensitized ZnO nanocrystals, and then provided the TiO 2 -modified counterparts.

  20. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO2 matrix

    International Nuclear Information System (INIS)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm 3 at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm 3 at 300 K). The increased exchange integral of J 1 /k B = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J 1 /k B = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO 2 -capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  1. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meiyu Stella [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Suresh, Vignesh [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Chan, Mei Yin [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Ma, Yu Wei [Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Lee, Pooi See [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Krishnamoorthy, Sivashankar [Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Science et Analyse des Materiaux Unit (SAM), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux, 4422 (Luxembourg); Srinivasan, M.P., E-mail: srinivasan.madapusi@rmit.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); School of Engineering, RMIT University, Building 10, Level 11, Room 14, 376-392 Swanston Street, Melbourne, Victoria, 3001 (Australia)

    2017-01-15

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10{sup 11}–10{sup 12} cm{sup −2}) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10{sup 4} s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10{sup 3} and 10{sup 4} s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  2. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    International Nuclear Information System (INIS)

    Huang, Meiyu Stella; Suresh, Vignesh; Chan, Mei Yin; Ma, Yu Wei; Lee, Pooi See; Krishnamoorthy, Sivashankar; Srinivasan, M.P.

    2017-01-01

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10"1"1–10"1"2 cm"−"2) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10"4 s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10"3 and 10"4 s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  3. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    Science.gov (United States)

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  4. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  5. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  6. Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability.

    Science.gov (United States)

    Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda

    2017-06-08

    In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.

  7. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    Science.gov (United States)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  8. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    Science.gov (United States)

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  9. Growth of single-wall carbon nanotubes by chemical vapor deposition for electrical devices

    OpenAIRE

    Furer, Jürg

    2006-01-01

    Carbon emerges in di®erent forms. Diamond and graphite have been well known mate- rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago. H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima described carbon nanotubes (CNTs) for the ¯rst time [2] (Figure 1.1). CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up graphite mono layer. However a nanotube has wi...

  10. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M. [Physics Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Moharram, A. H. [Physics Dept., College of Science and Arts, King Abdulaziz Univ., Rabigh 21911 (Saudi Arabia)

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  11. Size limit on the phosphorous doped silicon nanocrystals for dopant activation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: pengyuan.yang@surrey.ac.uk [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Gwilliam, R.M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Crowe, I.F.; Papachristodoulou, N.; Halsall, M.P. [Photon Science Institute, School of Electrical and Electronic Engineering, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Hylton, N.P. [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hulko, O.; Knights, A.P. [Department of Engineering Physics and the Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Ontario (Canada); Shah, M.; Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2013-07-15

    We studied the photoluminescence spectra of silicon nanocrystals doped with and without phosphorus as a function of isothermal annealing time. Silicon nanocrystals were prepared by the implantation of 80 keV Si{sup +} into a 500 nm SiO{sub 2} film to an areal density of 8 × 10{sup 16} at/cm{sup 2}. Half of the samples were co-implanted with P{sup +} at 80 keV to 5 × 10{sup 15} at/cm{sup 2}. The photoluminescence of the annealed samples were photo-excited at wavelength of 405 nm. For short anneal times, when the nanocrystal size distribution has a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts to the red. Our results indicate the donor electron generation depends strongly on the nanocrystal size. We also found a critical limit above which it allows dopant activation.

  12. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai

    2018-02-23

    Although ligands of long carbon chains are very crucial to form stable colloidal perovskite nanocrystals (NCs), they create a severe barrier for efficient charge injection or extraction in quantum-dot-based optoelectronics, such as light emitting diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium acetate and cesium chloride), which replace the organic ligand and still protect the nanocrystals from dissolution. The successful removal of hydrophobic long ligands was evidenced by Fourier transform infrared spectroscopy, ζ potential analysis, and thermogravimetric analysis. Unlike conventional perovskite NCs that are extremely susceptible to polar solvents, the ligand-free CsPbBr NCs show robust resistance to polar solvents. Our ligand-free procedure opens many possibilities not only from a material hybridization perspective but also in optimizing charge injection and extraction in semiconductor quantum-dot-based optoelectronics applications.

  13. Carbon nanotube stationary phases for microchip electrochromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Bøggild, Peter; Kutter, Jörg Peter

    , microfluidic devices with microfabricated carbon nanotube columns for electrochromatographic separations will be presented. The electrically conductive carbon nanotube layer has been patterned into hexoganol micropillars in order to support electroosmotic flow without forming gas bubbles from electrolysis......The use of nanomaterials in separation science has increased rapidly in the last decade. The reason for this is to take advantage of the unique properties of these materials, such as a very high surface-to-volume ratio and favourable sorbent behaviour. Carbon nanostructures, such as carbon...

  14. FeNi nanotubes: perspective tool for targeted delivery

    Science.gov (United States)

    Kaniukov, Egor; Shumskaya, Alena; Yakimchuk, Dzmitry; Kozlovskiy, Artem; Korolkov, Ilya; Ibragimova, Milana; Zdorovets, Maxim; Kadyrzhanov, Kairat; Rusakov, Vyacheslav; Fadeev, Maxim; Lobko, Eugenia; Saunina, Kristina; Nikolaevich, Larisa

    2018-05-01

    Targeted delivery of drugs and proteins by magnetic field is a promising method to treat cancer that reduces undesired systemic toxicity of drugs. In this method, the therapeutic agent is attached through links to functional groups with magnetic nanostructure and injected into the blood to be transported to the problem area. To provide a local effect of drug treatment, nanostructures are concentrated and fixed in the selected area by the external magnetic field (magnet). After the exposure, carriers are removed from the circulatory system by magnetic field. In this study, Fe20Ni80 nanotubes are considered as carriers for targeted delivery of drugs and proteins. A simple synthesis method is proposed to form these structures by electrodeposition in PET template pores, and structural and magnetic properties are studied in detail. Nanotubes have polycrystalline walls providing mechanical strength of carriers and magnetic anisotropy that allow controlling the nanostructure movement under the exposure of by magnetic field. Moreover, potential advantages of magnetic nanotubes are discussed in comparison with other carrier types. Most sufficient of them is predictable behavior in magnetic field due to the absence of magnetic core, low specific density that allows floating in biological media, and large specific surface area providing the attachment of a larger number of payloads for the targeted delivery. A method of coating nanotube surfaces with PMMA is proposed to exclude possible negative impact of the carrier material and to form functional bonds for the payload connection. Cytotoxicity studies of coated and uncoated nanotubes are carried out to understand their influence on the biological media.

  15. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  16. Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films

    International Nuclear Information System (INIS)

    Gao Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-01-01

    Multilayered Ge nanocrystals embedded in SiO x GeN y films have been fabricated on Si substrate by a (Ge + SiO 2 )/SiO x GeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 deg. C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1 , which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2 ) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction

  17. MEGACELL: A nanocrystal model construction software for HRTEM multislice simulation

    International Nuclear Information System (INIS)

    Stroppa, Daniel G.; Righetto, Ricardo D.; Montoro, Luciano A.; Ramirez, Antonio J.

    2011-01-01

    Image simulation has an invaluable importance for the accurate analysis of High Resolution Transmission Electron Microscope (HRTEM) results, especially due to its non-linear image formation mechanism. Because the as-obtained images cannot be interpreted in a straightforward fashion, the retrieval of both qualitative and quantitative information from HRTEM micrographs requires an iterative process including the simulation of a nanocrystal model and its comparison with experimental images. However most of the available image simulation software requires atom-by-atom coordinates as input for the calculations, which can be prohibitive for large finite crystals and/or low-symmetry systems and zone axis orientations. This paper presents an open source citation-ware tool named MEGACELL, which was developed to assist on the construction of nanocrystals models. It allows the user to build nanocrystals with virtually any convex polyhedral geometry and to retrieve its atomic positions either as a plain text file or as an output compatible with EMS (Electron Microscopy Software) input protocol. In addition to the description of this tool features, some construction examples and its application for scientific studies are presented. These studies show MEGACELL as a handy tool, which allows an easier construction of complex nanocrystal models and improves the quantitative information extraction from HRTEM images. -- Highlights: → A software to support the HRTEM image simulation of nanocrystals in actual size. → MEGACELL allows the construction of complex nanocrystals models for multislice image simulation. → Some examples of improved nanocrystalline system characterization are presented, including the analysis of 3D morphology and growth behavior.

  18. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    Science.gov (United States)

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  19. Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives

    Science.gov (United States)

    Viswanathan, Tito

    2014-06-17

    A method of synthesizing carbon nanotubes. In one embodiment, the method includes the steps of: (a) dissolving a first amount of a first transition-metal salt and a second amount of a second transition-metal salt in water to form a solution; (b) adding a third amount of tannin to the solution to form a mixture; (c) heating the mixture to a first temperature for a first duration of time to form a sample; and (d) subjecting the sample to a microwave radiation for a second duration of time effective to produce a plurality of carbon nanotubes.

  20. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    Science.gov (United States)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  1. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Ahn, J.-O.; Andong National University,; Wang, G.X.; Liu, H.K.; Dou, S.X.

    2003-01-01

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d 002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li + /Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient d Li decreases with an increase of Li ion concentration in carbon nanotube host

  2. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  3. Synthesis and characterization of MgO nanocrystals for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Qiu, Guojun [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2015-05-25

    Highlights: • MgO nanocrystals were prepared using DC arc plasma jet CVD method. • The growth time does not exceed 10 min in process of the synthesis. • The samples were found to consist of cubic MgO nanobelts and nanosheets. • Nanocrystals contain contacts, rough edges, vacancies, and doping defects. • The samples exhibited excellent electrochemical biosensing properties. - Abstract: MgO nanocrystals were prepared using a simple direct current arc plasma jet chemical vapor deposition method. Magnesium nitrate was used as source material and Mo film was used as a substrate and catalyst. The high-temperature plasma produced ensured rapid synthesis of the MgO nanocrystals. The as-prepared nanocrystals were characterized by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, energy-dispersive spectroscopy, Fourier transform infrared spectrometry, ultraviolet–visible spectrophotometry, and photoluminescence measurements. The as-synthesized samples were found to consist of cubic MgO nanobelts and nanosheets with large surface areas and low coordination oxide ions, and contained numerous contacts, rough edges, vacancies, and doping defects. The nanostructures exhibited excellent electrochemical sensing properties with high-sensing sensitivity toward ascorbic acid. Their high electrocatalytic activity was attributed to the effect of defects and the surface electron transfer ability of the one-dimensional MgO nanobelts.

  4. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  5. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  6. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  7. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  8. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  9. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  10. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  11. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  12. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    Science.gov (United States)

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  13. Silver(I)-directed growth of metal-organic complex nanocrystals with bidentate ligands of hydroquinine anthraquinone-1,4-diyl diethers as linkers at the water-chloroform interface

    Science.gov (United States)

    Tang, Ying; Wang, Hui-Ting; Chen, Meng; Qian, Dong-Jin; Zhang, Li; Liu, Minghua

    2014-09-01

    Immiscible liquid-liquid interfaces provide unique double phase regions for the design and construction of nanoscale materials. Here, we reported Ag(I)-directed growth of metal-organic complex nanocrystals by using AgNO3 as a connector in the aqueous solution and bidentate ligand of 1,4-bis(9-O-dihydroquininyl)anthraquinone [(DHQ)2AQN] and its enantiomer of (DHQD)2AQN in the chloroform solutions as linkers. The Ag-(DHQ)2AQN and Ag-(DHQD)2AQN complex nanocrystals were formed at the liquid-liquid interfaces and characterized by using UV-vis absorption and fluorescence spectroscopy and X-ray photoelectron spectroscopy, as well as by using scanning electron microscopy. Screw-like nanocrystals were formed at the initial 30 min after the interfacial coordination reaction started, then they grew into nanorods after several days, and finally became cubic microcrystals after 2 weeks. The pure ligand showed two emission bands centered at about 363 and 522 nm in the methanol solution, the second one of which was quenched and shifted to about 470 nm in the Ag-complex nanocrystals. Two couples of reversible redox waves were recorded for the Ag-complex nanocrystals; one centered at about -0.25 V (vs. Ag/AgCl) was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag - (DHQ)2AQN+, and the other one centered at about 0.2 V was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag+ - (DHQ)2AQN.

  14. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  15. In situ microscopy of the self-assembly of branched nanocrystals in solution

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  16. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  17. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  18. Theory of nanotube faraday cage

    Science.gov (United States)

    Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.

    2003-03-01

    Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.

  19. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    Science.gov (United States)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  20. A radiation-tolerant, low-power non-volatile memory based on silicon nanocrystal quantum dots

    OpenAIRE

    Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; De Blauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO_2 is a critical aspect of the performance ...

  1. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  2. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  3. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  4. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  5. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  6. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Y.; Xiao, Z.-L.; Wang, H. H.; Lin, X.-M.; Trasobares, S.; Cook, R. E.; Richard J. Daley Coll.; Northern Illinois Univ.; Univ. de Cadiz

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  7. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  8. Observation of spin-selective tunneling in SiGe nanocrystals.

    Science.gov (United States)

    Katsaros, G; Golovach, V N; Spathis, P; Ares, N; Stoffel, M; Fournel, F; Schmidt, O G; Glazman, L I; De Franceschi, S

    2011-12-09

    Spin-selective tunneling of holes in SiGe nanocrystals contacted by normal-metal leads is reported. The spin selectivity arises from an interplay of the orbital effect of the magnetic field with the strong spin-orbit interaction present in the valence band of the semiconductor. We demonstrate both experimentally and theoretically that spin-selective tunneling in semiconductor nanostructures can be achieved without the use of ferromagnetic contacts. The reported effect, which relies on mixing the light and heavy holes, should be observable in a broad class of quantum-dot systems formed in semiconductors with a degenerate valence band.

  9. Synthesis and luminescence properties for europium oxide nanotubes

    International Nuclear Information System (INIS)

    Mo Zunli; Deng Zhepeng; Guo Ruibin; Fu Qiangang; Feng Chao; Liu Pengwei; Sun Yu

    2012-01-01

    Highlights: ► A novel high temperature sensitive fluorescent CNTs/Eu 2 O 3 nanocomposite was fabricated. ► The nanocomposite showed strong fluorescent emission peaks at around 540 and 580 nm after calcined beyond 620 °C for 4 h. ► The ultrahigh fluorescence intensity of the nanocomposites resulted from a synergetic effect of CNTs and europium oxide. ► We also discovered that CNTs had an effect of fluorescence quenching. - Abstract: A novel high temperature sensitive fluorescent nanocomposite has been successfully synthesized by an economic hydrothermal method using carbon nanotubes (CNTs), europium oxide, and sodium dodecyl benzene sulfonate (SDBS). To our great interest, the nanocomposites show high temperature sensitivity after calcinations at various temperatures, suggesting a synergetic effect of CNTs and europium oxide which leads to ultrahigh fluorescence intensity of europium oxide nanotubes. When the novel high temperature sensitive fluorescent nanocomposites were calcined beyond 620 °C for 4 h, the obtained nanocomposites have a strong emission peak at around 540 and 580 nm, due to the 5 D 0 → 7 F j (j = 0, 1) forced electric dipole transition of Eu 3+ ions. In turn, the emission spectra showed a slight blue shift. The intensity of this photoluminescence (PL) band is remarkably temperature-dependent and promotes strongly beyond 620 °C. This novel feature is attributed to the thermally activated carrier transfer process from nanocrystals and charged intrinsic defects states to Eu 3+ energy levels. The novel high temperature sensitive fluorescent nanocomposite has potential applications in high temperature warning materials, sensors and field emission displays. It is also interesting to discover that CNTs have the effect of fluorescence quenching.

  10. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration.

    Science.gov (United States)

    Pyo, Sung Min; Hespeler, David; Keck, Cornelia M; Müller, Rainer H

    2017-10-05

    Miconazole nitrate nanosuspension was developed to increase its antifungal activity and dermal penetration. In addition, the nanosuspension was combined with the synergistic additive chlorhexidine digluconate. The production was performed by wet bead milling and both production and formulation parameters were optimized. A stabilizer screening revealed poloxamer 407 and Tween 80 both at 0.15% as the most effective stabilizers for miconazole nanosuspensions at 1.0%. The nanocrystals were incorporated into a hydroxypropyl cellulose gel base. Short-term stability (3months) of the nanocrystal bulk population could be shown at room temperature and fridge. Besides the stable bulk nanocrystals, some longitudinal crystal growth to needle like crystals occurred. The addition of ionic compounds as the chlorhexidine digluconate often destabilizes suspensions. Surprisingly here, the addition minimized the crystal growth. An underlying mechanism is proposed. An inhibition zone assay was performed using Candida albicans (ATCC ® 10231™). When comparing the nanocrystals in suspension and in gel to μm-sized miconazole nitrate formulations and two market products, the increase in inhibition zone diameter for the nanosuspension formulations was most pronounced in the chlorhexidine digluconate free formulations. These nanocrystal formulations were closely or similarly effective as the microsuspensions and the market products containing the synergistic chlorhexidine digluconate, showing the potential of the nanosuspension formulation. Nanosuspension performance was even further increased when chlorhexidine digluconate was added. Ex-vivo skin penetration studies on porcine ears revealed distinctly less remaining miconazole nitrate on the skin surface for nanocrystals (e.g., 76-86%) compared to market products (e.g. 94%). Also, penetration was increased e.g. in skin depth of 5-10μm from <1.0/1.7% to e.g. 3.3-6.2% for nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    Science.gov (United States)

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  12. Carbon nanotubes: properties, synthesis, purification, and medical applications

    Science.gov (United States)

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering. PMID:25170330

  13. Carbon nanotubes: properties, synthesis, purification, and medical applications

    Science.gov (United States)

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-08-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  14. InAs nanocrystals on SiO2/Si by molecular beam epitaxy for memory applications

    International Nuclear Information System (INIS)

    Hocevar, Moiera; Regreny, Philippe; Descamps, Armel; Albertini, David; Saint-Girons, Guillaume; Souifi, Abdelkader; Gendry, Michel; Patriarche, Gilles

    2007-01-01

    We studied a memory structure based on InAs nanocrystals grown by molecular beam epitaxy directly on thermal SiO 2 on silicon. Both nanocrystal diameter and density can be controlled by growth parameters. Transmission electron microscopy analysis shows high crystallinity and low size dispersion. In an electrical test structure with a 3.5 nm tunnel oxide, we observed that 80% of the initial injected electrons remain stored in the InAs nanocrystals after 3 months and that the retention time for electrons in InAs nanocrystals is four orders of magnitude higher than in silicon nanocrystals

  15. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces

    Science.gov (United States)

    Marri, Ivan; Degoli, Elena; Ossicini, Stefano

    2017-12-01

    Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.

  16. Synthesis, characterization and spectral temperature-dependence of thioglycerol-CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Nassim, E-mail: nassim.benbrahim.fsm@gmail.com [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Poggi, Mélanie [Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Haj Mohamed, Naim Bel; Ben Chaâbane, Rafik; Haouari, Mohamed [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Negrerie, Michel, E-mail: michel.negrerie@polytechnique.fr [Laboratoire d' Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia)

    2016-09-15

    Water-soluble CdSe quantum dots (QDs) have been synthesized with thioglycerol as a stabilizer through a novel hydrothermal route. The obtained thioglycerol capped CdSe (TG-CdSe) nanocrystals were characterized regarding their morphology and structural, thermal and optical properties. The resulting nanocrystals were synthesized in the cubic structure with a near spherical shape, as confirmed by X-ray diffraction and transmission electron microscopy. Combining transmission electron microscopy imaging and calculations using UV–visible absorption spectrum and X-ray diffraction pattern, the diameter of the synthesized nanocrystals was estimated to 2.26 nm. As confirmed by its Fourier transform IR spectrum, thioglycerol was successfully liganded on the surface of the resulting nanocrystals. Band structure parameters of the TG-CdSe nanoparticles were determined and quantum confinement effect was evidenced by optical absorption, fluorescence and Raman measurements. The thermal properties of the TG-CdSe were explored by thermal gravimetric analysis and differential scanning calorimetry. The temperature dependence of both the absorption and fluorescence spectra in the physiological range makes the TG-CdSe nanocrystals sensitive temperature markers, a property that must be taken into account when developing any probing applications, especially for cellular imaging.

  17. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  18. Electronic properties of carbon nanotubes with polygonized cross sections

    International Nuclear Information System (INIS)

    Charlier, J.; Lambin, P.; Ebbesen, T.

    1996-01-01

    The electronic properties of carbon nanotubes having polygonized cross sections instead of purely circular ones, such as recently observed using transmission electron microscopy, are investigated with plane-wave ab initio pseudopotential local-density-functional calculations and simple tight-binding models. Strong σ * -π * hybridization effects occur in zigzag nanotubes due to the high curvature located near the edges of the polygonal cross-section prism. These effects, combined with a lowering of symmetry, dramatically affect the electronic properties of the nanotubes. It is found that modified low-lying conduction-band states are introduced either into the bandgap of insulating nanotubes, or below the degenerate states that form the top of the valence band of metallic nanotubes, leading the corresponding nanostructures to be metals, semimetals, or at least very-small-gap semiconductors. The degree of the polygon representing the cross section of the tube, and the sharpness of the edge angles, are found to be major factors in the hybridization effect, and consequently govern the electronic behavior at the Fermi level. copyright 1996 The American Physical Society

  19. More About Arc-Welding Process for Making Carbon Nanotubes

    Science.gov (United States)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  20. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Density-functional tight-binding investigation of the structure, stability and material properties of nickel hydroxide nanotubes

    Science.gov (United States)

    Jahangiri, Soran; Mosey, Nicholas J.

    2018-01-01

    Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.

  2. Confined Growth of ZIF-8 Nanocrystals with Tunable Structural Colors

    DEFF Research Database (Denmark)

    Chang, Bingdong; Yang, Yuanqing; Jansen, Henri

    2018-01-01

    Zeolitic imidazolate frameworks (ZIF-8) have promising applications as sensors or catalysts due to their highly porous crystalline structures. While most of the previous studies are based on ZIF-8 crystals either in isolated particles in aqueous environments or in a compact colloidal form, here...... down to ≈100 nm. A wide range of structural colors generated by the ZIF-8 nanocrystals is also observed, which can be attributed to the size-dependent resonant scattering as verified by finite-difference time-domain simulations and classical Mie theory. The scalable fabrication of wafer-based ZIF-8...

  3. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    Directory of Open Access Journals (Sweden)

    Tiancong Zhao

    2017-12-01

    Full Text Available Mesoporous SiO2 nanoparticles (MSNs are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores, and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2 on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  4. Extraction and characterisation of cellulose nanocrystals from pineapple peel

    Directory of Open Access Journals (Sweden)

    Ana Raquel Madureira

    2018-04-01

    Full Text Available The potential of pineapple peel as a source of cellulose nanocrystals was evaluated. Peels skin from fresh-cut fruit was used as raw material. These residues were purified to remove pigments, lipids and hemicellulose, and a bleaching process for delignification was carried out for 4-6 h. All resulting products were characterised for their lignin, hemicellulose, cellulose and ash contents using standard techniques. Dry matter at the end was low (ca. 50% compared with the raw material (ca. 90%. The process applied resulted in ca. 20% (m/m of purified cellulose (ca. 80% purity, with ineligible levels of lignin and hemicellulose present, especially when using 6h of bleaching. The purified cellulose was subject to acid hydrolysis for nanocrystal extraction with two testing times, 30 and 60 minutes. These cellulose nanocrystals had small sizes (< 1000 nm, with high variability and negative zeta potential values. The time of extraction did not affect the nanocrystals’ chemical and physical properties. The use of 6 h of bleaching treatment during purification was shown to be more effective than 4 h. Pineapple peel was demonstrated to be a good source of cellulose for the production of cellulose nanocrystals.

  5. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel

    2018-01-30

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite\\'s conductivity based on these parameters.

  6. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    KAUST Repository

    Mora Cordova, Angel; Han, Fei; Lubineau, Gilles

    2018-01-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite's conductivity based on these parameters.

  7. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  8. Nanotube phonon waveguide

    Science.gov (United States)

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  9. Inhomogeneous magnetic phase in Co–Al–O spinel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: sato.koichi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Naka, T., E-mail: naka.takashi@nims.go.jp [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Nakane, T. [National Institute for Materials Science, 2-1-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Rangappa, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur PO, Hyderabad 500-005 (India); Takami, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ohara, S. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Adschiri, T. [WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-01-15

    We report on the crystallographic structure and magnetism of 5-nm Co–Al–O spinel nanocrystals synthesized under supercritical hydrothermal conditions. Structural examination using powder X-ray diffraction and chemical analysis showed the composition of the sample to be Co{sub 0.47}Al{sub 2.36}O{sub 4} rather than the stoichiometric composition of CoAl{sub 2}O{sub 4}. The site occupancy of Co on the A-site forming the diamond lattice was 0.47, which is slightly larger than the site percolation limit. Magnetization measurements showed that magnetic clusters emerged below 40 K. At temperatures below 40 K, a Griffiths-phase-like inhomogeneous state appeared in the sample in which magnetic clusters and paramagnetic spins coexisted. The dc-paramagnetic and ac-susceptibilities exhibited an anomaly below 7 K. - Highlights: • The synthesized sample had an Al-rich structure described by Co{sub 0.47}Al{sub 2.36}O{sub 4}. • The site occupancy of Co at the A-site is larger than the site percolation limit of the A-site. • The non-linearity of the magnetization appeared at T<40 K. • The paramagnetic component showed a peak at 7 K. • An inhomogeneous state is established in our Co–Al oxide nanocrystals.

  10. Fluorescent single walled nanotube/silica composite materials

    Science.gov (United States)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  11. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  12. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  13. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  14. Growth of hexagonal NaGdF{sub 4} nanocrystals based on cubic Ln{sup 3+}: CaF{sub 2} precursors and the multi-color upconversion emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Lei; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Yu, Yunlong; Zhang, Rui; Ling, Hang; Xu, Ju; Huang, Feng; Wang, Yuansheng, E-mail: yswang@fjirsm.ac.cn

    2014-04-05

    Graphical abstract: We reported a novel hetero-valence cation exchange route to synthesize Ln: NaGdF4 upconversion nanocrystals for the first time. -- Highlights: • The Ln3+: NaGdF4 nanocrystals were synthesized based on the Ln3+: CaF2 precursors. • The microstructures of nanocrystals were characterized. • The multi-color upconversion emissions were easily realized. -- Abstract: Lanthanide-doped upconversion nanomaterials have attracted great attention recently for their potential applications in the fields of bio-label, three-dimensional display, solar cell and so on. In this article, we report a new strategy to prepare hexagonal Ln{sup 3+}:NaGdF{sub 4} upconversion nanocrystals. Unlike the routine way of synthesizing NaGdF{sub 4} nanocrystals through nucleation and growth, the formation of hexagonal NaGdF{sub 4} nanocrystals herein is realized based on the Ln{sup 3+}-doped cubic CaF{sub 2} precursors, following a hetero-valence cation exchange process between Gd{sup 3+}/Na{sup +} and Ca{sup 2+}. Evidently, Ln{sup 3+} dopants in the CaF{sub 2} precursors are retained in the finally formed hexagonal NaGdF{sub 4} nanocrystals and, subsequently, multi-color upconversion emissions are easily realized by simply adjusting the Ln{sup 3+} dopant species and contents in the CaF{sub 2} precursors. This novel hetero-valence cation exchange route may open up a new pathway to synthesize nanomaterials that cannot be fabricated directly.

  15. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    Kruszka, Bartosz; Terzyk, Artur P; Wiśniewski, Marek; Gauden, Piotr A; Szybowicz, Mirosław

    2014-01-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  16. Preparation of carbon nanotubes/epoxy resin composites by using hollow glass beads as the carrier

    International Nuclear Information System (INIS)

    Wu, X.F.; Zhao, Y.K.; Zhang, D.; Chen, T.B.; Ma, L.Y.

    2012-01-01

    Hollow glass beads had been utilized as the carrier to assist dispersion of carbon nanotubes in epoxy resin. Hollow glass beads were firstly aminated with gamma-aminopropyl-triethoxysilane, sencondly reacted with carboxyl-functionalized carbon nanotubes via an amidation reaction and susequently mixed with epoxy resin and hardener. The experimental results showed that carbon nanotubes could be loaded on the surfaces of hollow glass beads and approximately a monolayer of carbon nanotubes was formed when the weight ratio of hollow glass beads to carbon nanotubes was 100:5. Moreover, the dispersity of carbon nanotubes in the matrix was improved as compared to the control samples prepared by using a conventional mixing method. (author)

  17. Peptide aptamer-assisted immobilization of green fluorescent protein for creating biomolecule-complexed carbon nanotube device

    Science.gov (United States)

    Nii, Daisuke; Nozawa, Yosuke; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi; Tomo, Tatsuya; Shimada, Yuichiro

    2017-10-01

    Carbon nanotubes are a novel material for next-generation applications. In this study, we generated carbon nanotube and green fluorescent protein (GFP) conjugates using affinity binding peptides. The carbon nanotube-binding motif was introduced into the N-terminus of the GFP through molecular biology methods. Multiple GFPs were successfully aligned on a single-walled carbon nanotube via the molecular recognition function of the peptide aptamer, which was confirmed through transmission electron microscopy and optical analysis. Fluorescence spectral analysis results also suggested that the carbon nanotube-GFP complex was autonomously formed with orientation and without causing protein denaturation during immobilization. This simple process has a widespread potential for fabricating carbon nanotube-biomolecule hybrid devices.

  18. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  19. Acceptors in ZnO nanocrystals: A reinterpretation

    Science.gov (United States)

    Gehlhoff, W.; Hoffmann, A.

    2012-12-01

    In a recent article, Teklemichael et al. reported on the identification of an uncompensated acceptor in ZnO nanocrystals using infrared spectroscopy and electron paramagnetic resonance (EPR) in the dark and under illumination. Most of their conclusions, interpretations, and suggestions turned out to be erroneous. The observed EPR signals were interpreted to originate from axial and nonaxial VZn-H defects. We show that the given interpretation of the EPR results is based on misinterpretations of EPR spectra arising from defects in nanocrystals. The explanation of the infrared absorption lines is in conflict with recent results of valence band ordering and valence band splitting.

  20. Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator

    International Nuclear Information System (INIS)

    Goetzinger, S; Menezes, L de S; Benson, O; Talapin, D V; Gaponik, N; Weller, H; Rogach, A L; Sandoghdar, V

    2004-01-01

    We report on experiments where we used a home-made confocal microscope to excite single nanocrystals on a high-Q microsphere resonator. In that way spectra of an individual quantum emitter could be recorded. The Q factor of the microspheres coated with nanocrystals was still up to 10 9 . We also demonstrate the use of a prism coupler as a well-defined output port to collect the fluorescence of an ensemble of nanocrystals coupled to whispering-gallery modes

  1. Electronic Structure of Hydrogenated and Surface-Modified GaAs Nanocrystals: Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Hamsa Naji Nasir

    2012-01-01

    Full Text Available Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap.

  2. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  3. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  4. Nonvolatile memory characteristics influenced by the different crystallization of Ni-Si and Ni-N nanocrystals

    International Nuclear Information System (INIS)

    Chen, W.-R.; Yeh, J.-L.; Chang, C.-Y.; Chang, T.-C.; Chen, S.-C.

    2008-01-01

    The formation of Ni-Si and Ni-N nanocrystals by sputtering a Ni 0.3 Si 0.7 target in argon and nitrogen environment were proposed in this paper. A transmission electron microscope analysis shows the nanocrystals embedded in the nitride layer. X-ray photoelectron spectroscopy and x-ray diffraction also offer the chemical material analysis of nanocrystals with surrounding dielectric and the crystallization of nanocrystals for different thermal annealing treatments. Nonvolatile Ni-Si nanocrystal memories reveal superior electrical characteristics for charge storage capacity and reliability due to the improvement of thermal annealing treatment. In addition, we used energy band diagrams to explain the significance of surrounding dielectric for reliability

  5. Quenching of photoluminescence of colloidal ZnO nanocrystals by nitronyl nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Stroyuk, Oleksandr L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Yakovenko, Anastasiya V.; Raevskaya, Oleksandra E. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-11-15

    Quenching of the photoluminescence of colloidal zinc oxide nanocrystals by a series of stable nitronyl nitroxide radicals was studied by means of stationary and time-resolved luminescence spectroscopy. Among the studied radicals the most efficient quenchers of the ZnO luminescence are the carboxyl-substituted species. The meta-substituted radical was found to be a more active quencher, than para-substituted one due to a closer proximity of the radical center to the nanocrystals surface. The PL quenching has a complex dynamic/static character. The dynamic quenching arises from photocatalytic radical reduction by ZnO conduction band electrons, while the static quenching is caused by adsorption of the photoreduction products on the nanocrystal surface. The non-substituted and OH-substituted radicals are inferior to the products of their photoreduction in capability of adsorption of the ZnO surface, and the quenching is dominated by interactions between the nanocrystals and photoreduced hydroxylamines. In case of COOH-substituted radicals, however, the radicals compete with the photoreduction products for the surface sites of ZnO nanocrystals resulting in a dynamic character of photoluminescence quenching.

  6. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials

    NARCIS (Netherlands)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-01-01

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive

  7. Corroboration of Raman and AFM mapping to study Si nanocrystals embedded in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Ekta, E-mail: ades.ekta@gmail.com [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Ingale, Alka A. [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Chaturvedi, A. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Joshi, M.P.; Kukreja, L.M. [Homi Bhabha National Institute, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2016-07-05

    Raman and atomic force microscopy (AFM) mapping on the same selected area are used to get unique information about the morphology of Si nanocrystals (NCs) embedded in SiO{sub 2}, which is difficult to obtain by any other conventional technique. The sensitivity of Raman spectroscopy to surface/interface and confinement effects in NCs is effectively used to correlate the Raman intensity profile in Raman mapping with the topography obtained from AFM to understand that Si NCs are clustered in i) smaller clusters (∼100 nm) organized closely in two dimensions (2D) and ii) big (∼2 μm) three dimensional (3D) isolated clusters, although the growth is carried out to be multilayer (Si/SiO{sub 2}). Raman mapping performed by varying the focal spot along the depth shows stacking of larger (>∼60 Å) to smaller sizes (<∼40 Å) Si NCs from bottom to top for some clusters. To understand the observed morphologies, further study of specially grown Si–SiO{sub 2} nanocomposites is performed, which suggest formation of smaller Si NCs at the top due to annealing at 800 °C in Si rich SiO{sub 2} and possible existence of thermal gradient in an insulating matrix of SiO{sub 2.} Larger Si NCs are formed in the laser induced plume (plasma) itself. - Graphical abstract: a) Schematic showing the expected stacking of Si NCs obtained from Raman mapping, performed by changing focal spot along the depth, b) top, c) middle and d) bottom region of the cluster. - Highlights: • Methodology is developed to obtain Raman and AFM mapping at same selected area. • To get unique information, difficult to obtain using other conventional techniques. • Clusters (∼100 nm–2 μm) of Si nanocrystals embedded in SiO{sub 2} matrix are formed. • Stacking of Si nanocrystals from bottom to top (10–1 nm) is observed in some clusters. • Stacking of Si nanocrystals is understood as due to annealing and thermal gradient.

  8. Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance.

    Science.gov (United States)

    Lin, Jie; Lim, Jin-Myoung; Youn, Duck Hyun; Kawashima, Kenta; Kim, Jun-Hyuk; Liu, Yang; Guo, Hang; Henkelman, Graeme; Heller, Adam; Mullins, Charles Buddie

    2017-10-24

    Through a gelation-solvothermal method without heteroadditives, Cu-Sn-S composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu 3-4 SnS 4 core and Cu 2 SnS 3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g -1 after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.

  9. Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes

    International Nuclear Information System (INIS)

    Akhukov, M A; Yuan Shengjun; Fasolino, A; Katsnelson, M I

    2012-01-01

    We study, by density functional and large-scale tight-binding transport calculations, the electronic structure, magnetism and transport properties of the recently proposed graphene ribbons with edges rolled to form nanotubes. Edges with armchair nanotubes present magnetic moments localized either in the tube or the ribbon and of metallic or half-metallic character, depending on the symmetry of the junction. These properties have potential for spin valve and spin filter devices with advantages over other proposed systems. Edges with zigzag nanotubes are either metallic or semiconducting without affecting the intrinsic mobility of the ribbon. Varying the type and size of the nanotubes and ribbons offers the possibility to tailor the magnetic and transport properties, making these systems very promising for applications. (paper)

  10. High Temperature AL-Nanocrystal Alloy Synthesis

    National Research Council Canada - National Science Library

    Perepezko, J

    2001-01-01

    Aluminum-rich metallic glasses containing transition metals and rare earth elements have been found to yield finely mixed microstructures of Al nanocrystals embedded in an amorphous matrix and exhibit...

  11. Stability and signatures of biexcitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Kjeld; Cornean, Horia Decebal

    2005-01-01

    The linear optical properties of semiconducting carbon nanotubes are dominated by quasi-one-dimensional excitons formed by single electron-hole pairs. Hence, the nonlinear response at high pump levels most likely leads to the formation of exciton complexes involving several electron-hole pairs....... Such complexes would threfore play an important role in e.g. lasing applications. We demonstrate here that the biexciton complex is surprisingly stable for nanotubes in a wide diameter range. Theoretical predictions for the signature of such states in pump-probe spectroscopy are presented....

  12. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  13. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  14. Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template

    Energy Technology Data Exchange (ETDEWEB)

    Wongsaeng, Chalao [Department of Science, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Tak, Tak 63000 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singjai, Pisith, E-mail: pisith.s@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-04-07

    Ambipolar field effect transistors based on a single-walled carbon nanotube (SWNT) network formed on a gold nanoparticle (AuNP) template with polyvinyl alcohol as a gate insulator were studied by measuring the current–gate voltage characteristics. It was found that the mobilities of holes and electrons increased with increasing AuNP number density. The disturbances in the flow pattern of the carbon feedstock in the chemical vapor deposition growth that were produced by the AuNP geometry, resulted in the differences in the crystallinity and the diameter, as well as the changes in the degree of the semiconductor behavior of the SWNTs.

  15. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  16. Ti–Al–O nanocrystal charge trapping memory cells fabricated by atomic layer deposition

    International Nuclear Information System (INIS)

    Cao, Zheng-Yi; Li, Ai-Dong; Li, Xin; Cao, Yan-Qiang; Wu, Di

    2014-01-01

    Charge trapping memory cells using Ti–Al–O (TAO) film as charge trapping layer and amorphous Al 2 O 3 as the tunneling and blocking layers were fabricated on Si substrates by atomic layer deposition method. As-deposited TAO films were annealed at 700 °C, 800 °C and 900 °C for 3 min in N 2 with a rapid thermal annealing process to form nanocrystals. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the microstructure and band diagram of the heterostructures. The electrical characteristics and charge storage properties of the Al 2 O 3 /TAO/Al 2 O 3 /Si stack structures were also evaluated. Compared to 700 °C and 900 °C samples, the memory cells annealed at 800 °C exhibit better memory performance with larger memory window of 4.8 V at ± 6 V sweeping, higher program/erase speed and excellent endurance. - Highlights: • The charge trapping memory cells were fabricated by atomic layer deposition method. • The anneal temperature plays a key role in forming nanocrystals. • The memory cells annealed at 800 °C exhibit better memory performance. • The band alignment is beneficial to enhance the retention characteristics

  17. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  18. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  19. Facile Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications

    KAUST Repository

    Lim, Yee-Fun; Choi, Joshua J.; Hanrath, Tobias

    2012-01-01

    CuO is an earth-abundant, nontoxic, and low band-gap material; hence it is an attractive candidate for application in solar cells. In this paper, a synthesis of CuO nanocrystals by a facile alcohothermal route is reported. The nanocrystals are dispersible in a solvent mixture of methanol and chloroform, thus enabling the processing of CuO by solution. A bilayer solar cell comprising of CuO nanocrystals and phenyl-C61-butyric acid methyl ester (PCBM) achieved a power conversion efficiency of 0.04%, indicating the potential of this material for light-harvesting applications.

  20. Characterization of memory and measurement history in photoconductivity of nanocrystal arrays

    Science.gov (United States)

    Fairfield, Jessamyn A.; Dadosh, Tali; Drndic, Marija

    2010-10-01

    Photoconductivity in nanocrystal films has been previously characterized, but memory effects have received little attention despite their importance for device applications. We show that the magnitude and temperature dependence of the photocurrent in CdSe/ZnS core-shell nanocrystal arrays depends on the illumination and electric field history. Changes in photoconductivity occur on a few-hour timescale, and subband gap illumination of nanocrystals prior to measurements modifies the photocurrent more than band gap illumination. The observed effects can be explained by charge traps within the band gap that are filled or emptied, which may alter nonradiative recombination processes and affect photocurrent.

  1. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    Science.gov (United States)

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  2. The mechanisms for filling carbon nanotubes with molten salts: carbon nanotubes as energy landscape filters

    International Nuclear Information System (INIS)

    Bishop, Clare L; Wilson, Mark

    2009-01-01

    The mechanisms for filling carbon nanotubes with molten salts are investigated using molecular dynamics computer simulation. Inorganic nanotubular structures, whose morphologies can be rationalized in terms of the folding, or the removal of sections from, planes of square nets are found to form. The formation mechanisms are found to follow a 'chain-by-chain' motif in which the structures build systematically from charge neutral M-X-M-Xc chains. The formation mechanisms are rationalized in terms of the ion-ion interactions (intra-chain and inter-chain terms). In addition, the mechanisms of filling are discussed in terms of a 'hopping' between basins on the underlying energy landscape. The role of the carbon nanotube as an energy landscape filter is discussed.

  3. Colloidal Fe-doped ZnO nanocrystals: Facile low temperature synthesis, characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, A. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: ansing@barc.gov.in; Achary, S.N.; Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Manna, P.K.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2008-09-25

    Colloidal Fe-doped ZnO nanocrystals, Zn{sub 1-x}Fe{sub x}O (x = 0.00, 0.05, 0.07 and 0.1) have been prepared by thermal decomposition of metal precursors at 200 deg. C with hexadecylamine (HDA) as solvent and surfactant. The nanocrystals so prepared can be easily dispersed in non-polar solvents like chloroform and toluene. The nanocrystals have been structurally characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on a representative sample, Zn{sub 0.95}Fe{sub 0.05}O using a vibrating sample magnetometer (VSM) reveal that the nanocrystals exhibit a weak ferromagnetic behavior at 300 K. This observation is further confirmed by the electron paramagnetic resonance spectrum of Zn{sub 0.95}Fe{sub 0.05}O nanocrystals, which shows a distinct ferromagnetic resonance signal at room temperature.

  4. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media

    International Nuclear Information System (INIS)

    Fang Zheng; Wu Ping; Zhong Xinhua; Yang Yongji

    2010-01-01

    High-quality water-dispersible Mn 2+ -doped ZnSe core/ZnS shell (Mn:ZnSe/ZnS) nanocrystals have been synthesized directly in aqueous media. Overcoating a high bandgap ZnS shell around the Mn:ZnSe cores can bring forward an efficient energy transfer from the ZnSe host nanocrystals to the dopant Mn. The quantum yields of the dopant Mn photoluminescence in the as-prepared water-soluble Mn:ZnSe/ZnS core/shell nanocrystals can be up to 35 ± 5%. The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell nanocrystals have been characterized by UV-vis, PL spectroscopy, TEM, XRD and ICP elementary analysis. The influences of various experimental variables, including the Mn concentration, the Se/Zn molar ratio as well as the kind and amount of capping ligand used in the core production and shell deposition process, on the luminescent properties of the obtained Mn:ZnSe/ZnS nanocrystals have been systematically investigated.

  5. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    Science.gov (United States)

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  6. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Straw, David C.; Spurrell, Kathryn C.

    2011-01-01

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  7. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO{sub 2} nanocrystals as high rate lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boyang, E-mail: byliu@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Shao, Yingfeng, E-mail: shaoyf@lnm.imech.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics (China); Zhang, Yuliang, E-mail: ylzhang@shmtu.edu.cn; Zhang, Fuhua, E-mail: fhzhang@shmtu.edu.cn; Zhong, Ning, E-mail: ningzhong@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Li, Wenge, E-mail: wgli@shmtu.edu.cn [Shanghai Maritime University, Merchant Marine College (China)

    2016-12-15

    A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO{sub 2} nanocrystals (MoO{sub 2}@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO{sub 2} nanocrystals, resulting in the formation of core-shell structure. The MoO{sub 2} nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO{sub 2} nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO{sub 2} nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO{sub 2}@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g{sup −1} after 50 cycles at a current density of 3 A g{sup −1}, owing to the effective protection of carbon shell.

  8. Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Zeng, Jie; Zhang, Qiang; Moran, Christine H; Xia, Younan

    2012-01-01

    This feature article introduces our recent work on understanding the roles played by citrate and poly(vinyl pyrrolidone) (PVP) as capping agents in seed-mediated syntheses of Ag nanocrystals with controlled shapes. We have demonstrated that citrate and PVP selectively bind to Ag(111) and Ag(100) surfaces, respectively, and thus favor the formation of Ag nanocrystals enclosed preferentially by {111} or {100} facets. In addition, we have quantified the coverage density of PVP adsorbed on the surface of Ag nanocubes. Based on the mechanistic understanding, a series of Ag nanocrystals with controlled shapes and sizes have been successfully synthesized by using different combinations of seeds and capping agents: single-crystal spherical/cubic seeds with citrate for cuboctahedrons and octahedrons or with PVP for cubes and bars; and plate-like seeds with citrate for enlarged thin plates or with PVP for thickened plates.

  9. Rapid synthesis of triangular CdS nanocrystals without any trap emission

    International Nuclear Information System (INIS)

    Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2012-01-01

    Nanocrystals (NCs) with anisotropic dimensions display polarized emission compared to nano dots. Triangular prisms are good candidates for polarized optical properties and monodisperse triangular NCs are ideal for developing building blocks for novel three-dimensional superlattices due to its anisotropic dimension. Among triangular nanocrystals, CdS nanocrystals are less discussed for the past one decade of research due to the difficulty in its processing method. Though well studied very few methods for developing CdS triangular nanocrystals have been reported, and most are having drawbacks either due to the time consuming process or the products are combination of triangular as well as many other shaped NC or with trap emissions due to defects which are comparable to band emissions limits its applications in full scale. Here, we are presenting a novel method to develop 7 nm CdS triangular NCs that can solve the above mentioned problems, which would augment the usage of CdS triangular crystals for many applications, based on its anisotropic properties.

  10. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals

    International Nuclear Information System (INIS)

    Bowers, Michael J.; McBride, James; Garrett, Maria Danielle; Sammons, Jessica A.; Dukes, Albert; Schreuder, Michael A.; Watt, Tony L.; Lupini, Andrew R.; Pennycook, Stephen J.; Rosenthal, Sandra

    2009-01-01

    White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

  11. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  12. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  13. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  14. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  15. The control of inorganic nanotube morphology using an applied potential

    International Nuclear Information System (INIS)

    Gingrich, Todd R; Wilson, Mark

    2011-01-01

    Molecular dynamics computer simulations of the filling of carbon nanotubes (CNTs) by a generic molten salt to form hexagonal-net-based inorganic nanotubes (INTs) are described. A model is introduced to incorporate CNT metallicity which imposes variable Gaussian charges on each atomic site in order to retain an equipotential. The inclusion of CNT metallicity is observed to have no significant effect on the distribution of the INT morphologies formed as compared with the filling of non-metallic CNTs. The application of a voltage bias to the CNT forms a new class of INTs which can be considered as constructed from concentric layers of pseudo-close-packed anions and cations. Removal of the voltage bias leads to the formation of hexagonal-net-based INTs with a distribution of morphologies different to that observed for the filling of the unbiased CNTs. The differences in distributions are interpreted in terms of the CNTs behaving as effective energy landscape filters, for which the applied voltage acts as an additional control variable. The application of a potential acts to control the distribution of INT morphologies by facilitating alternative mechanistic pathways to nanotube formation.

  16. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    Science.gov (United States)

    Mora, A.; Han, F.; Lubineau, G.

    2018-04-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.

  17. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  18. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy.

    Science.gov (United States)

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-08-15

    After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor.

    Science.gov (United States)

    Kim, Sun Jin; Han, Jin-Woo; Kim, Beomseok; Meyyappan, M

    2017-11-22

    Carbon nanotube (CNT) is a promising candidate as a sensor material for the sensitive detection of gases/vapors, biomarkers, and even some radiation, as all these external variables affect the resistance and other properties of nanotubes, which forms the basis for sensing. Ultraviolet (UV) radiation does not impact the nanotube properties given the substantial mismatch of bandgaps and therefore, CNTs have never been considered for UV sensing, unlike the popular ZnO and other oxide nanwires. It is well-known that UV assists the adsorption/desorption characteristics of oxygen on carbon nanotubes, which changes the nanotube resistance. Here, we demonstrate a novel sensor structure encapsulated with an air pocket, where the confined air is responsible for the UV sensing mechanism and assures sensor stability and repeatability over time. In addition to the protection from any contamination, the air pocket encapsulated sensor offers negligible baseline drift and fast recovery compared to previously reported sensors. The air pocket isolated from the outside environment can act as a stationary oxygen reservoir, resulting in consistent sensor characteristics. Furthermore, this sensor can be used even in liquid environments.

  20. Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing

    Science.gov (United States)

    Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri

    2018-05-01

    The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.