WorldWideScience

Sample records for nanotubes inhibit stimulated

  1. Growth inhibition, cell-cycle alteration and apoptosis in stimulated human peripheral blood lymphocytes by multiwalled carbon nanotube buckypaper.

    Science.gov (United States)

    Zeni, Olga; Sannino, Anna; Romeo, Stefania; Micciulla, Federico; Bellucci, Stefano; Scarfi, Maria Rosaria

    2015-02-01

    This study was designed to investigate the cytotoxicity of multiwalled carbon nanotube buckypaper (BP) in stimulated human peripheral blood lymphocytes. Materials & methods & results: BP treatment led to a delay in the cell growth, as proven by a minor increase in the cell number over time relative to that seen in untreated cells, assessed by trypan blue, resazurin and neutral red assays. The analysis of cell-cycle profile, by propidium iodide staining, indicated that BP treatment blocked cell-cycle progression by arresting cells at the G0/G1 phase. Moreover, increased apoptosis was also recorded by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The results presented here demonstrate an inhibitor effect of BP on cell growth that was likely through cytostatic and cytotoxic events.

  2. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Sato, C; Shimizu, N [Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 (Japan); Naka, Y [Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Whitby, R, E-mail: shimizu@toyonet.toyo.ac.jp [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2010-03-19

    Low concentrations (0.11-1.7 {mu}g ml{sup -1}) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 {mu}g ml{sup -1} CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  3. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Matsumoto, K; Sato, C; Shimizu, N; Naka, Y; Whitby, R

    2010-01-01

    Low concentrations (0.11-1.7 μg ml -1 ) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 μg ml -1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  4. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion.

    Science.gov (United States)

    Palasuk, Jadesada; Windsor, L Jack; Platt, Jeffrey A; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C

    2018-04-01

    This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.

  5. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.

    Science.gov (United States)

    Kirejev, Vladimir; Ali Doosti, Baharan; Shaali, Mehrnaz; Jeffries, Gavin D M; Lobovkina, Tatsiana

    2018-04-17

    Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inhibition of Lipopolysaccharide-Stimulated Neuro- Inflammatory ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant and anti-neuroinflammatory effects of Tetragonia tetragonoides (Pall.) Kuntze extract (TKE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Methods: To evaluate the effects of TKE, LPS-stimulated BV microglia were used and the expression and production of ...

  7. Inhibition of microbial growth by carbon nanotube networks

    Science.gov (United States)

    Olivi, Massimiliano; Zanni, Elena; de Bellis, Giovanni; Talora, Claudio; Sarto, Maria Sabrina; Palleschi, Claudio; Flahaut, Emmanuel; Monthioux, Marc; Rapino, Stefania; Uccelletti, Daniela; Fiorito, Silvana

    2013-09-01

    In the last years carbon nanotubes have attracted increasing attention for their potential applications in the biomedical field as diagnostic and therapeutic nano tools. Here we investigate the antimicrobial activity of different fully characterized carbon nanotube types (single walled, double walled and multi walled) on representative pathogen species: Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the opportunistic fungus Candida albicans. Our results show that all the carbon nanotube types possess a highly significant antimicrobial capacity, even though they have a colony forming unit capacity and induction of oxidative stress in all the microbial species to a different extent. Moreover, scanning electron microscopy analysis revealed that the microbial cells were wrapped or entrapped by carbon nanotube networks. Our data taken together suggest that the reduced capacity of microbial cells to forming colonies and their oxidative response could be related to the cellular stress induced by the interactions of pathogens with the CNT network.

  8. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    Science.gov (United States)

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Spatholobus suberectus inhibits osteoclastogenesis and stimulates chondrogenesis.

    Science.gov (United States)

    Im, Nam-Kyung; Lee, Sung-Gyu; Lee, Dong-Sung; Park, Pil-Hoon; Lee, In-Seon; Jeong, Gil-Saeng

    2014-01-01

    This study was carried out to investigate the effect of Spatholobus suberectus Dunn (SS) on the protection of chondral defect and inhibition of osteoclastogenesis. To examine these effects, we measured the matrix metalloproteinase (MMP) levels in SW1353 chondrosarcoma cells and performed tartrate-resistant acid phosphatase (TRAP) staining in bone marrow macrophage (BMM)-derived osteoclasts. To investigate the anti-osteoarthritis (OA) effects, we assessed TNF-α-induced MMP-1, -3, -9 and tissue inhibitors of matrix metalloproteinase (TIMP) expression levels in SW1353 cells. We observed that SS extract significantly inhibited MMP and TIMP expression in SW1353 cells. Also, SS extract inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. These results suggest that SS extract may have a potential in the treatment of bone loss and chondral defect by suppressing osteoclast differentiation and decreasing the expression of OA factors. Therefore, clarification of the mechanism of the action of SS extract and its active components is needed.

  10. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels.

    Science.gov (United States)

    Koppes, A N; Keating, K W; McGregor, A L; Koppes, R A; Kearns, K R; Ziemba, A M; McKay, C A; Zuidema, J M; Rivet, C J; Gilbert, R J; Thompson, D M

    2016-07-15

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: (1) nanofillers influence neurite extension and (2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10-100-μg/mL) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. Novel biomedical devices delivering electrical stimulation are being developed to mitigate symptoms of Parkinson's, treat drug-resistant depression, control movement or enhance verve regeneration. Carbon

  11. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  12. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Science.gov (United States)

    Ricotti, Leonardo; Fujie, Toshinori; Vazão, Helena; Ciofani, Gianni; Marotta, Roberto; Brescia, Rosaria; Filippeschi, Carlo; Corradini, Irene; Matteoli, Michela; Mattoli, Virgilio; Ferreira, Lino; Menciassi, Arianna

    2013-01-01

    In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves) polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa) and a small thickness (∼ 12 µm). We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes) activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds) in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin). We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  13. Mechanism of Deep Brain Stimulation: Inhibition, Excitation, or Disruption?

    Science.gov (United States)

    Chiken, Satomi; Nambu, Atsushi

    2016-06-01

    Deep brain stimulation (DBS), applying high-frequency electrical stimulation to deep brain structures, has now provided an effective therapeutic option for treatment of various neurological and psychiatric disorders. DBS targeting the internal segment of the globus pallidus, subthalamic nucleus, and thalamus is used to treat symptoms of movement disorders, such as Parkinson's disease, dystonia, and tremor. However, the mechanism underlying the beneficial effects of DBS remains poorly understood and is still under debate: Does DBS inhibit or excite local neuronal elements? In this short review, we would like to introduce our recent work on the physiological mechanism of DBS and propose an alternative explanation: DBS dissociates input and output signals, resulting in the disruption of abnormal information flow through the stimulation site. © The Author(s) 2015.

  14. Nanofiber containing carbon nanotubes enhanced PC12 cell proliferation and neuritogenesis by electrical stimulation.

    Science.gov (United States)

    Su, Wen-Ta; Shih, Yi-An

    2015-01-01

    The nervous system is an important regulator of the human body because it adapts our responses to the external environment and provides people the ability of thought, memory, and emotion. PC12 is a cell line that is commonly used to study the behavior of neural differentiation. PC12 cells further differentiate into nerve cells when stimulated by nerve growth factor (NGF), which have neurite, dendrite, and axon, and form synapses with neighboring cells to build neural networks. Micropatterns and electric stimulation can significantly influence cellular attachment, proliferation, orientation, extracellular matrix (ECM) expression, neural differentiation, and cellular motion. We fabricated polycaprolactone (PCL) nanofiber with or without carbon nanotubes (CNTs) by electrospinning and promoted the neural differentiation of PC12 cells by electric stimulation. We used scanning electron microscope (SEM) and fluorescence microscope to observe the NGF-induced growth of PC12 cells on PCL nanofiber. Axon formation and cellular activity expression, that confirm that PC12 cells can grow well on PCL nanofiber, and the gene expressions of MAP1b and GAP43 significantly increased after electric stimulation. Based on the results, the structure of nanofibers containing CNTs can effectively induce neural differentiation of PC12 cells in an electric field. This experimental model can be used for future clinical applications.

  15. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  16. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    International Nuclear Information System (INIS)

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-01-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I sc ), transepithelial potential (V t ) and resistance (R t ) were recorded in the continuous presence of cadmium. Addition of cadmium (20 μM to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I sc cannot be explained by an action on: 1) H 2 histamine receptor, 2) Ca 2+ signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H + /K + -ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H + /K + -ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  17. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.

    Science.gov (United States)

    Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.

  18. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin......-stimulated glucose uptake but also decreased the contractility. In conclusion, inhibition of PI 3-kinase with wortmannin in skeletal muscle coincides with inhibition of insulin-stimulated glucose uptake and transport. Furthermore, in contrast to recent findings in incubated muscle, wortmannin also inhibited...

  19. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    Science.gov (United States)

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    Science.gov (United States)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  1. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.

    Science.gov (United States)

    Tonosaki, Y; Cruijsen, P M J M; Nishiyama, K; Yaginuma, H; Roubos, E W

    2004-11-01

    It is well-known that alpha-melanophore-stimulating hormone (alpha-MSH) release from the amphibian pars intermedia (PI) depends on the light condition of the animal's background, permitting the animal to adapt the colour of its skin to background light intensity. In the present study, we carried out nine experiments on the effect of low temperature on this skin adaptation process in the toad Xenopus laevis, using the skin melanophore index (MI) bioassay and a radioimmunoassay to measure skin colour adaptation and alpha-MSH secretion, respectively. We show that temperatures below 8 degrees C stimulate alpha-MSH secretion and skin darkening, with a maximum at 5 degrees C, independent of the illumination state of the background. No significant stimulatory effect of low temperature on the MI and alpha-MSH plasma contents was noted when the experiment was repeated with toads from which the neurointermediate lobe (NIL) had been surgically extirpated. This indicates that low temperature stimulates alpha-MSH release from melanotrope cells located in the PI. An in vitro superfusion study with the NIL demonstrated that low temperature does not act directly on the PI. A possible role of the central nervous system in cold-induced alpha-MSH release from the PI was tested by studying the hypothalamic expression of c-Fos (as an indicator for neuronal activity) and the coexistence of c-Fos with the regulators of melanotrope cell activity, neuropeptide Y (NPY) and thyrotrophin-releasing hormone (TRH), using double fluorescence immunocytochemistry. Upon lowering temperature from 22 degrees C to 5 degrees C, in white-adapted animals c-Fos expression decreased in NPY-producing suprachiasmatic-melanotrope-inhibiting neurones (SMIN) in the ventrolateral area of the suprachiasmatic nucleus (SC) but increased in TRH-containing neurones of the magnocellular nucleus. TRH is known to stimulate melanotrope alpha-MSH release. We conclude that temperatures around 5 degrees C inactivate the SMIN

  2. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.

    Science.gov (United States)

    Zhao, Daohui; Zhou, Jian

    2017-01-04

    The α-chymotrypsin (α-ChT) enzyme is extensively used for studying nanomaterial-induced enzymatic activity inhibition. A recent experimental study reported that carboxylized carbon nanotubes (CNTs) played an important role in regulating the α-ChT activity. In this study, parallel tempering Monte Carlo and molecular dynamics simulations were combined to elucidate the interactions between α-ChT and CNTs in relation to the CNT functional group density. The simulation results indicate that the adsorption and the driving force of α-ChT on different CNTs are contingent on the carboxyl density. Meanwhile, minor secondary structural changes are observed in adsorption processes. It is revealed that α-ChT interacts with pristine CNTs through hydrophobic forces and exhibits a non-competitive characteristic with the active site facing towards the solution; while it binds to carboxylized CNTs with the active pocket through a dominant electrostatic association, which causes enzymatic activity inhibition in a competitive-like mode. These findings are in line with experimental results, and well interpret the activity inhibition of α-ChT at the molecular level. Moreover, this study would shed light on the detailed mechanism of specific recognition and regulation of α-ChT by other functionalized nanomaterials.

  3. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  5. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  6. Omeprazole Inhibits Acetylsalicylic Acid-Modified Histamine Stimulation of Acid Secretion in Rabbit Gastric Glands

    Directory of Open Access Journals (Sweden)

    Daniel T Brosseuk

    1994-01-01

    Full Text Available The effects of misoprostol and omeprazole on basal-, histamine- and acetylsalicylic acid (ASA-induced gastric acid secretion by isolated rabbit gastric glands were studied. The authors found that ASA at a concentration of 2.4×10-3 M significantly inhibited acid secretion in the isolated gastric glands to 65% of basal levels, and that ASA at a concentration of 2.4×l0-2 M significantly inhibited the histamine stimulation of acid secretion to 78% of maximal. Misoprostol inhibited acid secretion to 76% of basal acid secretion, while omeprazole inhibited secretion to 58% of basal values. Misoprostol inhibited the ASA-modified histamine stimulation to 82% of maximal stimulation. In contrast, omeprazole was able to inhibit the ASA-modified histamine stimulation to 48% of maximal. This omeprazole inhibition of secretagogue-induced acid production reduced acid secretion to levels below basal secretion, indicating that neither histamine nor ASA (at the concentrations used, alone or in combination, had any stimulatory effect in the presence of omeprazole. Misoprostol is the recommended drug of choice for prevention and treatment of nonsteroidal anti-inflammatory drug (NSAID-induced gastrointestinal mucosal injury. In vitro results suggest that omeprazole appears to treat this condition more effectively if gastric acid secretion is a necessary prerequisite for NSAID-induced mucosal injury.

  7. Towards lightweight nanocomposite coatings for corrosion inhibition: Graphene, carbon nanotubes, and nanostructured magnesium as case studies

    Science.gov (United States)

    Dennis, Robert Vincent, III

    The field of nanocomposites is a burgeoning area of research due to the interest in the remarkable properties which can be achieved through their use in a variety of applications, including corrosion resistant coatings. Lightweighting is of increasing importance in the world today due to the ever growing push towards energy efficiency and the green movement and in recent years there has been a vast amount of research performed in the area of developing lightweight nanocomposites for corrosion inhibition. Many new composite materials have been developed through the use of newly developed nanomaterials (including carbonaceous and metallic constituents) and their specialized incorporation in the coating matrix materials. We start with a general review on the development of hybrid nanostructured composites for corrosion protection of base metals from a sustainability perspective in Chapter 1. This review demonstrates the ever swelling requirements for a paradigm shift in the way that we protect metals against corrosion due to the costs and environmental concerns that exist with currently used technology. In Chapter 2, we delve into the much required understanding of graphene oxide and reduced graphene oxide through near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements to elucidate information about the electronic structure upon incorporation of nitrogen within the structure. For successful integration of the carbonaceous nanomaterials into a composite coating, a full swath of knowledge is necessary. Within this work we have shown that upon chemical defunctionalization of graphene oxide to reduced graphene oxide by means of hydrazine treatment, nitrogen is incorporated into the structure in the form of a pyrazole ring. In Chapter 3, we demonstrate that by way of in situ polymerization, graphene and multiwalled carbon nanotubes can be incorporated within a polymer (polyetherimide, PEI) matrix. Two systems have been developed including graphene and

  8. Phenolic constituents isolated from Fragaria ananassa Duch. inhibit antigen-stimulated degranulation through direct inhibition of spleen tyrosine kinase activation.

    Science.gov (United States)

    Ninomiya, Masayuki; Itoh, Tomohiro; Ishikawa, Suguru; Saiki, Miho; Narumiya, Kenji; Yasuda, Masaharu; Koshikawa, Kaneyuki; Nozawa, Yoshinori; Koketsu, Mamoru

    2010-08-15

    We isolated eight phenolic constituents from Fragaria ananassa Duch. (strawberry) and determined their structures using 1D, 2D-NMR. Among the isolated compounds, linocinnamarin (LN), 1-O-trans-cinnamoyl-beta-d-glucopyranose (CG), and cinnamic acid (CA) exhibited antigen (Ag)-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells. In order to reveal the underlying mechanisms, we examined the effects of LN and CA on cellular responses induced by antigen stimulation. Treatment with both LN and CA markedly inhibited antigen-stimulated elevation of intracellular free Ca(2+) concentration and reactive oxygen species (ROS). Both LN and CA suppressed Ag-stimulated spleen tyrosine kinase (Syk) activation. These results indicate that inhibition of antigen-stimulated degranulation by LN and CA is mainly due to inactivation of Syk/phospholipase Cgamma (PLCgamma) pathways. Our findings suggest that LN and CA isolated from F. ananassa Duch. (strawberry) could be beneficial agents for alleviating symptoms of type I allergy. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  10. Carbon nanotube signal amplification for ultrasensitive fluorescence polarization detection of DNA methyltransferase activity and inhibition.

    Science.gov (United States)

    Huang, Yong; Shi, Ming; Zhao, Limin; Zhao, Shulin; Hu, Kun; Chen, Zheng-Feng; Chen, Jia; Liang, Hong

    2014-04-15

    A versatile sensing platform based on multiwalled carbon nanotube (MWCNT) signal amplification and fluorescence polarization (FP) is developed for the simple and ultrasensitive monitoring of DNA methyltransferase (MTase) activity and inhibition in homogeneous solution. This method uses a dye-labeled DNA probe that possess a doubled-stranded DNA (dsDNA) part for Mtase and its corresponding restriction endonuclease recognition, and a single-stranded DNA part for binding MWCNTs. In the absence of MTase, the dye-labeled DNA is cleaved by restriction endonuclease, and releases very short DNA carrying the dye that cannot bind to MWCNTs, which has relatively small FP value. However, in the presence of MTase, the specific recognition sequence in the dye-labeled DNA probe is methylated and not cleaved by restriction endonuclease. Thus, the dye-labeled methylated DNA product is adsorbed onto MWCNTs via strong π-π stacking interactions, which leads to a significant increase in the FP value due to the enlargement of the molecular volume of the dye-labeled methylated DNA/MWCNTs complex. This provides the basic of a quantitative measurement of MTase activity. By using the MWCNT signal amplification approach, the detection sensitivity can be significantly improved by two orders of magnitude over the previously reported methods. Moreover, this method also has high specificity and a wide dynamic range of over five orders of magnitude. Additionally, the suitability of this sensing platform for MTase inhibitor screening has also been demonstrated. This approach may serve as a general detection platform for sensitive assay of a variety of DNA MTases and screening potential drugs. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.

    NARCIS (Netherlands)

    Tonosaki, Y; Cruijsen, P.M.; Nishiyama, K; Yaginuma, H; Roubos, E.W.

    2004-01-01

    It is well-known that alpha-melanophore-stimulating hormone (alpha-MSH) release from the amphibian pars intermedia (PI) depends on the light condition of the animal's background, permitting the animal to adapt the colour of its skin to background light intensity. In the present study, we carried out

  12. Pre-strain stimulation of electro-mechanical sensitivity of carbon nanotube network/polyurethane composites

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Matyáš, J.; Machovský, M.

    2016-01-01

    Roč. 16, č. 15 (2016), s. 5898-5903 ISSN 1530-437X Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanotube s * deformation sensing polymer composite * polymer composite Subject RIV: BK - Fluid Dynamics Impact factor: 2.512, year: 2016

  13. Pre-strain stimulation of electro-mechanical sensitivity of carbon nanotube network/polyurethane composites

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Matyáš, J.; Machovský, M.

    2016-01-01

    Roč. 16, č. 15 (2016), s. 5898-5903 ISSN 1530-437X Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanotubes * deformation sensing polymer composite * polymer composite Subject RIV: BK - Fluid Dynamics Impact factor: 2.512, year: 2016

  14. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    Science.gov (United States)

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  15. Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway.

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2010-05-01

    Full Text Available Serine/threonine (Ser/Thr protein phosphatase 2A (PP2A has been implicated as a novel component of the mammalian target of rapamycin (mTOR signaling pathway. Recently we have demonstrated that mTOR regulates cell motility in part through p70 S6 kinase 1 (S6K1 and eukaryotic initiation factor 4E (eIF4E binding protein 1 (4E-BP1 pathways. Little is known about the role of PP2A in the mTOR-mediated cell motility. Here we show that rapamycin inhibited the basal or insulin-like growth factor 1 (IGF-1-induced motility of human Ewing sarcoma (Rh1 and rhabdomyosarcoma (Rh30 cells. Treatment of the cells with rapamycin activated PP2A activity, and concurrently inhibited IGF-1 stimulated phosphorylation of Erk1/2. Inhibition of Erk1/2 with PD98059 did not significantly affect the basal mobility of the cells, but dramatically inhibited IGF-1-induced cell motility. Furthermore, inhibition of PP2A with okadaic acid significantly attenuated the inhibitory effect of rapamycin on IGF-1-stimulated phosphorylation of Erk1/2 as well as cell motility. Consistently, expression of dominant negative PP2A conferred resistance to IGF-1-stimulated phosphorylation of Erk1/2 and cell motility. Expression of constitutively active MKK1 also attenuated rapamycin inhibition of IGF-1-stimulated phosphorylation of Erk1/2 and cell motility. The results suggest that rapamycin inhibits cell motility, in part by targeting PP2A-Erk1/2 pathway.

  16. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    Directory of Open Access Journals (Sweden)

    Murphy Fiona A

    2012-04-01

    Full Text Available Abstract Carbon nanotubes (CNT are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres.

  17. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease

    NARCIS (Netherlands)

    van den Wildenberg, Wery P. M.; van Boxtel, Geert J. M.; van der Molen, Maurits W.; Bosch, D. Andries; Speelman, Johannes D.; Brunia, Cornelis H. M.

    2006-01-01

    The aim of the present study was to specify the involvement of the basal ganglia in motor response selection and response inhibition. Two samples were studied. The first sample consisted of patients diagnosed with Parkinson's disease (PD) who received deep-brain stimulation (DBS) of the subthalamic

  18. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells.

    Science.gov (United States)

    Velagapudi, Ravikanth; Baco, Gina; Khela, Sunjeet; Okorji, Uchechukwu; Olajide, Olumayokun

    2016-06-01

    Pomegranate fruit, Punica granatum L. (Punicaceae), and its constituents have been shown to inhibit inflammation. In this study, we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β-stimulated SK-N-SH cells. An enzyme immunoassay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β-stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB, and phospho-IKK proteins was evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. PWE (25-200 μg/ml) dose dependently reduced COX-2-dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK was significantly (p pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders such as Alzheimer's disease.

  19. Deep Brain Stimulation: More Complex than the Inhibition of Cells and Excitation of Fibers.

    Science.gov (United States)

    Florence, Gerson; Sameshima, Koichi; Fonoff, Erich T; Hamani, Clement

    2016-08-01

    High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a "functional inhibition" of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation "local inhibition" and "distant excitation" is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS. © The Author(s) 2015.

  20. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  1. Dose-dependent platelet stimulation and inhibition induced by anti-PIA1 IgG

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, T.; Davis, J.M.; Schwartz, K.A. (Michigan State Univ., East Lansing (USA))

    1990-07-01

    The PIA1 antibody produces several clinically distinct and severe thrombocytopenias. Investigations have demonstrated divergent effects on platelet function; prior reports demonstrated inhibition, while a conflicting publication showed platelet activation. We have resolved this conflict using anti-PIA1 IgG produced by a patient with posttransfusion purpura. Relatively low concentrations stimulated platelet aggregation and release of adenosine triphosphate (ATP) whereas high concentrations inhibited platelet function, producing a thrombasthenia-like state. The number of molecules of platelet-associated IgG necessary to initiate aggregation and ATP release (2,086 +/- 556) or produce maximum aggregation (23,420 +/- 3,706) or complete inhibition (63,582 +/- 2654) were measured with a quantitative radiometric assay for bound anti-PIA1. Preincubation of platelets with high concentrations of PIA1 antibody inhibited platelet aggregation with 10 mumol/L adenosine diphosphate and blocked 125I-labeled fibrinogen platelet binding. Platelet activation with nonfibrinogen dependent agonist, 1 U/ml thrombin, was not inhibited by this high concentration of PIA1 IgG. In conclusion, anti-PIAI IgG produces (1) stimulation of platelet aggregation and ATP release that is initiated with 2000 molecules IgG per platelet and is associated with an increase of 125I-fibrinogen binding; (2) conversely, inhibition of platelet aggregation is observed with maximum antibody binding, 63,000 molecules IgG per platelet, and is mediated via a blockade of fibrinogen binding.

  2. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Rosch, Keri S.; Fosco, Whitney D.; Pelham, William E.; Waxmonsky, James G.; Bubnik, Michelle G.; Hawk, Larry W.

    2015-01-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n=111, 25 girls) and typically-developing (TD) controls (n=33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions. PMID:25985978

  3. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  4. Aloin Inhibits Interleukin (IL)-1β-Stimulated IL-8 Production in KB Cells.

    Science.gov (United States)

    Na, Hee Sam; Song, Yu Ri; Kim, Seyeon; Heo, Jun-Young; Chung, Hae-Young; Chung, Jin

    2016-06-01

    Interleukin (IL)-1β, which is elevated in oral diseases including gingivitis, stimulates epithelial cells to produce IL-8 and perpetuate inflammatory responses. This study investigates stimulatory effects of salivary IL-1β in IL-8 production and determines if aloin inhibits IL-1β-stimulated IL-8 production in epithelial cells. Saliva was collected from volunteers to determine IL-1β and IL-8 levels. Samples from volunteers were divided into two groups: those with low and those with high IL-1β levels. KB cells were stimulated with IL-1β or saliva with or without IL-1 receptor agonist or specific mitogen-activated protein kinase (MAPK) inhibitors. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). MAPK protein expression involved in IL-1β-induced IL-8 secretion was detected by Western blot. KB cells were pretreated with aloin, and its effect on IL-1β-induced IL-8 production was examined by ELISA and Western blot analysis. Saliva with high IL-1β strongly stimulated IL-8 production in KB cells, and IL-1 receptor agonist significantly inhibited IL-8 production. Low IL-1β-containing saliva did not increase IL-8 production. IL-1β treatment of KB cells induced activation of MAPK signaling molecules as well as nuclear factor-kappa B. IL-1β-induced IL-8 production was decreased by p38 and extracellular signal-regulated kinase (ERK) inhibitor treatment. Aloin pretreatment inhibited IL-1β-induced IL-8 production in a dose-dependent manner and inhibited activation of the p38 and ERK signaling pathway. Finally, aloin pretreatment also inhibited saliva-induced IL-8 production. Results indicated that IL-1β in saliva stimulates epithelial cells to produce IL-8 and that aloin effectively inhibits salivary IL-1β-induced IL-8 production by mitigating the p38 and ERK pathway. Therefore, aloin may be a good candidate for modulating oral inflammatory diseases.

  5. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Science.gov (United States)

    Hawkins, Jordan L.; Cornelison, Lauren E.; Blankenship, Brian A.; Durham, Paul L.

    2017-01-01

    Abstract Introduction: Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. Objectives: The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. Methods: Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. Results: Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. Conclusion: Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine. PMID:29392242

  6. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition

    OpenAIRE

    Mansouri, Farshad Alizadeh; Acevedo, Nicola; Illipparampil, Rosin; Fehring, Daniel J.; Fitzgerald, Paul B.; Jaberzadeh, Shapour

    2017-01-01

    Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-...

  7. Dopamine inhibits maitotoxin-stimulated pituitary 45Ca2+ efflux and prolactin release

    International Nuclear Information System (INIS)

    Login, I.S.; Judd, A.M.; MacLeod, R.M.

    1986-01-01

    The authors examined the hypothesis that dopaminergic inhibition of prolactin release is coupled to modulation of cellular calcium flux. Dispersed female rat pituitary cells were prelabeled in 45 Ca 2+ and perifused to determine simultaneously fractional calcium efflux and prolactin release, as stimulated by maitotoxin, a calcium channel activator. The integrated response of each parameter to 5 ng/ml maitotoxin was obtained in individual perifusion columns in the absence or presence of various concentrations of dopamine. Maitotoxin-stimulated calcium efflux was suppressed by dopamine concentrations of 0.01 μM and greater and achieved a maximal effect at ∼0.1 μM, at which calcium efflux was reduced by 50%. Maitotoxin-stimulated prolactin release was inhibited by 0.03 μM dopamine and greater concentrations, and at a concentration of ∼10.0 μM dopamine the effect became maximal at ∼85% suppression. Haloperidol (0.1 μM) blocked the effects of 0.1 μM dopamine on both parameters. Simultaneous suppression of maitotoxin-stimulated calcium efflux and prolactin release by concentrations of dopamine within the nonomolar range suggests that dopamine receptor activation is negatively coupled to modulation of calcium flux in the physiological regulation of prolactin secretion

  8. Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa

    International Nuclear Information System (INIS)

    McGreevy, J.; Barton, R.; Housinger, T.

    1986-01-01

    Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10 -4 M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R), H flux (J/sup H/) and Cl flux (J/sup Cl/ with 36 Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10 -5 M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa

  9. Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    McGreevy, J.; Barton, R.; Housinger, T.

    1986-03-05

    Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R), H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.

  10. Enzyme-free monitoring of glucose utilization in stimulated macrophages using carbon nanotube-decorated electrochemical sensor

    Science.gov (United States)

    Madhurantakam, Sasya; Karnam, Jayanth Babu; Rayappan, John Bosco Balaguru; Krishnan, Uma Maheswari

    2017-11-01

    Carbon nanotubes (CNTs) have been extensively explored for a diverse range of applications due to their unique electrical and mechanical properties. CNT-incorporated electrochemical sensors have exhibited enhanced sensitivity towards the analyte molecule due to the excellent electron transfer properties of CNTs. In addition, CNTs possess a large surface area-to-volume ratio that favours the adhesion of analyte molecules as well as enhances the electroactive area. Most of the electrochemical sensors have employed CNTs as a nano-interface to promote electron transfer and as an immobilization matrix for enzymes. The present work explores the potential of CNTs to serve as a catalytic interface for the enzymeless quantification of glucose. The figure of merits for the enzymeless sensor was comparable to the performance of several enzyme-based sensors reported in literature. The developed sensor was successfully employed to determine the glucose utilization of unstimulated and stimulated macrophages. The significant difference in the glucose utilization levels in activated macrophages and quiescent cells observed in the present investigation opens up the possibilities of new avenues for effective medical diagnosis of inflammatory disorders.

  11. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation.

    Science.gov (United States)

    Wang, Gene-Jack; Volkow, Nora D; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T; Thanos, Panayotis K; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S

    2009-01-27

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insula, orbitofrontal cortex, and striatum, which are regions involved in emotional regulation, conditioning, and motivation. The suppressed activation of the orbitofrontal cortex with inhibition in men was associated with decreases in self-reports of hunger, which corroborates the involvement of this region in processing the conscious awareness of the drive to eat. This finding suggests a mechanism by which cognitive inhibition decreases the desire for food and implicates lower ability to suppress hunger in women as a contributing factor to gender differences in obesity.

  12. Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels

    OpenAIRE

    Ricotti, L.; Fujie, T.; Vazão, H.; Ciofani, G.; Marotta, R.; Brescia, R.; Filippeschi, C.; Corradini, I.; Matteoli, M.; Mattoli, V.; Ferreira, L.; Menciassi, A.

    2013-01-01

    In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves) polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa) and a small thickness (∼ 12 µm). We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric ...

  13. The controlled release of simvastatin from TiO{sub 2} nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Min, E-mail: minlai@jsnu.edu.cn [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Jin, Ziyang; Yang, Xinyi; Wang, Huaying [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Xu, Kui [Biomedical Engineering Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2017-02-28

    Highlights: • The TiO{sub 2} nanotube substrates filled with simvastatin were successfully coated using chitosan/gelatin multilayers. • The bio-functionalized substrates display controlled release of simvastatin in a sustained manner. • The bio-functionalized substrates have great potential for improving osteoblast differentiation. • The bio-functionalized substrates effectively inhibit osteoclast differentiation. - Abstract: The aim of this study was to fabricate a novel drug-releasing bioactive platform that has excellent potential for improving osteoblast differentiation and inhibiting osteoclast resorption. TiO{sub 2} nanotubes (TNTs) with an outer diameter of around 70 nm were prepared by an anodization method. TNTs were filled with simvastatin (SV) and then coated using chitosan/gelatin multilayers (TNT-SV-LBL). The successful fabrication of TNT-SV-LBL substrates was confirmed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. The in vitro release behavior of simvastatin from TNT-SV-LBL substrates showed a sustained release as compared to the uncoated group. Osteoblasts adhering to TNT-SV-LBL substrates attached well and displayed significantly higher (p < 0.01) cell viability compared with the other substrates. More importantly, osteoblasts grown on TNT-SV-LBL substrates displayed a statistically significant (p < 0.01 or p < 0.05) increase in protein production levels of alkaline phosphatase (ALP), osteocalcin (OC) and mRNA expression of runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN), OC and osteoprotegerin (OPG) compared to the other groups after 4, 7 and 14 days of culture, respectively. Additionally, multinuclear osteoclastic differentiation of RAW264.7 cells grown on TNT-SV-LBL substrates was inhibited as confirmed by tartrate-resistant acid phosphatase (TRAP) analysis. These

  14. Reduced motor cortical inhibition in migraine: A blinded transcranial magnetic stimulation study.

    Science.gov (United States)

    Neverdahl, J P; Omland, P M; Uglem, M; Engstrøm, M; Sand, T

    2017-12-01

    To investigate motor cortical excitability, inhibition, and facilitation with navigated transcranial magnetic stimulation (TMS) in migraine in a blinded cross-sectional study. Resting motor threshold (RMT), cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were compared in 27 interictal migraineurs and 33 controls. 24 female interictal migraineurs and 27 female controls were compared in subgroup analyses. Seven preictal migraineurs were also compared to the interictal group in a hypothesis-generating analysis. Investigators were blinded for diagnosis during recording and analysis of data. SICI was decreased in interictal migraineurs when compared to healthy controls (p=0.013), CSP was shortened in female interictal migraineurs (p=0.041). ICF was decreased in preictal compared to interictal migraineurs (p=0.023). RMT and ICF were not different between interictal migraineurs and controls. Cortical inhibition was decreased in migraineurs between attacks, primarily in a female subgroup, indicating an importance of altered cortical inhibition in migraine. Previous studies on motor cortical excitability in migraineurs have yielded varying results. This relatively large and blinded study provides support for altered cortical inhibition in migraine. Measuring intracortical facilitation in the period preceding migraine attacks may be of interest for future studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Gastric electrical stimulation optimized to inhibit gastric motility reduces food intake in dogs.

    Science.gov (United States)

    Song, Geng-Qing; Zhu, Hongbing; Lei, Yong; Yuan, Charlene; Starkebaum, Warren; Yin, Jieyun; Chen, Jiande D Z

    2015-06-01

    The aim of this study was to test the hypothesis that that a method of gastric electrical stimulation (GES) optimized to inhibit gastric motility was effective in reducing food intake in dogs. Female dogs with a gastric cannula and gastric serosal electrodes were studied in three experiments: (1) to determine the best parameters and locations of GES in inhibiting gastric tone, slow waves, and contractions in dogs;( 2) to investigate the reproducibility of the inhibitory effects of GES; and (3) to study the effect of the GES method on food intake in dogs. (1) For GES to exert significant effects on gastric motility, a pulse width of ≥2 ms was required, and with other appropriate inhibitory parameters, GES was able to increase gastric volume by 190.4 %, reduce antral contractions by 39.7 %, and decrease the percentage of normal slow waves by 47.6 %. In addition, the inhibitory effect of GES was more potent with the stimulation electrodes placed along the lesser or greater curvature than placed in the middle, and more potent with the electrodes placed in the distal stomach than in the proximal stomach; (2) the inhibitory effects of GES on gastric motility were reproducible; (3) the GES method optimized to inhibit gastric motility produced a 20 % reduction in food intakes in non-obese dogs. GES with appropriate parameters inhibits gastric motility, and the effects are reproducible. The GES method optimized to inhibit gastric motility reduces food intake in healthy dogs and may have a therapeutic potential for treating obesity.

  16. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    Science.gov (United States)

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  17. Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo.

    Science.gov (United States)

    Barington, Maria; Brorson, Marianne Møller; Hofman-Bang, Jacob; Rasmussen, Åse Krogh; Holst, Birgitte; Feldt-Rasmussen, Ulla

    2017-01-01

    Ghrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate several physiological functions including gut motility, adipose tissue accumulation and hunger sensation leading to increased bodyweight. Studies have found a correlation between the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thyroid has never been investigated even though ghrelin receptors are present in the thyroid. The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone (TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a primary culture of human thyroid cells obtained from paranodular tissue. Accordingly, a trend was noted for an inhibition of TSH-stimulated expression of the sodium-iodine symporter and the TSH-receptor. Thus, this study suggests an effect of ghrelin on human thyrocytes and thereby emphasizes the relevance of examining whether ghrelin also influences the metabolic homeostasis through altered thyroid hormone production.

  18. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  19. [Erythropoiesis and functional characteristics in bone marrow erythroblastic islets during stimulated adn inhibited erythropoiesis].

    Science.gov (United States)

    Rassokhin, A G; Kruglov, D G; Zakharov, Iu M

    2000-01-01

    When erythropiesis is stimulated (acute blood loss) or inhibited (posttransfusion polycythemia), there are early changes in the cytochemical values of erythroblastic islets (EI): in the levels of acid and neutral glucoconjugates and in the activity of nonspecific esterase. A close correlation has been found between the erythropoiesis in EI and its functional characteristics. It is concluded that central macrophages play the key role in the modulation of EI erythropoiesis. It is suggested that EI macrophages are involved in the provision of bioenergetic and reparative processes in EI.

  20. Inhibition of acrolein-stimulated MUC5AC production by fucoidan in human bronchial epithelial cells.

    Science.gov (United States)

    Pokharel, Yuba Raj; Yoon, Se Young; Kim, Sang Kyum; Li, Jian-Dong; Kang, Keon Wook

    2008-10-01

    Fucoidan, a marine sulfated polysaccharide has both antithrombotic and anti-inflammatory effects. We determined the effect of fucoidan on MUC5AC expression in a human bronchial epithelial cell line, NCI-H292. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that fucoidan inhibited MUC5AC expression and protein secretion in cells stimulated with acrolein, a toxic aldehyde present in tobacco smoke. The activation of both nuclear factor-kappa B (NF-kappa B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of MUC5AC. We found that the acrolein-mediated transactivation of MUC5AC was selectively dependent on AP-1 activation and was suppressed by fucoidan. Fucoidan-induced AP-1 inhibition and MUC5AC repression might be associated with fucoidan's protective effects against respiratory diseases.

  1. Epidermal growth factor binding, stimulation of phosphorylation, and inhibition of gluconeogenesis in rat proximal tubule.

    Science.gov (United States)

    Harris, R C; Daniel, T O

    1989-05-01

    Epidermal growth factor and insulin share many biological activities, including stimulation of cell proliferation, ion flux, glycolysis, fatty acid and glycogen synthesis, and activation of receptor-linked tyrosine kinase activity. In the kidney, insulin has been shown to regulate transport processes and inhibit gluconeogenesis in the proximal tubule. Since the kidney represents a major source of EGF, the present studies investigated whether proximal tubule contained EGF receptors, whether EGF receptors were localized to apical or basolateral membranes, and whether EGF receptor activation participated in the regulation of an important proximal tubule function, gluconeogenesis. Specific EGF receptors were demonstrated in the basolateral membrane of proximal tubule. Following incubation with 125I EGF, basolateral membranes demonstrated equilibrium binding at 4 degrees C and 23 degrees C. There was 78 +/- 2% specific binding (n = 13). The dissociation constant (Kd) was 1.5 x 10(-9) M and maximal binding was 44 fmol/mg protein. There was ninefold more specific binding to proximal tubule basolateral membrane than to brush border membrane. In basolateral, but not brush border membranes, EGF induced phosphorylation of the tyrosine residues of intrinsic membrane proteins, including a 170 kDa protein, corresponding to the EGF receptor. In the presence of the gluconeogenic substrates, alanine, lactate, and succinate, proximal tubule suspensions synthesized glucose. EGF inhibited glucose production in a concentration-dependent manner over a concentration range of 3 x 10(-11) to 3 x 10(-9) M. In addition, EGF inhibited angiotensin II-stimulated glucose production in the proximal tubule suspensions. EGF did not significantly increase net glucose metabolism nor decrease cellular ATP concentrations. Therefore, these studies demonstrated that rat proximal tubule contained specific receptors for EGF that were localized to the basolateral membrane and linked to tyrosine kinase

  2. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  3. Esomeprazole inhibits the pentagastrin-stimulated secretion of gastric acid in healthy Japanese volunteers.

    Science.gov (United States)

    Maejima, Ryuhei; Koike, Tomoyuki; Nakagawa, Kenichiro; Iijima, Katsunori; Shimosegawa, Tooru

    2015-03-01

    Gastroesophageal reflux disease (GERD) is a common disease, in which the reflux of gastric acid causes mucosal damage of the esophagus and/or troublesome symptoms. Esomeprazole, a proton pump inhibitor, has been used for treatment of GERD in Japan since 2011; namely, only little is known about its effect on gastric acid secretion in Japanese. We, therefore, assessed the relationship between dose and timing of esomeprazole administration and gastric acid inhibition in 11 healthy male Japanese volunteers by directly examining gastric acid secretion capacity. In this randomized, open-label, three-way crossover study, the subjects were dosed with esomeprazole 10 mg or 20 mg once a day (q.d.), or 20 mg twice a day (b.i.d.) for 14 days, and pentagastrin-stimulated gastric acid secretion was measured by endoscopic gastrin test. At steady states, gastric acid inhibition rates were significantly higher in esomeprazole 20 mg b.i.d. (median 100.0%, interquartile range [IQR] 99.4-100%, P = 0.027) or 20 mg q.d. (100.0%, IQR 99.7-100%, P = 0.016), compared with 10 mg q.d. (98.4%, IQR 84.4-100%). At trough states, esomeprazole 20 mg b.i.d. showed significantly higher gastric acid inhibition (99.6%, IQR 99.0-100%) than did 20 mg q.d. (84.2%, IQR 76.4-88.8%, P = 0.002) or 10 mg q.d. (64.9%, IQR 59.1-76.7%, P = 0.001). Thus, esomeprazole 20 mg b.i.d. was sufficient to inhibit > 99% gastric acid secretion in healthy subjects. We propose that esomeprazole 20 mg b.i.d. is effective for treating Japanese patients with refractory GERD who require long-lasting gastric acid inhibition.

  4. [Transcranial magnetic stimulation (TMS), inhibition processes and attention deficit/hyperactivity disorder (ADHD) - an overview].

    Science.gov (United States)

    Hoegl, Thomas; Bender, Stephan; Buchmann, Johannes; Kratz, Oliver; Moll, Gunther H; Heinrich, Hartmut

    2014-11-01

    Motor system excitability can be tested by transcranial magnetic stimulation CFMS). In this article, an overview of recent methodological developments and research findings related to attention deficit/hyperactivity disorder (ADHD) is provided. Different TMS parameters that reflect the function of interneurons in the motor cortex may represent neurophysiological markers of inhibition in ADHD, particularly the so-called intracortical inhibition. In children with a high level of hyperactivity and impulsivity, intracortical inhibition was comparably low at rest as shortly before the execution of a movement. TMS-evoked potentials can also be measured in the EEG so that investigating processes of excitability is not restricted to motor areas in future studies. The effects of methylphenidate on motor system excitability may be interpreted in the sense of a 'fine-tuning' with these mainly dopaminergic effects also depending on genetic parameters (DAT1 transporter). A differentiated view on the organization of motor control can be achieved by a combined analysis of TMS parameters and event-related potentials. Applying this bimodal approach, strong evidence for a deviant implementation of motor control in children with ADHD and probably compensatory mechanisms (with involvement of the prefrontal cortex) was obtained. These findings, which contribute to a better understanding of hyperactivity/impulsivity, inhibitory processes and motor control in ADHD as well as the mechanisms of medication, underline the relevance of TMS as a neurophysiological method in ADHD research.

  5. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.

    Science.gov (United States)

    Wang, Hui; Hill, Russell T; Zheng, Tianling; Hu, Xiaoke; Wang, Bin

    2016-01-01

    Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.

  6. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    Science.gov (United States)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  7. Interhemispheric Inhibition Induced by Transcranial Magnetic Stimulation Over Primary Sensory Cortex.

    Science.gov (United States)

    Iwata, Yasuyuki; Jono, Yasutomo; Mizusawa, Hiroki; Kinoshita, Atsushi; Hiraoka, Koichi

    2016-01-01

    The present study investigated whether the long-interval interhemispheric inhibition (LIHI) is induced by the transcranial magnetic stimulation over the primary sensory area (S1-TMS) without activation of the conditioning side of the primary motor area (M1) contributing to the contralateral motor evoked potential (MEP), whether the S1-TMS-induced LIHI is dependent on the status of the S1 modulated by the tactile input, and whether the pathways mediating the LIHI are different from those mediating the M1-TMS-induced LIHI. In order to give the TMS over the S1 without eliciting the MEP, the intensity of the S1-TMS was adjusted to be the sub-motor-threshold level and the trials with the MEP response elicited by the S1-TMS were discarded online. The LIHI was induced by the S1-TMS given 40 ms before the test TMS in the participants with the attenuation of the tactile perception of the digit stimulation (TPDS) induced by the S1-TMS, indicating that the LIHI is induced by the S1-TMS without activation of the conditioning side of the M1 contributing to the contralateral MEP in the participants in which the pathways mediating the TPDS is sensitive to the S1-TMS. The S1-TMS-induced LIHI was positively correlated with the attenuation of the TPDS induced by the S1-TMS, indicating that the S1-TMS-induced LIHI is dependent on the effect of the S1-TMS on the pathways mediating the TPDS at the S1. In another experiment, the effect of the digit stimulation given before the conditioning TMS on the S1- or M1-TMS-induced LIHI was examined. The digit stimulation produces tactile input to the S1 causing change in the status of the S1. The S1-TMS-induced LIHI was enhanced when the S1-TMS was given in the period in which the tactile afferent volley produced by the digit stimulation just arrived at the S1, while the LIHI induced by above-motor-threshold TMS over the contralateral M1 was not enhanced by the tactile input. Thus, the S1-TMS-induced LIHI is dependent on the status of the S1

  8. Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study

    Science.gov (United States)

    Abramian, Miganoosh; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.; Dokos, Socrates

    2015-02-01

    Objective. Retinal prosthetic devices aim to restore sight in visually impaired people by means of electrical stimulation of surviving retinal ganglion cells (RGCs). This modelling study aims to demonstrate that RGC inhibition caused by high-intensity cathodic pulses greatly influences their responses to epiretinal electrical stimulation and to investigate the impact of this inhibition on spatial activation profiles as well as their implications for retinal prosthetic device design. Another aim is to take advantage of this inhibition to reduce axonal activation in the nerve fibre layer. Approach. A three-dimensional finite-element model of epiretinal electrical stimulation was utilized to obtain RGC activation and inhibition threshold profiles for a range of parameters. Main results. RGC activation and inhibition thresholds were highly dependent on cell and stimulus parameters. Activation thresholds were 1.5, 3.4 and 11.3 μA for monopolar electrodes with 5, 20 and 50 μm radii, respectively. Inhibition to activation threshold ratios were mostly within the range 2-10. Inhibition significantly altered spatial patterns of RGC activation. With concentric electrodes and appropriately high levels of stimulus amplitudes, activation of passing axons was greatly reduced. Significance. RGC inhibition significantly impacts their spatial activation profiles, and therefore it most likely influences patterns of perceived phosphenes induced by retinal prosthetic devices. Thus this inhibition should be taken into account in future studies concerning retinal prosthesis development. It might be possible to utilize this inhibitory effect to bypass activation of passing axons and selectively stimulate RGCs near their somas and dendrites to achieve more localized phosphenes.

  9. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    Science.gov (United States)

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. Copyright © 2016 the American Physiological Society.

  10. Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation.

    Science.gov (United States)

    Bull, Fiona A; Baptista-Hon, Daniel T; Sneddon, Claire; Wright, Lisa; Walwyn, Wendy; Hales, Tim G

    2017-11-01

    Prolonged opioid administration leads to tolerance characterized by reduced analgesic potency. Pain management is additionally compromised by the hedonic effects of opioids, the cause of their misuse. The multifunctional protein β-arrestin2 regulates the hedonic effects of morphine and participates in tolerance. These actions might reflect µ opioid receptor up-regulation through reduced endocytosis. β-Arrestin2 also recruits kinases to µ receptors. We explored the role of Src kinase in morphine analgesic tolerance, locomotor stimulation, and reinforcement in C57BL/6 mice. Analgesic (tail withdrawal latency; percentage of maximum possible effect, n = 8 to 16), locomotor (distance traveled, n = 7 to 8), and reinforcing (conditioned place preference, n = 7 to 8) effects of morphine were compared in wild-type, µ, µ, and β-arrestin2 mice. The influence of c-Src inhibitors dasatinib (n = 8) and PP2 (n = 12) was examined. Analgesia in morphine-treated wild-type mice exhibited tolerance, declining by day 10 to a median of 62% maximum possible effect (interquartile range, 29 to 92%). Tolerance was absent from mice receiving dasatinib. Tolerance was enhanced in µ mice (34% maximum possible effect; interquartile range, 5 to 52% on day 5); dasatinib attenuated tolerance (100% maximum possible effect; interquartile range, 68 to 100%), as did PP2 (91% maximum possible effect; interquartile range, 78 to 100%). By contrast, c-Src inhibition affected neither morphine-evoked locomotor stimulation nor reinforcement. Remarkably, dasatinib not only attenuated tolerance but also reversed established tolerance in µ mice. The ability of c-Src inhibitors to inhibit tolerance, thereby restoring analgesia, without altering the hedonic effect of morphine, makes c-Src inhibitors promising candidates as adjuncts to opioid analgesics.

  11. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia.

    Science.gov (United States)

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol G T; Liebano, Richard E; Amrit, Anand S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-11-01

    Because transcutaneous electrical nerve stimulation (TENS) works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo-controlled cross-over design to test the effects of a single treatment of TENS with people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS and no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and in movement; pressure pain thresholds, 6-m walk test, range of motion; 5-time sit-to-stand test, and single-leg stance. Conditioned pain modulation was completed at the end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. Pressure pain thresholds increased at the site of TENS (spine) and outside the site of TENS (leg) when compared to placebo TENS or no TENS. During active TENS, conditioned pain modulation was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to the way in which TENS is used clinically on pain, fatigue, function, and quality of life in individuals with fibromyalgia. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Inhibition by Isoptin (a calcium antagonist) of the mitogenic stimulation of lymphocytes prior to the S-phase

    International Nuclear Information System (INIS)

    Blitstein-Willinger, E.; Diamantstein, T.

    1978-01-01

    Isoptin (α-isopropyl-α-(N-methyl-N-homoveratryl) -γ-amino-propyl-3,4-dimethoxyphenylacetonitril-hydrochloride) - a calcium antagonist - inhibited mitogenic stimulation of lymphocytes. Isoptin acted prior to the S-phase of the cell cycle but did not prevent the early events involved in triggering of cell mitosis. The drug seems to be a good tool for studying the relevance of the 'early events' assumed to be involved in lymphocyte stimulation. (author)

  13. The effects of patterned electrical stimulation combined with voluntary contraction on spinal reciprocal inhibition in healthy individuals

    DEFF Research Database (Denmark)

    Takahashi, Yoko; Fujiwara, Toshiyuki; Yamaguchi, Tomofumi

    2017-01-01

    The aim of this study was to examine the effects of voluntary contraction (VC) on the modulation of reciprocal inhibition induced by patterned electrical stimulation (PES) in healthy individuals. Twelve healthy volunteers participated in this study. PES was applied to the common peroneal nerve wi...... and it may facilitate functional recovery and improve locomotion after central nervous system lesions.......The aim of this study was to examine the effects of voluntary contraction (VC) on the modulation of reciprocal inhibition induced by patterned electrical stimulation (PES) in healthy individuals. Twelve healthy volunteers participated in this study. PES was applied to the common peroneal nerve...

  14. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  15. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite

    Science.gov (United States)

    Sun, Qian; Haynes, Kenneth F.; Hampton, Jordan D.; Zhou, Xuguo

    2017-10-01

    In social insects, the postembryonic development of individuals exhibits strong phenotypic plasticity in response to the environment, thus generating the caste system. Different from eusocial Hymenoptera, in which queens dominate reproduction and inhibit worker fertility, the primary reproductive caste in termites (kings and queens) can be replaced by neotenic reproductives derived from functionally sterile individuals. Feedback regulation of nestmate differentiation into reproductives has been suggested, but the sex specificity remains inconclusive. In the eastern subterranean termite, Reticulitermes flavipes, we tested the hypothesis that neotenic reproductives regulate worker-reproductive transition in a sex-specific manner. With this R. flavipes system, we demonstrate a sex-specific regulatory mechanism with both inhibitory and stimulatory functions. Neotenics inhibit workers of the same sex from differentiating into additional reproductives but stimulate workers of the opposite sex to undergo this transition. Furthermore, this process is not affected by the presence of soldiers. Our results highlight the reproductive plasticity of termites in response to social cues and provide insights into the regulation of reproductive division of labor in a hemimetabolous social insect.

  16. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.

    Science.gov (United States)

    Fleischmann, A; Hirschmann, S; Dolberg, O T; Dannon, P N; Grunhaus, L

    1999-03-15

    Studies in laboratory animals suggest that repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive shock (ECS) increase seizure inhibition acutely. This study was designed to explore whether chronic rTMS would also have seizure inhibition properties. To this purpose we administered rTMS (Magstim Rapid) and sham rTMS twice daily (2.5 T, 4-sec train duration, 20 Hz) to two groups of 10 rats for 16 days. The rTMS coil was a 50-mm figure-8 coil held directly over the rat's head. Raters were blind to experimental groups. On days 11, 17, and 21 (5 days after the last rTMS) ECS was administered with a Siemens convulsator using three electrical charge levels. Variables examined were the presence or absence of seizures and seizure length (measured from the initiation of the tonic contraction until the end of the limb movement). At day 11 rTMS had no effect on seizures, and both rTMS and sham rTMS animals convulsed equally. At day 17, however, rTMS-treated animals convulsed significantly less (both at presence/absence of seizures, and at seizure length) than sham rTMS animals. At day 21 the effects of rTMS had disappeared. These findings suggest that rTMS administered chronically leads to changes in seizure threshold similar to those reported for ECS and ECT; however, these effects were short-lived.

  17. Aging and motor inhibition: a converging perspective provided by brain stimulation and imaging approaches.

    Science.gov (United States)

    Levin, Oron; Fujiyama, Hakuei; Boisgontier, Matthieu P; Swinnen, Stephan P; Summers, Jeffery J

    2014-06-01

    The ability to inhibit actions, one of the hallmarks of human motor control, appears to decline with advancing age. Evidence for a link between changes in inhibitory functions and poor motor performance in healthy older adults has recently become available with transcranial magnetic stimulation (TMS). Overall, these studies indicate that the capacity to modulate intracortical (ICI) and interhemispheric (IHI) inhibition is preserved in high-performing older individuals. In contrast, older individuals exhibiting motor slowing and a declined ability to coordinate movement appear to show a reduced capability to modulate GABA-mediated inhibitory processes. As a decline in the integrity of the GABA-ergic inhibitory processes may emerge due to age-related loss of white and gray matter, a promising direction for future research would be to correlate individual differences in structural and/or functional integrity of principal brain networks with observed changes in inhibitory processes within cortico-cortical, interhemispheric, and/or corticospinal pathways. Finally, we underscore the possible links between reduced inhibitory functions and age-related changes in brain activation patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Online Transcranial Magnetic Stimulation Protocol for Measuring Cortical Physiology Associated with Response Inhibition.

    Science.gov (United States)

    Guthrie, Michael D; Gilbert, Donald L; Huddleston, David A; Pedapati, Ernest V; Horn, Paul S; Mostofsky, Stewart H; Wu, Steve W

    2018-02-08

    We describe the development of a reproducible, child-friendly motor response inhibition task suitable for online Transcranial Magnetic Stimulation (TMS) characterization of primary motor cortex (M1) excitability and inhibition. Motor response inhibition prevents unwanted actions and is abnormal in several neuropsychiatric conditions. TMS is a non-invasive technology that can quantify M1 excitability and inhibition using single- and paired-pulse protocols and can be precisely timed to study cortical physiology with high temporal resolution. We modified the original Slater-Hammel (S-H) stop signal task to create a "racecar" version with TMS pulses time-locked to intra-trial events. This task is self-paced, with each trial initiating after a button push to move the racecar towards the 800 ms target. GO trials require a finger-lift to stop the racecar just before this target. Interspersed randomly are STOP trials (25%) during which the dynamically adjusted stop signal prompts subjects to prevent finger-lift. For GO trials, TMS pulses were delivered at 650 ms after trial onset; whereas, for STOP trials, the TMS pulses occurred 150 ms after the stop signal. The timings of the TMS pulses were decided based on electroencephalography (EEG) studies showing event-related changes in these time ranges during stop signal tasks. This task was studied in 3 blocks at two study sites (n=38) and we recorded behavioral performance and event-related motor-evoked potentials (MEP). Regression modelling was used to analyze MEP amplitudes using age as a covariate with multiple independent variables (sex, study site, block, TMS pulse condition [single- vs. paired-pulse], trial condition [GO, successful STOP, failed STOP]). The analysis showed that TMS pulse condition (p<0.0001) and its interaction with trial condition (p=0.009) were significant. Future applications for this online S-H/TMS paradigm include the addition of simultaneous EEG acquisition to measure TMS-evoked EEG potentials. A

  19. Cortical Inhibition in Attention Deficit Hyperactivity Disorder: New Insights from the Electroencephalographic Response to Transcranial Magnetic Stimulation

    Science.gov (United States)

    Bruckmann, Sarah; Hauk, Daniela; Roessner, Veit; Resch, Franz; Freitag, Christine M.; Kammer, Thomas; Ziemann, Ulf; Rothenberger, Aribert; Weisbrod, Matthias; Bender, Stephan

    2012-01-01

    Attention deficit hyperactivity disorder is one of the most frequent neuropsychiatric disorders in childhood. Transcranial magnetic stimulation studies based on muscle responses (motor-evoked potentials) suggested that reduced motor inhibition contributes to hyperactivity, a core symptom of the disease. Here we employed the N100 component of the…

  20. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  1. Do imipramine and dihydroergosine possess two components - one stimulating 5-HT1 and the other inhibiting 5-HT2 receptors?

    International Nuclear Information System (INIS)

    Pericic, D.; Mueck-Seler, D.

    1990-01-01

    The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-included stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT 1 receptor sites, but not by ritanserin, a specific 5-HT 2 receptor antagonist. (-) -Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. As expected, 8-OH-DPAT, a selective 5-HT 1A receptor agonist, stimulated, and 5-HT 1B agonists CGS 12066B and 1-(trifluoromethylphenyl) piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer that after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for 3 H-ketanserin binding sites than imipramine

  2. Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation

    Directory of Open Access Journals (Sweden)

    Viviana R. Lopes

    2011-05-01

    Full Text Available Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms’ proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments.

  3. Association of intracortical inhibition with social cognition deficits in schizophrenia: Findings from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Thirthalli, Jagadisha; Basavaraju, Rakshathi; Gangadhar, Bangalore N

    2014-09-01

    Abnormal cortical-inhibition has been hypothesized to underlie social-cognition deficits in schizophrenia. Studies using transcranial magnetic stimulation (TMS) as a neurophysiological probe have demonstrated cortical-inhibition deficits in this group. We compared TMS-measured short- and long-interval intracortical-inhibition (SICI & LICI) in antipsychotic-naïve (n=33) and medicated (n=21) schizophrenia patients and in healthy comparison subjects (n=45). We also studied the association between cortical-inhibition and social-cognition deficits in the patients. Antipsychotic-naïve patients had significant deficits in SICI (i.e., less inhibitory response). In this group, SICI had significant inverse correlations with emotion processing and a global social-cognition score. Impaired intracortical-inhibition may thus contribute to social-cognition deficits in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Neutralizing antibody against granulocyte/macrophage colony-stimulating factor inhibits inflammatory response in experimental otitis media.

    Science.gov (United States)

    Kariya, Shin; Okano, Mitsuhiro; Higaki, Takaya; Makihara, Seiichiro; Haruna, Takenori; Eguchi, Motoharu; Nishizaki, Kazunori

    2013-06-01

    Granulocyte/macrophage colony-stimulating factor is important in the pathogenesis of acute and chronic inflammatory disease. We hypothesized that granulocyte/macrophage colony-stimulating factor plays a pivotal role in middle ear inflammation and that neutralization of granulocyte/macrophage colony-stimulating factor would inhibit neutrophil migration into the middle ear and production of inflammatory mediators. Animal experiment. We used transtympanic administration of lipopolysaccharide, a major component of gram-negative bacteria, into mice to induce an experimental otitis media. Control mice received injection of phosphate-buffered saline into the middle ear cavity. Mice were systemically treated with granulocyte/macrophage colony-stimulating factor neutralizing antibody or control immunoglobulin G via intraperitoneal injection 2 hours before transtympanic injection of lipopolysaccharide or phosphate-buffered saline. Middle ear effusions were collected. Concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in middle ear effusions were measured by enzyme-linked immunosorbent assay. Histologic examination of the middle ear was also performed. Transtympanic injection of lipopolysaccharide upregulated levels of granulocyte/macrophage colony-stimulating factor, IL-1β, TNF-α, keratinocyte chemoattractant, and macrophage inflammatory protein-2 in the middle ear. Concentrations of cytokines and chemokines were significantly decreased in mice injected with granulocyte/macrophage colony-stimulating factor neutralizing antibody. Infiltration of inflammatory cells into the middle ear cavity induced by lipopolysaccharide was also significantly reduced by neutralization of granulocyte/macrophage colony-stimulating factor. Systemic injection of granulocyte/macrophage colony-stimulating factor neutralizing antibody inhibits the middle ear inflammation induced by lipopolysaccharide in mice

  5. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*

    Science.gov (United States)

    Hançer, Nancy J.; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D.; White, Morris F.

    2014-01-01

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAbIrs1). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)Irs1) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302Irs1, Ser(P)-307Irs1, Ser(P)-318Irs1, Ser(P)-325Irs1, and Ser(P)-346Irs1. Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302Irs1, Ser(P)-307Irs1, and four others) correlated significantly with impaired insulin-stimulated Tyr(P)Irs1. Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)Irs1 in CHOIR/IRS1 cells. PMID:24652289

  6. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin.

    Science.gov (United States)

    Hu, Yan; Zhou, Youxiang; Mao, Zejing; Li, Huihui; Chen, Fusheng; Shao, Yanchun

    2017-08-23

    Monascus species are edible fungi due to the production of food colorant and other beneficial compounds. Hence, it has been an attractive thesis to improve their productivities. Increasing numbers of investigations revealed that regulating the activities of histone deacetylases can significantly perturb secondary metabolites (SM) production at a global level. In this study, dihydrocoumarin (DHC, an inhibitor of the Sirtuin family of NAD + -dependent deacetylases) was used to treat Monascus ruber for evaluating its effects on organism growth and SM production. The results revealed that the variation trends of colonial sizes, biomass and mycotoxin were in a dose-dependent manner. Generally, they decreased with the increased DHC concentrations in the designed range. But the variation trend of pigment was different. Comparison of SM profile, three new peaks occurred to the mycelia extractions from DHC-treated strain corresponding to molecular weights 402, 416 and 444, respectively. These three compounds were identified as Monasfluol B, Monascus azaphilone C and acetyl-monasfluol B (a new Monascus chemical pigment structure). In short, DHC can stimulate M. ruber strain to produce more pigment-like polyketides but inhibition of mycotoxin (citrinin).

  7. Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes.

    Science.gov (United States)

    Wilson, John X; Dragan, Magdalena

    2005-10-15

    Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.

  8. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.

    Science.gov (United States)

    Mansouri, Farshad Alizadeh; Acevedo, Nicola; Illipparampil, Rosin; Fehring, Daniel J; Fitzgerald, Paul B; Jaberzadeh, Shapour

    2017-12-22

    Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.

  9. Deep brain stimulation in the globus pallidus compensates response inhibition deficits: evidence from pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Mückschel, Moritz; Smitka, Martin; Hermann, Andreas; von der Hagen, Maja; Beste, Christian

    2016-05-01

    Fronto-striatal loops are important for many cognitive control processes, like response inhibition, and it has been suggested that the globus pallidus is of particular importance for these processes. In the current study, we investigate the effect of deep brain stimulation in the GP on response inhibition processes by means of neurophysiological (EEG) methods. We perform a case-control study in neuroaxonal dystrophy pantothenate kinase-associated neurodegeneration (PKAN) using single-case statistics. We control the signal-to-noise ratio of the EEG data. The data show that disease-related changes in the globus pallidus lead to dysfunctions in response inhibition processes. Dysfunctions in the GP seem to affect controlled, but not automatized behavior as evidenced by an increased rate of false alarms and attenuation of inhibition-related neurophysiological correlates. With respect to controlled behavior in terms of response inhibition, it seems that pre-motor subprocesses and not evaluation subprocesses are affected. Deep brain stimulation in the globus pallidus seems to be able to compensate the effects of disease-related changes in this structure and normalizes response inhibition performance and their electrophysiological correlates in PKAN.

  10. High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects.

    Science.gov (United States)

    Rocchi, Lorenzo; Erro, Roberto; Antelmi, Elena; Berardelli, Alfredo; Tinazzi, Michele; Liguori, Rocco; Bhatia, Kailash; Rothwell, John

    2017-06-01

    High frequency repetitive somatosensory stimulation (HF-RSS), which is a patterned electric stimulation applied to the skin through surface electrodes, improves two-point discrimination, somatosensory temporal discrimination threshold (STDT) and motor performance in humans. However, the mechanisms which underlie these changes are still unknown. In particular, we hypothesize that refinement of inhibition might be responsible for the improvement in spatial and temporal perception. Fifteen healthy subjects underwent 45min of HF-RSS. Before and after the intervention several measures of inhibition in the primary somatosensory area (S1), such as paired-pulse somatosensory evoked potentials (pp-SEP), high-frequency oscillations (HFO), and STDT were tested, as well as tactile spatial acuity and short intracortical inhibition (SICI). HF-RSS increased inhibition in S1 tested by pp-SEP and HFO; these changes were correlated with improvement in STDT. HF-RSS also enhanced bumps detection, while there was no change in grating orientation test. Finally there was an increase in SICI, suggesting widespread changes in cortical sensorimotor interactions. These findings suggest that HF-RSS can improve spatial and temporal tactile abilities by increasing the effectiveness of inhibitory interactions in the somatosensory system. Moreover, HF-RSS induces changes in cortical sensorimotor interaction. HF-RSS is a repetitive electric stimulation technique able to modify the effectiveness of inhibitory circuitry in the somatosensory system and primary motor cortex. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  11. Acetylcholine stimulation of human neutrophil chemotactic activity is directly inhibited by tiotropium involving Gq and ERK-1/2 regulation

    Directory of Open Access Journals (Sweden)

    Kurai M

    2012-01-01

    Full Text Available Tiotropium, a long-acting anticholinergic, may improve chronic obstructive pulmonary disease (COPD by mechanisms beyond bronchodilatation. We tested the hypothesis that tiotropium may act as an anti-inflammatory mediator by directly acting on and inhibiting human neutrophil chemotactic activity (NCA that is promoted by acetylcholine (ACh exposure. ACh treatment increased NCA in a dose dependent manner (p < 0.001 and tiotropium pretreatment reduced ACh stimulation (dose effect; 0 to 1000 nM; p < 0.001. Selective muscarinic receptor inhibitors demonstrated that subtype-3 (M3 receptor plays a role in NCA regulation. In addition, NCA that was stimulated by cevimeline (M3 agonist and pasteurella multocida toxin (PMT, M3 coupled Gq agonist. However, the increased NCA to cevimeline and PMT was reduced by tiotropium pretreatment (p < 0.001. ACh treatment stimulated ERK-1/2 activation by promoting protein phosphorylation and tiotropium reduced this effect (p < 0.01. In addition, pretreatment of the cells with a specific MEK-1/2 kinase inhibitor reduced ACh stimulated NCA (p < 0.01. Together these results demonstrated that cholinergic stimulation of NCA is effectively inhibited by tiotropium and is governed by a mechanism involving M3 coupled Gq signaling and downstream ERK signaling. This study further demonstrates that tiotropium may act as an anti-inflammatory agent in lung disease.

  12. HCV-E2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle microRNAs

    OpenAIRE

    Xiong, Li; Zhen, Shuqing; Yu, Qionghua; Gong, Zuojiong

    2017-01-01

    Exosomal miRNAs are emerging as mediators of the interaction between mast cells (MCs) and tumor cells. The exosomal miRNAs can be internalized by liver cancer cells to inhibit cell metastasis. We explored the interaction between MCs and hepatocellular carcinoma (HCC) cells. We used hepatitis C virus E2 envelope glycoprotein (HCV-E2) to stimulate MCs and harvest MCs-derived exosomes to detect the miRNAs and changes of exosomal miRNAs before and after stimulation. Through miRNA microarray analy...

  13. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Science.gov (United States)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  14. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Energy Technology Data Exchange (ETDEWEB)

    Meng Jie; Yang Man; Jia Fumin; Kong Hua; Zhang Weiqi; Xu Haiyan [Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Wang Chaoying; Xie Sishen [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 8 Nan San Jie, Zhongguancun, Beijing100080 (China); Xing Jianmin, E-mail: xuhy@pumc.edu.cn [Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029 (China)

    2010-04-09

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  15. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    International Nuclear Information System (INIS)

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-01-01

    The authors have previously demonstrated that 3 H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased 3 H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 μl drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine

  16. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  17. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-03-01

    Full Text Available Primary osteoporosis (POP, which is caused by unbalanced bone remodeling, leads to significant economic and societal burdens globally. Gushukang (GSK granule serves as one commonly used prescription for POP in Traditional Chinese Medicine (TCM. The present study aimed to clarify the exact roles of GSK in bone remodeling with in vivo and in vitro assays. Here we showed that GSK prevented bone loss and the alternations of osteoporotic bone parameters as well as the decreased density of osteoclast in ovariectomized (OVX mice. GSK inhibited receptor activator for nuclear factor-κ B Ligand (RANKL-activated osteoclastogenesis in bone marrow macrophages (BMMs. At the molecular levels, GSK inhibited the expression of nuclear factor of activated T cells cytoplasm 1(NFATc1 and c-Fos, two master regulators of osteoclastogenesis. GSK also inhibited bone resorbed genetic expression of matrix metalloproteinase 9 (MMP9, cathepsin K (Ctsk, TRAP and carbonic anhydrase II (Car2. Meanwhile, GSK stimulated osteoblastogenesis from bone primary mesenchymal stem cells (MSCs and enhanced the expression of Osteirx, and Runx2. GSK also stimulated the expression of Col-1, Osteocalcein and alkaline phosphatase (ALP. Our investigation established the systemic bone protective effects of GSK by suppressing osteoclastogenesis and stimulating osteoblastogenesis and laid bases for new drugs discovery in treating POP. Keywords: Gushukang (GSK granule, Primary osteoporosis, Osteoclastogenesis, Osteoblastogenesis

  18. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis.

    Science.gov (United States)

    Wang, Qiang; Zhao, Yongjian; Sha, Nannan; Zhang, Yan; Li, Chenguang; Zhang, Hao; Tang, Dezhi; Lu, Sheng; Shi, Qi; Wang, Yongjun; Shu, Bing; Zhao, Dongfeng

    2018-03-01

    Primary osteoporosis (POP), which is caused by unbalanced bone remodeling, leads to significant economic and societal burdens globally. Gushukang (GSK) granule serves as one commonly used prescription for POP in Traditional Chinese Medicine (TCM). The present study aimed to clarify the exact roles of GSK in bone remodeling with in vivo and in vitro assays. Here we showed that GSK prevented bone loss and the alternations of osteoporotic bone parameters as well as the decreased density of osteoclast in ovariectomized (OVX) mice. GSK inhibited receptor activator for nuclear factor-κ B Ligand (RANKL)-activated osteoclastogenesis in bone marrow macrophages (BMMs). At the molecular levels, GSK inhibited the expression of nuclear factor of activated T cells cytoplasm 1(NFATc1) and c-Fos, two master regulators of osteoclastogenesis. GSK also inhibited bone resorbed genetic expression of matrix metalloproteinase 9 (MMP9), cathepsin K (Ctsk), TRAP and carbonic anhydrase II (Car2). Meanwhile, GSK stimulated osteoblastogenesis from bone primary mesenchymal stem cells (MSCs) and enhanced the expression of Osteirx, and Runx2. GSK also stimulated the expression of Col-1, Osteocalcein and alkaline phosphatase (ALP). Our investigation established the systemic bone protective effects of GSK by suppressing osteoclastogenesis and stimulating osteoblastogenesis and laid bases for new drugs discovery in treating POP. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin.

    Science.gov (United States)

    Torres-Farfan, Claudia; Richter, Hans G; Rojas-García, Pedro; Vergara, Marcela; Forcelledo, María L; Valladares, Luis E; Torrealba, Fernando; Valenzuela, Guillermo J; Serón-Ferré, María

    2003-01-01

    The pineal hormone melatonin participates in circadian, seasonal, and reproductive physiology. The presence of melatonin binding sites in human brain and peripheral tissues is well documented. However, in the mammalian adrenal gland, low-affinity melatonin binding sites have been detected only in the rat by some but not all authors. Conflicting evidence for a regulatory role of melatonin on adrenal cortisol production, prompted us to investigate this possibility in a New World primate, the capuchin monkey. Expression of melatonin receptors in the adrenal cortex was demonstrated through pharmacological characterization and autoradiographic localization of 2-[125I]iodomelatonin binding sites (dissociation constant = 96.9 +/- 15 pM; maximal binding capacity = 3.8 +/- 0.4 fmol/mg protein). The mt1 identity of these receptors was established by cDNA sequencing. Melatonin treatment of dispersed cells and explants from adrenal gland did not affect basal cortisol production. However, cortisol production stimulated by 100 nM ACTH was significantly inhibited by low melatonin concentrations (0.1-100 nM); this inhibitory effect was reversed by the mt1/MT2 melatonin antagonist luzindole. Melatonin also inhibited dibutyril-cAMP-stimulated cortisol production, suggesting that melatonin acts through a cAMP-independent signaling pathway. The present data demonstrate that the primate adrenal gland cortex expresses functional mt1 melatonin receptors and shows that melatonin inhibits ACTH-stimulated cortisol production.

  20. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

    Science.gov (United States)

    Chia, Karin K M; Liu, Chia-Chi; Hamilton, Elisha J; Garcia, Alvaro; Fry, Natasha A; Hannam, William; Figtree, Gemma A; Rasmussen, Helge H

    2015-08-15

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. Copyright © 2015 the American Physiological Society.

  1. HCV-E2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle microRNAs.

    Science.gov (United States)

    Xiong, Li; Zhen, Shuqing; Yu, Qionghua; Gong, Zuojiong

    2017-08-01

    Exosomal miRNAs are emerging as mediators of the interaction between mast cells (MCs) and tumor cells. The exosomal miRNAs can be internalized by liver cancer cells to inhibit cell metastasis. We explored the interaction between MCs and hepatocellular carcinoma (HCC) cells. We used hepatitis C virus E2 envelope glycoprotein (HCV-E2) to stimulate MCs and harvest MCs-derived exosomes to detect the miRNAs and changes of exosomal miRNAs before and after stimulation. Through miRNA microarray analysis, we identified 19 differentially expressed miRNAs in exosomes derived from MCs with or without HCV-E2 treatment. HCV-E2 not only increased the level of miRNA-490 in MCs and their secreted exosomes but also increased the levels of miRNA-490 in recipient HepG2 cells, which ultimately inhibited the ERK1/2 pathway. The transfection of antagomiR-490 significantly decreased the levels of miR-490 in MCs, MCs-derived exosomes, and recipient HepG2 cells and increased migration of HepG2, indicating that miR-490 is involved in the regulation of HepG2 cell migration. The present study suggests that MCs can inhibit HCC cell metastasis by inhibiting the ERK1/2 pathway by transferring the exosomal shuttle microRNAs into HCC cells, which provides new insights for the biological therapy of HCC induced by hepatitis C.

  2. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  3. A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder.

    Science.gov (United States)

    Enticott, Peter G; Rinehart, Nicole J; Tonge, Bruce J; Bradshaw, John L; Fitzgerald, Paul B

    2010-08-01

    Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Participants were diagnosed by experienced clinicians strictly according to DSM-IV criteria. Participants with HFA (nine males, two females; mean age 16y 8mo, SD 4y 5mo) or Asperger disorder (11 males, three females; mean age 19y 1mo, SD 4y 2mo) and neurotypical participants (eight males, three females; mean age 19y 0mo, SD 3y 1mo) were administered a paired-pulse TMS paradigm intended to assess motor cortical inhibition and excitability. Responses to TMS were recorded by electromyography. Cortical inhibition was significantly reduced in the HFA group compared with both the Asperger disorder (pAsperger disorder based on GABAergic function.

  4. Inhibition of interleukin-17-stimulated interleukin-6 and -8 production by cranberry components in human gingival fibroblasts and epithelial cells.

    Science.gov (United States)

    Tipton, D A; Cho, S; Zacharia, N; Dabbous, M K

    2013-10-01

    Gingival epithelial cells and fibroblasts participate in periodontal inflammation and destruction, producing interleukin (IL)-6, a regulator of osteoclastic bone resorption, and the neutrophil chemoattractant IL-8. IL-17, a product of T-helper 17 cells, may play a role in periodontitis by stimulating cytokine production by gingival cells. The cranberry (Vaccinium macrocarpon) is rich in polyphenols, particularly proanthocyanidins, which have antioxidant and other beneficial properties. Cranberry components inhibit pro-inflammatory activities of lipopolysaccharide-stimulated human macrophages, gingival fibroblasts, and epithelial cells, but little is known of its effects on IL-17-stimulated cytokine production. The objectives were to determine the effects of IL-17 ± cranberry components on IL-6 and IL-8 production by human gingival epithelial cells and fibroblasts. Cranberry high molecular weight non-dialyzable material (NDM), which is rich in proanthocyanidins, was derived from cranberry juice. Human gingival epithelial cells and normal human gingival fibroblasts were incubated with NDM (5-50 μg/mL), IL-17 (0.5-100 ng/mL), or NDM + IL-17 in serum-free medium for 6 d. IL-6 and IL-8 in culture supernatants were measured by ELISA. Membrane damage and viability were assessed by lactate dehydrogenase activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Data were analyzed using ANOVA and Scheffe's F procedure for post hoc comparisons. In both cell lines, IL-17 (≥ ~5-10 ng/mL) significantly stimulated production of IL-6 (p Cranberry NDM inhibition of constitutive and IL-17-stimulated IL-6 and IL-8 production by gingival fibroblasts and epithelial cells suggests that cranberry components could be useful as a host modulatory therapeutic agent to prevent or treat periodontitis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zaichun You

    2015-12-01

    Full Text Available Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs in the growth of pulmonary arterial smooth muscle cells (PASMCs under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137–150, [1]. The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its TAE-Mg2+ buffer. siRNA-DNA-NTs have a lower cytotoxicity and higher transfection efficiency and can, based on inhibition of mTOR expression, decrease PASMCs growth both hypoxic and normal condition.

  6. ROCK inhibition stimulates SOX9/Smad3-dependent COL2A1 expression in inner meniscus cells.

    Science.gov (United States)

    Furumatsu, Takayuki; Maehara, Ami; Ozaki, Toshifumi

    2016-07-01

    Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. However, the crosstalk between ROCK inhibition, SOX9, and other transcription modulators on COL2A1 upregulation remains unclear in meniscus cells. The aim of this study was to investigate the role of SOX9-related transcriptional complex on COL2A1 expression under the inhibition of ROCK in human meniscus cells. Human inner and outer meniscus cells were prepared from macroscopically intact lateral menisci. Cells were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y27632). Gene expression, collagen synthesis, and nuclear translocation of SOX9 and Smad2/3 were analyzed. Treatment of ROCKi increased the ratio of type I/II collagen double positive cells derived from the inner meniscus. In real-time PCR analyses, expression of SOX9 and COL2A1 genes was stimulated by ROCKi treatment in inner meniscus cells. ROCKi treatment also induced nuclear translocation of SOX9 and phosphorylated Smad2/3 in immunohistological analyses. Complex formation between SOX9 and Smad3 was increased by ROCKi treatment in inner meniscus cells. Chromatin immunoprecipitation analyses revealed that association between SOX9/Smad3 transcriptional complex with the COL2A1 enhancer region was increased by ROCKi treatment. This study demonstrated that ROCK inhibition stimulated SOX9/Smad3-dependent COL2A1 expression through the immediate nuclear translocation of Smad3 in inner meniscus cells. Our results suggest that ROCK inhibition can stimulates type II collagen synthesis through the cooperative activation

  7. Double-Cone Coil TMS Stimulation of the Medial Cortex Inhibits Central Pain Habituation.

    Directory of Open Access Journals (Sweden)

    Federico D'Agata

    Full Text Available The aim of this study was to investigate whether Transcranial Magnetic Stimulation (TMS applied over the medial line of the scalp affects the subjective perception of continuous pain induced by means of electric stimulation. In addition, we wanted to identify the point of stimulation where this effect was maximum.Superficial electrical stimulation was used to induce continuous pain on the dominant hand. At the beginning of the experiment we reached a pain rating of 5 on an 11-point numeric rating scale (NRS; 0 = no pain and 10 = maximum tolerable pain for each subject by setting individually the current intensity. The TMS (five pulses at increasing intensities was applied on 5 equidistant points (one per session over the medial line of the scalp in 13 healthy volunteers using a double-cone coil to stimulate underlying parts of the brain cortex. In every experimental session the painful stimulation lasted 45 minutes, during which pain and distress intensities NRS were recorded continuously. We calculated the effect of adaptation and the immediate effect of the TMS stimulation for all locations. Additionally, an ALE (Activation Likelihood Estimation meta-analysis was performed to compare our results with the neuroimaging literature on subjective pain rating.TMS stimulation temporarily decreased the pain ratings, and pain adaptation was suppressed when applying the TMS over the FCz site on the scalp. No effect was found for distress ratings.The present data suggest that the medial cortex in proximity of the cingulated gyrus has a causal role in adaptation mechanisms and in processing ongoing pain and subjective sensation of pain intensity.

  8. Dual Effect of Chrysanthemum indicum Extract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-01-01

    Full Text Available The risk of bone-related diseases increases due to the imbalance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively. The goal in the development of antiosteoporotic treatments is an agent that will improve bone through simultaneous osteoblast stimulation and osteoclast inhibition without undesirable side effects. To achieve this goal, numerous studies have been performed to identify novel approaches using natural oriental herbs to treat bone metabolic diseases. In the present study, we investigated the effect of Chrysanthemum indicum extract (CIE on the differentiation of osteoclastic and osteoblastic cells. CIE inhibited the formation of TRAP-positive mature osteoclasts and of filamentous-actin rings and disrupted the bone-resorbing activity of mature osteoclasts in a dose-dependent manner. CIE strongly inhibited Akt, GSK3β, and IκB phosphorylation in RANKL-stimulated bone marrow macrophages and did not show any effects on MAP kinases, including p38, ERK, and JNK. Interestingly, CIE also enhanced primary osteoblast differentiation via upregulation of the expression of alkaline phosphatase and the level of extracellular calcium concentrations during the early and terminal stages of differentiation, respectively. Our results revealed that CIE could have a potential therapeutic role in bone-related disorders through its dual effects on osteoclast and osteoblast differentiation.

  9. Improvement of the bio-functional properties of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Roguska, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pisarek, M., E-mail: mpisarek@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Belcarz, A. [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Marcon, L. [Interdisciplinary Research Institute, USR CNRS 3078 Parc de la Haute Borne, 50 av. de Halley 59658 Villeneuve d’Ascq (France); Holdynski, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Andrzejczuk, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Janik-Czachor, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • The methods of biofunctional properties improvement of TiO{sub 2} nanotubes are proposed. • The increase of TiO{sub 2} nanotubes diameter promotes the U2OS cell proliferation. • Calcium phosphate coating deposited TiO{sub 2} nanotube layer promotes the cell growth. • Deposition of Ag nanoparticles inhibits the survivability of S. epidermidis cells. - Abstract: Titanium oxide nanotubes with diameters from ca. 40–120 nm fabricated by the anodic oxidation of Ti at a constant voltage (10–28 V) were investigated to identify factors improving their bio-functional properties. Prepared substrates were subsequently annealed at 450 °C and 650 °C to obtain nanotubes having a crystalline structure, and were then examined by SEM, XRD, XPS, BET and contact angle measurement techniques. The thermally stabilized surfaces were subjected to bidirectional functionalization: by deposition of a thin layer of Ca-P and by loading with silver nanoparticles. Three factors were found to promote the proliferation of osteoblast (U2OS) cells: a larger nanotube diameter, a higher annealing temperature, and the presence of a thin Ca-P layer. Differentiation of these cells (by ALP test) was stimulated by a higher (650 °C) nanotube annealing temperature, but not by a thin Ca-P layer. The TiO{sub 2} nanotubes-modified samples exhibited noticeable antibacterial properties. Moreover, the additional deposition of Ag nanoparticles almost completely inhibited the survivability of S. epidermidis cells beyond 3 h of contact. In conclusion, TiO{sub 2} nanotubes-modified surfaces exhibit distinct bone forming ability and significant antibacterial properties, and can be easily functionalized by a thin Ca-P layer or nano-Ag deposition for further improvement of the above functionalities.

  10. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    Directory of Open Access Journals (Sweden)

    Suhaila Muid

    2016-07-01

    Full Text Available Background: Tocotrienols (TCTs are more potent antioxidants than α-tocopherol (TOC. However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims: 1 To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS. 2 To identify the two most potent TCT isomers in stimulated human endothelial cells. 3 To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods: Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM, together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α, adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin, eNOS, and NFκB. Results: δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM but exhibits neutral effects at lower concentrations. Conclusion: δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence

  11. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Directory of Open Access Journals (Sweden)

    Jordan L. Hawkins

    2017-12-01

    Conclusion:. Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.

  12. STN-stimulation in Parkinson's disease restores striatal inhibition of thalamocortical projection

    DEFF Research Database (Denmark)

    Geday, Jacob; Østergaard, Karen; Johnsen, Erik

    2009-01-01

    To test the hypothesis that deep brain stimulation of the subthalamic nucleus (STN) restores the inhibitory output to the striatothalamocortical loop in Parkinson's disease, we obtained functional brain images of blood flow in 10 STN-stimulated patients with Parkinson's disease. Patients were...... in the STN and in the left nucleus lentiformis. Conversely, flow declined in the left supplementary motor area (BA 6), ventrolateral nucleus of the left thalamus, and right cerebellum. Activation of the basal ganglia and deactivation of supplementary motor area and thalamus were both correlated...... with the improvement of motor function. The result is consistent with the explanation that stimulation in resting patients raises output from the STN with activation of the inhibitory basal ganglia output nuclei and subsequent deactivation of the thalamic anteroventral and ventrolateral nuclei and the supplementary...

  13. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  14. Inhibition of seed germination by extracts of bitter Hawkesbury watermelon containing cucurbitacin, a feeding stimulant for corn rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Martin, Phyllis A W; Blackburn, Michael

    2003-04-01

    Cucurbitacins are feeding stimulants for corn rootworm used in baits to control the adults of this insect pest. Corn rootworm larvae also feed compulsively on cucurbitacins. Cucurbitacins are reported to be gibberellin antagonists that may preclude their use as seed treatments for these soil-dwelling insects. The crude extract of a bitter Hawkesbury watermelon containing cucurbitacin E-glycoside significantly inhibited germination of watermelon, squash, and tomato seeds. Although the germination of corn seed was not significantly inhibited, root elongation was inhibited by crude extracts, but not by high-performance liquid chromatography-purified cucurbitacin E-glycoside. Therefore, the effects of the major components in the bitter watermelon extract (e.g., sugars) on seed germination and root elongation were determined. Pure sugars (glucose and fructose), at concentrations found in watermelon extract, mimicked the inhibition of seed germination and root elongation seen with the crude bitter Hawkesbury watermelon extract. Removal of these sugars may be necessary to use this extract as a bait for corn rootworm larvae as a seed or root treatment.

  15. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3

    NARCIS (Netherlands)

    van Raam, Bram J.; Drewniak, Agata; Groenewold, Vincent; van den Berg, Timo K.; Kuijpers, Taco W.

    2008-01-01

    Neutrophils have a very short life span and undergo apoptosis within 24 hours after leaving the bone marrow. Granulocyte colony-stimulating factor (G-CSF) is essential for the recruitment of fresh neutrophils from the bone marrow but also delays apoptosis of mature neutrophils. To determine the

  16. Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion

    DEFF Research Database (Denmark)

    Lundgren, J D; Davey, R T; Lundgren, B

    1991-01-01

    . Crude extracts from isolated EO granules also stimulated RGC release, suggesting that a granular protein might be responsible. Three proteins derived from EO granules, EO-derived neurotoxin, EO cationic protein (ECP), and major basic protein (MBP) were separated by sequential sizing and affinity...

  17. Repetition suppression in transcranial magnetic stimulation-induced motor-evoked potentials is modulated by cortical inhibition.

    Science.gov (United States)

    Kallioniemi, E; Pääkkönen, A; Julkunen, P

    2015-12-03

    Transcranial magnetic stimulation (TMS) can be applied to modulate cortical phenomena. The modulation effect is dependent on the applied stimulation frequency. Repetition suppression (RS) has been demonstrated in the motor system using TMS with short suprathreshold 1-Hz stimulation trains repeated at long inter-train intervals. RS has been reported to occur in the resting motor-evoked potentials (MEPs) with respect to the first pulse in a train of stimuli. Although this RS in the motor system has been described in previous studies, the neuronal origin of the phenomenon is still poorly understood. The present study evaluated RS in three TMS-induced motor responses; resting and active MEPs as well as corticospinal silent periods (SPs) in order to clarify the mechanism behind TMS-induced RS. We studied 10 healthy right-handed subjects using trains of four stimuli with stimulation intensities of 120% of the resting motor threshold (rMT) and 120% of the silent period threshold for an SP duration of 30 ms (SPT30). Inter-trial interval was 20s, with a 1-s inter-stimulus interval within the trains. We confirmed that RS appears in resting MEPs (p 0.792). SPs, on the contrary, lengthened (p < 0.001) indicating modulation of cortical inhibition. The effects of the two stimulation intensities exhibited a similar trend; however, the SPT30 evoked a more profound inhibitory effect compared to that achieved by rMT. Moreover, the resting MEP amplitudes and SP durations correlated (rho ⩽ -0.674, p < 0.001) and the pre-TMS EMG level did not differ between stimuli in resting MEPs (F = 0.0, p ⩾ 0.999). These results imply that the attenuation of response size seen in resting MEPs might originate from increasing activity of inhibitory GABAergic interneurons which relay the characteristics of SPs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats.

    Science.gov (United States)

    Crook, Jonathan J; Lovick, Thelma A

    2017-01-01

    Urge Urinary Incontinence: "a sudden and uncontrollable desire to void which is impossible to defer" is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS). High frequency (1-3 kHz), sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal "off target" side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary continence.

  19. Effects of nitric oxide synthase inhibition on cutaneous vasodilation in response to acupuncture stimulation in humans.

    Science.gov (United States)

    Kimura, Kenichi; Takeuchi, Hayato; Yuri, Kuniko; Wakayama, Ikuro

    2013-03-01

    The aim of the present study was to elucidate the mechanism of cutaneous vasodilation following acupuncture stimulation by investigating the roles of nitric oxide (NO) and axon reflex vasodilation. The subjects were 17 healthy male volunteers. The role of NO was investigated by administering N(G)-nitro-l-arginine methyl ester hydrochloride (L-NAME, 20 mM), an NO synthase inhibitor or Ringer's solution (control site), via intradermal microdialysis (protocol 1; n=7). The role of axon reflex vasodilation by local sensory neurones was investigated by comparing vasodilation at sites treated with 'eutectic mixture of local anaesthetics' (EMLA) cream (2.5% lidocaine and 2.5% prilocaine) with untreated sites (control site) (protocol 2; n=10). After 5 min of baseline recording, acupuncture was applied to PC4 and a control site in proximity to PC4 for 10 min and scanning was performed for 60 min after acupuncture stimulation. Skin blood flow (SkBF) was evaluated by laser Doppler perfusion imaging. Cutaneous vascular conductance (CVC) was calculated from the ratio of SkBF to mean arterial blood pressure. In the first protocol, sites administered L-NAME showed significant reductions in CVC responses following acupuncture stimulation compared to control sites (administered Ringer's solution) (pacupuncture stimulation did not differ significantly between treated sites with EMLA cream and untreated sites (p>0.05). These data suggest that cutaneous vasodilation in response to acupuncture stimulation may not occur through an axon reflex as previously reported. Rather, NO mechanisms appear to contribute to the vasodilator response.

  20. High Frequency Stimulation of the Pelvic Nerve Inhibits Urinary Voiding in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    Jonathan J. Crook

    2017-08-01

    Full Text Available Urge Urinary Incontinence: “a sudden and uncontrollable desire to void which is impossible to defer” is extremely common and considered the most bothersome of lower urinary tract conditions. Current treatments rely on pharmacological, neuromodulatory, and neurotoxicological approaches to manage the disorder, by reducing the excitability of the bladder muscle. However, some patients remain refractory to treatment. An alternative approach would be to temporarily suppress activity of the micturition control circuitry at the time of need i.e., urgency. In this study we investigated, in a rat model, the utility of high frequency pelvic nerve stimulation to produce a rapid onset, reversible suppression of voiding. In urethane-anesthetized rats periodic voiding was induced by continuous infusion of saline into the bladder whilst recording bladder pressure and electrical activity from the external urethral sphincter (EUS. High frequency (1–3 kHz, sinusoidal pelvic nerve stimulation initiated at the onset of the sharp rise in bladder pressure signaling an imminent void aborted the detrusor contraction. Urine output was suppressed and tone in the EUS increased. Stimulating the right or left nerve was equally effective. The effect was rapid in onset, reversible, and reproducible and evoked only minimal “off target” side effects on blood pressure, heart rate, respiration, uterine pressure, or rectal pressure. Transient contraction of abdominal wall was observed in some animals. Stimulation applied during the filling phase evoked a small, transient rise in bladder pressure and increased tonic activity in the EUS, but no urine output. Suppression of micturition persisted after section of the contralateral pelvic nerve or after ligation of the nerve distal to the electrode cuff on the ipsilateral side. We conclude that high frequency pelvic nerve stimulation initiated at the onset of an imminent void provides a potential means to control urinary

  1. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  2. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  3. Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase.

    Science.gov (United States)

    Ewart, Marie-Ann; Kohlhaas, Christine F; Salt, Ian P

    2008-12-01

    Proatherosclerotic adhesion of leukocytes to the endothelium is attenuated by NO. As AMP-activated protein kinase (AMPK) regulates endothelial NO synthesis, we investigated the modulation of adhesion to cultured human aortic endothelial cells (HAECs) by AMPK. HAECs incubated with the AMPK activator, AICAR, or expressing constitutively active AMPK demonstrated reduced TNFalpha-stimulated adhesion of promonocytic U-937 cells. Rapid inhibition of TNFalpha-stimulated U-937 cell adhesion by AICAR was NO-dependent, associated with unaltered cell surface adhesion molecule expression, and reduced MCP-1 secretion by HAECs. In contrast, inhibition of TNFalpha-stimulated U-937 cell adhesion by prolonged AMPK activation was NO-independent and associated with reduced cell surface adhesion molecule expression. AMPK activation in HAECs inhibits TNFalpha-stimulated leukocyte adhesion by a rapid NO-dependent mechanism associated with reduced MCP-1 secretion and a late NO-independent mechanism whereby adhesion molecule expression, in particular E-selectin, is suppressed.

  4. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3

    Science.gov (United States)

    Li, Huating; Gao, Zhanguo; Zhang, Jin; Ye, Xin; Xu, Aimin; Ye, Jianping; Jia, Weiping

    2012-01-01

    Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator–activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3. PMID:22338096

  5. Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice.

    Science.gov (United States)

    Liu, Xiu-Ping; Zheng, Hong-Yun; Qu, Min; Zhang, Yao; Cao, Fu-Yuan; Wang, Qun; Ke, Dan; Liu, Gong-Ping; Wang, Jian-Zhi

    2012-09-01

    One of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of β-amyloid (Aβ) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac). Further studies by using in vitro wound-healing model and transwell assay demonstrated that upregulation of PP2A pharmacologically and genetically could stimulate astrocytes migration. Activation of PP2A promotes actin organization and inhibits p38 mitogen-activated protein kinases (p38 MAPK), while simultaneous activation of p38 MAPK partially abolishes the PP2A-induced astrocytes migration. Our data suggest that activation of astrocytes PP2A in tg2567 mice may stimulate the migration of astrocytes to the amyloid plaques by p38 MAPK inhibition, implying that PP2A deficits observed in AD may cause Aβ accumulation via hindering the astrocytes migration. Copyright © 2012 Wiley Periodicals, Inc.

  6. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells.

    Science.gov (United States)

    Au, CheukMan C; Docanto, Maria M; Zahid, Heba; Raffaelli, Francesca-Maria; Ferrero, Richard L; Furness, John B; Brown, Kristy A

    2017-06-01

    Des-acyl ghrelin is the unacylated form of the well-characterized appetite-stimulating hormone ghrelin. It affects a number of physiological processes, including increasing adipose lipid accumulation and inhibiting adipose tissue inflammation. Breast adipose tissue inflammation in obesity is associated with an increase in the expression of the estrogen biosynthetic enzyme, aromatase, and is hypothesized to create a hormonal milieu conducive to tumor growth. We previously reported that des-acyl ghrelin inhibits the expression and activity of aromatase in isolated human adipose stromal cells (ASCs), the main site of aromatase expression in the adipose tissue. The current study aimed to examine the effect of des-acyl ghrelin on the capacity of mouse macrophages (RAW264.7 cells) and human adipose tissue macrophages (ATMs) to stimulate aromatase expression in primary human breast ASCs. RAW264.7 cells were treated with 0, 10 and 100pM des-acyl ghrelin following activation with phorbol 12-myristate 13-acetate, and cells and conditioned media were collected after 6 and 24h. The effect of des-acyl ghrelin on macrophage polarization was examined by assessing mRNA expression of pro-inflammatory M1-specific marker Cd11c and anti-inflammatory M2-specific marker Cd206, as well as expression of Tnf and Ptgs2, known mediators of the macrophage-dependent stimulation of aromatase. TNF protein in conditioned media was assessed by ELISA. The effect of RAW264.7 and ATM-conditioned media on aromatase expression in ASCs was assessed after 6h. Results demonstrate des-acyl ghrelin significantly increases the expression of Cd206 and suppresses the expression of Cd11c, Tnf and Ptgs2 in activated RAW264.7 cells. Treatment of RAW264.7 and ATMs with des-acyl ghrelin also significantly reduces the capacity of these cells to stimulate aromatase transcript expression in human breast ASCs. Overall, these findings suggest that in addition to direct effects on aromatase in ASCs, des-acyl ghrelin also

  7. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    Science.gov (United States)

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice spe...

  8. Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells.

    Science.gov (United States)

    Barcy, S; Corey, L

    2001-05-15

    HSV establish a lifelong persistent infection in their host even among immunocompetent persons. The viruses use a variety of immune evasion strategies, presumably to assist persistent replication in the human host. We have observed that infection of human B lymphoblastoid cells (B-LCL) by HSV resulted in a strong inhibition of their ability to induce CD4(+) T cell clone proliferation and cytokine secretion. This inhibitory effect occurs in a variety of both HSV- and HIV-specific clones from three different patients. The inhibition is observed when the Ag is provided either as a soluble protein or as a synthetic peptide and is not associated with detectable down-modulation of the MHC class II molecules or costimulatory molecules. Expression of the HSV-1 unique sequence 1 gene (US1) is necessary and sufficient to induce this inhibition of APC function. US1 gene expression also made B-LCL less susceptible to CD4(+) T cell-mediated lysis. These data indicate a novel immune evasion strategy by HSV-1 in which Ag-processing cells that become infected by HSV-1 are inhibited in their ability to induce subsequent CD4(+) T cell activation.

  9. Eugenol stimulates lactate accumulation yet inhibits volatile fatty acid production and eliminates coliform bacteria in cattle and swine waste.

    Science.gov (United States)

    Varel, V H; Miller, D L

    2004-01-01

    To determine how eugenol affects fermentation parameters and faecal coliforms in cattle and swine waste slurries stored anaerobically. Waste slurries (faeces:urine:water, 50:35:15) were blended with and without additives and aliquoted to triplicate 1-l flasks. Faecal coliforms were eliminated in cattle and swine waste slurries within 1 or 2 days with additions of eugenol at 10.05 mm (0.15%) and 16.75 mm (0.25%). At these concentrations volatile fatty acids (VFA) were reduced ca 70 and 50% in cattle and swine waste, respectively, over 6-8 weeks. Additionally, in cattle waste, eugenol stimulated the accumulation of lactate (>180 mm) when compared with thymol treatment (20 mm lactate). In swine waste, lactate accumulation did not occur without additives; eugenol and thymol stimulated lactate accumulation to concentrations of 22 and 32 mm, respectively. Eugenol added to cattle waste may be more beneficial than thymol because not only does it effectively control faecal coliforms and odour (VFA production), it also stimulates lactate accumulation. This in turn, causes the pH to drop more rapidly, further inhibiting microbial activity and nutrient emissions. Plant essential oils have the potential to solve some of the environmental problems associated with consolidated animal feeding operations. Thymol and eugenol reduce fermentative activity, thus, have the potential to reduce emissions of greenhouse gases and odour, and curtail transmission of pathogens in cattle and swine wastes.

  10. Experimental low-level jaw clenching inhibits temporal summation evoked by electrical stimulation in healthy human volunteers.

    Science.gov (United States)

    Tada, Hiroaki; Torisu, Tetsurou; Tanaka, Mihoko; Murata, Hiroshi; De Laat, Antoon; Svensson, Peter

    2015-05-01

    To examine the effect of low-level jaw clenching on temporal summation in healthy volunteers. In 18 healthy volunteers, the pain intensities evoked at the masseter muscle and the hand palm by the first and last stimuli in a train of repeated electrical stimuli (0.3 or 2.0 Hz) were rated using 0-100mm visual analogue scales (VAS), in order to evaluate temporal summation before and after three types of jaw-muscle tasks: low-level jaw clenching, repetitive gum chewing and mandibular rest position. A set of concentric surface electrodes with different diameters (small and large) was used for the electrical stimulation. The temporal summation evoked by the large diameter electrode with 2.0 Hz stimulation decreased significantly both on the masseter and the hand after low-level clenching (P ≤ 0.03), but did not show any significant change after the other tasks (P > 0.23). The VAS score of the first stimulation did not show any significant changes after low-level clenching (P > 0.57). Experimental low-level jaw clenching can inhibit pain sensitivity, especially temporal summation. Low-level jaw clenching can modify pain sensitivity, most likely through the central nervous system. The findings suggest that potential harmful low-level jaw clenching or tooth contacting could continue despite painful symptoms, e.g., temporomandibular disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Major role of suckling stimulation for inhibition of estrous behaviors in lactating rabbits: acute and chronic effects.

    Science.gov (United States)

    García-Dalmán, Cipatli; González-Mariscal, Gabriela

    2012-01-01

    Lactation in rabbits induces anestrus: sexual receptivity and scent-marking (chinning) are reduced despite the brevity of suckling (one daily nursing bout, lasting around 3 min). The mechanisms underlying this effect are unknown but, as chinning, lordosis, and ambulation in an open field are immediately inhibited by the peripheral stimulation received during mating we hypothesized that, across lactation, suckling stimulation would provoke a similar effect. To test this possibility we provided litters of 1, 3, 5, or 10 pups across lactation days 1-15 and quantified chinning and ambulation frequencies, the lordosis quotient, and milk output. Baseline chinning frequency, determined before the daily nursing bout, was low across lactation days 1-15 in does nursing 3, 5 or 10 pups but it increased steadily across days 1-10 in rabbits suckling one pup. Yet, a single young was sufficient to abolish chinning for about 1h, after which this behavior rose again. Suckling litters of all sizes reduced (but did not abolish) ambulation frequency, both chronically (baseline levels declined across days 1-5) and acutely. Sexual receptivity was significantly reduced on lactation day 15 only in does that had nursed 10 pups. Large litter size promoted a larger milk output and a normal duration of nursing episodes. Results support a major role of suckling stimulation for the suppression of estrous behaviors and ambulation through as yet unidentified mechanisms. Copyright © 2011. Published by Elsevier Inc.

  12. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  13. Disruption of β-catenin binding to parathyroid hormone (PTH) receptor inhibits PTH-stimulated ERK1/2 activation.

    Science.gov (United States)

    Yang, Yanmei; Wang, Bin

    2015-08-14

    The type I parathyroid hormone receptor (PTH1R) mediates PTH and PTH-related protein (PTHrP) actions on extracellular mineral ion homeostasis and bone remodeling. These effects depend in part on the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Sequences located within or at the carboxyl-terminus of PTH1R control its activation and trafficking. β-catenin regulates PTH1R signaling and promotes chondrocyte hypertrophy through binding to the intracellular carboxyl-terminal region of the receptor. How the interaction of PTH1R with β-catenin affects PTH-stimulated ERK1/2 is unknown. In the present study, human embryonic kidney 293 (HEK293) cells, which do not express the PTH1R, were used to investigate whether the disruption of β-catenin binding to PTH1R affects PTH-stimulated ERK1/2 activation. We demonstrated that β-catenin interacted with wild-type PTH1R but this interaction was markedly reduced with mutant PTH1R (L584A/L585A). PTH stimulated less cAMP formation and increased more intracellular calcium in HEK293 cells transfected with wild-type PTH1R compared with mutant PTH1R, indicating β-catenin switches PTH1R signaling from Gαs activation to Gαq signaling. In addition, ERK1/2 activation in HEK293 cells transfected with PTH1R exhibited time and concentration dependence. PTH-stimulated ERK1/2 activation was mostly mediated through Gαq/PLC signaling pathway. Importantly, transfection of mutant PTH1R decreased PTH-induced ERK1/2 activation by inhibiting Gαq-mediated signaling. This study shows for the first time that the interference of β-catenin binding to PTH1R inhibits PTH-stimulated ERK1/2 phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret.

    Science.gov (United States)

    Kanoh, Soichiro; Tanabe, Tsuyoshi; Rubin, Bruce K

    2011-10-01

    IL-8 is an important activator and chemoattractant for neutrophils that is produced by normal human bronchial epithelial (NHBE) cells through mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) p65 pathways. Dapsone, a synthetic sulfone, is widely used to treat chronic neutrophil dermatoses. We investigated the effects of dapsone on polarized IL-8 secretion from lipopolysaccharide (LPS)-stimulated NHBE cells and further evaluated its ability to decrease LPS-induced inflammation in the ferret airway. NHBE cells were grown at air-liquid interface (ALI) to ciliated differentiation. Baseline and endotoxin (LPS)-stimulated IL-8 secretion was measured by enzyme-linked immunosorbent assay at air and basal sides with and without dapsone. Western blotting was used to determine signaling pathways. In vivo, ferrets were exposed to intratracheal LPS over a period of 5 days. Once inflammation was established, oral or nebulized dapsone was administered for 5 days. Intraepithelial neutrophil accumulation was analyzed histologically, and mucociliary transport was measured on the excised trachea. Dapsone, 1 μg/mL, did not influence unstimulated (basal) IL-8 secretion. Apical LPS stimulation induced both apical and basolateral IL-8, but basolateral LPS increased only basolateral IL-8. Dapsone inhibited polarized IL-8 secretion from ALI-conditioned cells. Dapsone also decreased LPS-induced IL-8 mRNA level. LPS led to phosphorylation of extracellular signal-regulated kinase 1/2, but not p38 MAPK or c-Jun NH(2)-terminal kinase. LPS also induced NF-κB p65 phosphorylation, an effect that was inhibited by dapsone. Both oral and aerosol dapsone decreased LPS-induced intraepithelial neutrophil accumulation, but only treatment with aerosol dapsone restored mucociliary transport to normal. Dapsone, given either systemically or as an aerosol, may be useful in treating neutrophilic airway inflammation.

  15. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    Science.gov (United States)

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  16. Inhibition of long-term potentiation in the schaffer-CA1 pathway by repetitive high-intensity sound stimulation.

    Science.gov (United States)

    Cunha, A O S; de Oliveira, J A C; Almeida, S S; Garcia-Cairasco, N; Leão, R M

    2015-12-03

    High-intensity sound can induce seizures in susceptible animals. After repeated acoustic stimuli changes in behavioural seizure repertoire and epileptic EEG activity might be seen in recruited limbic and forebrain structures, a phenomenon known as audiogenic kindling. It is postulated that audiogenic kindling can produce synaptic plasticity events leading to the spread of epileptogenic activity to the limbic system. In order to test this hypothesis, we investigated if long-term potentiation (LTP) of hippocampal Schaffer-CA1 synapses and spatial navigation memory are altered by a repeated high-intensity sound stimulation (HISS) protocol, consisting of one-minute 120 dB broadband noise applied twice a day for 10 days, in normal Wistar rats and in audiogenic seizure-prone rats (Wistar Audiogenic Rats - WARs). After HISS all WARs exhibited midbrain seizures and 50% of these animals developed limbic recruitment, while only 26% of Wistar rats presented midbrain seizures and none of them had limbic recruitment. In naïve animals, LTP in hippocampal CA1 neurons was induced by 50- or 100-Hz high-frequency stimulation of Schaffer fibres in slices from both Wistar and WAR animals similarly. Surprisingly, HISS suppressed LTP in CA1 neurons in slices from Wistar rats that did not present any seizure, and inhibited LTP in slices from Wistar rats with only midbrain seizures. However HISS had no effect on LTP in CA1 neurons from slices of WARs. Interestingly HISS did not alter spatial navigation and memory in both strains. These findings show that repeated high-intensity sound stimulation prevent LTP of Schaffer-CA1 synapses from Wistar rats, without affecting spatial memory. This effect was not seen in hippocampi from audiogenic seizure-prone WARs. In WARs the link between auditory stimulation and hippocampal LTP seems to be disrupted which could be relevant for the susceptibility to seizures in this strain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Tyrosol and Its Analogues Inhibit Alpha-Melanocyte-Stimulating Hormone Induced Melanogenesis

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Wen

    2013-11-01

    Full Text Available Melanin is responsible for skin color and plays a major role in defending against harmful external factors such as ultraviolet (UV irradiation. Tyrosinase is responsible for the critical steps of melanogenesis, including the rate-limiting step of tyrosine hydroxylation. The mechanisms of action of skin hypopigmenting agents are thought to be based on the ability of a given agent to inhibit the activity of tyrosinase and, hence, down regulate melanin synthesis. Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of tyrosol and its analogues on melanin synthesis. We found that treatment of B16F0 cells to tyrosol (1, 4-hydroxyphenylacetic acid (5, 3-hydroxyphenylacetic acid (6, 2-hydroxyphenylacetic acid (7, or salidroside (11 resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1, 4-hydroxyphenylacetic acid (5 and 2-hydroxyphenylacetic acid (7 suppressed MC1R expression. Tyrosol (1, 4-hydroxyphenylacetic acid (5, 3-hydroxyphenylacetic acid (6, and 2-hydroxyphenylacetic acid (7 inhibited α-MSH induced TRP-1 expression, but salidroside (11 did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of tyrosol (1, 4-hydroxyphenylacetic acid (5, 3-hydroxyphenylacetic acid (6, and 2-hydroxyphenylacetic acid (7 at concentrations below 4 mM and salidroside (11 at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. Our results suggest that tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents.

  18. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-01-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [ 3 H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [ 3 H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [ 3 H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone

  19. Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure.

    Science.gov (United States)

    Liu, Yang; Yang, Huiyun; Tang, Xiaohong; Bai, Wenwen; Wang, Guolin; Tian, Xin

    2016-09-01

    Sevoflurane might be harmful to the developing brain. Therefore, it is essential to reverse sevoflurane-induced brain injury. This study aimed to determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) can regulate L-type Ca(2+) channel activity, which is inhibited by early sevoflurane exposure. Rats were randomly divided into three groups: control, sevoflurane, and rTMS groups. A Whole-cell patch clamp technique was applied to record L-type Ca(2+) channel currents. The I-V curve, steady-state activation and inactivation curves were studied in rats of each group at different ages (1 week, 2 weeks, 3 weeks, 4 weeks and 5 weeks old). In the control group, L-type Ca(2+) channel current density significantly increased from week 2 to week 3. Compared with the control group, L-type Ca(2+) channel currents of rats in the sevoflurane group were significantly inhibited from week 1 to week 3. Activation curves of L-type Ca(2+) channel shifted significantly towards depolarization at week 1 and week 2. Moreover, steady-state inactivation curves shifted towards hyperpolarization from week 1 to week 3. Compared with the sevoflurane group, rTMS significantly increased L-type Ca(2+) channel currents at week 2 and week 3. Activation curves of L-type Ca(2+) channel significantly shifted towards hyperpolarization at week 2. Meanwhile, steady-state inactivation curves significantly shifted towards depolarization at week 2. The period between week 2 and week 3 is critical for the development of L-type Ca(2+) channels. Early sevoflurane exposure inhibits L-type Ca(2+) channel activity and rTMS can regulate L-type Ca(2+) channel activity inhibited by sevoflurane. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The neuroleptic chlorpromazine inhibits the cationic and stimulates the anionic phospholipid precursor synthesis in human lymphocytes.

    Science.gov (United States)

    Staub, M; Stenger, A; Sumeg, R; Spasokoukotskaja, T; Fairbanks, L D; Simmonds, H A; Keszler, G

    2006-01-01

    The widely used neuroleptic drug chlorpromazine (CPZ) influences membrane functions at the levels of ionic channels and receptors as shown. Here we show the effect of short term treatments by CPZ (30 microM), on the nucleotide-containing phospholipid precursors in human lymphocyte primary cultures. During 60 minutes incubation of the cells, the CDP-ethanolamine (CDP-EA) content was only slightly reduced (87 to 76 pmol/10(6) cells), the amount of CDP-choline (CDP-Ch) was inhibited totally (from 25 to 0 pmol) upon the treatment with 30 microM CPZ under the same conditions. It has been shown earlier, that dCTP can be used as well as CTP for biosynthesis of phospholipids. Thus, the separation of the corresponding ribo- and deoxyribo-liponucleotides was developed. CPZ almost completely inhibited the synthesis of both dCDP-EA and dCDP-Ch under the same conditions The synthesis of the activated liponucleotide precursors, can be measured by incorporation of extracellular 14C-dCyt into both dCDP-EA and dCDP-Ch, as shown earlier. While the cationic deoxyribo-liponucleotide content (dCDP-Ch, dCDP-EA) was decreased, the labelling of the anionic phospholipid precursor dCDP-diacylglycerol (dCDP-DAG) was enhanced several times, it could be labelled only in the presence of CPZ from 14C-dCyd. Thus, a principal disturbance of the membrane phospholipid synthesis is presented (i.e., inhibition of the cationic and enhancement of the anionic dCDP-DAG synthesis). This profound influence on the membrane phospholipids by chlorpromazine, might be the primary effect that contributes to the wide spectrum of CPZ effects on neuronal cells.

  1. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles

    Czech Academy of Sciences Publication Activity Database

    Orecna, M.; De Paoli, S. H.; Janoušková, Olga; Tegegn, T. Z.; Filipová, M.; Bonevich, J. E.; Holada, K.; Simak, J.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 939-948 ISSN 1549-9634 Institutional support: RVO:61389013 Keywords : carbon nanotubes * autophagy * bafilomycin A1 Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.155, year: 2014

  2. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  3. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  4. 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Herrero-Garcia, Erika; Garzia, Aitor; Cordobés, Shandra; Espeso, Eduardo A; Ugalde, Unai

    2011-01-01

    Germination of Aspergillus nidulans conidia in liquid cultures was progressively inhibited at inoculum loads above 1×10(5)conidiamL(-1). High conidial densities also inhibited growth of neighbouring mycelia. The eight-carbon oxylipin 1-octen-3-ol was identified as the main inhibitor in a fraction also containing 3-octanone and 3-octanol. These three oxylipins also increased the conidiation rate of dark-grown surface cultures, but had no effect on liquid cultures. 3-octanone was the most conidiogenic compound. The action of 3-octanone required functional forms of developmental activators fluG, flbB-D and brlA, and was not additive to the conidiogenic effect of stress stimuli such as osmotic stress or carbon starvation. Oxylipins were produced shortly after hyphae made contact with the atmosphere and were most effective on aerial mycelia, indicating that they perform their signalling function in the gas phase. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test...... stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the “hot-spot” of the tongue motor cortex and motor evoked potentials (MEPs) were.......042) in study 1. In study 2, there was a significant effect of ISI (PICF in the tongue motor cortex....

  6. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.

    Science.gov (United States)

    Mateo, Celine; Avermann, Michael; Gentet, Luc J; Zhang, Feng; Deisseroth, Karl; Petersen, Carl C H

    2011-10-11

    Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of optogenetic stimulation with the precision of whole-cell recordings from postsynaptic excitatory glutamatergic neurons and GFP-labeled inhibitory GABAergic neurons targeted through two-photon microscopy. Channelrhodopsin-2 (ChR2) stimulation of excitatory layer 2/3 barrel cortex neurons evoked larger and faster depolarizing postsynaptic potentials and more synaptically driven action potentials in fast-spiking (FS) GABAergic neurons compared to both non-fast-spiking (NFS) GABAergic neurons and postsynaptic excitatory pyramidal neurons located within the same neocortical microcircuit. The number of action potentials evoked in ChR2-expressing neurons showed low trial-to-trial variability, but postsynaptic responses varied strongly with near-linear dependence upon spontaneously driven changes in prestimulus membrane potential. Postsynaptic responses in excitatory neurons had reversal potentials, which were hyperpolarized relative to action potential threshold and were therefore inhibitory. Reversal potentials measured in postsynaptic GABAergic neurons were close to action potential threshold. Postsynaptic inhibitory neurons preferentially fired synaptically driven action potentials from spontaneously depolarized network states, with stronger state-dependent modulation in NFS GABAergic neurons compared to FS GABAergic neurons. Inhibitory neurons appear to dominate neocortical microcircuit function, receiving stronger local excitatory synaptic input and firing more action potentials compared to excitatory neurons. In mouse layer 2/3 barrel cortex, we propose that strong state

  7. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M

    2013-01-01

    Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal...... resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent...... sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause...

  8. Aqueous extracts of Cimicifuga racemosa and phenolcarboxylic constituents inhibit production of proinflammatory cytokines in LPS-stimulated human whole blood.

    Science.gov (United States)

    Schmid, Diethart; Woehs, Florian; Svoboda, Martin; Thalhammer, Theresia; Chiba, Peter; Moeslinger, Thomas

    2009-11-01

    Cimicifuga racemosa (black cohosh) is commonly used in traditional medicines as treatment for menopausal symptoms and as an antiinflammatory remedy. To clarify the mechanism of action and active principle for the antiinflammatory action, the effects of aqueous C. racemosa root extracts (CRE) and its major constituents on the release of the proinflammatory cytokines IL-6, TNF-alpha, IFN-gamma, and the chemokine IL-8 were investigated in lipopolysaccharide (LPS)-stimulated whole blood of healthy volunteers. CRE (3 microg/microL and 6 microg/microL) reduced LPS-induced release of IL-6 and TNF-alpha in a concentration- and time-dependent manner and almost completely blocked release of IFN-gamma into the plasma supernatant. Except for IFN-gamma, these effects were attenuated at longer incubation periods. IL-8 secretion was stimulated by CRE. As shown by quantitative real-time RT-PCR, effects on cytokines were based on preceding changes in mRNA levels except for IL-8. According to their content in CRE, the phenolcarboxylic compounds caffeic acid, ferulic acid, and isoferulic acid, as well as the triterpene glycosides 23-epi-26-deoxyactein and cimigenol-3-O-xyloside, were tested at representative concentrations. Among these, isoferulic acid was the prominent active principle in CRE, responsible for the observed inhibition of IL-6, TNF-alpha, and IFN-gamma, but not for IL-8 stimulation. The effect of this compound may explain the antiinflammatory activities of CRE and its beneficial actions in rheumatism and other inflammatory diseases.

  9. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression

    Science.gov (United States)

    Jeong, B-C; Kang, I-H; Hwang, Y-C; Kim, S-H; Koh, J-T

    2014-01-01

    Osteoblasts and adipocytes are differentiated from common mesenchymal stem cells (MSCs) in processes which are tightly controlled by various growth factors, signaling molecules, transcriptional factors and microRNAs. Recently, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) was identified as a critical regulator of MSC fate. In the present study, we aimed to identify some microRNAs (miR), which target COUP-TFII, and to determine the effects on MSCs fate. During osteoblastic or adipocytic differentiation from MSCs lineage cells, miR-194 expression was found to be reversal. In the cultures of mesenchymal C3H10T1/2 and primary bone marrow stromal cells, osteogenic stimuli increased miR-194 expression with accompanying decreases in COUP-TFII expression, whereas adipogenic stimuli reduced miR-194 expression with accompanying increases in COUP-TFII expression. A luciferase assay with COUP-TFII 3′-untranslated region (UTR) reporter plasmid, including the miR-194 binding sequences, showed that the introduction of miR-194 reduced the luciferase activity. However, it did not affect the activity of mutated COUP-TFII 3′-UTR reporter. Enforced expression of miR-194 significantly enhanced osteoblast differentiation, but inhibited adipocyte differentiation by decreasing COUP-TFII mRNA and protein levels. In contrast, inhibition of the endogenous miR-194 reduced matrix mineralization in the MSCs cultures, promoting the formation of lipid droplets by rescuing COUP-TFII expression. Furthermore, overexpression of COUP-TFII reversed the effects of miR-194 on the cell fates. Taken together, our results showed that miR-194 acts as a critical regulator of COUP-TFII, and can determinate the fate of MSCs to differentiate into osteoblasts and adipocytes. This suggests that miR-194 and COUP-TFII may be good target molecules for controlling bone and metabolic diseases. PMID:25412310

  10. N-Phenethyl caffeamide and photodamage: protecting skin by inhibiting type I procollagen degradation and stimulating collagen synthesis.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chen, Chien-Wen; Lin, Tzu-Yu; Kuo, Yueh-Hsiung

    2014-10-01

    Skin is mainly damaged by genetic and environmental factors such as ultraviolet (UV) light and pollutants. UV light is a well-known factor that causes various types of skin damage and premature aging. Reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases that break down type I collagen. This study investigated the antioxidant and antiphotodamage activity and mechanisms of N-phenethyl caffeamide (K36) in human skin fibroblasts. The results indicated that K36 demonstrated strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, which dose-dependently reduced the production of UVB-induced intracellular ROS in human dermal fibroblasts. K36 prevented UVB-irradiation-induced type I collagen degradation by inhibiting the expression of matrix metalloproteins-1, -3, and -9 and the phosphorylation of mitogen-activated protein (MAP) kinases. Furthermore, K36 elevated collagen synthesis in skin fibroblasts by inhibiting UVB-induced Smad7 overexpression. K36 downregulated the expression of the transcription factor, activator protein-1 (AP-1). Our results indicated that K36 exhibited antioxidant properties and prevented skin collagen degradation caused by UV exposure and the stimulation of collagen synthesis, which suggests the potential use of K36 in preventing photodamage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2014-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134

  12. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  13. Spatio-temporal characteristics of inhibition mapped by optical stimulation in mouse olfactory bulb

    Directory of Open Access Journals (Sweden)

    Alexander eLehmann

    2016-03-01

    Full Text Available Mitral and tufted cells (MTCs of the mammalian olfactory bulb (OB are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than 5 glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics.

  14. High-dose erythropoietin inhibits apoptosis and stimulates proliferation in neonatal rat intestine.

    Science.gov (United States)

    McPherson, Ronald J; Juul, Sandra E

    2007-10-01

    Erythropoietin (Epo) receptors are widely expressed in the small bowel of neonatal rats and evidence suggests Epo has important trophic effects in developing bowel. To compliment in vitro data, we directly examine in vivo the hypotheses that systemic Epo treatment can promote cell division and enterocyte migration, and arrest apoptosis in the ileum of neonatal rats. Epo (5000 U/kg s.c.) or vehicle treatments were given to one week old Sprague-Dawley rats (n = 86) along with timed injections of the thymidine analog 5-bromo-2-deoxyuridine (BrdU, 50mg/kg s.c.) to label DNA synthesis and track newly proliferating cells. To characterize the time course of effects, animals were killed at scheduled times from 30 min to 24 h after treatment. BrdU-containing cells were immunostained and counted in intestinal crypts, villi, and muscle wall of ileum. Effects of Epo on apoptosis were analyzed by TUNEL staining. Calibrated measurements were made to determine the density or relative proportion of BrdU- and TUNEL-positive cells. Systemic high-dose Epo promoted cell division in intestinal smooth muscle and enterocytes, stimulated migration of intestinal epithelial cells, and arrested apoptosis of enterocytes at the villous tips. These data provide in vivo evidence that Epo functions trophically in developing intestine tissues.

  15. Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte- stimulating hormone.

    Science.gov (United States)

    Delgado Hernàndez, R; Demitri, M T; Carlin, A; Meazza, C; Villa, P; Ghezzi, P; Lipton, J M; Catania, A

    1999-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) reduces fever and acute inflammation in the skin when administered centrally. The aim of the present research was to determine whether central alpha-MSH can also reduce signs of systemic inflammation in mice with endotoxemia. Increases in serum tumor necrosis factor-alpha and nitric oxide, induced by intraperitoneal administration of endotoxin, were modulated by central injection of a small concentration of alpha-MSH. Inducible nitric oxide synthase (iNOS) activity and iNOS mRNA in lungs and liver were likewise modulated by central alpha-MSH. Lung myeloperoxidase activity, a marker of neutrophil infiltration, was increased in endotoxemic mice; the increase was significantly less in lungs of mice treated with central alpha-MSH. Intraperitoneal administration of the small dose of alpha-MSH that was effective centrally did not alter any of the markers of inflammation. In experiments using immunoneutralization of central alpha-MSH, we tested the idea that endogenous peptide induced within the brain during systemic inflammation modulates host responses to endotoxic challenge in peripheral tissues. The data showed that proinflammatory agents induced by endotoxin in the circulation, lungs, and liver were significantly greater after blockade of central alpha-MSH. The results suggest that anti-inflammatory influences of neural origin that are triggered by alpha-MSH could be used to treat systemic inflammation.

  16. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds

    Science.gov (United States)

    Lehtovirta-Morley, Laura E; Ge, Chaorong; Ross, Jenna; Yao, Huaiying; Nicol, Graeme W; Prosser, James I

    2014-01-01

    Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from soil, Nitrososphaera viennensis was the sole terrestrial AOA in pure culture and requires pyruvate for growth in the laboratory. Here, we describe isolation in pure culture and characterisation of two acidophilic terrestrial AOA representing the Candidatus genus Nitrosotalea and their responses to organic acids. Interestingly, despite their close phylogenetic relatedness, the two Nitrosotalea strains exhibited differences in physiological features, including specific growth rate, temperature preference and to an extent, response to organic compounds. In contrast to N. viennensis, both Nitrosotalea isolates were inhibited by pyruvate but their growth yield increased in the presence of oxaloacetate. This study demonstrates physiological diversity within AOA species and between different AOA genera. Different preferences for organic compounds potentially influence the favoured localisation of ammonia oxidisers within the soil and the structure of ammonia-oxidising communities in terrestrial ecosystems. PMID:24909965

  17. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells

    Science.gov (United States)

    Befani, Christina; Mylonis, Ilias; Gkotinakou, Ioanna-Maria; Georgoulias, Panagiotis; Hu, Cheng-Jun; Simos, George; Liakos, Panagiotis

    2013-01-01

    Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators. PMID:23958427

  18. Nanotube junctions

    Science.gov (United States)

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  19. Inorganic nanotubes.

    Science.gov (United States)

    Tenne, Reshef; Rao, C N R

    2004-10-15

    Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.

  20. Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition

    Directory of Open Access Journals (Sweden)

    Aboukhatwa Marwa A

    2010-01-01

    Full Text Available Abstract Background Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol. Results Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with p-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues. Conclusion Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence

  1. Naringenin inhibits the growth and stimulates the lignification of soybean root

    Directory of Open Access Journals (Sweden)

    Graciene de Souza Bido

    2010-06-01

    Full Text Available The flavanone naringenin, an intermediate in flavonoid biosynthesis, was tested for its effect on root growth, phenylalanine ammonia-lyase (PAL and peroxidase (POD activities, as well as phenolic compounds and lignin contents in soybean (Glycine max L. Merrill seedlings. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0, with or without 0.1 to 0.4 mM naringenin in a growth chamber (25°C, 12-h photoperiod, irradiance of 280 µmol m-2 s-1 for 24 h. Inhibitory effects on root growth (length, weight, cell viability, PAL and soluble POD activities were detected after naringenin treatments. These effects were associated with stimulatory activity of the cell wall-bound POD followed by an increase in the lignin contents, suggesting that naringenin-induced inhibition in soybean roots could be due to the lignification process.Os efeitos de naringenina, um intermediário da biossíntese de flavonóides, foram avaliados sobre o crescimento das raízes, as atividades da fenilalanina amônia liase (PAL e peroxidases, bem como sobre os teores de compostos fenólicos e de lignina em plântulas de soja (Glycine max L. Merrill. Plântulas de três dias foram cultivadas em solução nutritiva de Hoagland, meia-força (pH 6,0, contendo ou não, naringenina 0,1 a 0,4 mM, em uma câmara de germinação (25°C, fotoperíodo de 12 h, 280 µmol m-2 s-1 durante 24 h. Efeitos inibitórios no crescimento das raízes (comprimento, massa e viabilidade celular e nas atividades da PAL e POD solúvel foram constatados após os tratamentos com naringenina. Estes efeitos foram associados com atividade estimulatória da POD ligada à parede celular, seguido por aumento nos teores de lignina, sugerindo que a inibição do crescimento das raízes pode ser devido ao processo de lignificação.

  2. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  3. Activation of neutrophils and inhibition of the proinflammatory cytokine response by endogenous granulocyte colony-stimulating factor in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    Knapp, Sylvia; Hareng, Lars; Rijneveld, Anita W.; Bresser, Paul; van der Zee, Jaring S.; Florquin, Sandrine; Hartung, Thomas; van der Poll, Tom

    2004-01-01

    Granulocyte colony-stimulating factor (G-CSF) is considered to improve host defense during infection, via increased recruitment of and enhanced performance of neutrophils and subsequent inhibition of potentially harmful proinflammatory mediators. The present study sought to determine the role of

  4. Inhibition of renal brush border phosphate transport and stimulation of renal gluconeogenesis by cyclic amp and parathyroid hormone.

    Science.gov (United States)

    Kempson, S A; Kowalski, J C; Puschett, J B

    1983-05-01

    The aims of the study were to determine whether 8-bromo-cyclic AMP (8BcAMP) in vivo mimics the inhibitory action of parathyroid hormone (PTH) on phosphate transport across the brush border membrane (BBM) of the renal proximal tubule, and to examine whether changes in BBM transport are accompanied by changes in the rate of renal gluconeogenesis. Thyroparathyroidectomized dogs were anesthetized and equilibrated, and control urine collections were obtained prior to removing the left kidney. Subsequent intravenous infusion of 8BcAMP at 50 mg/hr for 2 hr increased fractional excretion of phosphate from 4 +/- 1 (controls) to 29 +/- 4% (P less than 0.001) without changing glomerular filtration. In BBM vesicles isolated from the renal cortex, the initial Na+-dependent transport of phosphate was decreased from 747 +/- 135 (controls) to 564 +/- 126 pmoles per mg per 0.25 min after 8BcAMP (P less than 0.025), but Na+-independent phosphate uptake and Na+-dependent L-proline uptake were not changed significantly. Renal gluconeogenesis in the same animals was increased from 2.5 +/- 0.3 (controls) to 5.3 +/- 0.5 mumoles glucose per g tissue per hr after infusion of 8BcAMP (P less than 0.001). Infusion of PTH, like 8BcAMP, inhibited BBM phosphate transport and stimulated renal gluconeogenesis. We conclude that the inhibitory action of cyclic AMP and PTH on BBM phosphate transport is accompanied by stimulation of gluconeogenesis which suggests, indirectly, that changes in gluconeogenesis may be part of the intracellular mechanism for regulating BBM phosphate uptake in response to certain stimuli.

  5. Inhibition of IL-2R and SLA class II expression on stimulated lymphocytes by a suppressor activity found in homogenates of African swine fever virus infected cultures.

    Science.gov (United States)

    Canals, A; Domínquez, J; Tomillo, J; Babín, M; Alonso, F

    1995-01-01

    Virus free supernatants (VFS) obtained by ultracentrifugation of homogenates of African swine fever (ASF) virus infected cultures inhibited the proliferative response and the expression in peripheral blood mononuclear cells of two activation molecules, the IL-2 receptor (IL-2R) and the swine MHC class II antigens (SLA II), induced by several stimuli (lectins, PMA plus the calcium ionophore A23187 or specific antigen). This inhibition was time dependent: no effect was seen on IL-2R expression when VFS was added after 48 h, when the expression of this molecule reached its maximum. However at this time the proliferative response was still inhibited. The presence of VFS in the cultures was necessary to inhibit both the IL-2R expression and the proliferation of cells. In these conditions the addition of exogenous IL-2 to the cultures failed to restore the IL-2R expression and the proliferation shown by control stimulated cells. Furthermore, the IL-2 activity found in supernatants from cell cultures stimulated with Con A in the presence of VFS was even higher than in cultures stimulated without VFS. The inhibition observed suggests an important impairment of host immunocompetence in ASF infected swine.

  6. Hexane fraction from Laminaria japonica exerts anti-inflammatory effects on lipopolysaccharide-stimulated RAW 264.7 macrophages via inhibiting NF-kappaB pathway.

    Science.gov (United States)

    Lee, Ji-Young; Lee, Min-Sup; Choi, Hee-Jeon; Choi, Ji-Woong; Shin, Taisun; Woo, Hee-Chul; Kim, Jae-Il; Kim, Hyeung-Rak

    2013-02-01

    Laminaria japonica is a representative marine brown alga used as a culinary item in East Asia. L. japonica extract was shown to exert various biological activities; however, its anti-inflammatory activity has not been reported. The aim of this study is to investigate the molecular mechanisms underlying its anti-inflammatory action. Anti-inflammatory mechanisms of L. japonica n-hexane fraction (LHF) were assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. An anti-inflammatory compound isolated from LHF by reverse-phase chromatography was identified using nuclear magnetic resonance (NMR) spectroscopy. Our results indicate that LHF significantly inhibited LPS-stimulated nitric oxide (NO) and prostaglandin E(2) (PGE(2)) secretion in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) with no cytotoxicity. As results, levels of pro-inflammatory cytokines were significantly reduced by pretreatment of LHF in LPS-stimulated RAW 264.7 cells. Treatment of LHF strongly suppressed nuclear factor-κB (NF-κB) promoter-driven expression and nuclear translocation of NF-κB by preventing proteolytic degradation of inhibitor of κB (IκB)-α in LPS-stimulated RAW 264.7 cells. Moreover, LHF inhibited the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. One of the anti-inflammatory compounds was isolated from LHF and identified as fucoxanthin. These results indicate that the LHF-mediated inhibition of NO and PGE(2) secretion in LPS-stimulated macrophages is regulated by NF-κB inactivation through inhibition of IκB-α, MAPKs, and Akt phosphorylation. LHF may be considered as a functional food candidate for the prevention or treatment of inflammatory diseases.

  7. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  8. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    International Nuclear Information System (INIS)

    Yoon, Jeongyeon; Ryoo, Sungwoo

    2013-01-01

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner

  9. Preirradiation of medium induces a subsequent stimulation or inhibition of growth according to the physiological state in Synechococcus lividus in culture

    International Nuclear Information System (INIS)

    Conter, A.

    1987-01-01

    The proliferation of Synechococcus lividus cells grown in preirradiated medium was compared with the proliferation of cells grown in a shielded or freshly prepared medium. Aging of medium in a shielded chamber resulted in a slight inhibiting effect on growth in every phase of the cell cycle which was used. Preirradiation of medium resulted in a stimulation of growth observed on Day 7 in cultures inoculated with cells selected in the deceleration phase and an inhibition of growth in cultures inoculated with exponentially growing cells. Addition of catalase (100 U X ml-1) counteracted the stimulating effect but did not modify the inhibiting effect induced by preirradiated medium. Results demonstrated the indirect effect of low doses of irradiation, implying the presence of hydrogen peroxide in radiostimulation and other radioproducts in the inhibitory effect

  10. Novel compound from Polygonum multiflorum inhibits inflammatory response in LPS-stimulated microglia by upregulating AMPK/Nrf2 pathways.

    Science.gov (United States)

    Park, Sun Young; Jin, Mei Ling; Chae, Seon Yeong; Ko, Min Jung; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2016-11-01

    Polygonum multiflorum extracts are known to improve memory and learning ability, and have neuroprotective and anti-aging activity. However, its function and the underlying mechanisms in neuroinflammation-mediated neurodegenerative disease remain poorly understood. In the present study, we investigated the anti-neuroinflammatory effects of several compounds from P. multiflorum, and found a novel compound, CRPE55IB. The CRPE55IB-induced suppression of NO and PGE 2 production correlated with inhibition of iNOS and COX-2 protein expression and promoter activity in lipopolysaccharide (LPS)-stimulated microglia. CRPE55IB also reduced the production of pro-inflammatory cytokines (TNF-α and IL-6) induced by LPS. Furthermore, investigation of the molecular mechanism indicated that CRPE55IB inhibited LPS-induced NF-κB activation by inactivating phosphorylation of IKKα/β, and phosphorylation and degradation of IκBα. We further found that CRPE55IB inhibited the phosphorylation of ERK and JNK at a lower concentration than that for p38 MAPK. Further experiments revealed that CRPE55IB treatment considerably increased the activation of Nrf2/ARE, and the expression of its target genes, including HO-1 and NQO1. Moreover, the Knockdown of Nrf2, HO-1, and NQO1 by siRNA abrogated the inhibitory effect of CRPE55IB on iNOS and COX-2 promoter activity. CRPE55IB also induced phosphorylation of AMPK/LKB/CaMKII in microglia. Analysis using a specific inhibitor of AMPK demonstrated that AMPK activation was involved in CRPE55IB-induced HO-1 and NQO1 expression. In addition, the CRPE55IB-induced anti-neuroinflammatory effect was abrogated by a specific inhibitor of AMPK, indicating the important role of AMPK in CRPE55IB-induced anti-neuroinflammation. Collectively, these results demonstrate that CRPE55IB exerts anti-neuroinflammatory effects against LPS via the Nrf2/AMPK signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Serag, Maged F.

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  12. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    Science.gov (United States)

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  13. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    Science.gov (United States)

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.

  14. Oral beta-stimulants can inhibit passive cutaneous anaphylaxis in rats through an indirect inhibitory mechanism: possible involvement of afferent and efferent nervous system via gastric beta2-adrenoceptor stimulation.

    Science.gov (United States)

    Shibata, H; Minami, E; Hirata, R; Nabe, T; Kohno, S

    2000-12-01

    We previously demonstrated that oral l-ephedrine exerts an extremely rapid (within 20 s) inhibition of 48-h passive cutaneous anaphylaxis reaction (PCA) in rats by a possibly unidentified mode of action. In the present experiments, we elucidated the mechanism of the PCA inhibition by l-ephedrine using adrenoceptor agonists and antagonists. Rat antiserum was prepared with dinitrophenylated Ascaris suum extract + Bordetella pertussis. Passively skin-sensitised Wistar rats were mainly used. l-Ephedrine, and adrenoceptor agonists and antagonists were orally administered immediately before PCA provocation. Catecholamine depleting (6-hydroxydopamine, 6-OHDA), amine depleting (reserpine) or ganglion blocking (hexamethonium) agent was intraperitoneally or intravenously administered before the provocation. The effects of the drugs on PCA were assessed by inhibition of the dye leakage. beta-(propranolol) and beta2-(butoxamine) blocking agents reduced the inhibition of PCA by l-ephedrine, while the inhibition was not altered by either an a-blocking agent (phentolamine) or a beta1-(atenolol) selective antagonist. On the other hand, beta-(isoproterenol) and beta2-selective (salbutamol) agonists showed extremely rapid inhibition of PCA. However, the beta-selective agonist (dobutamine) had no effect on the reaction. The pretreatment with hexamethonium, reserpine or 6-OH-DA substantially attenuated the inhibitory effect of l-ephedrine on PCA. The results strongly suggest that beta2-adrenoceptors locate in the stomach and that their receptor excitement finally may lead to the inhibition of PCA via the stimulation of the central and peripheral nervous systems.

  15. Aged human mesenchymal stem cells: the duration of bone morphogenetic protein-2 stimulation determines induction or inhibition of osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Jostein Heggebö

    2014-06-01

    Full Text Available Bone morphogenetic protein 2 (BMP-2 is a potent osteoinductive cytokine and a growing number of in vitro studies analyze its effects on human mesenchymal stem cells (hMSC derived from aged or osteoporotic donors. In these studies the exact quantification of osteogenic differentiation capacity is of fundamental interest. Nevertheless, the experimental conditions for osteogenic differentiation of aged hMSC have not been evaluated systematically and vary to a considerable extend. Aim of the study was to assess the influence of cell density, osteogenic differentiation media (ODM change intervals and duration of BMP-2 stimulation on osteoinduction. Furthermore, time series were carried out for osteogenic differentiation and BMP-2 concentration in ODM/BMP-2 cell culture supernatants. The experiments were performed using hMSC isolated from femoral heads of aged patients undergoing hip joint replacement. ODM change intervals of 96 hours resulted in significantly higher calcium deposition compared to shorter intervals. A cell density of 80% prior to stimulation led to stronger osteoinduction compared to higher cell densities. In ODM, aged hMSC showed a significant induction of calcium deposition after 9 days. Added to ODM, BMP-2 showed a stable concentration in the cell culture supernatants for at least 96 hours. Addition of BMP-2 to ODM for the initial 4 days led to a significantly higher induction of osteogenic differentiation compared to ODM alone. On the other hand, addition of BMP-2 for 21 days almost abrogated the osteoinductive effect of ODM. We could demonstrate that the factors investigated have a substantial impact on the extent of osteogenic differentiation of aged hMSC. Consequently, it is of upmost importance to standardize the experimental conditions in order to enable comparability between different studies. We here define standard conditions for osteogenic differentiation in regard to the specific features of aged hMSC. The finding that

  16. Aged Human Mesenchymal Stem Cells: The Duration of Bone Morphogenetic Protein-2 Stimulation Determines Induction or Inhibition of Osteogenic Differentiation

    Science.gov (United States)

    Heggebö, Jostein; Haasters, Florian; Polzer, Hans; Schwarz, Christina; Saller, Maximilian Michael; Mutschler, Wolf; Schieker, Matthias; Prall, Wolf Christian

    2014-01-01

    Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine and a growing number of in vitro studies analyze its effects on human mesenchymal stem cells (hMSC) derived from aged or osteoporotic donors. In these studies the exact quantification of osteogenic differentiation capacity is of fundamental interest. Nevertheless, the experimental conditions for osteogenic differentiation of aged hMSC have not been evaluated systematically and vary to a considerable extend. Aim of the study was to assess the influence of cell density, osteogenic differentiation media (ODM) change intervals and duration of BMP-2 stimulation on osteoinduction. Furthermore, time series were carried out for osteogenic differentiation and BMP-2 concentration in ODM/BMP-2 cell culture supernatants. The experiments were performed using hMSC isolated from femoral heads of aged patients undergoing hip joint replacement. ODM change intervals of 96 hours resulted in significantly higher calcium deposition compared to shorter intervals. A cell density of 80% prior to stimulation led to stronger osteoinduction compared to higher cell densities. In ODM, aged hMSC showed a significant induction of calcium deposition after 9 days. Added to ODM, BMP-2 showed a stable concentration in the cell culture supernatants for at least 96 hours. Addition of BMP-2 to ODM for the initial 4 days led to a significantly higher induction of osteogenic differentiation compared to ODM alone. On the other hand, addition of BMP-2 for 21 days almost abrogated the osteoinductive effect of ODM. We could demonstrate that the factors investigated have a substantial impact on the extent of osteogenic differentiation of aged hMSC. Consequently, it is of upmost importance to standardize the experimental conditions in order to enable comparability between different studies. We here define standard conditions for osteogenic differentiation in regard to the specific features of aged hMSC. The finding that BMP-2 induces or

  17. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.

    Science.gov (United States)

    Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun

    2015-05-01

    Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.

  18. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism

    OpenAIRE

    Cawthorn, William P.; Bree, Adam J.; Yao, Yao; Du, Baowen; Hemati, Nahid; Martinez-Santibañez, Gabriel; MacDougald, Ormond A.

    2011-01-01

    Wnt10b is an established regulator of mesenchymal stem cell (MSC) fate that inhibits adipogenesis and stimulates osteoblastogenesis, thereby impacting bone mass in vivo. However, downstream mechanisms through which Wnt10b exerts these effects are poorly understood. Moreover, whether other endogenous Wnt ligands also modulate MSC fate remains to be fully addressed. In this study, we identify Wnt6 and Wnt10a as additional Wnt family members that, like Wnt10b, are downregulated during developmen...

  19. Transcranial alternating current stimulation at beta frequency: lack of immediate effects on excitation and interhemispheric inhibition of the human motor cortex

    Directory of Open Access Journals (Sweden)

    Viola Rjosk

    2016-11-01

    Full Text Available Transcranial alternating current stimulation (tACS is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1 or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI, remains elusive. Transcranial magnetic stimulation (TMS is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (MEP size, RMT, IHI from left to right M1 and vice versa was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT and/or interhemispheric inhibition (IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and interhemispheric inhibition.

  20. Ketamine inhibits tumor necrosis factor secretion by RAW264.7 murine macrophages stimulated with antibiotic-exposed strains of community-associated, methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Aguirre Carlos

    2011-01-01

    Full Text Available Abstract Background Infections caused by community-associated strains of methicillin-resistant Staphylococcus aureus (CA-MRSA are associated with a marked and prolonged host inflammatory response. In a sepsis simulation model, we tested whether the anesthetic ketamine inhibits the macrophage TNF response to antibiotic-exposed CA-MRSA bacteria via its antagonism of N-methyl-D-aspartate (NMDA receptors. RAW264.7 cells were stimulated for 18 hrs with 105 to 107 CFU/mL inocula of either of two prototypical CA-MRSA isolates, USA300 strain LAC and USA400 strain MW2, in the presence of either vancomycin or daptomycin. One hour before bacterial stimulation, ketamine was added with or without MK-801 (dizocilpine, a chemically unrelated non-competitive NMDA receptor antagonist, APV (D-2-amino-5-phosphono-valerate, a competitive NMDA receptor antagonist, NMDA, or combinations of these agents. Supernatants were collected and assayed for TNF concentration by ELISA. Results RAW264.7 cells exposed to either LAC or MW2 in the presence of daptomycin secreted less TNF than in the presence of vancomycin. The addition of ketamine inhibited macrophage TNF secretion after stimulation with either of the CA-MRSA isolates (LAC, MW2 in the presence of either antibiotic. The NMDA inhibitors, MK-801 and APV, also suppressed macrophage TNF secretion after stimulation with either of the antibiotic-exposed CA-MRSA isolates, and the effect was not additive or synergistic with ketamine. The addition of NMDA substrate augmented TNF secretion in response to the CA-MRSA bacteria, and the addition of APV suppressed the effect of NMDA in a dose-dependent fashion. Conclusions Ketamine inhibits TNF secretion by MRSA-stimulated RAW264.7 macrophages and the mechanism likely involves NMDA receptor antagonism. These findings may have therapeutic significance in MRSA sepsis.

  1. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  2. EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

    Directory of Open Access Journals (Sweden)

    Farnaz Barneh

    2013-01-01

    Full Text Available Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc. Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence. Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel. Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.

  3. An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat.

    Science.gov (United States)

    Pratt, Wayne E; Choi, Eugene; Guy, Elizabeth G

    2012-05-01

    The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-h intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N=6-9) were tested following bilateral inhibition of the STN with the GABA(A) receptor agonist muscimol (at 0-5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala², N-MePhe⁴, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-h feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-h PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-h DRL-20s reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inhibition of Pre-Supplementary Motor Area by Continuous Theta Burst Stimulation Leads to More Cautious Decision-making and More Efficient Sensory Evidence Integration.

    Science.gov (United States)

    Tosun, Tuğçe; Berkay, Dilara; Sack, Alexander T; Çakmak, Yusuf Ö; Balcı, Fuat

    2017-08-01

    Decisions are made based on the integration of available evidence. The noise in evidence accumulation leads to a particular speed-accuracy tradeoff in decision-making, which can be modulated and optimized by adaptive decision threshold setting. Given the effect of pre-SMA activity on striatal excitability, we hypothesized that the inhibition of pre-SMA would lead to higher decision thresholds and an increased accuracy bias. We used offline continuous theta burst stimulation to assess the effect of transient inhibition of the right pre-SMA on the decision processes in a free-response two-alternative forced-choice task within the drift diffusion model framework. Participants became more cautious and set higher decision thresholds following right pre-SMA inhibition compared with inhibition of the control site (vertex). Increased decision thresholds were accompanied by an accuracy bias with no effects on post-error choice behavior. Participants also exhibited higher drift rates as a result of pre-SMA inhibition compared with the vertex inhibition. These results, in line with the striatal theory of speed-accuracy tradeoff, provide evidence for the functional role of pre-SMA activity in decision threshold modulation. Our results also suggest that pre-SMA might be a part of the brain network associated with the sensory evidence integration.

  5. Anti-inflammatory effect of sinomenine by inhibition of pro-inflammatory mediators in PMA plus A23187-stimulated HMC-1 Cells.

    Science.gov (United States)

    Oh, Y C; Kang, O H; Kim, S B; Mun, S H; Park, C B; Kim, Y G; Kim, Y I; Lee, Y S; Han, S H; Keum, J H; Shin, D W; Ma, J Y; Kwon, D Y

    2012-09-01

    Sinomenine is an alkaloid compound and a prominent anti-inflammatory agent found in the root of the climbing plant Sinomenium acutum. However, its effects on the mechanism of human mast cell line (HMC)-1-mediated inflammation remained unknown. To provide insight into the biological effects of sinomenine, we examined its influence on the pro-inflammatory cytokine production in HMC-1 cells stimulated by phorbol 12-myristate-13-acetate (PMA) plus A23187 by evaluating the stimulated cells in the presence or absence of sinomenine. In the present study, the pro-inflammatory cytokine production was measured using ELISA, Reverse Transcription-polymerase chain reaction (RT-PCR) and nuclear factor (NF)-kappaB, mitogen-activated protein kinases (MAPKs) pathway activation, as determined by Western blot analysis. Also, cyclooxygenase (COX)-2 expression was measured through Western blot and RT-PCR analysis. Sinomenine inhibited the pro-inflammatory cytokine production induced by PMA plus A23187 in a dose-dependent manner. Furthermore, sinomenine inhibited the phosphorylations of extracellular signal-regulated kinase (ERK) and p38 MAPKs as well as the translocation of NF-kappaB p65 through reduced IkappaBalpha degradation. In addition, sinomenine suppressed COX-2 protein and mRNA expression dose-dependently. Taken together, the results of this study indicate that the anti-inflammatory effects of sinomenine may occur via the inhibition of pro-inflammatory cytokine and COX-2 production through the inhibition of MAPKs and NF-kappaB pathway activation by PMA plus A23187 stimulation in HMC-1 cells.

  6. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Directory of Open Access Journals (Sweden)

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  7. Calcium-sensing receptor stimulates Cl(-)- and SCFA-dependent but inhibits cAMP-dependent HCO3(-) secretion in colon.

    Science.gov (United States)

    Tang, Lieqi; Peng, Minzhi; Liu, Li; Chang, Wenhan; Binder, Henry J; Cheng, Sam X

    2015-05-15

    Colonic bicarbonate (HCO3(-)) secretion is a well-established physiological process that is closely linked to overall fluid and electrolyte movement in the mammalian colon. These present studies show that extracellular calcium-sensing receptor (CaSR), a fundamental mechanism for sensing and regulating ionic and nutrient compositions of extracellular milieu in the small and large intestine, regulates HCO3(-) secretion. Basal and induced HCO3(-) secretory responses to CaSR agonists were determined by pH stat techniques used in conjunction with short-circuit current measurements in mucosa from rat distal colon mounted in Ussing chambers. R568, a specific CaSR activator, stimulated lumen Cl(-)- and short-chain fatty acid (SCFA)-dependent HCO3(-) secretion but inhibited cyclic nucleotide-activated HCO3(-) secretion. Consequently, at physiological conditions (either at basal or during lumen acid challenge) when electroneutral Cl(-)/HCO3(-) and SCFA/HCO3(-) exchangers dominate, CaSR stimulates HCO3(-) secretion; in contrast, in experimental conditions that stimulate fluid and HCO3(-) secretion, e.g., when forskolin activates electrogenic cystic fibrosis transmembrane conductance regulator-mediated HCO3(-) conductance, CaSR activation inhibits HCO3(-) secretion. Corresponding changes in JHCO3 (μeq·h(-1)·cm(-2), absence vs. presence of R568) were 0.18 ± 0.03 vs. 0.31 ± 0.08 under basal nonstimulated conditions and 1.85 ± 0.23 vs. 0.45 ± 0.06 under forskolin-stimulated conditions. Similarly, activation of CaSR by R568 stimulated Cl(-)- and SCFA-dependent HCO3(-) secretion and inhibited cAMP-dependent HCO3(-) secretion in colon mucosa of wild-type mice; such effects were abolished in CaSR-null mice. These results suggest a new paradigm for regulation of intestinal ion transport in which HCO3(-) secretion may be fine-tuned by CaSR in accordance with nutrient availability and state of digestion and absorption. The ability of CaSR agonists to inhibit secretagogue

  8. Prostaglandin-mediated inhibition of PTH-stimulated β-catenin signaling in osteoblasts by bone marrow macrophages.

    Science.gov (United States)

    Estus, Thomas L; Choudhary, Shilpa; Pilbeam, Carol C

    2016-04-01

    Bone marrow macrophages (BMMs), in the presence of cyclooxygenase-2 (Cox2) produced PGE2, secrete an inhibitory factor in response to Rankl that blocks PTH-stimulated osteoblastic differentiation. This study was to determine if the inhibitory factor also blocks PTH-stimulated Wnt signaling. Primary calvarial osteoblasts (POBs) were co-cultured with conditioned medium (CM) from Rankl-treated wild type (WT) BMMs, which make the inhibitory factor, and Cox2 knockout (KO) BMMs, which do not. PTH induced cAMP production was blocked by WT CM but not by KO CM. In the presence of KO CM, PTH induced phosphorylation at β-catenin serine sites, ser552 and ser675, previously shown to be phosphorylated by protein kinase A (PKA). Phosphorylation was blocked by WT CM and by H89, a PKA inhibitor. PTH did not increase total β-catenin. PTH-stimulated transcription factor/lymphoid enhancer-binding factor response element activity in POBs was blocked by WT CM and by serum amyloid A (SAA), the human recombinant analog of murine Saa3, which has recently been shown to be the inhibitory factor. In POBs cultured with Cox2 KO CM, PTH increased expression of multiple genes associated with the anabolic actions of PTH and decreased expression of Wnt antagonists. This differential regulation of gene expression was not seen in POBs cultured with WT CM. These data highlight the ability of PTH to phosphorylate β-catenin directly via PKA and demonstrate the ability of a Cox2-dependent inhibitory factor, secreted by Rankl-stimulated BMMs, to abrogate PTH stimulated β-catenin signaling. Our results suggest that PTH can stimulate a novel negative feedback of its anabolic actions by stimulating Rankl and Cox2 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  10. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  11. Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae

    NARCIS (Netherlands)

    Schultz, M. J.; Speelman, P.; Hack, C. E.; Buurman, W. A.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Macrolides may influence the inflammatory response to an infection by mechanisms that are unrelated to their antimicrobial effect. Indeed, erythromycin and other macrolides inhibit cytokine production and induce degranulation of neutrophils in vitro. CXC chemokines are small chemotactic cytokines

  12. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes.

    Science.gov (United States)

    Pabbidi, M R; Ji, X; Maxwell, J T; Mignery, G A; Samarel, A M; Lipsius, S L

    2016-01-01

    We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate ICa,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of ICa,L in-PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in-PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCα, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of ICa,L in + LMN myocytes compared to control +LMN myocytes infected with Adv-βgal. In +LMN myocytes, zint-β2-AR stimulation of ICa,L was enhanced by adenoviral overexpression of wild-type cPLA2 and inhibited by double dn-cPLA2S505A/S515A mutant compared to control +LMN myocytes infected with Adv-βgal. In-PKA myocytes depletion of intracellular Ca2+ stores by 5 μM thapsigargin failed to inhibit zint-β2-AR stimulation of ICa,L via cPLA2. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of ICa,L in-PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCα/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the remodeling of

  13. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice.

    Science.gov (United States)

    Ryan, Michael J; Jackson, Janna R; Hao, Yanlei; Leonard, Stephen S; Alway, Stephen E

    2011-07-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time-release (2.5mg/day) allopurinol pellet, 7 days before the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for 3 consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral noncontracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal level of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase-3 activity, but it had no effect on other markers of mitochondrial-associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H₂O₂ levels, lipid peroxidation, and caspase-3 activity; prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione; prevented the increase in catalase and copper-zinc superoxide dismutase activities; and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    OpenAIRE

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random or...

  15. Disruption of microtubules in rat skeletal muscle does not inhibit insulin- or contraction-stimulated glucose transport

    DEFF Research Database (Denmark)

    Ai, Hua; Ralston, Evelyn; Lauritzen, Hans P M M

    2003-01-01

    found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for ...- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis...... or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant...

  16. Stimulation of accumbal GABAAreceptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Eudesmane-Type Sesquiterpene Lactones Inhibit Nuclear Translocation of the Nuclear Factor κB Subunit RelB in Response to a Lymphotoxin β Stimulation.

    Science.gov (United States)

    Quach, Hue Tu; Kondo, Tetsuya; Watanabe, Megumi; Tamura, Ryuichi; Yajima, Yoshiki; Sayama, Shinsei; Ando, Masayoshi; Kataoka, Takao

    2017-01-01

    The transcription factor nuclear factor κB (NF-κB) regulates various biological processes, including inflammatory responses. We previously reported that eudesmane-type sesquiterpene lactones inhibited multiple steps in the canonical NF-κB signaling pathway induced by tumor necrosis factor-α and interleukin-1α. In contrast, the biological activities of eudesmane-type sesquiterpene lactones on the non-canonical NF-κB signaling pathway remain unclear. In the present study, we found that (11S)-2α-bromo-3-oxoeudesmano-12,6α-lactone, designated santonin-related compound 2 (SRC2), inhibited NF-κB luciferase reporter activity induced by lymphotoxin β (LTβ) in human lung carcinoma A549 cells. Although SRC2 did not prevent the processing of the NF-κB subunit p100 induced by LTβ, it inhibited the nuclear translocation of RelB and p52 in response to the LTβ stimulation. In contrast to (-)-dehydroxymethylepoxyquinomicin, SRC2 inhibited the LTβ-induced nuclear translocation of the RelB (C144S) mutant in a manner similar to wild-type RelB. While eudesmane derivatives possessing an α-bromoketone moiety or α,β-unsaturated carbonyl moieties inhibited LTβ-induced NF-κB luciferase reporter activity, eudesmane derivatives possessing an α-bromoketone moiety exhibited stronger inhibitory activity on the LTβ-induced nuclear translocation of RelB than those possessing a single α-methylene-γ-lactone moiety. The results of the present study revealed that SRC2 inhibits the nuclear translocation of RelB in the non-canonical NF-κB signaling pathway induced by LTβ.

  18. Dopamine Inhibits High-Frequency Stimulation-Induced Long-Term Potentiation of Intrinsic Excitability in CA1 Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Chun-ling Wei

    2012-09-01

    Full Text Available The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate of learning. Besides, behavioral learning often involves action of reinforcement or rewarding mediated by dopamine (DA. Here, we examined how DA influences the intrinsic plasticity of CA1 hippocampal pyramidal neurons when high-frequency stimulation (HFS was applied to Schaffer collaterals. The results showed that DA inhibits the decrease in rheobase and increase in mean firing rate of pyramidal neurons induced by HFS, and that this inhibition was abolished by the D1-like receptor antagonist SCH23390 but not by the D2-like receptor antagonist sulpiride. The results suggest that DA inhibits the potentiation of excitability induced by presynaptic HFS, and that this inhibition depends on the activation of D1-like receptors.

  19. Inhibition of in vitro human chorionic gonadotropin-stimulated testosterone production in testis and of ovulation in the rat by charcoal-treated rat testicular extract

    International Nuclear Information System (INIS)

    de Bellabarba, G.A.; Bishop, W.; Rojas, F.J.

    1984-01-01

    Previously, the authors described the presence of a factor obtained from rat testis that was found to inhibit human chorionic gonadotropin (hCG) binding to gonadal receptors. In the present study, similarly prepared testicular extract was tested for its effects on in vitro hCG-stimulated testosterone production by isolated testis interstitial cells and for its effect on spontaneous ovulation in the rat. Incubation of interstitial cells with charcoal-treated extract significantly inhibited the steroidogenic response to hCG in a dose-related manner. This inhibition was also apparent after heating the extract for 10 min at 100 0 C. A single i.p. injection of testicular extract inhibited spontaneous ovulation in the rat. This effect was also observed after heating the extract for 10 min at 100 0 C. It is concluded that the aqueous testicular extract contains a factor able to antagonize the physiological events mediated by luteinizing hormone (LH)/hCG, and that this factor is consistent with the presence of an LH/hCG-binding inhibitory activity in rat testis

  20. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells.

    Science.gov (United States)

    Choi, Jae Ho; Hwang, Yong Pil; Han, Eun Hee; Kim, Hyung Gyun; Park, Bong Hwan; Lee, Hyun Sun; Park, Byung Keun; Lee, Young Chun; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Nanotube phonon waveguide

    Science.gov (United States)

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  2. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  3. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-κB activation in macrophages

    Directory of Open Access Journals (Sweden)

    Xue Cheng

    2015-04-01

    Full Text Available Systemic low-grade inflammation and increased circulating lipopolysaccharide (LPS contribute to metabolic dysfunction. The inhibitory effects and underlying molecular mechanisms of casein glycomacropeptide (GMP hydrolysate on the inflammatory response of LPS-stimulated macrophages were investigated. Results showed that the inhibitory effect of GMP hydrolysates obtained with papain on nitric oxide (NO production were obviously higher than that of GMP hydrolysates obtained with pepsin, alcalase and trypsin (p < 0.05, and the hydrolysate obtained with papain for 1 h hydrolysis (GHP exhibited the highest inhibitory effect. Compared with native GMP, GHP markedly inhibited LPS-induced NO production in a dose-dependent manner with decreased mRNA level of inducible nitric oxide synthase (iNOS. GHP blocked toll-like receptor 4 (TLR4/myeloid differentiation primary response 88 (MyD88/nuclear factor-κB (NF-κB signaling pathway activation, accompanied by downregulation of LPS-triggered significant upregulation of tumor necrosis factor (TNF-α and interleukin (IL-1β gene expression. Furthermore, GHP could neutralize LPS not only by direct binding to LPS, but also by inhibiting the engagement of LPS with the TLR4/MD2 complex, making it a potential LPS inhibitor. In conclusion, these findings suggest that GHP negatively regulates TLR4-mediated inflammatory response in LPS-stimulated RAW264.7 cells, and therefore may hold potential to ameliorate inflammation-related issues.

  4. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. (Alton Ochsner Medical Foundation, New Orleans, LA (USA))

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  5. Soleus stretch reflex inhibition in the early swing phase of gait using deep peroneal nerve stimulation in spastic stroke participants

    NARCIS (Netherlands)

    Voormolen, Marco M.; Ladouceur, Michel; Veltink, Petrus H.; Sinkjaer, Thomas

    2000-01-01

    Objectives: To investigate the feasibility of inhibiting the stretch reflex of the soleus muscle by a conditioning stimulus applied to the deep peroneal nerve in spastic stroke participants during the early swing phase of gait. - Materials and Methods: This study investigated the effect of an

  6. Nanotube News

    Science.gov (United States)

    Journal of College Science Teaching, 2005

    2005-01-01

    Smaller, faster computers, bullet-proof t-shirts, and itty-bitty robots--such are the promises of nanotechnology and the cylinder-shaped collection of carbon molecules known as nanotubes. But for these exciting ideas to become realities, scientists must understand how these miracle molecules perform under all sorts of conditions. This brief…

  7. Transcranial Direct Current Stimulation Over the Right Frontal Inferior Cortex Decreases Neural Activity Needed to Achieve Inhibition: A Double-Blind ERP Study in a Male Population.

    Science.gov (United States)

    Campanella, Salvatore; Schroder, Elisa; Monnart, Aurore; Vanderhasselt, Marie-Anne; Duprat, Romain; Rabijns, Mark; Kornreich, Charles; Verbanck, Paul; Baeken, Chris

    2017-05-01

    Inhibitory control refers to the ability to inhibit an action once it has been initiated. Impaired inhibitory control plays a key role in triggering relapse in some pathological states, such as addictions. Therefore, a major challenge of current research is to establish new methods to strengthen inhibitory control in these "high-risk" populations. In this attempt, the right inferior frontal cortex (rIFC), a neural correlate crucial for inhibitory control, was modulated using transcranial direct current stimulation (tDCS). Healthy participants (n = 31) were presented with a "Go/No-go" task, a well-known paradigm to measure inhibitory control. During this task, an event-related potential (ERP) recording (T1; 32 channels) was performed. One subgroup (n = 15) was randomly assigned to a condition with tDCS (anodal electrode was placed on the rIFC and the cathodal on the neck); and the other group (n = 16) to a condition with sham (placebo) tDCS. After one 20- minute neuromodulation session, all participants were confronted again with the same ERP Go/No-go task (T2). To ensure that potential tDCS effects were specific to inhibition, ERPs to a face-detection task were also recorded at T1 and T2 in both subgroups. The rate of commission errors on the Go/No-go task was similar between T1 and T2 in both neuromodulation groups. However, the amplitude of the P3d component, indexing the inhibition function per se, was reduced at T2 as compared with T1. This effect was specific for participants in the tDCS (and not sham) condition for correctly inhibited trials. No difference in the P3 component was observable between both subgroups at T1 and T2 for the face detection task. Overall, the present data indicate that boosting the rIFC specifically enhances inhibitory skills by decreasing the neural activity needed to correctly inhibit a response.

  8. Anti-inflammatory effects of novel polygonum multiflorum compound via inhibiting NF-κB/MAPK and upregulating the Nrf2 pathways in LPS-stimulated microglia.

    Science.gov (United States)

    Park, Sun Young; Jin, Mei Ling; Kang, Nam Jun; Park, Geuntae; Choi, Young-Whan

    2017-06-09

    The incorporation of Polygonum multiflorum into the diet can result in anti-aging effects owing to its wide range of biological and pharmaceutical properties. We investigated the anti-neuroinflammatory properties of CRPE56IGIH isolated from P. multiflorum by focusing on its role in the induction of phase II antioxidant enzymes and the modulation of upstream signaling pathways. In microglia, CRPE56IGIH significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide and prostaglandin E 2 production with nonspecific cytotoxicity. CRPE56IGIH also markedly inhibited LPS-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 protein and mRNA expression in the same manner as it inhibited nitric oxide and prostaglandin E 2 production. In the control cells, NF-κB transactivation and nuclear translocation occurred at a baseline level, which was significantly increased in response to LPS. However, pretreatment with CRPE56IGIH concentration-dependently inhibited the LPS-induced NF-κB transactivation and nuclear translocation. The phosphorylation of Janus kinase-signal transducers and activators of transcription and mitogen-activated protein kinases was markedly upregulated by LPS, but considerably and dose-dependently inhibited by pretreatment with CRPE56IGIH. Furthermore, CRPE56IGIH induced the expression of phase II antioxidant enzymes, including heme oxygenase-1 (HO-1) and NADPH dehydrogenase quinone-1 (NQO-1). The activation of upstream signaling pathways, such as the Nrf2 pathway, was significantly increased following CRPE56IGIH treatment. Furthermore, the anti-neuroinflammatory effect of CRPE56IGIH was reversed by transfection of Nrf2, HO-1, and NQO-1 siRNA. Our results indicated that CRPE56IGIH isolated from P. multiflorum could be used as a natural anti-neuroinflammatory agent that induces phase II antioxidant enzymes via Nrf2 signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  10. Inhibition of inducible nitric oxide synthesis by Cimicifuga racemosa (Actaea racemosa, black cohosh) extracts in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Schmid, Diethart; Gruber, Miriam; Woehs, Florian; Prinz, Sonja; Etzlstorfer, Barbara; Prucker, Christina; Fuzzati, Nicola; Kopp, Brigitte; Moeslinger, Thomas

    2009-08-01

    Cimicifuga racemosa (Actaea racemosa, black cohosh) is used as an anti-inflammatory, antipyretic and analgesic remedy in traditional medicines. The present study focuses on the effects of C. racemosa root extracts on inducible nitric oxide synthase (iNOS) in lipopolysaccharide-stimulated murine macrophages (RAW 264.7). C. racemosa rhizome and phosphate-buffered saline extracts were analysed for phenolcarboxylic acids and triterpene glycosides using an HPLC photodiode array/evaporative light-scattering detector system. iNOS was characterised by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), nitric oxide production (nitrite levels) and nuclear translocation of nuclear factor-kappaB (p65 subunit) protein. Incubation of lipopolysaccharide-stimulated macrophages with aqueous C. racemosa extracts (0-6 mg/ml) inhibited nitrite accumulation in a concentration-dependent manner. C. racemosa extracts also reduced iNOS protein expression and iNOS mRNA levels in a dose-dependent manner. C. racemosa extracts did not significantly inhibit iNOS activity and did not affect nuclear translocation of nuclear factor-kappaB (p65 subunit) protein. Incubation with the extract was associated with a concentration-dependent reduction of interferon beta and interferon regulatory factor 1 mRNA. Among the triterpene glycosides, 23-epi-26-deoxyactein was identified as an active principle in C. racemosa extracts. Extracts from the roots of C. racemosa inhibit nitric oxide production by reducing iNOS expression without affecting activity of the enzyme. This might contribute to the anti-inflammatory activities of C. racemosa.

  11. The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yaguang Zhou

    2017-12-01

    Full Text Available Background/Aims: In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH. However, the roles that pulmonary arterial smooth muscle cell (PASMC proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms. Methods: Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP and the right ventricular pressure (RVP were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8 assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot. Results: Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor. Conclusion: Our data provide evidence for the first time that κ-opioid receptor

  12. Formyl Met-Leu-Phe-Stimulated FPR1 Phosphorylation in Plate-Adherent Human Neutrophils: Enhanced Proteolysis but Lack of Inhibition by Platelet-Activating Factor

    Directory of Open Access Journals (Sweden)

    Algirdas J. Jesaitis

    2018-01-01

    Full Text Available N-formyl-Met-Leu-Phe (fMLF is a model PAMP/DAMP driving human PMN to sites of injury/infection utilizing the GPCR, FPR1. We examined a microtiter plate format for measurement of FPR1 phosphorylation in adherent PMN at high densities and found that a new phosphosensitive FPR1 fragment, 25K-FPR1, accumulates in SDS-PAGE extracts. 25K-FPR1 is fully inhibited by diisopropylfluorophosphate PMN pretreatment but is not physiologic, as its formation failed to be significantly perturbed by ATP depletion, time and temperature of adherence, or adherence mechanism. 25K-FPR1 was minimized by extracting fMLF-exposed PMN in lithium dodecylsulfate at 4°C prior to reduction/alkylation. After exposure of adherent PMN to a 5 log range of PAF before or after fMLF, unlike in suspension PMN, no inhibition of fMLF-induced FPR1 phosphorylation was observed. However, PAF induced the release of 40% of PMN lactate dehydrogenase, implying significant cell lysis. We infer that PAF-induced inhibition of fMLF-dependent FPR1 phosphorylation observed in suspension PMN does not occur in the unlysed adherent PMN. We speculate that although the conditions of the assay may induce PAF-stimulated necrosis, the cell densities on the plates may approach levels observed in inflamed tissues and provide for an explanation of PAF’s divergent effects on FPR1 phosphorylation as well as PMN function.

  13. Prostaglandin D2 generation by rat peritoneal mast cells stimulated with Datura stramonium agglutinin and its inhibition by haptenic sugar and wheat germ agglutinin.

    Science.gov (United States)

    Suzuki-Nishimura, Tamiko; Uchida, Masaatsu K

    2002-09-01

    The production of prostaglandin D2 (PGD2) by rat peritoneal mast cells incubated with N-acetyl glucosamine (GlcNAc) oligomer-specific Datura stramonium agglutinin (DSA) for 10 min in the presence of 0.3 mM Ca2+ was examined. Previously, our group reported that the incubation of rat mast cells with DSA (5 - 100 microg/ml) under similar conditions resulted in a calcium influx and histamine release via a pertussis toxin-sensitive G-protein pathway of the mast cells, and the histamine release was inhibited by haptenic sugar chitooligosaccharides or GlcNAc-specific lectin wheat germ agglutinin (WGA) (K. Matsuda et al., Jpn J Pharmacol 66, 195 - 204 (1994)). DSA (5 - 100 microg/ml) dose-dependently stimulated the mast cells to generate PGD2. Chitooligosaccharides (1% w/v) and WGA (100 microg/ml) inhibited the production of PGD2 induced by 100 microg/ml of DSA, suggesting that the effect of DSA is sugar-specific. A prostaglandin G/H synthase inhibitor NS-398 (N-[cyclohexyloxy-4-nitrophenyl] methanesulfonamide) (10 microM) inhibited the formation of PGD2 induced by DSA (20 microg/ml). These results suggest that the binding of DSA to the corresponding sugar residues on the mast cell surface mediates the signaling of the prostaglandin G/H synthase pathway.

  14. Evidence of alterations in transcallosal motor inhibition as a possible long-term consequence of concussions in sports: A transcranial magnetic stimulation study.

    Science.gov (United States)

    Davidson, Travis W; Tremblay, François

    2016-10-01

    Growing evidence suggests that long-term structural and physiological alterations are present in the brain of previously concussed athletes. In this study, we sought to further explore the long-term consequences of concussions with transcranial magnetic stimulation (TMS) by examining excitability changes both within and between hemispheres. Participants (32 young adults with and without a history of concussions (HxC)) first underwent testing to assess cognitive and motor performance using standardized tests. Then, the following TMS measures were derived bilaterally: (1) resting motor threshold and motor evoked potentials (MEP), (2) afferent-induced modulation, (3) contralateral silent period (cSP) and MEP facilitation, and, (4) ipsilateral silent period (iSP). Multivariate analyses of performance data revealed no major group differences. For TMS data, no "hemisphere" effects were detected for all measures. Group differences were detected only for iSP derived measures owing to alterations in the onset latency and duration of transcallosal inhibition in the HxC group. While no major asymmetries were found between hemispheres, participants in the HxC group showed evidence of impaired transcallosal inhibition. Results provide one of the first piece of evidence pointing to alterations in transcallosal inhibition as a potential neurophysiological marker of long-term consequences of concussions in sports. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane.

    Science.gov (United States)

    Tsakiridis, T; Vranic, M; Klip, A

    1994-11-25

    In muscle and fat tissues, insulin stimulates glucose transport through the translocation of glucose transporter proteins from an intracellular storage pool to the plasma membrane. The mechanism of this translocation is unknown. We have examined the possible role of the actin microfilament network in the stimulation of glucose transport by insulin and on the distribution of glucose transporters, in differentiated L6 rat skeletal muscle cells. Insulin (10(-7) M for 30 min) caused a major reorganization of the actin network of differentiated L6 myotubes. Cytochalasin D, a widely used inhibitor of actin filament formation, caused a dose- and time-dependent disassembly of the actin network, which was associated with an 80% inhibition of the insulin stimulation of glucose transport, without affecting the basal rate of glucose uptake. L6 myotubes express three glucose transporter isoforms, named GLUT1, GLUT3, and GLUT4. Disassembly of the actin network by cytochalasin D did not affect the number of basal glucose transporters in the plasma membrane but reduced the content of all three glucose transporters in intracellular membranes and prevented their appearance at the plasma membrane response to insulin. The inhibitory effect of cytochalasin D treatment on the insulin stimulation of glucose transport occurred downstream of tyrosine phosphorylation of the insulin receptor substrate-1 and of binding of phosphatidylinositol 3-kinase to the insulin receptor substrate-1. Using immunoprecipitation of intact membranes, we detected specific association of the actin-binding protein spectrin with GLUT4 glucose transporter-containing vesicles. We conclude that an intact actin network is required for the correct intracellular localization of glucose transporters, as well as for their incorporation into the plasma membrane in response to insulin. A direct interaction may exist between the actin network and the glucose transporter vesicles which may be mediated through a spectrin

  16. Deep brain stimulation of the dorsal raphe inhibits avoidance and escape reactions and activates forebrain regions related to the modulation of anxiety/panic.

    Science.gov (United States)

    Wscieklica, Tatiana; Silva, Mariana S C F; Lemes, Jéssica A; Melo-Thomas, Liana; Céspedes, Isabel C; Viana, Milena B

    2017-03-15

    One of the main neurochemical systems associated with anxiety/panic is the serotonergic system originating from the dorsal raphe nucleus (DR). Previous evidence suggests that the DR is composed of distinct subpopulations of neurons, both morphologically and functionally distinct. It seems that mainly the dorsal region of the DR (DRD) regulates anxiety-related reactions, while lateral wings DR (lwDR) serotonin (5-HT) neurons inhibit panic-related responses. In this study we used the technique of deep brain stimulation (DBS) to investigate the role played by the DRD and lwDR in defense. Male Wistar rats were submitted to high-frequency stimulation (100μA, 100Hz) in one of the two DR regions for 1h and immediately after tested in the avoidance or escape tasks of the elevated T-maze (ETM). In clinical terms, these responses have been related to generalized anxiety and panic disorder, respectively. After being submitted to the ETM, animals were placed in an open field for locomotor activity assessment. An additional group of rats was submitted to DBS of the DRD or the lwDR and used for quantification of c-Fos immunoreactive (Fos-ir) neurons in brain regions related to the modulation of defense. Results showed that stimulation of the DRD decreased avoidance latencies, an anxiolytic-like effect. DRD stimulation also led to increases in Fos-ir in the medial amygdala, lateral septum and cingulate cortex. DBS applied to the lwDR increased escape latencies, a panicolytic-like effect. This data highlights the importance of raphe topography and the potential benefit of the DBS technique for the treatment of anxiety-related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome.

    Directory of Open Access Journals (Sweden)

    Xiang Ou

    Full Text Available Ursolic acid (UA, a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1 signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2, and Ras homolog enriched in brain (Rheb, suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function.

  18. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea

    2006-01-01

    BACKGROUND & AIMS: The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well...... emptying. The stimulation of glucagon secretion by GLP-2 may counteract the glucagonostatic effect of GLP-1. Changes in postprandial lipid excursions seem to reflect enhanced intestinal nutrient absorption during GLP-2 administration....

  19. Stimulation of intestinal growth and function with DPP-IV inhibition in a mouse short bowel syndrome model

    DEFF Research Database (Denmark)

    Sueyoshi, Ryo; Ignatoski, Kathleen M Woods; Okawada, Manabu

    2014-01-01

    , and 7 days followed by 23 days washout period. Adaptive response was assessed by morphology, intestinal epithelial cell (IEC) proliferation (PCNA), epithelial barrier function (transepithelial resistance), RT-PCR for intestinal transport proteins, GLP-2R, and IGF-1R, and GLP-2 plasma levels. Glucose-stimulated...... sodium transport was assessed for intestinal absorptive function. Seven days of DPP4-I treatment facilitated an increase in GLP-2R levels, intestinal growth, and IEC proliferation. Treatment led to differential effects over time with greater absorptive function early, and enhanced proliferation at later...

  20. Excretory-secretory product of Paragonimus westermani newly excysted metacercariae inhibits superoxide production of granulocytes stimulated with IgG

    Science.gov (United States)

    2000-01-01

    It is well known that the cysteine proteases in excretory-secretory product (ESP) of Paragonimus westermani newly excysted metacercariae (PwNEM) are capable of degrading IgG in vitro. Recent evidence suggests that the IgG-coated surface, such as found on parasites, is one of the most effective physiologic stimuli for granulocyte activation. Therefore, this study was designed to investigate the effect of excretory-secretory product (ESP) of PwNEM on superoxide production of granulocytes stimulated with IgG. The 96-well plates were coated with human IgG (0, 10, 30, 100 µg/ml) in the absence or presence of ESP. When granulocytes were incubated in the wells coated with human IgG in the presence of ESP, the level of superoxide production of granulocytes was reduced to about 90% when compared to the cells incubated in the wells coated with IgG alone. This inhibitory effect of the ESP on IgG-induced superoxide production of granulocytes was concentration-dependent. These results suggest that ESP secreted by PwNEM may be important in the control of effector functions of granulocytes stimulated with IgG in human paragonimiasis. PMID:10905073

  1. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  2. Low-level laser therapy stimulates bone metabolism and inhibits root resorption during tooth movement in a rodent model.

    Science.gov (United States)

    Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Suzuki, Hideo; Ervolino, Edilson; Moon, Won; Ribeiro, Martha Simões

    2016-12-01

    This study evaluated the biological effects of low-level laser therapy (LLLT) on bone remodeling, tooth displacement and root resorption, occurred during the orthodontic tooth movement. Upper first molars of a total of sixty-eight male rats were subjected to orthodontic tooth movement and euthanized on days 3, 6, 9, 14 and 21 days and divided as negative control, control and LLLT group. Tooth displacement and histomorphometric analysis were performed in all animals; scanning electron microscopy analysis was done on days 3, 6 and 9, as well as the immunohistochemistry analysis of RANKL/OPG and TRAP markers. Volumetric changes in alveolar bone were analyzed using MicroCT images on days 14 and 21. LLLT influenced bone resorption by increasing the number of TRAP-positive osteoclasts and the RANKL expression at the compression side. This resulted in less alveolar bone and hyalinization areas on days 6, 9 and 14. LLLT also induced less bone volume and density, facilitating significant acceleration of tooth movement and potential reduction in root resorption besides stimulating bone formation at the tension side by enhancing OPG expression, increasing trabecular thickness and bone volume on day 21. Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  4. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    Science.gov (United States)

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  5. ResolvinD1 stimulates epithelial wound repair and inhibits TGF-β-induced EMT whilst reducing fibroproliferation and collagen production

    Science.gov (United States)

    Zheng, Shengxing; Wang, Qian; D'Souza, Vijay; Bartis, Dom; Dancer, Rachel; Parekh, Dhruv; Gao, Fang; Lian, Qingquan; Jin, Shengwei; Thickett, David R

    2018-01-01

    Acute and chronic inflammatory lung diseases are often associated with epithelial cell injury/loss and fibroproliferative responses. ResolvinD1 (RvD1) is biosynthesized during the resolution phase of inflammatory response and exerts potent anti-inflammatory and promotes resolution of inflammatory lung diseases. The aim of this study was to investigate whether RvD1 exerts protective effects on alveolar epithelial cell function/differentiation and protects against fibroproliferative stimuli. Primary human alveolar type II cells were used to model the effects of RvD1 in vitro upon wound repair, proliferation, apoptosis, transdifferentiation, and epithelial–mesenchymal transition (EMT). Effects of RvD1 upon primary human lung fibroblast proliferation, collagen production, and myofibroblast differentiation were also examined. RvD1 promoted alveolar type II (ATII) cell wound repair and proliferation. RvD1 protected ATII cells against sFas-ligand/TNF-α-induced apoptosis and inhibition on cell proliferation and viability. RvD1 promoted ATII cells transdifferentiation. Moreover, we demonstrate that RvD1 inhibited EMT in response to TGF-β. Furthermore RvD1 inhibited human lung fibroblast proliferation, collagen production, and myofibroblast differentiation induced by both TGF-β and bronchoalveolar lavage fluid from acute respiratory distress syndrome (ARDS) patients. The effects of RvD1 were PI3-kinase dependent and mediated via the resolvin receptor. RvD1 seems to promote alveolar epithelial repair by stimulating ATII cells wound repair, proliferation, reducing apoptosis, and inhibiting TGF-β-induced EMT. While RvD1 reduced fibroproliferation, collagen production, and myofibroblast differentiation. Together, these results suggest a potential new therapeutic strategy for preventing and treating chronic diseases (such as idiopathic pulmonary fibrosis) as well as the fibroproliferative phase of ARDS by targeting RvD1 actions that emphasizes natural resolution signaling

  6. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  7. Deep Brain Stimulation of the Internal Globus Pallidus Improves Response Initiation and Proactive Inhibition in Patients With Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yixin Pan

    2018-04-01

    Full Text Available Background: Impulse control disorder is not uncommon in patients with Parkinson’s disease (PD who are treated with dopamine replacement therapy and subthalamic deep brain stimulation (DBS. Internal globus pallidus (GPi-DBS is increasingly used, but its role in inhibitory control has rarely been explored. In this study, we evaluated the effect of GPi-DBS on inhibitory control in PD patients.Methods: A stop-signal paradigm was used to test response initiation, proactive inhibition, and reactive inhibition. The subjects enrolled in the experiment were 27 patients with PD, of whom 13 had received only drug treatment and 14 had received bilateral GPi-DBS in addition to conventional medical treatment and 15 healthy individuals.Results: Our results revealed that with GPi-DBS on, patients with PD showed significantly faster responses than the other groups in trials where it was certain that no stop signal would be presented. Proactive inhibition was significantly different in the surgical patients with GPi-DBS on versus when GPi-DBS was off, in surgical patients with GPi-DBS on versus drug-treated patients, and in healthy controls versus drug-treated patients. Correlation analyses revealed that when GPi-DBS was on, there was a statistically significant moderate positive relationship between proactive inhibition and dopaminergic medication.Conclusion: GPi-DBS may lead to an increase in response initiation speed and improve the dysfunctional proactive inhibitory control observed in PD patients. Our results may help us to understand the role of the GPi in cortical-basal ganglia circuits.

  8. PPARδ Agonist GW501516 Inhibits PDGF-Stimulated Pulmonary Arterial Smooth Muscle Cell Function Related to Pathological Vascular Remodeling

    Directory of Open Access Journals (Sweden)

    Guangjie Liu

    2013-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs. The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH.

  9. Inhibition or Stimulation of Autophagy Affects Early Formation of Lipofuscin-Like Autofluorescence in the Retinal Pigment Epithelium Cell

    Directory of Open Access Journals (Sweden)

    Lei Lei

    2017-03-01

    Full Text Available The accumulation of lipofuscin in the retinal pigment epithelium (RPE is dependent on the effectiveness of photoreceptor outer segment material degradation. This study explored the role of autophagy in the fate of RPE lipofuscin degradation. After seven days of feeding with either native or modified rod outer segments, ARPE-19 cells were treated with enhancers or inhibitors of autophagy and the autofluorescence was detected by fluorescence-activated cell sorting. Supplementation with different types of rod outer segments increased lipofuscin-like autofluorescence (LLAF after the inhibition of autophagy, while the induction of autophagy (e.g., application of rapamycin decreased LLAF. The effects of autophagy induction were further confirmed by Western blotting, which showed the conversion of LC3-I to LC3-II, and by immunofluorescence microscopy, which detected the lysosomal activity of the autophagy inducers. We also monitored LLAF after the application of several autophagy inhibitors by RNA-interference and confocal microscopy. The results showed that, in general, the inhibition of the autophagy-related proteins resulted in an increase in LLAF when cells were fed with rod outer segments, which further confirms the effect of autophagy in the fate of RPE lipofuscin degradation. These results emphasize the complex role of autophagy in modulating RPE autofluorescence and confirm the possibility of the pharmacological clearance of RPE lipofuscin by small molecules.

  10. trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2017-01-01

    Full Text Available Background. Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results. To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide- (LPS- induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1β, and TNF-α, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1β and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-κB signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions. Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.

  11. O{sup 6}-methylguanine in DNA inhibits DNA replication and stimulates DNA repair synthesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cecotti, S. [Istituto Superiore di Sanita, Rome (Italy); Macpherson, P.; Karran, P. [Clare Hall Labs., South Mimms (United Kingdom)

    1994-12-31

    O{sup 6}-methylguanine (O{sup 6}-meGua) in DNA does not block replication if purified DNA polymerases are used ina template/primer system, although some slowing of incorporation is apparent. In the SV40 system, we have observed that O{sup 6}-meGua can block replication and at the same time elicit a type of non-semiconservative synthesis that tends to be associated with incompletely repaired, nicked plasmids. It is possible that replication is impaired by the simultaneous occurrence of these {open_quotes}repair{close_quotes} events and that the stimulation of ineffective excision repair at O{sup 6}-meGua in DNA contributes to the cytotoxicity of this methylated base.

  12. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  13. The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis.

    Science.gov (United States)

    Biabani, Mana; Aminitehrani, Maryam; Zoghi, Maryam; Farrell, Michael; Egan, Gary; Jaberzadeh, Shapour

    2018-01-26

    Transcranial direct current stimulation (tDCS) is increasingly being used to affect the neurological conditions with deficient intracortical synaptic activities (i.e. Parkinson's disease and epilepsy). In addition, it is suggested that the lasting effects of tDCS on corticospinal excitability (CSE) have intracortical origin. This systematic review and meta-analysis aimed to examine whether tDCS has any effect on intracortical circuits. Eleven electronic databases were searched for the studies investigating intracortical changes induced by anodal (a) and cathodal (c) tDCS, in healthy individuals, using two paired-pulse transcranial magnetic stimulation (TMS) paradigms: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Additionally, motor-evoked potential (MEP) size alterations, assessed by single-pulse TMS, were extracted from these studies to investigate the probable intracortical origin of tDCS effects on CSE. The methodological quality of included studies was examined using Physiotherapy Evidence Database (PEDro) and Downs and Black's (D&B) assessment tools. Thirteen research papers, including 24 experiments, were included in this study scoring good and medium quality in PEDro and D&B scales, respectively. Immediately following anodal tDCS (a-tDCS) applications, we found significant decreases in SICI, but increases in ICF and MEP size. However, ICF and MEP size significantly decreased, and SICI increased immediately following cathodal tDCS (c-tDCS). The results of this systematic review and meta-analysis reveal that a-tDCS changes intracortical activities (SICI and ICF) toward facilitation, whereas c-tDCS alters them toward inhibition. It can also be concluded that increases and decreases in CSE after tDCS application are associated with corresponding changes in intracortical activities. The results suggest that tDCS can be clinically useful to modulate intracortical circuits.

  14. Nectin-4 co-stimulates the prolactin receptor by interacting with SOCS1 and inhibiting its activity on the JAK2-STAT5a signaling pathway.

    Science.gov (United States)

    Maruoka, Masahiro; Kedashiro, Shin; Ueda, Yuki; Mizutani, Kiyohito; Takai, Yoshimi

    2017-04-28

    Cell-surface cytokine receptors are regulated by their cis -interacting stimulatory and inhibitory co-receptors. We previously showed that the Ig-like cell-adhesion molecule nectin-4 cis -interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis -interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that the cytoplasmic region of nectin-4 was also required for this interaction. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling 1 (SOCS1), but not SOCS3, JAK2, or STAT5a, and inhibited the interaction of SOCS1 with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacted with the Src homology 2 domain of SOCS1. Both the interaction of nectin-4 with the extracellular region of the prolactin receptor and the interaction of SOCS1 with the cytoplasmic region of nectin-4 were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third Ig-like domain of nectin-4 and the second fibronectin type III domain of the prolactin receptor were involved in this cis -interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  16. Massive radius-dependent flow slippage in carbon nanotubes.

    Science.gov (United States)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-08

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  17. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Lee, Ko-Chen [School of Traditional Chinese Medicine, Chang Gung University, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, Shih-Yuan [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Chang, Hen-Hong [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  18. Inhibition of basal and amphetamine-stimulated extracellular signal-regulated kinase (ERK) phosphorylation in the rat forebrain by muscarinic acetylcholine M4 receptors.

    Science.gov (United States)

    He, Nan; Mao, Li-Min; Sturich, Adrian; Jin, Dao-Zhong; Wang, John Q

    2018-03-22

    The mitogen-activated protein kinase (MAPK), especially its extracellular signal-regulated kinase (ERK) subfamily, is a group of kinases enriched in the mammalian brain. While ERK is central to cell signaling and neural activities, the regulation of ERK by transmitters is poorly understood. In this study, the role of acetylcholine in the regulation of ERK was investigated in adult rat striatum in vivo. We focused on muscarinic M1 and M4 receptors, two principal muscarinic acetylcholine (mACh) receptor subtypes in the striatum. A systemic injection of the M1-perferring antagonist telenzepine did not alter ERK phosphorylation in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. Similarly, telenzepine did not affect ERK phosphorylation in the medial prefrontal cortex (mPFC), hippocampus, and cerebellum. Moreover, telenzepine had no effect on the ERK phosphorylation induced by dopamine stimulation with the psychostimulant amphetamine. In contrast to telenzepine, the M4-preferring antagonist tropicamide consistently increased ERK phosphorylation in the striatum and mPFC. This increase was rapid and transient. Tropicamide and amphetamine when coadministered at subthreshold doses induced a significant increase in ERK phosphorylation. These results demonstrate that mACh receptors exert a subtype-specific modulation of ERK in striatal and mPFC neurons. While the M1 receptor antagonist had no effect on ERK phosphorylation, M4 receptors inhibit constitutive and dopamine-stimulated ERK phosphorylation in these dopamine-innervated brain regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-α and NF-κB pathways in lipopolysaccharide-stimulated mouse macrophages

    International Nuclear Information System (INIS)

    Lee, Tzung-Yan; Lee, Ko-Chen; Chen, Shih-Yuan; Chang, Hen-Hong

    2009-01-01

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-α expression through suppression of I-κBα phosphorylation, NF-κB nuclear activation and PKC-α translocation, which in turn inhibits Ca 2+ mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-κB and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  20. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells.

    Science.gov (United States)

    Zhu, Wa-Wa; Wang, Shu-Rong; Liu, Zhi-Hua; Cao, Yong-Jun; Wang, Fen; Wang, Jing; Liu, Chun-Feng; Xie, Ying; Xie, Ying; Zhang, Yan-Lin

    2017-01-01

    Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups.

    Science.gov (United States)

    Baldy, Cécile; Chamberland, Simon; Fournier, Stéphanie; Kinkead, Richard

    2017-01-01

    The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O 2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14-P15, pups were instrumented to monitor breathing, O 2 saturation (S p o 2 ), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O 2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups.

  2. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-01-01

    Full Text Available Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f. Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS- induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR, respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA. The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

  3. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway.

    Science.gov (United States)

    Li, Yu; He, Shengnan; Tang, Jishun; Ding, Nana; Chu, Xiaoyan; Cheng, Lianping; Ding, Xuedong; Liang, Ting; Feng, Shibin; Rahman, Sajid Ur; Wang, Xichun; Wu, Jinjie

    2017-01-01

    Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF- κ B was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF- κ B, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF- α , IL-6, and IL-1 β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF- κ B activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF- κ B/MAPK signaling pathway and the induction of proinflammatory cytokines.

  4. Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L.

    Science.gov (United States)

    Joo, Taewoo; Sowndhararajan, Kandhasamy; Hong, Sunghyun; Lee, Jaehak; Park, Sun-Young; Kim, Songmun; Jhoo, Jin-Woo

    2014-01-01

    This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO. PMID:25313277

  5. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6

    International Nuclear Information System (INIS)

    Robinson, Lisa J.; Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L.; Blair, Harry C.

    2009-01-01

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at ∼ 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-β-estradiol. Estrogen receptor-α (ERα) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERα. However, ERα was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERα in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (∼ 5 min) estrogen-dependent formation of ERα-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-κB activity, precipitated with this complex. Reduction of NF-κB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IκB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERα.

  6. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Lisa J., E-mail: robinsonlj@msx.upmc.edu [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Blair, Harry C. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Veteran' s Affairs Medical Center, Pittsburgh, PA 15243 (United States)

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  7. Second-hand cigarette smoke inhibits wound healing of the cornea by stimulating inflammation that delays corneal reepithelialization.

    Science.gov (United States)

    Ma, Chongze; Martins-Green, Manuela

    2009-01-01

    Corneal reepithelialization is a key process in preventing abnormal cornea healing and impaired vision. To gain insight into the mechanisms of cigarette smoke-induced corneal epithelial damage, we injured the cornea of mice and exposed the wounds during the healing process to cigarette smoke in a system that mimics second-hand cigarette smoking by humans. Immunolabeling studies showed that in the mice exposed to smoke, fibronectin, an extracellular matrix molecule critical for epithelial cell migration, is not present in the wounded area and that there is an accumulation of neutrophils in the stroma beneath the wound. Furthermore, inflammatory cytokines, such as interleukin-1alpha, increase after injury in the second-hand-smoke-exposed mice. Localized treatment of the wounds with dexamethasone, an anti-inflammatory agent, resulted in improved healing and infiltration of fewer neutrophils into the wounded area. Depletion of neutrophils with nitrogen mustard or treatment of the wounds with proteinase inhibitors have similar effects to those of dexamethasone. In conclusion, the work presented here shows that second-hand cigarette smoke delays corneal reepithelialization and healing by stimulating both neutrophil attraction to the wound site and degradation of extracellular matrix and adhesion molecules that are important for corneal epithelial cell adhesion and migration.

  8. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Ji-Nan Dai

    Full Text Available Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS.BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM for 1 h and then stimulated with LPS (1 µg/ml for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2, and proinflammatory cytokines, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β, are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs cascades and their downstream transcription factors, nuclear factor-κB (NF-κB and cyclic AMP-responsive element (CRE-binding protein (CREB. Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2, c-Jun N-terminal protein kinase (JNK and p38 mitogen-activated protein kinase (p38 MAPK and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM. In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α (and hence the activation of NF-κB and of CREB, respectively.This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of the NF-κB signaling pathway and phosphorylation of MAPKs in LPS-stimulated

  9. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Clark, Greg; Wu, Michael; Wat, Noel; Onyirimba, James; Pham, Trieu; Herz, Niculin; Ogoti, Justin; Gomez, Delmy; Canales, Arinda A; Aranda, Gabriela; Blizard, Misha; Nyberg, Taylor; Terry, Anne; Torres, Jonathan; Wu, Jian; Roux, Stanley J

    2010-11-01

    Root hairs secrete ATP as they grow, and extracellular ATP and ADP can trigger signaling pathways that regulate plant cell growth. In several plant tissues the level of extracellular nucleotides is limited in part by ectoapyrases (ecto-NTPDases), and the growth of these tissues is strongly influenced by their level of ectoapyrase expression. Both chemical inhibition of ectoapyrase activity and suppression of the expression of two ectoapyrase enzymes by RNAi in Arabidopsis resulted in inhibition of root hair growth. As assayed by a dose-response curve, different concentrations of the poorly hydrolysable nucleotides, ATPγS and ADPβS, could either stimulate (at 7.5-25 μM) or inhibit (at ≥ 150 μM) the growth rate of root hairs in less than an hour. Equal amounts of AMPS, used as a control, had no effect on root hair growth. Root hairs of nia1nia2 mutants, which are suppressed in nitric oxide (NO) production, and of atrbohD/F mutants, which are suppressed in the production of H(2)O(2), did not show growth responses to applied nucleotides, indicating that the growth changes induced by these nucleotides in wild-type plants were likely transduced via NO and H(2)O(2) signals. Consistent with this interpretation, treatment of root hairs with different concentrations of ATPγS induced different accumulations of NO and H(2)O(2) in root hair tips. Two mammalian purinoceptor antagonists also blocked the growth responses induced by extracellular nucleotides, suggesting that they were initiated by a receptor-based mechanism.

  10. Demonstration in vitro of inhibition in normal rat tissues yet stimulation in Jensen sarcoma cells of 5-fluorouracil anabolism by purine nucleosides

    International Nuclear Information System (INIS)

    Beltz, R.E.; Haddad-Zackrison, L.

    1986-01-01

    It has been shown previously that the ability of tumor cells to anabolize 5-fluorouracil (FUra) to nucleotides can often be enhanced by exposing the cells to various purine nucleosides. Increases in FUra cytotoxicity have been observed to accompany this enhancement. In the present study the effects of purine nucleosides on FUra anabolism in rat tumor cells and in normal rat tissues sensitive to FUra were compared. Pieces of small intestine (SI), bone marrow suspensions (BM) and Jensen tumor cells were incubated in culture medium at 37 0 for 1 hr in the presence (or absence) of a selected purine nucleoside, then (2- 14 C)FUra was added and the incubation was continued for another hr. Incorporation of radioactivity into the trichloroacetic acid-insoluble fraction in each case was determined as a measure of FUra anabolism. Inosine, adenosine and N 6 -methyl-adenosine, 1 mM, stimulated FUra incorporation into the acid-insoluble fraction 2-3 fold in the tumor cells but inhibited this incorporation 59-70% in SI and 31-70% in BM. Attempts to further suppress FUra anabolism in the normal tissues resulted in a maximal inhibition of 92% in SI, using 1 mM alloxanthine, and a maximal inhibition of 84% in BM, employing combined 1 mM alloxanthine and 1 mM 5-aminoimidazole-4-carbox-amide ribonucleoside. These data suggest ways of selectively altering FUra anabolism in normal tissue and in tumor tissue of the tumor-bearing rat to improve the therapeutic index of FUra

  11. Fungal bioremediation of olive mill wastewater: using a multi-step approach to model inhibition or stimulation.

    Science.gov (United States)

    Bevilacqua, Antonio; Cibelli, Francesca; Raimondo, Maria Luisa; Carlucci, Antonia; Lops, Francesco; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-01-01

    Olive mill wastewaters (OMWWs) possess a strong environmental impact; the use of fungi as tools for bioremediation could be a promising method. Twenty-nine fungi were grown on minimal media supplemented with five different kinds of OMWWs (5-15%). Radial growth was assessed for 21 days and the data were modelled through the Dantigny-logistic like function to estimate τ, i.e. the time to attain half of the maximum diameter. Growth on potato dextrose agar and water agar (WA, minimal medium without supplementation) was used as reference. The differences in τ between PDA/WA and minimal media with OMWWs were modelled through a multi-factorial ANOVA, using the concentration of OMWW, the kind of wastes and fungi as categorical predictors. Finally, a principal component analysis was run to group and divide resistant and sensitive fungi. Some fungi experienced a positive Δτ, thus suggesting an inhibition by OMWW, whereas other isolates were enhanced. Some isolates (for example Aspergillus ochraceus) showed a promising trend and could be possible candidates for a validation on a real scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. An electrochemical sensor modified with poly(3,4-ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibition-based determination of organophosphates

    International Nuclear Information System (INIS)

    Kaur, Navpreet; Thakur, Himkusha; Prabhakar, Nirmal; Kumar, Rajesh

    2016-01-01

    We report on an acetylcholinesterase (AChE) based sensor for the determination of organophosphates (OPs). A nanocomposite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT; a conducting polymer) and functionalized multi-walled carbon nanotubes (f-MWCNTs) was used as a host matrix for covalent immobilization of AChE. The unique properties of PEDOT and f-MWCNTs proved to be highly efficient for retaining the activity and stability of AChE. The effects of pH value of the phosphate buffer, concentration of enzyme, substrate concentration and incubation time were optimized using chlorpyrifos-methyl as a model OP as it exerts a strong inhibitory effect on AChE. Differential pulse voltammetry (DPV) analysis performed at +0.15 V revealed a linear relation of current in respect to chlorpyrifos-methyl concentration range (0.001 to 50 ppb) with 0.001 ppb as a detection limit. The sensor can be regenerated to 97% of its activity by applying 2-pyridine aldoxime methiodide (2-PAM) as a regenerating agent. It can be re-used up to six times and stored up to one month. The sensor was applied to the determination of chlorpyrifos-methyl in spiked lettuce where it gave recoveries ranging between 95 and 97%. (author)

  13. Endotoxin and interferon-γ inhibit translation in skeletal muscle cells by stimulating nitric oxide synthase activity

    Science.gov (United States)

    Frost, Robert A.; Nystrom, Gerald J.; Lang, Charles H.

    2012-01-01

    The purpose of the present study was to test the hypothesis that endogenous nitric oxide (NO) negatively affects translation in skeletal muscle cells after exposure to a combination of endotoxin (LPS) and interferon (IFN)γ. Individually LPS and IFNγ did not alter protein synthesis but in combination they inhibited protein synthesis by 80% in C2C12 myotubes. The combination of LPS and IFNγ dramatically down regulated the auto-phosphorylation of the mammalian target of rapamycin (mTOR) and its substrates S6K1 and 4EBP-1. The phosphorylation of ribosomal protein S6 was decreased whereas phosphorylation of elongation factor-2 (eEF-2) and raptor was enhanced consistent with defects in both translation initiation and elongation. Reduced S6 phosphorylation occurred 8–18 h after LPS/IFNγ and coincided with a prolonged upregulation of NOS2 mRNA and protein. NOS2 protein expression and the LPS/IFNγ –induced fall in phosphorylated S6 were prevented by the proteasome inhibitor MG132. The general NOS inhibitor L-NAME and the specific NOS2 inhibitor 1400W also prevented the LPS/IFNγ-induced decrease in protein synthesis and restored translational signaling. LPS/IFNγ down regulated the phosphorylation of multiple Akt substrates including the proline rich Akt substrate-40 (PRAS40) while enhancing the phosphorylation of raptor on an AMPK regulated site. The negative effects of LPS/IFNγ were blunted by the AMPK inhibitor compound C. The data suggest that in combination LPS and IFNγ induce a prolonged expression of NOS2 and excessive production of NO that reciprocally alters Akt and AMPK activity and consequently down regulates translation via reduced mTOR signaling. PMID:19295495

  14. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    Science.gov (United States)

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    VEGF levels. Compared with RF ablation alone, RF ablation combined with adjuvant PHA-665752 or semaxanib reduced distant tumor growth, proliferation, and microvascular density. For c-Met–negative tumors, hepatic RF ablation did not increase distant tumor growth, proliferation, or microvascular density compared with sham treatment. Conclusion RF ablation of normal liver can stimulate distant subcutaneous tumor growth mediated by HGF/c-Met pathway and VEGF activation. This effect was not observed in c-Met–negative tumors and can be blocked with adjuvant c-Met and VEGF inhibitors. © RSNA, 2015 PMID:26418615

  15. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells*

    Science.gov (United States)

    Hwang, Ji-Sun; Kwon, Mi-Youn; Kim, Kyung-Hong; Lee, Yunkyoung; Lyoo, In Kyoon; Kim, Jieun E.; Oh, Eok-Soo; Han, Inn-Oc

    2017-01-01

    We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess. PMID:27927986

  16. Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid–stimulated migration of murine osteosarcoma LM8 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kubohara, Yuzuru, E-mail: ykuboha@juntendo.ac.jp [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Health Science, Juntendo University Graduate School of Health and Sports Science, Inzai 270-1695 (Japan); Komachi, Mayumi [Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512 (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Homma, Yoshimi [Department of Biomolecular Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295 (Japan); Kikuchi, Haruhisa; Oshima, Yoshiteru [Laboratory of Natural Product Chemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Aoba-yama, Aoba-ku, Sendai 980-8578 (Japan)

    2015-08-07

    Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), −2, and −3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5–20 μM) dose-dependently suppressed LPA-induced cell migration with associated IC{sub 50} values of 5.5, 4.6, and 4.2 μM, respectively. On the other hand, the IC{sub 50} values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 μM, respectively, in LM8 cells, and >20, 14.8, and 4.3 μM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis. - Highlights: • LPA induces cell migration (invasion) in murine osteosarcoma LM8 cells. • DIFs are novel lead anti-tumor agents found in Dictyostelium discoideum. • We examined the effects of DIF derivatives on LPA-induced LM8 cell migration in vitro. • Some of the DIF derivatives inhibited LPA-induced LM8 cell migration.

  17. Derivatives of Dictyostelium differentiation-inducing factors inhibit lysophosphatidic acid–stimulated migration of murine osteosarcoma LM8 cells

    International Nuclear Information System (INIS)

    Kubohara, Yuzuru; Komachi, Mayumi; Homma, Yoshimi; Kikuchi, Haruhisa; Oshima, Yoshiteru

    2015-01-01

    Osteosarcoma is a common metastatic bone cancer that predominantly develops in children and adolescents. Metastatic osteosarcoma remains associated with a poor prognosis; therefore, more effective anti-metastatic drugs are needed. Differentiation-inducing factor-1 (DIF-1), −2, and −3 are novel lead anti-tumor agents that were originally isolated from the cellular slime mold Dictyostelium discoideum. Here we investigated the effects of a panel of DIF derivatives on lysophosphatidic acid (LPA)-induced migration of mouse osteosarcoma LM8 cells by using a Boyden chamber assay. Some DIF derivatives such as Br-DIF-1, DIF-3(+2), and Bu-DIF-3 (5–20 μM) dose-dependently suppressed LPA-induced cell migration with associated IC 50 values of 5.5, 4.6, and 4.2 μM, respectively. On the other hand, the IC 50 values of Br-DIF-1, DIF-3(+2), and Bu-DIF-3 versus cell proliferation were 18.5, 7.2, and 2.0 μM, respectively, in LM8 cells, and >20, 14.8, and 4.3 μM, respectively, in mouse 3T3-L1 fibroblasts (non-transformed). Together, our results demonstrate that Br-DIF-1 in particular may be a valuable tool for the analysis of cancer cell migration, and that DIF derivatives such as DIF-3(+2) and Bu-DIF-3 are promising lead anti-tumor agents for the development of therapies that suppress osteosarcoma cell proliferation, migration, and metastasis. - Highlights: • LPA induces cell migration (invasion) in murine osteosarcoma LM8 cells. • DIFs are novel lead anti-tumor agents found in Dictyostelium discoideum. • We examined the effects of DIF derivatives on LPA-induced LM8 cell migration in vitro. • Some of the DIF derivatives inhibited LPA-induced LM8 cell migration

  18. Matrine inhibits the adhesion and migration of BCG823 gastric cancer cells by affecting the structure and function of the vasodilator-stimulated phosphoprotein (VASP).

    Science.gov (United States)

    Zhang, Jing-wei; Su, Ke; Shi, Wen-tao; Wang, Ying; Hu, Peng-chao; Wang, Yang; Wei, Lei; Xiang, Jin; Yang, Fang

    2013-08-01

    Vasodilator-stimulated phosphoprotein (VASP) expression is upregulated in human cancers and correlates with more invasive advanced tumor stages. The aim of this study was to elucidate the mechanisms by which matrine, an alkaloid derived from Sophora species plants, acted on the VASP protein in human gastric cancer cells in vitro. VASP was expressed and purified. Intrinsic fluorescence spectroscopy was used to study the binding of matrine to VASP. CD spectroscopy was used to examine the changes in the VASP protein secondary structure. Human gastric carcinoma cell line BGC823 was tested. Scratch wound and cell adhesion assays were used to detect the cell migration and adhesion, respectively. Real-time PCR and Western blotting assays were used to measure mRNA and protein expression of VASP. In the fluorescence assay, the dissociation constant for binding of matrine to VASP protein was 0.86 mmol/L, thus the direct binding between the two molecules was weak. However, matrine (50 μg/mL) caused obvious change in the secondary structure of VASP protein shown in CD spectrum. Treatments of BGC823 cells with matrine (50 μg/mL) significantly inhibited the cell migration and adhesion. The alkaloid changed the subcellular distribution of VASP and formation of actin stress fibers in BGC823 cells. The alkaloid caused small but statistically significant decreases in VASP protein expression and phosphorylation, but had no significant effect on VASP mRNA expression. Matrine modulates the structure, subcellular distribution, expression and phosphorylation of VASP in human gastric cancer cells, thus inhibiting the cancer cell adhesion and migration.

  19. c-Ski inhibits the proliferation of vascular smooth muscle cells via suppressing Smad3 signaling but stimulating p38 pathway.

    Science.gov (United States)

    Li, Jun; Li, Ping; Zhang, Yan; Li, Gong-Bo; Zhou, Yuan-Guo; Yang, Kang; Dai, Shuang-Shuang

    2013-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) plays key roles in the progression of intimal hyperplasia, but the molecular mechanisms that trigger VSMC proliferation after vascular injury remain unclear. c-Ski, a co-repressor of transforming growth factor β (TGF-β)/Smad signaling, was detected to express in VSMC of rat artery. During the course of arterial VSMC proliferation induced by balloon injury in rat, the endogenous protein expressions of c-Ski decreased markedly in a time-dependent manner. In vivo c-Ski gene delivery was found to significantly suppress balloon injury-induced VSMC proliferation and neointima formation. Further investigation in A10 rat aortic smooth muscle cells demonstrated that overexpression of c-Ski gene inhibited TGF-β1 (1 ng/ml)-induced A10 cell proliferation while knockdown of c-Ski by RNAi enhanced the stimulatory effect of TGF-β1 on A10 cell growth. Western blot for signaling detection showed that suppression of Smad3 phosphorylation while stimulating p38 signaling associated with upregulation of cyclin-dependent kinase inhibitors p21 and p27 was responsible for the inhibitory effect of c-Ski on TGF-β1-induced VSMC proliferation. These data suggest that the decrease of endogenous c-Ski expression is implicated in the progression of VSMC proliferation after arterial injury and c-Ski administration represents a promising role for treating intimal hyperplasia via inhibiting the proliferation of VSMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A novel flavonoid isolated from the steam-bark of Ulmus wallichiana planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation.

    Science.gov (United States)

    Swarnkar, Gaurav; Sharan, Kunal; Siddiqui, Jawed A; Chakravarti, Bandana; Rawat, Preeti; Kumar, Manmeet; Arya, Kamal R; Maurya, Rakesh; Chattopadhyay, Naibedya

    2011-05-11

    (2S,3S)-Aromadendrin-6-C-β-d-glucopyranoside (AG) is a novel flavonol isolated from the extract of Ulmus wallichiana (Himalayan Elm). Extract of U. wallichiana is used as a traditional medicine for rapid fracture repair in India. We characterized the mechanism of action of AG in mouse bone cells by investigating its effect on the precursors of osteoblasts, osteoclasts and adipocytes. At nanomolar concentrations, AG increased differentiation of preosteoblasts obtained from neonatal mouse calvaria. The gene expression of osteogenic markers, including runt-related transcription factor 2 (Runx-2), bone morphogenetic protein-2 (BMP-2), type I collagen and osteocalcin were elevated in the preosteoblasts. The extracellular matrix mineralization was higher in preosteoblast and bone marrow cells when AG was present in the medium. Furthermore, AG protected the differentiated osteoblasts from serum deprivation-induced apoptosis, and increased the expression of the anti-osteoclastogenic cytokine, osteoprotegerin. It inhibited osteoclast differentiation of bone marrow precursor cells to osteoclasts in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and monocyte/macrophage-colony stimulating factor (M-CSF). Additionally, in 3T3-L1 preadipocytes, AG decreased the expression of genes involved in adipogenesis, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein (SREBP) and CCAAT/enhancer-binding protein alpha (CEBP/α), and induced apoptosis of differentiated adipocytes. Induction of adipogenic differentiation was also inhibited in the presence of AG. AG exhibited no estrogenic/antiestrogenic effect. Together, our data show that AG has potent osteogenic, anti-osteoclastogenic and anti-adipogenic effects, which may translate to a better skeletal outcome in postmenopausal osteoporosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    Science.gov (United States)

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Zinc protoporphyrin inhibition of lipopolysaccharide-, lipoteichoic acid-, and peptidoglycan-induced nitric oxide production through stimulating iNOS protein ubiquitination.

    Science.gov (United States)

    Chow, Jyh-Ming; Lin, Hui-Yi; Shen, Shing-Chuan; Wu, Ming-Shun; Lin, Cheng-Wei; Chiu, Wen-Ta; Lin, Chien-Huang; Chen, Yen-Chou

    2009-06-15

    In the present study, zinc protoporphyrin (ZnPP), but not ferric protoporphyrin (FePP), tin protoporphyrin (SnPP), or zinc chloride (ZnCl(2)), at the doses of 0.5, 1, and 2 microM, dose-dependently inhibited lipopolysaccharide- (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages in a serum-free condition. NO inhibition and HO-1 induction by ZnPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). A decrease in the iNOS/NO ratio and an increase in HO-1 protein by ZnPP were identified in three different conditions including ZnPP pretreatment, ZnPP co-treatment, and ZnPP post-treatment with LPS and LTA. Activation of c-Jun N-terminal kinases (JNKs) and extracellular regulated kinases (ERKs) were detected in LPS-, LTA-, and PGN-treated RAW264.7 cells, and iNOS/NO production was blocked by adding the JNK inhibitor, SP600125, but not the ERK inhibitor, PD98059. However, ZnPP addition potentiated ERK and JNK protein phosphorylation stimulated by LPS, LTA, and PGN. Increases in total protein ubiquitination and ubiquitinated iNOS proteins were detected in ZnPP-treated macrophages elicited by LPS according to Western and immunoprecipitation/Western blotting assays, respectively. The decrease in LPS-induced iNOS protein by ZnPP was reversed by adding the proteasome inhibitors MG132 and lactacystin. The reduction in HO-1 protein induced by ZnPP via transfection of HO-1 small interfering RNA did not affect the inhibitory effect of ZnPP against LPS-induced iNOS/NO production and protein ubiquitination induced by ZnPP in macrophages. Data of the present study provide the first evidence to support ZnPP effectively inhibiting inflammatory iNOS/NO production through activation of protein ubiquitination in a HO-1-independent manner in macrophages.

  4. New sesquiterpene dimers from Inula britannica inhibit NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells.

    Science.gov (United States)

    Jin, Hui Zi; Lee, Dongho; Lee, Jeong Hyung; Lee, Kyeong; Hong, Young-Soo; Choung, Dong-Ho; Kim, Young Ho; Lee, Jung Joon

    2006-01-01

    A bioassay-guided isolation of an ethyl acetate-soluble extract of the aerial parts of Inula britannica var. chinensis (Rupr.) Regel, using an in vitro NF-kappaB reporter gene assay, led to the isolation of four new sesquiterpene dimers bearing a norbornene moiety, inulanolides A-D, and three known sesquiterpenes, 1,6alpha-dihydroxyeriolanolide, 1-acetoxy-6alpha-hydroxyeriolanolide, and eupatolide. The structures of the new compounds were elucidated by spectroscopic methods. Among these compounds, inulanolides B and D and eupatolide, exhibited potent inhibitory activity on the LPS-induced NF-kappaB activation with IC50 values of 0.49 microM, 0.48 microM, and 1.54 microM, respectively. Consistent with their inhibitory effect on NF-kappaB activation, compounds and also strongly inhibited the production of NO and TNF-alpha in the LPS-stimulated RAW264.7 cells with IC50 values in the range of 2 microM.

  5. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small

  6. Tangeretin and its metabolite 4'-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K.

    Science.gov (United States)

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, M R

    2011-04-01

    The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4'-hydroxy-5,6,7,8-tetramethoxyflavone (4'-OH-TMF) in this effect. We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [(3)H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4'-OH-TMF. Low micromolar concentrations of tangeretin or 4'-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4'-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. Tangeretin and 4'-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4'-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Tangeretin and its metabolite 4′-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K

    Science.gov (United States)

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, MR

    2011-01-01

    BACKGROUND AND PURPOSE The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4′-hydroxy-5,6,7,8-tetramethoxyflavone (4′-OH-TMF) in this effect. EXPERIMENTAL APPROACH We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [3H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. KEY RESULTS Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4′-OH-TMF. Low micromolar concentrations of tangeretin or 4′-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4′-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. CONCLUSIONS AND IMPLICATIONS Tangeretin and 4′-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4′-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. PMID:21198542

  8. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  9. Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multi-walled carbon nanotube, and graphene nanoplatelet

    Directory of Open Access Journals (Sweden)

    A. Aftab

    2017-06-01

    Full Text Available Five different drilling mud systems namely potassium chloride (KCl as a basic mud, KCl/partial hydrolytic polyacrylamide (PHPA, KCl/graphene nanoplatelet (GNP, KCl/nanosilica and KCl/multi-walled carbon nano tube (MWCNT were prepared and investigated for enhancement of rheological properties and shale inhibition. Nanoparticles were characterized in drilling mud using transmission electron microscope (TEM analysis. Mineralogical analysis of shale was examined by X-ray diffraction (XRD. Five shale plugs were prepared using compactor cell for the determination of shale swelling. Shale swelling was determined using the linear swell meter (LSM for 20 hours. Results revealed that basic mud and KCl/polymer mud systems shows 30% and 24% change in shale volume. MWCNT, nanosilica and GNP were added separately in the KCl mud system. 0.1 ppb of each MWCNT and nanosilica showed 32% and 33% change in shale volume. However, when the shale was interacted with WBM containing 0.1 ppb of GNP, it was found that only 10% change in shale volume occurred. The results showed that the addition of nanoparticles in the KCl mud system improved the shale inhibition. API, HPHT filtrate loss volume, plastic viscosity (PV and yield point (YP were improved using GNP. It is learned from the experimental work that small concentration of KCl with GNP can mitigate shale swelling compared to the mud contains higher concentration of KCl and PHPA in WBM. Thus, GNP can be a better choice for enhancement of WBM performance.

  10. Intraarticularly-Injected Mesenchymal Stem Cells Stimulate Anti-Inflammatory Molecules and Inhibit Pain Related Protein and Chondrolytic Enzymes in a Monoiodoacetate-Induced Rat Arthritis Model

    Directory of Open Access Journals (Sweden)

    Toru Ichiseki

    2018-01-01

    Full Text Available Persistent inflammation is well known to promote the progression of arthropathy. mesenchymal stem cells (MSCs have been shown to possess anti-inflammatory properties and tissue differentiation potency. Although the experience so far with the intraarticular administration of mesenchymal stem cell (MSC to induce cartilage regeneration has been disappointing, MSC implantation is now being attempted using various surgical techniques. Meanwhile, prevention of osteoarthritis (OA progression and pain control remain important components of the treatment of early-stage OA. We prepared a shoulder arthritis model by injecting monoiodoacetate (MIA into a rat shoulder, and then investigated the intraarticular administration of MSC from the aspects of the cartilage protective effect associated with their anti-inflammatory property and inhibitory effect on central sensitization of pain. When MIA was administered in this rat shoulder arthritis model, anti-Calcitonin Gene Related Peptide (CGRP was expressed in the joint and C5 spinal dorsal horn. Moreover, expression of A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5, a marker of joint cartilage injury, was similarly elevated following MIA administration. When MSC were injected intraarticularly after MIA, the expression of CGRP in the spinal dorsal horn was significantly deceased, indicating suppression of the central sensitization of pain. The expression of ADAMTS 5 in joint cartilage was also significantly inhibited by MSC administration. In contrast, a significant increase in the expression of TNF-α stimulated gene/protein 6 (TSG-6, an anti-inflammatory and cartilage protective factor shown to be produced and secreted by MSC intraarticularly, was found to extend to the cartilage tissue following MSC administration. In this way, the intraarticular injection of MSC inhibited the central sensitization of pain and increased the expression of the anti-inflammatory and cartilage

  11. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats.

    Science.gov (United States)

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-06-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1

  12. Functionalized Carbon Nanotubes

    Science.gov (United States)

    Lebron, Marisabel; Mintz, Eric; Meador, Michael A.; Hull, David R.; Scheiman, Daniel A.; Willis, Peter; Smalley, Richard E.

    2001-01-01

    Carbon nanotubes have created a great deal of excitement in the Materials Science community because of their outstanding mechanical, electrical, and thermal properties. Use of carbon nanotubes as reinforcements for polymers could lead to a new class of composite materials with properties, durability, and performance far exceeding that of conventional fiber reinforced composites. Organized arrays of carbon nanotubes, e.g., nanotube monolayers, could find applications as thermal management materials, light emitting devices, and sensor arrays. Carbon nanotubes could also be used as templates upon which nanotubes from other materials could be constructed. Successful use of carbon nanotubes in any of these potential applications requires the ability to control the interactions of nanotubes with each other and with other materials, e.g., a polymer matrix. One approach to achieving this control is to attach certain chemical groups to the ends and/or side-walls of the nanotubes. The nature of these chemical groups can be varied to achieve the desired result, such as better adhesion between the nanotubes and a polymer. Under a joint program between NASA Glenn, Clark Atlanta University, and Rice University researchers are working on developing a chemistry "tool-kit" that will enable the functionalization of carbon nanotubes with a variety of chemical groups. Recent results of this effort will be discussed.

  13. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  14. Transcranial Direct Current Stimulation of the Temporoparietal Junction and Inferior Frontal Cortex Improves Imitation-Inhibition and Perspective-Taking with no Effect on the Autism-Spectrum Quotient Score

    Directory of Open Access Journals (Sweden)

    Satoshi Nobusako

    2017-05-01

    Full Text Available Lesions to brain regions such as the temporoparietal junction (TPJ and inferior frontal cortex (IFC are thought to cause autism-spectrum disorder (ASD. Previous studies indicated that transcranial direct current stimulation (tDCS of the right TPJ improves social cognitive functions such as imitation-inhibition and perspective-taking. Although previous work shows that tDCS of the right IFC improves imitation-inhibition, its effects on perspective-taking have yet to be determined. In addition, the role of the TPJ and IFC in determining the Autism-Spectrum Quotient (AQ, which is a measure of autism spectrum traits, is still unclear. Thus, the current study performed tDCS on the right TPJ and the right IFC of healthy adults, and examined its effects on imitation-inhibition, perspective-taking and AQ scores. Based on previous studies, we hypothesized that anodal tDCS of the right IFC and right TPJ would improve imitation-inhibition, perspective-taking and the AQ score. Anodal tDCS of the right TPJ or IFC significantly decreased the interference effect in an imitation-inhibition task and the cost of perspective-taking in a perspective-taking task, in comparison to the sham stimulation control. These findings indicated that both the TPJ and the IFC play a role in imitation-inhibition and perspective-taking, i.e., control of self and other representations. However, anodal stimulation of the right TPJ and the right IFC did not alter participants’ AQ. This finding conflicts with results from previous brain imaging studies, which could be attributed to methodological differences such as variation in sex, age and ASD. Therefore, further research is necessary to determine the relationship between the TPJ and IFC, and the AQ.

  15. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30.

    Science.gov (United States)

    He, Jing; Wei, Chao; Li, Yueqin; Liu, Ying; Wang, Yue; Pan, Jirong; Liu, Jiali; Wu, Yingjie; Cui, Sheng

    2018-02-05

    Zearalenone (ZEA) is one of the most popular endocrine-disrupting chemicals and is mainly produced by fungi of the genus Fusarium. The excessive intake of ZEA severely disrupts human and animal fertility by affecting the reproductive axis. However, most studies on the effects of ZEA and its metabolite α-zearalenol (α-ZOL) on reproductive systems have focused on gonads. Few studies have investigated the endocrine-disrupting effects of ZEA and α-ZOL on pituitary gonadotropins, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The present study was designed to investigate the effects of ZEA and α-ZOL on the synthesis and secretion of FSH and LH and related mechanisms in female pig pituitary. Our in vivo and in vitro results demonstrated that ZEA significantly inhibited the synthesis and secretion of FSH in the pig pituitary gland, but ZEA and α-ZOL had no effects on LH. Our study also showed that ZEA and α-ZOL decreased FSH synthesis and secretion through non-classical estrogen membrane receptor GPR30, which subsequently induced protein kinase cascades and the phosphorylation of PKC, ERK and p38MAPK signaling pathways in pig pituitary cells. Furthermore, our study showed that the LIM homeodomain transcription factor LHX3 was involved in the mechanisms of ZEA and α-ZOL actions on gonadotropes in the female pig pituitary. These findings elucidate the mechanisms behind the physiological alterations resulting from endocrine-disrupting chemicals and further show that the proposed key molecules of the α-ZOL signaling pathway could be potential pharmacological targets. Copyright © 2017. Published by Elsevier B.V.

  16. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  17. Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine.

    Science.gov (United States)

    Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Pujal, Josep Maria; Aran, Gemma; Sanjurjo, Lucía; Franquesa, Marcel la; Sarrias, Maria-Rosa; Bayes-Genis, Antoni; Borràs, Francesc E

    2017-01-01

    Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive

  18. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium

    Science.gov (United States)

    Zhu, Ying; Ran, Tiecheng; Li, Yuguo; Guo, Jinxue; Li, Wenxin

    2006-09-01

    This study examined the influence of multi-walled carbon nanotubes (MWNTs) on the growth of the unicellular protozoan Tetrahymena pyriformis. Contrary to the findings from most other investigations, our experiment indicated that MWNTs stimulated growth of the cells cultured in proteose peptone yeast extract medium (PPY). Atomic force microscopy images and thermogravimetric analysis showed the spontaneous formation of peptone-MWNT conjugates in the medium by noncovalent binding. Uptake of large amounts of the conjugates by Tetrahymena pyriformis was responsible for growth stimulation, evidenced by images with fluorescently labelled peptone. After the PPY medium was replaced by a filtrated pond water medium (FPW), however, inhibition of the growth of cells exposed to MWNTs occurred. Measurements of the level of malondialdehyde and superoxide dismutase activity demonstrated further that MWNTs might be either toxic or nontoxic, depending on the medium used to cultivate Tetrahymena pyriformis. The biological effects of the interaction of MWNTs with some composites in culture media would be helpful for understanding the mechanisms of the toxicity of carbon nanotubes to living systems.

  19. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium

    International Nuclear Information System (INIS)

    Zhu Ying; Ran Tiecheng; Li Yuguo; Guo Jinxue; Li Wenxin

    2006-01-01

    This study examined the influence of multi-walled carbon nanotubes (MWNTs) on the growth of the unicellular protozoan Tetrahymena pyriformis. Contrary to the findings from most other investigations, our experiment indicated that MWNTs stimulated growth of the cells cultured in proteose peptone yeast extract medium (PPY). Atomic force microscopy images and thermogravimetric analysis showed the spontaneous formation of peptone-MWNT conjugates in the medium by noncovalent binding. Uptake of large amounts of the conjugates by Tetrahymena pyriformis was responsible for growth stimulation, evidenced by images with fluorescently labelled peptone. After the PPY medium was replaced by a filtrated pond water medium (FPW), however, inhibition of the growth of cells exposed to MWNTs occurred. Measurements of the level of malondialdehyde and superoxide dismutase activity demonstrated further that MWNTs might be either toxic or nontoxic, depending on the medium used to cultivate Tetrahymena pyriformis. The biological effects of the interaction of MWNTs with some composites in culture media would be helpful for understanding the mechanisms of the toxicity of carbon nanotubes to living systems

  20. An investigation into ‘two hit’ effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice

    Directory of Open Access Journals (Sweden)

    Maren eKlug

    2013-10-01

    Full Text Available Reduced brain-derived neurotrophic factor (BDNF signalling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET and wild-type controls were chronically treated during weeks 6, 7 and 8 of life with the cannabinoid CB1 receptor agonist, CP55,940 (CP. After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus.These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male ‘two hit’ mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential ‘two hit’ neurodevelopmental mechanisms in schizophrenia.

  1. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    Science.gov (United States)

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  2. Purification of carbon nanotubes via selective heating

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun; Dunham, Simon N.; Xie, Xu; Islam, Ahmad; Du, Frank; Huang, Yonggang; Song, Jizhou

    2017-11-21

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  3. Stimulation of a Cd-binding protein, and inhibition of the vitamin D-dependent calcium-binding protein, by zinc or cadmium in organ-cultured embryonic chick duodenum

    International Nuclear Information System (INIS)

    Corradino, R.A.; Fullmer, C.S.

    1980-01-01

    Embryonic chick duodenum maintained in organ culture responds to 1 α,25-dihydroxy vitamin D 3 in the culture medium by de novo synthesis of a specific calcium-binding protein (CaBP). The addition of Cd 2+ (3-5 x 10 -5 M) or Zn 2+ (10 -5 -10 -4 M) to the medium inhibited CaBP, but stimulated biosynthesis of a Cd-binding protein (CdBP). CdBP in duodenal homogenate supernatants was assessed in two ways: first, by its 109 Cd-binding activity ( 109 CdBA) using a competitive ion exchange procedure; and, second, by the extent of [ 35 S]-cystine incorporation into a specific peak or band after gel filtration or analytical polyacrylamide disc gel electrophoresis, respectively. Regardless of whether cadmium- or zinc-stimulated, the 35 S-labeled CdBP - the only protein significantly labeled under the conditions employed - migrated identically upon gel filtration and electrophoresis, and comigrated with purified chick liver Cd-metallothionein. Neither actinomycin D nor α-amanitin, in concentrations sufficient to severely inhibit CaBP, significantly reduced CdBP production. However, cycloheximide did inhibit either Cd 2+ - or Zn 2+ -stimulated CdBP by about 50% at an inhibitor concentration which abolished CaBP. The inhibitor studies, coupled with the observations of extensive incorporation of [ 35 S]cystine into CdBP, suggest that the metals stimulated biosynthesis by a mechanism operating at the translational level. The organ-cultured duodenum seems well suited for studies of the regulation of CdBP biosynthesis especially since it responds predictably to the steroid hormone, 1α,25-dihydroxy vitamin D 3 , in the induction of another specific protein, CaBP, at the transcriptional level. The biosynthesis of CaBP thus may serve as a convenient control in studies of CdBP production under various experimental conditions

  4. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells.

    Science.gov (United States)

    Yoon, Hyun-Min; Jang, Kyung-Jun; Han, Min Seok; Jeong, Jin-Woo; Kim, Gi Young; Lee, Jai-Heon; Choi, Yung Hyun

    2013-03-01

    Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE(2) and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia.

  5. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  6. Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior

    NARCIS (Netherlands)

    Ruffin, MP; Nicolaidis, S

    1999-01-01

    The effects of ventromedial hypothalamic (VMH) stimulation on various metabolic parameters in freely moving animals were measured using a specific indirect calorimetric chamber associated with a quantitative measurement of locomotor activity, which allows the separate measurement of locomotor energy

  7. Interleukin (IL)-13 and IL-4 inhibit proliferation and stimulate IL-6 formation in human osteoblasts: evidence for involvement of receptor subunits IL-13R, IL-13Ralpha, and IL-4Ralpha.

    Science.gov (United States)

    Frost, A; Jonsson, K B; Brändström, H; Ljunghall, S; Nilsson, O; Ljunggren, O

    2001-03-01

    Interleukin-13 (IL-13) inhibits cell proliferation and stimulates interleukin-6 (IL-6) formation in isolated human osteoblasts (hOBs). Because the related cytokine, interleukin-4 (IL-4), is known to exert effects similar to IL-13 in other tissues, and because IL-4 has been implicated as a regulator of bone metabolism, we compared the effects of IL-13 and IL-4 on cell proliferation, IL-6 synthesis, the expression of osteoblastic phenotypic markers in hOB cultures. Also, the receptor proteins mediating these effects in hOBs have been partly characterized. IL-4 and IL-13 dose-dependently inhibited [(3)H]-thymidine incorporation into the DNA of human osteoblasts and stimulated secretion of IL-6 into culture supernatants. IL-13 and IL-4 also increased the mRNA levels of IL-6, as measured by RNAse protection assay. Furthermore, IL-13 and IL-4 dose-dependently enhanced alkaline phosphatase (ALP) activity, but did not affect osteocalcin or collagen type I synthesis. IL-4 was tenfold more potent than IL-13 in inducing both ALP activity and IL-6 secretion, whereas the cytokines were equipotent as inhibitors of cell proliferation. The expression of mRNA for receptor subunits previously implicated in IL-4 and IL-13 signaling was investigated by reverse transcriptase-polymerase chain reaction. IL-13R, IL-13Ralpha, and IL-4Ralpha mRNA were repeatedly detected in hOBs, whereas mRNA for IL-2Rgamma(C) was not detected. Receptor-blocking antibodies to IL-4Ralpha inhibited the induction of IL-6 formation by both IL-4 and IL-13, indicating that both cytokines utilize this receptor subunit in signaling. However, the antibodies did not affect the IL-4/-13-induced inhibition of [(3)H]-thymidine incorporation or the stimulation of alkaline phosphatase (ALP), suggesting that IL-4Ralpha does not mediate these effects of IL-4/-13 in hOBs. We conclude that the cytokines IL-13 and IL-4, through sharing of receptor components, induce similar effects on hOBs, causing inhibition of cell

  8. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas.

    Science.gov (United States)

    Bareket, Lilach; Waiskopf, Nir; Rand, David; Lubin, Gur; David-Pur, Moshe; Ben-Dov, Jacob; Roy, Soumyendu; Eleftheriou, Cyril; Sernagor, Evelyne; Cheshnovsky, Ori; Banin, Uri; Hanein, Yael

    2014-11-12

    We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.

  9. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    Unknown

    nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have been obtained. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with.

  10. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Insulin-stimulated lipid accumulation is inhibited by ROS-scavenging chemicals, but not by the Drp1 inhibitor Mdivi-1.

    Science.gov (United States)

    Kim, Jung-Hak; Park, Sun-Ji; Kim, Bokyung; Choe, Young-Geun; Lee, Dong-Seok

    2017-01-01

    Adipocyte differentiation is regulated by intracellular reactive oxygen species (ROS) generation and mitochondrial fission and fusion processes. However, the correlation between intracellular ROS generation and mitochondrial remodeling during adipocyte differentiation is still unknown. Here, we investigated the effect on adipocyte differentiation of 3T3-L1 cells of intracellular ROS inhibition using N-acetyl cysteine (Nac) and Mito-TEMPO and of mitochondrial fission inhibition using Mdivi-1. Differentiated 3T3-L1 adipocytes displayed an increase in mitochondrial fission, ROS generation, and the expression of adipogenic and mitochondrial dynamics-related proteins. ROS scavenger (Nac or Mito-TEMPO) treatment inhibited ROS production, lipid accumulation, the expression of adipogenic and mitochondrial dynamics-related proteins, and mitochondrial fission during adipogenesis of 3T3-L1 cells. On the other hand, treatment with the mitochondrial fission inhibitor Mdivi-1 inhibited mitochondrial fission but did not inhibit ROS production, lipid accumulation, or the expression of adipogenic and mitochondrial dynamics-related proteins, with the exception of phosphorylated Drp1 (Ser616), in differentiated 3T3-L1 adipocytes. The inhibition of mitochondrial fission did not affect adipocyte differentiation, while intracellular ROS production decreased in parallel with inhibition of adipocyte differentiation. Therefore, our results indicated that ROS are an essential regulator of adipocyte differentiation in 3T3-L1 cells.

  12. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway.

    Science.gov (United States)

    Chen, Xin; Miao, Jingshan; Wang, Hao; Zhao, Fang; Hu, Jie; Gao, Peng; Wang, Yue; Zhang, Luyong; Yan, Ming

    2015-07-21

    Ainsliaea fragrans Champ. (A. fragrans) is a traditional Chinese herbal that contains components like 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. It exhibits anti-inflammatory activities which has been used for the treatment of gynecological diseases for many years in China. The aims of the present study were to investigate the anti-inflammatory activities of A. fragrans and elucidate the underlying mechanisms with regard to its molecular basis of action for the best component. The anti-inflammatory effects of A. fragrans were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS) and pro-inflammatory cytokines, inhibitory κBα (IκBα) degradation and nuclear translocation of NF-κB p65 were further investigated. The present study demonstrated that A. fragrans could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. Further investigations showed A. fragrans could suppress iNOS expression. A. fragrans also inhibited the expression of tumor necrosis factor-alpha and interleukin-6. A. fragrans significantly decreased the degradation of IκBα, reduced the level of nuclear translocation of p65. All these results suggested the inhibitory effects of A. fragrans on the production of inflammatory mediators through the inhibition of the NF-κB activation pathway. Our results indicated that A. fragrans inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of NF-κB pathway. This study gives scientific evidence that validate the use of A. fragrans in treatment of patients with gynecological diseases in clinical practice in traditional Chinese medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes

    NARCIS (Netherlands)

    van den Bossche, Jan; Lamers, Wouter H.; Koehler, Eleonore S.; Geuns, Jan M. C.; Alhonen, Leena; Uimari, Anne; Pirnes-Karhu, Sini; van Overmeire, Eva; Morias, Yannick; Brys, Lea; Vereecke, Lars; de Baetselier, Patrick; van Ginderachter, Jo A.

    2012-01-01

    In macrophages, basal polyamine (putrescine, spermidine, and spermine) levels are relatively low but are increased upon IL-4 stimulation. This Th2 cytokine induces Arg1 activity, which converts arginine into ornithine, and ornithine can be decarboxylated by ODC to produce putrescine, which is

  14. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells.

    Science.gov (United States)

    Grey, Caleb L; Chang, John P

    2013-06-01

    Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Nanotube resonator devices

    Science.gov (United States)

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  16. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  17. Melaleuca quinquenervia essential oil inhibits α-melanocyte-stimulating hormone-induced melanin production and oxidative stress in B16 melanoma cells.

    Science.gov (United States)

    Chao, Wen-Wan; Su, Chia-Chi; Peng, Hsin-Yi; Chou, Su-Tze

    2017-10-15

    Essential oils are odorous, volatile products of plant secondary metabolism, which are found in many leaves and stems. They show important biological activities, which account for the development of aromatherapy used in complementary and alternative medicine. The essential oil extracted from Melaleuca quinquenervia (Cav.) S.T. Blake (paperbark) (MQ-EO) has various functional properties. The aim of this study is to investigate the chemical composition of MQ-EO by using gas chromatography-mass spectrometry (GC-MS) and evaluate its tyrosinase inhibitory activity. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics was used to identify 18 components in MQ-EO. The main components identified were 1,8-cineole (21.60%), α-pinene (15.93%), viridiflorol (14.55%), and α-terpineol (13.73%). B16 melanoma cells were treated with α-melanocyte-stimulating hormone (α-MSH) in the presence of various concentrations of MQ-EO or its major compounds. Cell viability was accessed by MTT assay and cellular tyrosinase activity and melanin content were determined by using spectrophotographic methods. The antioxidant mechanism of MQ-EO in α-MSH stimulated B16 cells was also investigated. In α-melanocyte-stimulating hormone (α-MSH)-stimulated murine B16 melanoma cells, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol significantly reduced melanin content and tyrosinase activity. Moreover, MQ-EO, 1,8-cineole, α-pinene, and α-terpineol decreased malondialdehyde (MDA) levels. In addition, restored glutathione (GSH) levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were increased in α-MSH-stimulated B16 cells. MQ-EO not only decreased apoptosis but also reduced DNA damage in α-MSH stimulated B16 cells. These results showed that MQ-EO and its main components, 1,8-cineole, α-pinene, and α-terpineol, possessed potent anti-tyrosinase and anti-melanogenic activities besides the antioxidant properties. The active functional components of MQ

  18. Platycodin D Inhibits Inflammatory Response in LPS-Stimulated Primary Rat Microglia Cells through Activating LXRα-ABCA1 Signaling Pathway.

    Science.gov (United States)

    Fu, Yunhe; Xin, Zhuoyuan; Liu, Bin; Wang, Jiaxin; Wang, Jingjing; Zhang, Xu; Wang, Yanan; Li, Fan

    2017-01-01

    Platycodin D (PLD), an effective triterpenesaponin extracted from Platycodon grandiflorum , has been known to have anti-inflammatory effect. In the present study, we investigate the anti-inflammatory effects of PLD on LPS-induced inflammation in primary rat microglia cells. The results showed that PLD significantly inhibited LPS-induced ROS, TNF-α, IL-6, and IL-1β production in primary rat microglia cells. PLD also inhibited LPS-induced NF-κB activation. Furthermore, our results showed that PLD prevented LPS-induced TLR4 translocation into lipid rafts via disrupting the formation of lipid rafts by inducing cholesterol efflux. In addition, PLD could activate LXRα-ABCA1 signaling pathway which induces cholesterol efflux from cells. The inhibition of inflammatory cytokines by PLD could be reversed by SiRNA of LXRα. In conclusion, these results indicated that PLD prevented LPS-induced inflammation by activating LXRα-ABCA1 signaling pathway, which disrupted lipid rafts and prevented TLR4 translocation into lipid rafts, thereby inhibiting LPS-induced inflammatory response.

  19. Decreased neural activity and neural connectivity while performing a set-shifting task after inhibiting repetitive transcranial magnetic stimulation on the left dorsal prefrontal cortex

    NARCIS (Netherlands)

    Gerrits, N.J.H.M.; van den Heuvel, O.A.; van der Werf, Y.D.

    2015-01-01

    Background: Sub-optimal functioning of the dorsal prefrontal cortex (PFC) is associated with executive dysfunction, such as set-shifting deficits, in neurological and psychiatric disorders. We tested this hypothesis by investigating the effect of low-frequency 'inhibiting' off-line repetitive

  20. Decreased neural activity and neural connectivity while performing a set-shifting task after inhibiting repetitive transcranial magnetic stimulation on the left dorsal prefrontal cortex

    NARCIS (Netherlands)

    Gerrits, Niels J H M; van den Heuvel, Odile A; van der Werf, Ysbrand D

    2015-01-01

    BACKGROUND: Sub-optimal functioning of the dorsal prefrontal cortex (PFC) is associated with executive dysfunction, such as set-shifting deficits, in neurological and psychiatric disorders. We tested this hypothesis by investigating the effect of low-frequency 'inhibiting' off-line repetitive

  1. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Eui-Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Choi, Han-Gyu [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@gmail.com [Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. Black-Right-Pointing-Pointer EGCG-treated DCs inhibited MAPKs activation and NF-{kappa}B p65 translocation via 67LR. Black-Right-Pointing-Pointer EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-{alpha}, interleukin [IL]-1{beta}, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor {kappa}B (NF-{kappa}B) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  2. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells

    International Nuclear Information System (INIS)

    Byun, Eui-Baek; Choi, Han-Gyu; Sung, Nak-Yun; Byun, Eui-Hong

    2012-01-01

    Highlights: ► Expressions of CD80, CD86, and MHC class I/II were inhibited by EGCG via 67LR. ► EGCG-treated DCs inhibited LPS-induced pro-inflammatory cytokines via 67LR. ► EGCG-treated DCs inhibited MAPKs activation and NF-κB p65 translocation via 67LR. ► EGCG elevated the expression of the Tollip protein through 67LR in DCs. -- Abstract: Epigallocatechin-3-gallate (EGCG), a major active polyphenol of green tea, has been shown to down-regulate inflammatory responses in dendritic cells (DCs); however, the underlying mechanism has not been understood. Recently, we identified the 67-kDa laminin receptor (67LR) as a cell-surface EGCG receptor. In this study, we showed the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by EGCG in DCs. The expressions of CD80, CD86, and MHC class I and II, which are molecules essential for antigen presentation by DCs, were inhibited by EGCG via 67LR. In addition, EGCG-treated DCs inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) and activation of mitogen-activated protein kinases (MAPKs), e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) p65 translocation through 67LR. Interestingly, we also found that EGCG markedly elevated the expression of the Tollip protein, a negative regulator of TLR signaling, through 67LR. These novel findings provide new insight into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and consequent inflammatory responses that are implicated in the development and progression of many chronic diseases.

  3. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway.

    Science.gov (United States)

    Kondegowda, Nagesha Guthalu; Fenutria, Rafael; Pollack, Ilana R; Orthofer, Michael; Garcia-Ocaña, Adolfo; Penninger, Josef M; Vasavada, Rupangi C

    2015-07-07

    Diabetes results from a reduction of pancreatic β-cells. Stimulating replication could normalize β-cell mass. However, adult human β-cells are recalcitrant to proliferation. We identified osteoprotegerin, a bone-related decoy receptor, as a β-cell mitogen. Osteoprotegerin was induced by and required for lactogen-mediated rodent β-cell replication. Osteoprotegerin enhanced β-cell proliferation in young, aged, and diabetic mice. This resulted in increased β-cell mass in young mice and significantly delayed hyperglycemia in diabetic mice. Osteoprotegerin stimulated replication of adult human β-cells, without causing dedifferentiation. Mechanistically, osteoprotegerin induced human and rodent β-cell replication by modulating CREB and GSK3 pathways, through binding Receptor Activator of NF-κB (RANK) Ligand (RANKL), a brake in β-cell proliferation. Denosumab, an FDA-approved osteoporosis drug, and RANKL-specific antibody induced human β-cell proliferation in vitro, and in vivo, in humanized mice. Thus, osteoprotegerin and Denosumab prevent RANKL/RANK interaction to stimulate β-cell replication, highlighting the potential for repurposing an osteoporosis drug to treat diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  5. Paraconductivity in Carbon Nanotubes

    OpenAIRE

    Livanov, D. V.; Varlamov, A. A.

    2002-01-01

    We report the calculation of paraconductivity in carbon nanotubes above the superconducting transition temperature. The complex behavior of paraconductivity depending upon the tube radius, temperature and magnetic field strength is analyzed. The results are qualitatively compared with recent experimental observations in carbon nanotubes of an inherent transition to the superconducting state and pronounced thermodynamic fluctuations above $T_{c}$. The application of our results to single-wall ...

  6. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Do-Wan Shim

    Full Text Available Antimicrobial peptides (AMPs, also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  7. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Directory of Open Access Journals (Sweden)

    Bin Fan

    Full Text Available Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO, TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1 and perilipin 2 (PLIN2. Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  8. Protective effect of Hypericum calabricum Sprengel on oxidative damage and its inhibition of nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Giancarlo A Statti

    2011-01-01

    Full Text Available The present study shows for the first time the phenolic composition and the in vitro properties (antioxidant and inhibition of nitric oxide production of Hypericum calabricum Sprengel collected in Italy. The content of hypericins (hypericin and pseudohypericin, hyperforin, flavonoids (rutin, hyperoside, isoquercetrin, quercitrin, quercetin and biapigenin and chlorogenic acid of H. calabricum, have been determined. The ethyl acetate fraction from the aerial parts of H. calabricum exhibited activity against the radical 1,1-diphenyl-2-picrylhydrazyl (DPPH with IC50 value of 1.6 jig/ml. The test for inhibition of nitric oxide (NO production was performed using the murine monocytic macrophage cell line RAW 264.7. The ethyl acetate fraction had significant activity with an IC50 value of 102 jig/ml and this might indicate that it would have an anti-inflammatory effect in vivo.

  9. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    International Nuclear Information System (INIS)

    Lee, You Jin; Park, Sun Young; Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon; Lee, Sang Joon; Yoon, Sik; Kim, Young Hun; Bae, Yoe-Sik; Choi, Young-Whan

    2010-01-01

    A novel α-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. α-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) production. Consistent with these findings, α-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. α-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-κB p65 subunit. Furthermore, α-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel α-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  10. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells.

    Science.gov (United States)

    Jiang, Rui; Xu, Xiao-Hao; Wang, Ke; Yang, Xin-Zhao; Bi, Ying-Fei; Yan, Yao; Liu, Jian-Zeng; Chen, Xue-Nan; Wang, Zhen-Zhong; Guo, Xiao-Li; Zhao, Da-Qing; Sun, Li-Wei

    2017-08-17

    Hyperpigmentation disease involves darkening of the skin color due to melanin overproduction. Panax ginseng C.A. Meyer is a well-known traditional Chinese medicine and has a long history of use as a skin lightener to inhibit melanin formation in China, Korea and some other Asian countries. However, the constituents and the molecular mechanisms by which they affect melanogenesis are not fully clear. The purpose of this study was to identify the active ingredient in Panax ginseng C.A. Meyer extract that inhibits mushroom tyrosinase activity and to investigate the antioxidative capacity and molecular mechanisms of the effective extract on melanogenesis in B16 mouse melanoma cells. Aqueous extracts of Panax ginseng C.A. Meyer were successively fractionated with an equal volume of chloroform, ethyl acetate, and n-butyl alcohol to determine the effects by examining the activity of mushroom tyrosinase. The effective fraction was analyzed using HPLC and LC-MS. The antioxidative capacity and the inhibitory effects on melanin content, cell intracellular tyrosinase activity, and melanogenesis protein levels were determined in α-melanocyte-stimulating hormone (α-MSH)-treated B16 mouse melanoma cells. The ethyl acetate extract from Panax ginseng C.A. Meyer (PG-2) had the highest inhibiting effect on mushroom tyrosinase, mainly contained phenolic acids, including protocatechuic acid, vanillic acid, p-coumaric acid, salicylic acid, and caffeic acid, and exhibited apparent antioxidant activity in vitro. PG-2 and its main constituents significantly decreased melanin content, suppressed cellular tyrosinase activity, and reduced expression of tyrosinase protein to inhibit B16 cells melanogenesis induced by α-MSH, and no cytotoxic effects were observed. They also inhibited cellular reactive oxygen species (ROS) generation, increased superoxide dismutase (SOD) activity and glutathione (GSH) level in α-MSH-treated B16 cells effectively. And those activities of its main constituents

  11. Unopposed Production of Granulocyte-Macrophage Colony-Stimulating Factor by Tumors Inhibits CD8+ T Cell Responses by Dysregulating Antigen-Presenting Cell Maturation1

    OpenAIRE

    Bronte, Vincenzo; Chappell, Dale B.; Apolloni, Elisa; Cabrelle, Anna; Wang, Michael; Hwu, Patrick; Restifo, Nicholas P.

    1999-01-01

    Tumor cells gene-modified to produce GM-CSF potently stimulate antitumor immune responses, in part, by causing the growth and differentiation of dendritic cells (DC). However, GM-CSF-modified tumor cells must be γ-irradiated or they will grow progressively, killing the host. We observed that 23 of 75 (31%) human tumor lines and two commonly used mouse tumor lines spontaneously produced GM-CSF. In mice, chronic GM-CSF production by tumors suppressed Ag-specific CD8+ T cell responses. Interesti...

  12. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  13. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or

  14. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  15. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells

    International Nuclear Information System (INIS)

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-01-01

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-γ agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from

  16. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK.

    Science.gov (United States)

    Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2014-08-28

    Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights

  17. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation

    International Nuclear Information System (INIS)

    Karaolis, David K.R.; Cheng, Kunrong; Lipsky, Michael; Elnabawi, Ahmed; Catalano, Jennifer; Hyodo, Mamoru; Hayakawa, Yoshihiro; Raufman, Jean-Pierre

    2005-01-01

    The novel cyclic dinucleotide, 3',5'-cyclic diguanylic acid, cGpGp (c-di-GMP), is a naturally occurring small molecule that regulates important signaling mechanisms in prokaryotes. Recently, we showed that c-di-GMP has 'drug-like' properties and that c-di-GMP treatment might be a useful antimicrobial approach to attenuate the virulence and pathogenesis of Staphylococcus aureus and prevent or treat infection. In the present communication, we report that c-di-GMP (≤50 μM) has striking properties regarding inhibition of cancer cell proliferation in vitro. c-di-GMP inhibits both basal and growth factor (acetylcholine and epidermal growth factor)-induced cell proliferation of human colon cancer (H508) cells. Toxicity studies revealed that exposure of normal rat kidney cells and human neuroblastoma cells to c-di-GMP at biologically relevant doses showed no lethal cytotoxicity. Cyclic dinucleotides, such as c-di-GMP, represent an attractive and novel 'drug-platform technology' that can be used not only to develop new antimicrobial agents, but also to develop novel therapeutic agents to prevent or treat cancer

  18. Koumine Attenuates Lipopolysaccaride-Stimulated Inflammation in RAW264.7 Macrophages, Coincidentally Associated with Inhibition of NF-κB, ERK and p38 Pathways

    Directory of Open Access Journals (Sweden)

    Zhihang Yuan

    2016-03-01

    Full Text Available Medicinal herbal plants have been commonly used for intervention of different diseases and health enhancement worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an anti-inflammatory medication. In this study, the mechanisms associated with the preventative effect of koumine on lipopolysaccharide (LPS-mediated inflammation in RAW264.7 macrophages were investigated. Koumine induced a decrease in the level of inducible nitric oxide synthase (iNOS protein, concomitant reduction in the production of nitric oxide (NO and reduction of the levels of interleukin (IL-6, tumor necrosis factor-α (TNF-α and IL-1β. Furthermore, koumine decreased the phosphorylation of p65 and inhibited nuclear factor κ Bα (IκBα proteins, resulting in lower production of nuclear factor (NF-κB transactivation. Koumine also induced a decrease in the phosphorylation of extracellular-signal-regulated kinases (ERK and p38 in RAW264 cells. In conclusion, these findings reveal that koumine decreases the productions of pro-inflammatory mediators though the suppression of p38 and ERK MAPK phosphorylation and the inhibition of NF-κB activation in RAW264.7 cells.

  19. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Jin [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Park, Sun Young [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, Pusan National University, Busan 609-735 (Korea, Republic of); Yoon, Sik [Department of Anatomy, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Kim, Young Hun [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Bae, Yoe-Sik, E-mail: yoesik@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Choi, Young-Whan, E-mail: ywchoi@pusan.ac.kr [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of)

    2010-01-22

    A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  20. Adhered Supported Carbon Nanotubes

    International Nuclear Information System (INIS)

    Johnson, Dale F.; Craft, Benjamin J.; Jaffe, Stephen M.

    2001-01-01

    Carbon nanotubes (NTs) in excess of 200 μm long are grown by catalytic pyrolysis of hydrocarbon vapors. The nanotubes grow continuously without the typical extinction due to catalyst encapsulation. A woven metal mesh supports the nanotubes creating a metal supported nanotube (MSNT) structure. The 140 μm wide mesh openings are completely filled by 70 nm diameter multiwalled nanotubes (MWNTs). The MWNTs are straight, uniform and highly crystalline. Their wall thickness is about 10 nm (30 graphite layers). The adherent NTs are not removed from the support in a Scotch tape pull test. A 12.5 cm 2 capacitor made from two MSNT structures immersed in 1 M KCl has a capacitance of 0.35 F and an equivalent series resistance of 0.18 Ω. Water flows through the MSNT at a flow velocity of 1 cm/min with a pressure drop of 15 inches of water. With the support removed, the MWNTs naturally form a carbon nanocomposite (CNC) paper with a specific area of 80 m 2 /gm, a bulk density of 0.21 g/cm 3 , an open pore fraction of 0.81, and a resistivity of 0.16 Ω-cm

  1. Carbon nanotubes as liquid crystals.

    Science.gov (United States)

    Zhang, Shanju; Kumar, Satish

    2008-09-01

    Carbon nanotubes are the best of known materials with a combination of excellent mechanical, electronic, and thermal properties. To fully exploit individual nanotube properties for various applications, the grand challenge is to fabricate macroscopic ordered nanotube assemblies. Liquid-crystalline behavior of the nanotubes provides a unique opportunity toward reaching this challenge. In this Review, the recent developments in this area are critically reviewed by discussing the strategies for fabricating liquid-crystalline phases, addressing the solution properties of liquid-crystalline suspensions, and exploiting the practical techniques of liquid-crystal routes to prepare macroscopic nanotube fibers and films.

  2. T cell Ig domain and mucin domain 1 engagement on invariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibits IFN-gamma production.

    Science.gov (United States)

    Kim, Hye Sung; Kim, Hyun Soo; Lee, Chang Woo; Chung, Doo Hyun

    2010-04-15

    The T cell Ig domain and mucin domain (TIM)1 protein expressed on the surface of Th2 cells regulates the immune response by modulating cytokine production. However, the functional roles of TIM1 have not been examined in NKT cells. Therefore, we investigated the immunologic effects of TIM1 on NKT cells. We found that mouse NK1.1(+)TCR-beta(+), alpha-galactosyl ceramide/CD1d dimer(+) NKT, and NKT hybridoma (DN32.D3) cells constitutively express TIM1 and TIM4 on their surface. Engagement of TIM1 on NKT cells by any of several anti-TIM1 mAbs suppressed the production of IFN-gamma in the presence of TCR stimulation in vitro and in vivo, whereas the effects of such engagement on Th2 cytokine production by the NKT cells varied with the particular anti-TIM1 Ab clone. Moreover, in DN32.D3 TIM4-knockdown NKT hybridoma cells, TIM1 engagement by rTIM1 or TIM4 enhanced IL-4 production while inhibiting IFN-gamma production in the presence of alpha-galactosyl ceramide stimulation. TIM1 engagement increased GATA-3 expression but reduced T-bet expression in NKT cells in the presence of TCR engagement. The adoptive transfer of NKT cells preincubated with anti-TIM1 mAbs into Jalpha18(-/-) mice aggravated bleomycin-induced pulmonary fibrosis by suppressing IFN-gamma production. Taken together, these results suggest that TIM1 costimulation on NKT cells enhances the cellular production of IL-4 while inhibiting the production of IFN-gamma. Thus, as a differential regulator of the immune response, TIM1 on NKT cells may be a useful therapeutic target for immune diseases.

  3. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  4. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression

    DEFF Research Database (Denmark)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco

    2017-01-01

    BACKGROUND AND AIMS: Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. METHODS: Mitochondrial or endoplasmic...... reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. RESULTS: Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression......) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL...

  5. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  6. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    Science.gov (United States)

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  7. Transforming growth factor-β-stimulated clone-22 (TSC-22) is an androgen regulated gene that enhances apoptosis in prostate cancer following IGF-IR inhibition

    Science.gov (United States)

    Sprenger, Cynthia C. T.; Haugk, Kathleen; Sun, Shihua; Coleman, Ilsa; Nelson, Peter S.; Vessella, Robert L.; Ludwig, Dale L.; Wu, Jennifer D.; Plymate, Stephen R.

    2009-01-01

    Purpose Inhibition of IGF signaling using the human IGF-IR monoclonal antibody A12 is most effective at inducing apoptosis in prostate cancer xenografts in the presence of androgen. We undertook this study to determine mechanisms for increased apoptosis by A12 in the presence of androgens. Experimental Methods The castrate-resistant human xenograft LuCaP 35V was implanted into intact or castrate SCID mice and treated with A12 weekly. After six weeks of tumor growth animals were sacrificed and tumors removed and analyzed for cell cycle distribution/apoptosis and cDNA arrays were performed. Results In castrate mice the tumors were delayed in G2 with no apoptosis; in contrast tumors from intact mice underwent apoptosis with either a G1 or G2 delay. TSC-22 was significantly elevated in tumors from the intact mice compared to castrate mice, especially in those tumors with the highest levels of apoptosis. In order to further determine the function of TSC-22, we transfected various human prostate cancer cell lines with a plasmid expressing TSC-22. Cell lines overexpressing TSC-22 demonstrated an increase in apoptosis and a delay in G1. When these cell lines were placed subcutaneously in SCID mice a decreased number of animals formed tumors and the rate of tumor growth was decreased compared to control tumors. Conclusions These data indicate that IGF-IR inhibition in the presence of androgen has an enhanced effect on decreasing tumor growth, in part, through increased expression of the tumor suppressor gene TSC-22. PMID:19996218

  8. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    Science.gov (United States)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  9. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response.

    Science.gov (United States)

    Olagnier, David; Scholte, Florine E M; Chiang, Cindy; Albulescu, Irina C; Nichols, Carmen; He, Zhong; Lin, Rongtuan; Snijder, Eric J; van Hemert, Martijn J; Hiscott, John

    2014-04-01

    RIG-I is a cytosolic sensor critically involved in the activation of the innate immune response to RNA virus infection. In the present study, we evaluated the inhibitory effect of a RIG-I agonist on the replication of two emerging arthropod-borne viral pathogens, dengue virus (DENV) and chikungunya virus (CHIKV), for which no therapeutic options currently exist. We demonstrate that when a low, noncytotoxic dose of an optimized 5'triphosphorylated RNA (5'pppRNA) molecule was administered, RIG-I stimulation generated a robust antiviral response against these two viruses. Strikingly, 5'pppRNA treatment before or after challenge with DENV or CHIKV provided protection against infection. In primary human monocytes and monocyte-derived dendritic cells, the RIG-I agonist blocked both primary infection and antibody-dependent enhancement of DENV infection. The protective response against DENV and CHIKV induced by 5'pppRNA was dependent on an intact RIG-I/MAVS/TBK1/IRF3 axis and was largely independent of the type I IFN response. Altogether, this in vitro analysis of the antiviral efficacy of 5'pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV. DENV and CHIKV are two reemerging mosquito-borne viruses for which no therapeutic options currently exist. Both viruses overlap geographically in tropical regions of the world, produce similar fever-like symptoms, and are difficult to diagnose. This study investigated the inhibitory effect of a RIG-I agonist on the replication of these two viruses. RIG-I stimulation using 5'pppRNA before or after DENV or CHIKV infection generated a protective antiviral response against both pathogens in immune and nonimmune cells; interestingly, the protective response against the viruses was largely independent of the classical type I interferon response. The antiviral efficacy of 5'pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV.

  10. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  11. A Study of Cortical Excitability, Central Motor Conduction, and Cortical Inhibition Using Single Pulse Transcranial Magnetic Stimulation in Patients with Early Frontotemporal and Alzheimer's Dementia.

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor; Nagaraju, B C; Philip, Mariamma

    2016-01-01

    Degenerative cortical dementias affect several million people worldwide. Early diagnosis and categorization are essential for initiating appropriate pharmacological and nonpharmacological treatment so that deterioration can be postponed, and disability adjusted life years can be saved both for the patient and for the caregiver. Therefore, an early, simple, noninvasive biomarker will serve as a boon. Patients who satisfied probable Alzheimer's disease (AD) or frontotemporal dementia (FTD) using international consensus criteria for FTD and National Institute of Neurological Disorders and Stroke-AD and Related Disorders Association criteria for AD were evaluated using single pulse transcranial magnetic stimulation with figure of eight coil and motor evoked potential from right first dorsal interossei. Resting threshold (MT), central motor conduction time (CMCT), and silent period (SP) were evaluated. Resting MT and SP are reduced in patients with Alzheimer's disease whereas CMCT is prolonged in patients with FTD and SP is in the lower limit of normal in both conditions. The patterns of central motor conduction and MT are distinctly different in patients with early Alzheimer's disease (AD) and FTD.

  12. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway.

    Science.gov (United States)

    Lee, Ko-Chen; Chang, Hen-Hong; Chung, Ying-Hui; Lee, Tzung-Yan

    2011-06-01

    Inflammation is involved in numerous diseases, such as chronic inflammatory disease and cancer. Many plant products exhibit useful biological activities, including antifungal, antibacterial, and anti-inflammatory actions. However, our understanding of the anti-inflammatory effects of andrographolide is limited. We use lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of andrographolide, which contains polyphenolic structures. We found that andrographolide exhibited a potent anti-inflammatory effect. In this study, we investigated the inhibitory effects of andrographolide on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) as well as their respective downstream products, NO and PGE2, in RAW264.7 cells treated with LPS. Treatment with andrographolide also reduced nuclear factor-κB (NF-κB) and activation protein-1 (AP-1) DNA-binding activity. Western blot analysis showed that andrographolide significantly inhibited the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and the protein expression of CCAAT/enhancer-binding protein δ (C/EBPδ). We also found that andrographolide suppressed LPS-induced suppressor of cytokine signalling 1 and 3 (SOCS1 and 3) mRNA expression, which, in turn, inhibited apoptosis signalling and mitochondria membrane potential activation. Our results demonstrate that andrographolide downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-κB and STAT3 by interfering with the expression of SOCS1 and SOCS3 signalling. Therefore, andrographolide exerts a potent anti-inflammatory effect and could potentially be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Stimulation of StAR expression by cAMP is controlled by inhibition of highly inducible SIK1 via CRTC2, a co-activator of CREB.

    Science.gov (United States)

    Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin

    2015-06-15

    In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice.

    Science.gov (United States)

    Di Meco, Antonio; Li, Jian-Guo; Blass, Benjamin E; Abou-Gharbia, Magid; Lauretti, Elisabetta; Praticò, Domenico

    2017-01-15

    The 12/15-lipoxygenase (12/15-LO) enzyme is upregulated in the brains of patients with Alzheimer's disease (AD), and its expression levels influence the onset of the AD-like phenotype in mouse models. However, whether targeting this pathway after the neuropathology and behavioral impairments have been established remains to be investigated. Triple transgenic (3xTg) mice received either PD146176-a selective and specific pharmacological inhibitor of 12/15-LO-or placebo starting at 12 months of age for 12 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. At the end of the study, mice in the control group showed a worsening of memory and learning abilities, whereas mice receiving PD146176 were undistinguishable from wild-type mice. The same group also had significantly lower amyloid beta levels and deposition, less tau neuropathology, increased synaptic integrity, and autophagy activation. Ex vivo and in vitro genetic and pharmacological studies found that the mechanism involved in these effects was the activation of neuronal autophagy. Our findings provide new insights into the disease-modifying action of 12/15-LO pharmacological inhibition and establish it as a viable therapeutic approach for patients with AD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation.

    Science.gov (United States)

    Bronte, V; Chappell, D B; Apolloni, E; Cabrelle, A; Wang, M; Hwu, P; Restifo, N P

    1999-05-15

    Tumor cells gene-modified to produce GM-CSF potently stimulate antitumor immune responses, in part, by causing the growth and differentiation of dendritic cells (DC). However, GM-CSF-modified tumor cells must be gamma-irradiated or they will grow progressively, killing the host. We observed that 23 of 75 (31%) human tumor lines and two commonly used mouse tumor lines spontaneously produced GM-CSF. In mice, chronic GM-CSF production by tumors suppressed Ag-specific CD8+ T cell responses. Interestingly, an inhibitory population of adherent CD11b(Mac-1)/Gr-1 double-positive cells caused the observed impairment of CD8+ T cell function upon direct cell-to-cell contact. The inhibitory cells were positive for some markers associated with Ag presenting cells, like F4/80, but were negative for markers associated with fully mature DC like DEC205, B7. 2, and MHC class II. We have previously reported that a similar or identical population of inhibitory "immature" APC was elicited after immunization with powerful recombinant immunogens. We show here that these inhibitory cells can be elicited by the administration of recombinant GM-CSF alone, and, furthermore, that they can be differentiated ex vivo into "mature" APC by the addition of IL-4 and GM-CSF. Thus, tumors may be able to escape from immune detection by producing "unopposed" GM-CSF, thereby disrupting the balance of cytokines needed for the maturation of fully functional DC. Further, CD11b/Gr-1 double-positive cells may function as "inhibitory" APC under the influence of GM-CSF alone.

  16. Unopposed Production of Granulocyte-Macrophage Colony-Stimulating Factor by Tumors Inhibits CD8+ T Cell Responses by Dysregulating Antigen-Presenting Cell Maturation1

    Science.gov (United States)

    Bronte, Vincenzo; Chappell, Dale B.; Apolloni, Elisa; Cabrelle, Anna; Wang, Michael; Hwu, Patrick; Restifo, Nicholas P.

    2008-01-01

    Tumor cells gene-modified to produce GM-CSF potently stimulate antitumor immune responses, in part, by causing the growth and differentiation of dendritic cells (DC). However, GM-CSF-modified tumor cells must be γ-irradiated or they will grow progressively, killing the host. We observed that 23 of 75 (31%) human tumor lines and two commonly used mouse tumor lines spontaneously produced GM-CSF. In mice, chronic GM-CSF production by tumors suppressed Ag-specific CD8+ T cell responses. Interestingly, an inhibitory population of adherent CD11b(Mac-1)/Gr-1 double-positive cells caused the observed impairment of CD8+ T cell function upon direct cell-to-cell contact. The inhibitory cells were positive for some markers associated with Ag presenting cells, like F4/80, but were negative for markers associated with fully mature DC like DEC205, B7.2, and MHC class II. We have previously reported that a similar or identical population of inhibitory “immature” APC was elicited after immunization with powerful recombinant immunogens. We show here that these inhibitory cells can be elicited by the administration of recombinant GM-CSF alone, and, furthermore, that they can be differentiated ex vivo into “mature” APC by the addition of IL-4 and GM-CSF. Thus, tumors may be able to escape from immune detection by producing “unopposed” GM-CSF, thereby disrupting the balance of cytokines needed for the maturation of fully functional DC. Further, CD11b/Gr-1 double-positive cells may function as “inhibitory” APC under the influence of GM-CSF alone. PMID:10229805

  17. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  18. Spectroelectrochemistry of Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Dunsch, L.

    2011-01-01

    Roč. 12, č. 1 (2011), s. 47-55 ISSN 1439-4235 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * nanotubes * photoluminiscence Subject RIV: CG - Electrochemistry Impact factor: 3.412, year: 2011

  19. A new role for follicle-stimulating hormone in the regulation of calcium flux in Sertoli cells: Inhibition of Na+/Ca++ exchange

    International Nuclear Information System (INIS)

    Grasso, P.; Joseph, M.P.; Reichert, L.E. Jr.

    1991-01-01

    Elucidation of mechanisms regulating intracellular calcium levels in steroidogenic tissues is important for understanding control of cellular function. We have previously described FSH receptor-mediated flux of 45Ca++ into cultured rat Sertoli cells and receptor-enriched proteoliposomes via voltage-sensitive and voltage-independent calcium channels. In the present study, we report heretofore unrecognized inhibitory effects of FSH on Na+/Ca++ exchange in these two systems. An outwardly directed Na+ gradient, developed by preincubating Sertoli cell monolayers in buffer made hypertonic with NaCl, resulted in uptake of 45Ca++ that was unaffected by calcium channel blocking agents, ruthenium red or methoxyverapamil, but was enhanced by ouabain, a specific inhibitor of Na+/K(+)-ATPase. Sodium-dependent 45Ca++ flux into Sertoli cells was inhibited in a concentration-related manner by increased extracellular Na+ (up to 135 mM). FSH consistently and reproducibly (28.9 +/- 3.8%, 10 separate assays) reduced sodium-dependent 45Ca++ influx in the absence or presence of ouabain. A lesser effect on Na+/Ca++ exchange was seen when Li+ replaced Na+ in the preincubation buffer, and a marked reduction occurred when Sertoli cells were incubated in buffer containing KCl, presumably due to membrane depolarization. FSH-sensitive Na+/45Ca++ exchange was also observed when using FSH receptor-enriched proteoliposomes. Our earlier calcium channel studies indicated that FSH affects Ca++ entry into Sertoli cells via a receptor-mediated process. The results reported here demonstrate that the interaction of FSH with its receptor is associated with changes in Na+/Ca++ exchange as well, and suggest that this activity may also be involved in regulating intracellular free Ca++ levels in the Sertoli cell

  20. MEK Inhibition Sensitizes Precursor B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells to Dexamethasone through Modulation of mTOR Activity and Stimulation of Autophagy.

    Science.gov (United States)

    Polak, Anna; Kiliszek, Przemysław; Sewastianik, Tomasz; Szydłowski, Maciej; Jabłońska, Ewa; Białopiotrowicz, Emilia; Górniak, Patryk; Markowicz, Sergiusz; Nowak, Eliza; Grygorowicz, Monika A; Prochorec-Sobieszek, Monika; Nowis, Dominika; Gołąb, Jakub; Giebel, Sebastian; Lech-Marańda, Ewa; Warzocha, Krzysztof; Juszczyński, Przemysław

    2016-01-01

    Resistance to glucocorticosteroids (GCs) is a major adverse prognostic factor in B-ALL, but the molecular mechanisms leading to GC resistance are not completely understood. Herein, we sought to elucidate the molecular background of GC resistance in B-ALL and characterize the therapeutic potential of targeted intervention in these mechanisms. Using exploratory bioinformatic approaches, we found that resistant cells exhibited significantly higher expression of MEK/ERK (MAPK) pathway components. We found that GC-resistant ALL cell lines had markedly higher baseline activity of MEK and small-molecule MEK1/2 inhibitor selumetinib increased GCs-induced cell death. MEK inhibitor similarly increased in vitro dexamethasone activity in primary ALL blasts from 19 of 22 tested patients. To further confirm these observations, we overexpressed a constitutively active MEK mutant in GC-sensitive cells and found that forced MEK activity induced resistance to dexamethasone. Since recent studies highlight the role GC-induced autophagy upstream of apoptotic cell death, we assessed LC3 processing, MDC staining and GFP-LC3 relocalization in cells incubated with either DEX, SEL or combination of drugs. Unlike either drug alone, only their combination markedly increased these markers of autophagy. These changes were associated with decreased mTOR activity and blocked 4E-BP1 phosphorylation. In cells with silenced beclin-1 (BCN1), required for autophagosome formation, the synergy of DEX and SEL was markedly reduced. Taken together, we show that MEK inhibitor selumetinib enhances dexamethasone toxicity in GC-resistant B-ALL cells. The underlying mechanism of this interaction involves inhibition of mTOR signaling pathway and modulation of autophagy markers, likely reflecting induction of this process and required for cell death. Thus, our data demonstrate that modulation of MEK/ERK pathway is an attractive therapeutic strategy overcoming GC resistance in B-ALL patients.

  1. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    Science.gov (United States)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  2. Assembly of polyaniline nanotubes by interfacial polymerization for corrosion protection.

    Science.gov (United States)

    Oueiny, C; Berlioz, S; Perrin, F X

    2016-02-07

    Polyaniline (PANI) was synthesized by the oxidation of aniline with ammonium peroxydisulfate as an oxidant in an immiscible organic/aqueous biphasic system and with decylphosphonic acid (DPA) or benzylphosphonic acid (BPA) in the aqueous phase. Nanofibers of aniline oligomers were produced using BPA in the aqueous phase while high quality polyaniline nanotubes were produced using DPA in the aqueous phase. PANI nanotubes have a outer diameter 160-240 nm, an inner diameter of 50-100 nm and a length of the order of several μm. The understanding of the formation of PANI nanotubes was examined by isolation of reaction intermediates and their ex situ characterization by atomic force microscopy. The roles of BPA and DPA on the morphology formation of the PANI nanostructures were discussed. A nanofibrillar template produced by aniline oligomers was found to guide the growth of PANI to nanotubular morphology. PANI nanotubes are thus not derived from DPA vesicles. Preliminary corrosion tests exhibit high corrosion protection efficiency of PANI nanotubes because of their high surface area and corrosion inhibitive properties of DPA dopant.

  3. Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation

    Directory of Open Access Journals (Sweden)

    Niloy Bhattacharjee

    2017-05-01

    Full Text Available Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC. Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghiana rhizomes against DC employing rodent model of type 2 diabetes (T2D. T2D was induced by high fat diet + a low-single dose of streptozotocin (35 mg/kg, i.p.. T2D rats exhibited significantly (p < 0.01 high fasting blood glucose level. Alteration in serum lipid profile (p < 0.01 and increased levels of lactate dehydrogenase (p < 0.01 and creatine kinase (p < 0.01 in the sera of T2D rats revealed the occurrence of hyperlipidemia and diabetic pathophysiology. A significantly (p < 0.01 high levels of serum C-reactive protein and pro-inflammatory mediators revealed the establishment of inflammatory occurrence in T2D rats. Besides, significantly high levels of troponins in the sera revealed the establishment of cardiac dysfunctions in T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o. treatment could significantly reverse the changes in serum biochemical parameters related to cardiac dysfunctions. Molecular mechanism studies demonstrated impairment of signaling cascade, IRS1/PI3K/Akt/AMPK/p 38/GLUT4, in glucose metabolism in the skeletal muscle of T2D rats. Significant (p < 0.01 activation of polyol pathway, enhanced production of AGEs, oxidative stress and up-regulation of inflammatory signaling cascades (PKC/NF-κB/PARP were observed in the myocardial tissue of T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o. treatment could significantly (p < 0.05–0.01 stimulate glucose metabolism in skeletal muscle, regulated glycemic and lipid status, reduced the secretion of pro-inflammatory cytokines, and restored the myocardial physiology in T2D rats near to normalcy. Histological assessments were also in agreement with the above findings

  4. 8,8'-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-κB signaling and ROS production in LPS-stimulated macrophages.

    Science.gov (United States)

    Yang, Yeong-In; Jung, Seung-Hyun; Lee, Kyung-Tae; Choi, Jung-Hye

    2014-12-01

    Ecklonia cava (E. cava) is an abundant brown alga that contains high levels of phlorotannins, which are unique marine polyphenolic compounds. It has been suggested that E. cava phlorotannins exert anti-inflammatory effects. However, the anti-inflammatory effects and underlying molecular mechanism exerted by 8,8'-bieckol isolated from E. cava have not been reported. Thus, in this study, we examined the anti-inflammatory effects of 8,8'-bieckol on lipopolysaccharide (LPS)-stimulated primary macrophages and RAW 264.7 macrophages. We found that 8,8'-bieckol suppressed key inflammatory mediator [i.e., nitric oxide (NO) and prostaglandin E2 (PGE2)] production in both primary and RAW 264.7 macrophages. 8,8'-Bieckol inhibited NO by suppressing LPS-induced expression of inducible nitric oxide synthase (iNOS) at the mRNA and protein levels in primary macrophages and RAW 264.7 cells. In addition, 8,8'-bieckol decreased the production and mRNA expression of the inflammatory cytokine interleukin-6 (IL-6), but not tumor necrosis factor (TNF)-α, in RAW 264.7 cells. Moreover, 8,8'-bieckol treatment diminished transactivation of nuclear factor-kappa B (NF-κB) and nuclear translocation of the NF-κB p65 subunit and suppressed LPS-induced intracellular reactive oxygen species (ROS) production in macrophages. Furthermore, 8,8'-bieckol markedly reduced mortality in LPS-induced septic mice. Taken together, these data indicate that the anti-inflammatory properties of 8,8'-bieckol are associated with the suppression of NO, PGE2, and IL-6 via negative regulation of the NF-κB pathway and ROS production in LPS-stimulated RAW 264.7 cells. Moreover, 8,8'-bieckol protects mice from endotoxin shock. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  6. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  7. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  8. Carbon Nanotubes for Space Applications

    Science.gov (United States)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  9. Pharmacological stimulation of serotonin 5-HT1B receptors enhances increases in plasma active glucagon-like peptide-1 levels induced by dipeptidyl peptidase-4 inhibition independently of feeding in mice.

    Science.gov (United States)

    Nonogaki, K; Kaji, T

    2015-11-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone, is released from intestinal L cells in response to nutrient ingestion. Dipeptidyl peptidase-4 (DPP-4) rapidly degrades the active form of GLP-1 to an inactive form in the bloodstream. The present study aimed to investigate the role of serotonin (5-HT)1B receptors in the regulation of plasma active GLP-1 levels and glucose tolerance under DPP-4 inhibition. C57BL6J mice treated with or without alogliptin, a highly selective DPP-4 inhibitor, for 4 days were intraperitoneally injected with either saline, the 5-HT1B/2C receptor agonist meta-chlorophenylpiperazine (mCPP) at 2.5mg/kg and 5mg/kg or the selective 5-HT1B receptor agonist CP94253 at 2.5mg/kg and 5mg/kg, and food-deprived after treatment. An hour later, plasma active GLP-1 levels were determined. Also, a glucose tolerance test was done by injecting D-glucose (2g/kg) following the injection of saline or CP94253 (5mg/kg) in mice treated with alogliptin. Intraperitoneal injection of mCPP (2.5 and 5mg/kg) or CP94253 (2.5 and 5mg/kg) in mice treated with alogliptin for 4 days significantly increased plasma active GLP-1 levels compared with saline controls in mice that were food-deprived after the injections. While intraperitoneal injection of either mCPP or CP94253 alone had no significant effect on plasma active GLP-1 levels, the injection of CP94253 improved glucose tolerance in mice treated with alogliptin compared with saline. These findings suggest that pharmacological stimulation of 5-HT1B receptors enhances the increases in plasma active GLP-1 induced by DPP-4 inhibition independently of feeding and also improves glucose tolerance in mice. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  11. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Generalov, A A; Anoshkin, I V; Lioubtchenko, D V; Räisänen, A V; Erdmanis, M; Ovchinnikov, V; Nasibulin, A G

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  12. Stromal Cells Positively and Negatively Modulate the Growth of Cancer Cells: Stimulation via the PGE2-TNFα-IL-6 Pathway and Inhibition via Secreted GAPDH-E-Cadherin Interaction

    Science.gov (United States)

    Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio

    2015-01-01

    Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838

  13. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  14. Magnetic nanotubes for drug delivery

    Science.gov (United States)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    Magnetic nanotubes hold the potential for neuroscience applications because of their capability to deliver chemicals or biomolecules and the feasibility of controlling the orientation or movement of these magnetic nanotubes by an external magnetic field thus facilitating directed growth of neurites. Therefore, we sought to investigate the effects of laminin treated magnetic nanotubes and external alternating magnetic fields on the growth of dorsal root ganglion (DRG) neurons in cell culture. Magnetic nanotubes were synthesized by a hydrothermal method and characterized to confirm their hollow structure, the hematite and maghemite phases, and the magnetic properties. DRG neurons were cultured in the presence of magnetic nanotubes under alternating magnetic fields. Electron microscopy showed a close interaction between magnetic nanotubes and the growing neurites Phase contrast microscopy revealed live growing neurons suggesting that the combination of the presence of magnetic nanotubes and the alternating magnetic field were tolerated by DRG neurons. The synergistic effect, from both laminin treated magnetic nanotubes and the applied magnetic fields on survival, growth and electrical activity of the DRG neurons are currently being investigated.

  15. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process

    International Nuclear Information System (INIS)

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Krafcik, Karen L; Léonard, François; Kuznetsov, Oleksandr V; Billups, W Edward; Hauge, Robert H

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication. (paper)

  16. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Shraddha Patel

    2015-12-01

    Full Text Available The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate were then mixed with poly-e-caprolactone (PLC using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties.

  17. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  18. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    International Nuclear Information System (INIS)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I

    2011-01-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  19. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I, E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation)

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  20. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    Science.gov (United States)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  1. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Emil Lou

    Full Text Available Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion.

  2. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  3. Echinacea sanguinea and Echinacea pallida extracts stimulate glucuronidation and basolateral transfer of Bauer alkamides 8 and 10 and ketone 24 and inhibit P-glycoprotein transporter in Caco-2 cells.

    Science.gov (United States)

    Qiang, Zhiyi; Hauck, Cathy; McCoy, Joe-Ann; Widrlechner, Mark P; Reddy, Manju B; Murphy, Patricia A; Hendrich, Suzanne

    2013-03-01

    The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10, and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguinea and Echinacea pallida ethanol extracts, and that these Echinacea extracts could inhibit the P-glycoprotein transporter in Caco-2 human intestinal epithelial cells. Using HPLC analysis, the permeation rate of Bauer alkamides by passive diffusion across Caco-2 cells corresponded with compound hydrophilicity (alkamide 8 > 10 > 11), independent of the plant extract matrix. Both Echinacea ethanol extracts stimulated apparent glucuronidation and basolateral efflux of glucuronides of alkamides 8 and 10 but not alkamide 11. Bauer ketone 24 was totally metabolized to more hydrophilic metabolites when administered as a single compound, but was also glucuronidated when present in Echinacea extracts. Bauer alkamides 8, 10, and 11 (175-230 µM) and ethanol extracts of E. sanguinea (1 mg/mL, containing ~ 90 µM total alkamides) and E. pallida (5 mg/mL, containing 285 µM total alkamides) decreased the efflux of the P-glycoprotein transporter probe calcein-AM from Caco-2 cells. These results suggest that other constituents in these Echinacea extracts facilitated the metabolism and efflux of alkamides and ketones, which might improve therapeutic benefits. Alkamides and Echinacea extracts might be useful in potentiating some chemotherapeutics, which are substrates for the P-glycoprotein transporter. Georg Thieme Verlag KG Stuttgart · New York.

  4. Clostridium difficile toxin B inhibits the secretory response of human mast cell line-1 (HMC-1) cells stimulated with high free-Ca²⁺ and GTPγS.

    Science.gov (United States)

    Balletta, Andrea; Lorenz, Dorothea; Rummel, Andreas; Gerhard, Ralf; Bigalke, Hans; Wegner, Florian

    2015-02-03

    Clostridium difficile toxins A and B (TcdA and TcdB) belong to the class of large clostridial cytotoxins and inactivate by glucosylation some low molecular mass GTPases of the Rho-family (predominantly Rho, Rac and Cdc42), known as regulators of the actin cytoskeleton. TcdA and B also represent the main virulence factors of the anaerobic gram-positive bacterium that is the causal agent of pseudomembranous colitis. In our study, TcdB was chosen instead of TcdA for the well-known higher cytotoxic potency. Inactivation of Rho-family GTPases by this toxin in our experimental conditions induced morphological changes and reduction of electron-dense mast cell-specific granules in human mast cell line-1 (HMC-1) cells, but not cell death or permeabilisation of plasma-membranes. Previously reported patch-clamp dialysis experiments revealed that high intracellular free-Ca(2+) and GTPγS concentrations are capable of inducing exocytosis as indicated by significant membrane capacitance (Cm) increases in HMC-1 cells. In this study, we investigated the direct effects of TcdB upon HMC-1 cell "stimulated" Cm increase, as well as on "constitutive" secretion of hexosaminidase and interleukin-16 (IL-16). Compared to untreated control cells, HMC-1 cells incubated with TcdB for 3-24h exhibited a significant reduction of the mean absolute and relative Cm increase in response to free-Ca(2+) and GTPγS suggesting an inhibition of secretory processes by TcdB. In conclusion, the HMC-1 cell line represents a suitable model for the study of direct effects of C. difficile toxins on human mast cell secretory activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  6. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  7. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  8. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  9. Protein-Free Hapten-Carbon Nanotube Constructs Induce the Secondary Immune Response.

    Science.gov (United States)

    Ceballos-Alcantarilla, Eric; Abad-Somovilla, Antonio; Agulló, Consuelo; Abad-Fuentes, Antonio; Mercader, Josep V

    2017-06-21

    Carbon nanotubes are novel technological tools with multiple applications. The interaction between such nanoparticles and living organisms is nowadays a matter of keen research by academic and private institutions. In this study, carbon nanotube constructs were investigated as delivery vehicles for immunostimulation and induction of the secondary immune response to a small organic molecule, namely, a hapten. Two types of nanoconstructs were prepared: on one hand, carbon nanotubes carrying a protein bioconjugate of a hapten covalently linked to the carbon surface, and on the other hand, covalent carbon nanotube constructs of the same model chemical compound without the carrier protein. Nanotube vehicles carrying a hapten-protein bioconjugate were demonstrated to stimulate the immune system and to induce a strong primary immune response against the hapten with as low as 0.1 μg of the model chemical. The influence of the different elements of those nanoconstructs over the immune response was investigated to better understand the molecular mechanisms that are involved. As expected, the presence of the carrier protein was shown to be necessary in order to trigger the immune response. Interestingly, we found that a remarkable secondary immune response to the model organic compound occurred in the absence of a carrier protein. Additionally, a satisfactory adjuvant effect of carbon nanotubes was observed and a potent immune response was elicited without employing an oil-based adjuvant.

  10. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  11. Proposal of Carbon Nanotube Inductors

    National Research Council Canada - National Science Library

    Tsubaki, K; Nakajima, Y; Hanajiri, T; Yamaguchi, H

    2006-01-01

    The inductors made of carbon Nanotube (CNT) have been proposed. Though the fabrication of the proposed inductor is still challenging and has many problems, merits of the proposed inductor are following...

  12. Atomistic simulations of nanotube fracture

    Science.gov (United States)

    Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S.

    2002-06-01

    The fracture of carbon nanotubes is studied by molecular mechanics simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The fracture strain of a zigzag nanotube is predicted to be between 10% and 15%, which compares reasonably well with experimental results. The predicted range of fracture stresses is 65-93 GPa and is markedly higher than observed. The computed fracture strengths of chiral and armchair nanotubes are above these values. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle.

  13. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  14. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two...

  15. Gold(I)-Alkanethiolate Nanotubes

    KAUST Repository

    Zhang, Yu Xin

    2009-12-28

    (Figure Presented) A solution approach to assembling Au(I) - alkanethiolates into nanotube structures at room temperature is presented, in which Au(I) cations and alkanethiolate ligands are coordinated into thin platelet forms that then evolve into an open tubular configuration (see figure). The organic-inorganic hybrid nature of the nanotubes, their ability to be modified, and their high stability make them of interest for practical applications. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  16. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  17. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  18. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  19. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  20. Oligomer functionalized nanotubes and composites formed therewith

    Science.gov (United States)

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  1. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  2. Effect of ionizing radiation on structural and conductive properties of copper nanotubes

    Science.gov (United States)

    Zdorovets, M. V.; Borgekov, D. B.; Kenzhina, I. E.; Kozlovskiy, A. L.

    2018-01-01

    The use of electron radiation is an effective tool for stimulating a controlled modification of structural and conductive properties of nanomaterials in modern materials science. The paper presents the results of studies of the influence of various types of radiation on structural and conductive properties of copper nanotubes obtained by electrochemical synthesis in pores of templates based on polyethylene terephthalate. Such methods as SEM, X-ray diffraction and EDS show that irradiation with a stream of high-energy electrons with doses of 50-250 kGy makes it possible to modify the crystal structure of nanotubes, increasing their conductivity and decreasing the resistance of nanostructures without destroying the structure.

  3. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  4. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  5. Carbon Nanotube Biosensors

    Science.gov (United States)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  6. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  7. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  8. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  9. Extracting metals with carbon nanotubes: environmental possibilities

    OpenAIRE

    Alguacil, Francisco José; Cerpa Naranjo, Arisbel; Lado Touriño, María Isabel; López, Félix A.

    2015-01-01

    This paper presents a review of the environmental possibilities of using carbon nanotubes (CNTs) for extracting metals, taken into account the characteristics of carbon nanotubes to be used as adsorbents and the influence of different factors on the adsorption processes, among them: kind of carbon nanotubes used as adsorbent, particle size, pH of solutions and diameter and length of carbon nanotubes. Also, some images of transmission electron microscopy (TEM), atomic force micr...

  10. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  11. Electronics with carbon nanotubes

    International Nuclear Information System (INIS)

    Avouris, P.

    2007-01-01

    From mobile phones and laptops to Xboxes and iPods, it is difficult to think of any aspect of modern life that has not been touched by developments in electronics, computing and communications over the last few decades. Many of these technological advances have arisen from our ability to create ever smaller electronic devices, in particular silicon-based field effect transistors (FETs), which has led to denser, faster and less power-hungry circuits. The problem is that this device miniaturization, or 'scaling', cannot continue forever. Fundamental scientific and technological limitations exist that will make it impossible to build better performing silicon devices below a certain size. This potential show-stopper has inspired a worldwide effort to develop alternative device technologies based on 1D materials or those that exploit the spin, as well as the charge, of electrons. One promising and, in principle, simpler approach is to maintain the operating concept of today's silicon-based FETs but to replace a key component of the device - the semiconducting silicon channel - with 1D nanostructures that have much more versatile electrical-transport properties. Among the different 1D materials that have been developed, those with the most desirable properties are 'single-walled' carbon nanotubes, which were first created in 1993 by Sumio Ijima at the NEC Fundamental Research Laboratory in Tsukuba, Japan, and by Donald Bethune of IBM's Almaden Research Center in California. These materials are hollow tubes made from rolled up sheets of carbon just one atom thick, otherwise known as graphene. In the March issue of Physics World, Phaedon Avouris discusses some of the many properties and applications of carbon nanotubes, which he describes as an 'engineer's dream' because of their exceptionally high strength and heat conduction. (U.K.)

  12. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  13. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  14. Theoretical properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Palser, A.H.

    2000-01-01

    Carbon nanotubes are invariably terminated with hemi-fullerene caps. In order to investigate the effect of these caps on the electronic structure, a method is developed to enumerate every hemi-fullerene cap which is commensurate with a given nanotube body. This algorithm is then applied to nanotubes for which I + m ≤ 25. The results of this algorithm are then used to study the effects of caps with different symmetries on the electronic structure of metallic and semi-conducting nanotubes within the Hueckel model. It is found that caps can cause localised and resonance states, although the likelihood of localised states occurring in capped metallic nanotubes is shown to be small. In addition, caps induce a non-uniform charge distribution, in which negative charge tends to accumulate on pentagon vertices. The thesis ends by describing two new density matrix methods for performing linear-scaling electronic-structure calculations within the independent electron approximation. Example calculations demonstrate that these methods provide efficient and robust ways of performing linear-scaling calculations, either grand canonically (at a fixed chemical potential) or canonically (at a fixed electron count). (author)

  15. EDITORIAL: Focus on Carbon Nanotubes

    Science.gov (United States)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  16. Energy conversion efficiency in nanotube optoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Francois Leonard; Stewart, Derek A.

    2004-09-01

    We present theoretical performance estimates for nanotube optoelectronic devices under bias. Current-voltage characteristics of illuminated nanotube p-n junctions are calculated using a self-consistent nonequilibrium Green's function approach. Energy conversion rates reaching tens of percent are predicted for incident photon energies near the band gap energy. In addition, the energy conversion rate increases as the diameter of the nanotube is reduced, even though the quantum efficiency shows little dependence on nanotube radius. These results indicate that the quantum efficiency is not a limiting factor for use of nanotubes in optoelectronics.

  17. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  18. Improving Formate and Methanol Fuels: Catalytic Activity of Single Pd Coated Carbon Nanotubes.

    Science.gov (United States)

    Li, Xiuting; Hodson, Hannah; Batchelor-McAuley, Christopher; Shao, Lidong; Compton, Richard G

    2016-10-07

    The oxidations of formate and methanol on nitrogen-doped carbon nanotubes decorated with palladium nanoparticles were studied at both the single-nanotube and ensemble levels. Significant voltammetric differences were seen. Pd oxide formation as a competitive reaction with formate or methanol oxidation is significantly inhibited at high overpotentials under the high mass transport conditions associated with single-particle materials in comparison with that seen with ensembles, where slower diffusion prevails. Higher electro-oxidation efficiency for the organic fuels is achieved.

  19. All carbon nanotubes are not created equal

    International Nuclear Information System (INIS)

    Geohegan, David B.; Puretzky, Alexander A.; Rouleau, Christopher M.

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ∼1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  20. Mechanics of carbon nanotube scission under sonication.

    Science.gov (United States)

    Stegen, J

    2014-06-28

    As-produced carbon nanotubes come in bundles that must be exfoliated for practical applications in nanocomposites. Sonication not only causes the exfoliation of nanotube bundles but also unwanted scission. An understanding of how precisely sonication induces the scission and exfoliation of nanotubes will help maximising the degree of exfoliation while minimising scission. We present a theoretical study of the mechanics of carbon nanotube scission under sonicaton, based on the accepted view that it is caused by strong gradients in the fluid velocity near a transiently collapsing bubble. We calculate the length-dependent scission rate by taking the actual movement of the nanotube during the collapse of a bubble into account, allowing for the prediction of the temporal evolution of the length distribution of the nanotubes. We show that the dependence of the scission rate on the sonication settings and the nanotube properties results in non-universal, experiment-dependent scission kinetics potentially explaining the variety in experimentally observed scission kinetics. The non-universality arises from the dependence of the maximum strain rate of the fluid experienced by a nanotube on its length. The maximum strain rate that a nanotube experiences increases with decreasing distance to the bubble. As short nanotubes are dragged along more easily by the fluid flow they experience a higher maximum strain rate than longer nanotubes. This dependence of the maximum strain rate on nanotube length affects the scaling of tensile strength with terminal length. We find that the terminal length scales with tensile strength to the power of 1/1.16 instead of with an exponent of 1/2 as found when nanotube motion is neglected. Finally, we show that the mechanism we propose responsible for scission can also explain the exfoliation of carbon nanotube bundles.

  1. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  2. Carbon nanotube based gecko inspired self-cleaning adhesives

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  3. Carbon nanotubes and methods of making carbon nanotubes

    KAUST Repository

    Basset, Jean-Marie

    2017-04-27

    Embodiments of the present disclosure provide for methods that can be used to produce carbon nanotubes (hereinafter CNT) having an inner diameter about 5-55 nm, methods of tuning the inner diameter of CNTs (e.g., by adjusting reaction pressure), CNTs having an inner diameter of greater than 20 nm or more, and the like.

  4. Modified carbon nanotubes and methods of forming carbon nanotubes

    Science.gov (United States)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  5. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana.

    Science.gov (United States)

    Fan, Xiaoji; Xu, Jiahui; Lavoie, Michel; Peijnenburg, W J G M; Zhu, Youchao; Lu, Tao; Fu, Zhengwei; Zhu, Tingheng; Qian, Haifeng

    2018-02-01

    Carbon nanotubes can be either toxic or beneficial to plant growth and can also modulate toxicity of organic contaminants through surface sorption. The complex interacting toxic effects of carbon nanotubes and organic contaminants in plants have received little attention in the literature to date. In this study, the toxicity of multiwall carbon nanotubes (MWCNT, 50 mg/L) and paraquat (MV, 0.82 mg/L), separately or in combination, were evaluated at the physiological and the proteomic level in Arabidopsis thaliana for 7-14 days. The results revealed that the exposure to MWCNT had no inhibitory effect on the growth of shoots and leaves. Rather, MWCNT stimulated the relative electron transport rate and the effective photochemical quantum yield of PSII value as compared to the control by around 12% and lateral root production up to nearly 4-fold as compared to the control. The protective effect of MWCNT on MV toxicity on the root surface area could be quantitatively explained by the extent of MV adsorption on MWCNT and was related to stimulation of photosynthesis, antioxidant protection and number and area of lateral roots which in turn helped nutrient assimilation. The influence of MWCNT and MV on photosynthesis and oxidative stress at the physiological level was consistent with the proteomics analysis, with various over-expressed photosynthesis-related proteins (by more than 2 folds) and various under-expressed oxidative stress related proteins (by about 2-3 folds). This study brings new insights into the interactive effects of two xenobiotics (MWCNT and MV) on the physiology of a model plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Xu, Yao; Srivastava, Ashok; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  7. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application.

    Science.gov (United States)

    Abdalla, Ahmed M; Sahu, Rakesh P; Wallar, Cameron J; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K

    2017-02-17

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g -1 and  an areal capacitance of 3.28 F cm -2 at a scan rate of 2 mV s -1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm -2 .

  8. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  9. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This

  10. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotube s * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  11. Platinum-carbon nanotube interaction

    NARCIS (Netherlands)

    Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J. J.; Ghijsen, J.; Felicissimo, M. P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G.

    2008-01-01

    The interaction between evaporated Pt and pristine or oxygen-plasma-treated multiwall carbon nanotubes (CNTs) is investigated. Pt is found to nucleate at defect sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induces a uniform dispersion of Pt

  12. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  13. Polypyrrole nanotubes: mechanism of formation

    Czech Academy of Sciences Publication Activity Database

    Kopecká, J.; Kopecký, D.; Vrňata, M.; Fitl, P.; Stejskal, Jaroslav; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Prokeš, J.; Sapurina, I.

    2014-01-01

    Roč. 4, č. 4 (2014), s. 1551-1558 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * polypyrrole * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.840, year: 2014

  14. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  16. Telescopic nanotube device for hot nanolithography

    Science.gov (United States)

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  17. Transport diffusion in deformed carbon nanotubes

    Science.gov (United States)

    Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong

    2018-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.

  18. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also...... the potential of distinguishing between nanotubes of different electrical properties, which is very important for the optimisation of the properties of the carbon nanotube sensors. Various cantilever and planar structures were designed, fabricated and tested both with multi-walled and single-walled carbon...

  19. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  20. Method of making carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  1. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  2. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  3. Carbon nanotubes as heat dissipaters in microelectronics

    DEFF Research Database (Denmark)

    Pérez Paz, Alejandro; García-Lastra, Juan María; Markussen, Troels

    2013-01-01

    We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties...... of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible....

  4. Quantum conductance of carbon nanotube peapods

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-01-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands

  5. Study of Carbon Nanotube-Substrate Interaction

    Directory of Open Access Journals (Sweden)

    Jaqueline S. Soares

    2012-01-01

    Full Text Available Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the substrate affects the structural, electronic, and vibrational properties of the tubes.

  6. Thermal conductivity of deformed carbon nanotubes

    Science.gov (United States)

    Zhong, Wei-Rong; Zhang, Mao-Ping; Zheng, Dong-Qin; Ai, Bao-Quan

    2011-04-01

    We investigate the thermal conductivity of four types of deformed carbon nanotubes by using the nonequilibrium molecular dynamics method. It is reported that various deformations have different influences on the thermal properties of carbon nanotubes. For bending carbon nanotubes, the thermal conductivity is independent of the bending angle. However, the thermal conductivity increases lightly with xy-distortion and decreases rapidly with z-distortion. The thermal conductivity does not change with the screw ratio before the breaking of carbon nanotubes, but it decreases sharply after the critical screw ratio.

  7. Carbon nanotube coatings as chemical absorbers

    Science.gov (United States)

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  8. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  9. Low concentrations of nitrate and ammonium stimulate nodulation and N-2 fixation while inhibiting specific nodulation (nodule DW g(-1) root dry weight) and specific N-2 fixation (N-2 fixed g(-1) root dry weight) in soybean

    NARCIS (Netherlands)

    Gan, YB; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    Nitrate N is a major inhibitor of the soybean/Bradyrhizobium symbiosis in legumes and although this inhibition has been studied for many years, as yet no consensus has been reached on the specific and quantitative interactions between nitrate and ammonium supply and N-2 fixation. The effect of

  10. Application of Nanoparticles/Nanowires and Carbon Nanotubes for Breast Cancer Research

    National Research Council Canada - National Science Library

    Panchapakesan, Balaji

    2005-01-01

    .... Variety of techniques such as fabrication of single wall carbon nanotubes, functionalization of nanotubes with antibodies, interaction of cells with antibodies on nanotube surfaces, and finally cell...

  11. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  12. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  13. Carbon Nanotube Field Emission Arrays

    Science.gov (United States)

    2011-06-01

    CVD) and thermal chemical vapor deposition (T-CVD), are developed. The physical properties of the resulting CNTs are analyzed using Raman...MWCNTs) [1]. In the ensuing years the characterization of unique and phenomenal mechanical, electrical, thermal , and chemical properties of CNTs has...rediscovered or introduced carbon nanotubes to the scientific community as a by-product of an electric arc discharge method of synthesizing C60 fullerenes [1

  14. Underwater Acoustic Carbon Nanotube Thermophone

    Science.gov (United States)

    2016-09-23

    electrically connected to the transducer cable. A silicon sealant material is used to for attachment points on the thermophone. BRIEF DESCRIPTION OF...300 degrees Celsius) rated silicon sealant material 62 is used to for attachment points on the thermophone 10. [0030] Advantages and features of...of a cable is soldered to the carbon nanotube material chip at electrodes of the material chip. A high temperature rated silicon sealant is used for attachment points on the thermophone.

  15. ECHINACEA SANGUINEA AND ECHINACEA PALLIDA EXTRACTS STIMULATE GLUCURONIDATION AND BASOLATERAL TRANSFER OF BAUER ALKAMIDES 8 AND 10 AND KETONE 24 AND INHIBIT P-GLYCOPROTEIN TRANSPORTER IN CACO-2 CELLS

    OpenAIRE

    Qiang, Zhiyi; Hauck, Cathy; McCoy, Joe-Ann; Widrlechner, Mark P.; Reddy, Manju B.; Murphy, Patricia A.; Hendrich, Suzanne

    2013-01-01

    The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10 and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguinea and Echinacea pallida ethanol extracts, and that these Echinacea extracts could inhibit P-glycoprotein transporter (P-gp) in Caco-2 human intestinal epithelial cells. Using HPLC analysis, the per...

  16. The chloroform fraction of Solanum nigrum suppresses nitric oxide and tumor necrosis factor-α in LPS-stimulated mouse peritoneal macrophages through inhibition of p38, JNK and ERK1/2.

    Science.gov (United States)

    Kang, Hee; Jeong, Ha-Deok; Choi, Ho-Young

    2011-01-01

    Solanum nigrum L., commonly known as black nightshade, is used worldwide for the treatment of skin and mucosal ulcers, liver cirrhosis and edema. We aimed to determine the anti-inflammatory active fraction of S. nigrum by serial extractions. S. nigrum was first extracted with methanol, then fractionated with chloroform and water. The effects of S. nigrum fractions, diosgenin and α-solanine on LPS/interferon-gamma-induced nitric oxide (NO) and inducible NO synthase (iNOS), or LPS-induced tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, in mouse peritoneal macrophages were determined. Western blotting analysis was used to detect LPS-induced phosphorylation of p38, JNK and ERK1/2. The chloroform fraction of S. nigrum was cytotoxic in a time and concentration dependent manner; however, the methanol and water fractions were not. The chloroform fraction reduced NO through inhibition of iNOS synthesis and inhibited TNF-α and IL-6 at the level of protein secretion; the methanol and water fractions showed a weak or no effect. The chloroform fraction also suppressed p38, JNK and ERK1/2. Diosgenin and α-solanine were cytotoxic at a high concentration. In particular, diosgenin was able to inhibit TNF-α and IL-6, but both compounds did not affect LPS-induced iNOS expression. These results indicate that the anti-inflammatory compounds of S. nigrum exist preferentially in the nonpolar fraction, ruling out the possibility that diosgenin and α-solanine are the likely candidates. The inhibition of iNOS, TNF-α and IL-6 by the chloroform fraction may be partly due to the suppression of p38, JNK and ERK1/2. Further study is required to identify the active compounds of S. nigrum.

  17. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    Science.gov (United States)

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  18. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  19. Method for nano-pumping using carbon nanotubes

    Science.gov (United States)

    Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  20. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  1. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  2. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Unknown

    Electronic properties of magnetically doped nanotubes. KEIVAN ESFARJANI*, Z CHEN† and Y KAWAZOE†. Sharif Institute of Technology, and Institute for Physics and Mathematics, Tehran, Iran. †Institute for Materials Research, Tohoku University, Sendai, Japan. Abstract. Effect of doping of carbon nanotubes by magnetic ...

  3. Nanoscratch technique for aligning multiwalled carbon nanotubes ...

    Indian Academy of Sciences (India)

    to align a MWCNT, as well as the energy required to align a gram of nanotubes, has been estimated. The method demonstrated represents an economical approach for large-scale synthesis of aligned MWCNTs at low costs. Keywords. Carbon nanotube; arc discharge; characterization; alignment; nanoscratch. 1.

  4. Effects of lithium on stimulated metabolic parameters in dog thyroid slices

    International Nuclear Information System (INIS)

    Fen-Yu Tseng; Pasquali, D.; Field, J.B.

    1989-01-01

    Thyroid abnormalities may develop during chronic lithium therapy for affective disorders. Lithium, like iodide, inhibits TSH stimulation of adenylate cyclase and thyroid hormone release. The present study examined the effect of lithium on stimulation of intrathyroidal intermediary metabolism by several agonists, LiCl (5 mmol l) did not inhibit basal cAMP, glucose oxidation or 32 P incorporation into phospholipids in dog thyroid slices. Although LiCl inhibited TSH stimulation of cAMP, it did not abolish the hormone's effect on cAMP-dependent protein kinase. The stimulation of iodide organification, glucose oxidation or 32 P incorporation into phospholipids by TSH, carbachol and phorbol esters was not inhibited by lithium. This is in contrast to the effects of iodide, which inhibited stimulation of glucose oxidation and 32 P incorporation into phospholipids by various agonists. Thus, although both lithium and iodide inhibited TSH-stimulated cAMP formation, they act differently on intrahyriodal intermediary metabolism. (author)

  5. The formation mechanism of chiral carbon nanotubes

    Science.gov (United States)

    Liu, Jing; Liu, Liren; Lu, Junzhe; Zhu, Hengjiang

    2018-02-01

    The nuclei and the formation mechanism of chiral carbon nanotubes, namely, single-, double-, and triple-walled carbon nanotubes are simulated by the first principle density functional theory. The formation mechanism from nuclei to corresponding infinitely long carbon nanotubes occurs spirally and via absorbing carbon atoms layer by layer. Carbon atoms at the open end are metastable state compared with ones in the tube wall or the closed end, which indicate the growth point of chiral carbon nanotubes is located at the open end. Growth of outer layer tubular clusters takes precedence over the inner layer in the process of forming multi-walled nuclear structures. Because of the ratio of carbon atoms at the open end to all carbon atoms decreases, the stability of the tubular clusters increases with their length. The infinitely long carbon nanotubes are obtained by executing periodic boundary conditions depend on corresponding nuclear structures.

  6. Continuum modeling of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Song, J; Wu, J; Hwang, K C; Huang, Y

    2008-01-01

    Boron nitride nanotubes display unique properties and have many potential applications. A finite-deformation shell theory is developed for boron nitride nanotubes directly from the interatomic potential to account for the effect of bending and curvature. Its constitutive relation accounts for the nonlinear, multi-body atomistic interactions, and therefore can model the important effect of tube chirality and radius. The theory is then used to determine whether a single-wall boron nitride nanotube can be modeled as a linear elastic isotropic shell. Instabilities of boron nitride nanotubes under different loadings (e.g., tension, compression, and torsion) are also studied. It is shown that the tension instability of boron nitride nanotubes is material instability, while the compression and torsion instabilities are structural instabilities.

  7. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  8. Schottky barriers at metal-finite semiconducting carbon nanotube interfaces

    OpenAIRE

    Xue, Yongqiang; Ratner, Mark A.

    2003-01-01

    Electronic properties of metal-finite semiconducting carbon nanotube interfaces are studied as a function of the nanotube length using a self-consistent tight-binding theory. We find that the shape of the potential barrier depends on the long-range tail of the charge transfer, leading to an injection barrier thickness comparable to half of the nanotube length until the nanotube reaches the bulk limit. The conductance of the nanotube junction shows a transition from tunneling to thermally-acti...

  9. The inhibitory effects of pudendal nerve stimulation on bladder overactivity in spinal cord injury dogs: is early stimulation necessary?

    Science.gov (United States)

    Chen, Guoqing; Liao, Limin; Dong, Qian; Ju, Yanhe

    2012-01-01

    To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at early and late stages of spinal cord injury in dogs. The study was performed in eight dogs with chronic spinal cord transection at the T9-T10 level. Group 1 (four dogs) underwent electrical stimulation of pudendal nerve one month after spinal cord transection. Group 2 (four dogs) underwent stimulation six months after spinal cord transection. The bladders were removed for histological examination of fibrosis after the stimulation. The bladder capacity and the compliance were significantly increased (p stimulation in group 1, but not in group 2. The nonvoiding contractions were inhibited in both groups by electrical stimulation. Collagen fiber was increased, while elastic fiber was significantly decreased (p stimulation can increase the bladder capacity and compliance only during the early period before the bladder wall becomes fibrosit and can inhibit the nonvoiding contraction during two stages. © 2012 International Neuromodulation Society.

  10. Vitamin E γ-Tocotrienol Inhibits Cytokine-Stimulated NF-κB Activation by Induction of Anti-Inflammatory A20 via Stress Adaptive Response Due to Modulation of Sphingolipids.

    Science.gov (United States)

    Wang, Yun; Park, Na-Young; Jang, Yumi; Ma, Averil; Jiang, Qing

    2015-07-01

    NF-κB plays a central role in pathogenesis of inflammation and cancer. Many phytochemicals, including γ-tocotrienol (γTE), a natural form of vitamin E, have been shown to inhibit NF-κB activation, but the underlying mechanism has not been identified. In this study, we show that γTE inhibited cytokine-triggered activation of NF-κB and its upstream regulator TGF-β-activated kinase-1 in murine RAW 264.7 macrophages and primary bone marrow-derived macrophages. In these cells, γTE induced upregulation of A20, an inhibitor of NF-κB. Knockout of A20 partially diminished γTE's anti-NF-κB effect, but γTE increased another NF-κB inhibitor, Cezanne, in A20(-/-) cells. In search of the reason for A20 upregulation, we found that γTE treatment increased phosphorylation of translation initiation factor 2, IκBα, and JNK, indicating induction of endoplasmic reticulum stress. Liquid chromatography-tandem mass spectrometry analyses revealed that γTE modulated sphingolipids, including enhancement of intracellular dihydroceramides, sphingoid bases in de novo synthesis of the sphingolipid pathway. Chemical inhibition of de novo sphingolipid synthesis partially reversed γTE's induction of A20 and the anti-NF-κB effect. The importance of dihydroceramide increase is further supported by the observation that C8-dihydroceramide mimicked γTE in upregulating A20, enhancing endoplasmic reticulum stress, and attenuating TNF-triggered NF-κB activation. Our study identifies a novel anti-NF-κB mechanism where A20 is induced by stress-induced adaptive response as a result of modulation of sphingolipids, and it demonstrates an immunomodulatory role of dihydrocermides. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways.

    Science.gov (United States)

    Shi, Chun-Lin; Park, Hyo-Bee; Lee, Jong Suk; Ryu, Sangryeol; Ryu, Choong-Min

    2010-03-01

    The rhizobacterium Serratia marcescens strain 90-166 was previously reported to promote plant growth and induce resistance in Arabidopsis thaliana. In this study, the influence of strain 90-166 on root development was studied in vitro. We observed inhibition of primary root elongation, enhanced lateral root emergence, and early emergence of second order lateral roots after inoculation with strain 90-166 at a certain distance from the root. Using the DR5::GUS transgenic A. thaliana plant and an auxin transport inhibitor, N-1-naphthylphthalamic acid, the altered root development was still elicited by strain 90-166, indicating that this was not a result of changes in plant auxin levels. Intriguingly, indole-3-acetic acid, a major auxin chemical, was only identified just above the detection limit in liquid culture of strain 90-166 using liquid chromatography-mass spectrometry. Focusing on bacterial determinants of the root alterations, we found that primary root elongation was inhibited in seedlings treated with cell supernatant (secreted compounds), while lateral root formation was induced in seedlings treated with lysate supernatant (intracellular compounds). Further study revealed that the alteration of root development elicited by strain 90-166 involved the jasmonate, ethylene, and salicylic acid signaling pathways. Collectively, our results suggest that strain 90-166 can contribute to plant root development via multiple signaling pathways.

  12. Stimulating retinal blood vessel protection with hypoxia-inducible factor stabilization: identification of novel small-molecule hydrazones to inhibit hypoxia-inducible factor prolyl hydroxylase (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Sears, Jonathan E; Hoppe, George

    2013-09-01

    To discover novel small molecules that inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD), a key enzyme that regulates the posttranslational stability and hence activity of HIF. NIH3T3 cell line stably transfected with firefly luciferase under a HIF-1-inducible promoter was used to screen a Chembridge library of 34,000 small molecules of molecular weight 250 to 550 Da. Positive hits were considered at 4.5-fold higher luminescence than control. Selected compounds were validated in vitro. The most effective dose was then used to treat mice expressing firefly luciferase fused to the oxygen-dependent degradation domain (lucODD) in order to determine the location of the receptor for systemic treatment with small-molecule HIF PHD inhibitors. Twenty-three novel small molecules were discovered, the majority of which were hydrazones and hydrazines. Of the 23 compounds, each had different selectivity for expression of erythropoietin or vascular endothelial growth factor, two angiogenic, HIF-regulated gene products. In addition, each showed different selectivity for hepatocytes or kidney, or both or neither, when injected intraperitoneally in an in vivo reporter gene assay. The discovery of multiple small molecules that inhibit HIF PHD identifies new reagents to develop strategies to prevent the degradation of HIF by its selective PHD. These molecules are novel hypoxia mimetics that may provide new strategies to protect retinovasculature from hyperoxia.

  13. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  15. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  16. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation.

    Science.gov (United States)

    Budhathoki-Uprety, Januka; Jena, Prakrit V; Roxbury, Daniel; Heller, Daniel A

    2014-11-05

    The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency. Polymer cloaking of the fluorescent nanotubes facilitated the first instance of controllable and reversible internanotube exciton energy transfer, allowing kinetic measurements of dynamic self-assembly and disassembly.

  17. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  18. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  19. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    Science.gov (United States)

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. © 2015 John Wiley & Sons Ltd.

  20. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  1. Cognitive stimulation in healthy older adults: a cognitive stimulation program using leisure activities compared to a conventional cognitive stimulation program.

    Science.gov (United States)

    Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David

    2017-06-01

    The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.

  2. Carbon nanotube-based bioceramic grafts for electrotherapy of bone.

    Science.gov (United States)

    Mata, D; Horovistiz, A L; Branco, I; Ferro, M; Ferreira, N M; Belmonte, M; Lopes, M A; Silva, R F; Oliveira, F J

    2014-01-01

    Bone complexity demands the engineering of new scaffolding solutions for its reconstructive surgery. Emerging bone grafts should offer not only mechanical support but also functional properties to explore innovative bone therapies. Following this, ceramic bone grafts of Glass/hydroxyapatite (HA) reinforced with conductive carbon nanotubes (CNTs) - CNT/Glass/HA - were prepared for bone electrotherapy purposes. Computer-aided 3D microstructural reconstructions and TEM analysis of CNT/Glass/HA composites provided details on the CNT 3D network and further correlation to their functional properties. CNTs are arranged as sub-micrometric sized ropes bridging homogenously distributed ellipsoid-shaped agglomerates. This arrangement yielded composites with a percolation threshold of pc=1.5vol.%. At 4.4vol.% of CNTs, thermal and electrical conductivities of 1.5W·m(-1)·K(-1) and 55S·m(-1), respectively, were obtained, matching relevant requisites in electrical stimulation protocols. While the former avoids bone damaging from Joule's heat generation, the latter might allow the confinement of external electrical fields through the conductive material if used for in vivo electrical stimulation. Moreover, the electrically conductive bone grafts have better mechanical properties than those of the natural cortical bone. Overall, these highly conductive materials with controlled size CNT agglomerates might accelerate bone bonding and maximize the delivery of electrical stimulation during electrotherapy practices. © 2013.

  3. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  4. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  5. Ionizing Radiation Effects in Ni Nanotubes

    Science.gov (United States)

    Shlimas, D.; Kozlovsky, A.; Shumskaya, A.; Kaniukov, E.; Ibragimova, M.; Zdorovets, M.; Kadyrzhanov, K.

    2017-01-01

    Polycrystalline nickel nanotubes with diameter of 380 nm and wall thickness 95 nm were synthesized by electrochemical method using PET track-etched membranes with thickness of 12 μm. A comprehensive study of the structural, morphological and electrical characteristics of Ni nanotubes irradiated with C+13 ions with energy 1.75 MeV/nucleon and fluence ranging from 109 to 5 × 1011 cm-2 was carried out. The ability of modification of structural parameters such as lattice parameter and the average size of crystallites and conductivity of Ni nanotubes by irradiation was shown.

  6. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  7. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms a...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  8. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. Carbon nanotubes: Synthesis, characterization, and applications

    Science.gov (United States)

    Deck, Christian Peter

    Carbon nanotubes (CNTs) possess exceptional material properties, making them desirable for use in a variety of applications. In this work, CNTs were grown using two distinct catalytic chemical vapor deposition (CVD) procedures, floating catalyst CVD and thermal CVD, which differed in the method of catalyst introduction. Reaction conditions were optimized to synthesize nanotubes with desired characteristics, and the effects of varying growth parameters were studied. These parameters included gas composition, temperature, reaction duration, and catalyst and substrate material. The CNT products were then examined using several approaches. For each CVD method, nanotube growth rates were determined and the formation and termination mechanisms were investigated. The effects of reaction parameters on nanotube diameters and morphology were also explored to identify means of controlling these important properties. In addition to investigating the effects of different growth parameters, the material properties of nanotubes were also studied. The floating catalyst CVD method produced thick mats of nanotubes, and the mechanical response of these samples was examined using in-situ compression and tension testing. These results indicated that mat structure is composed of discontinuous nanotubes, and a time-dependent response was also observed. In addition, the electrical resistance of bulk CNT samples was found to increase for tubes grown with higher catalyst concentrations and with bamboo morphologies. The properties of nanotubes synthesized using thermal CVD were also examined. Mechanical testing was performed using the same in-situ compression approach developed for floating catalyst CVD samples. A second characterization method was devised, where an optical approach was used to measure the deflection of patterned nanotubes exposed to an applied fluid flow. This response was also simulated, and comparisons with the experimental data were used to determine the flexural

  10. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA).

    Science.gov (United States)

    Gkretsi, Vasiliki; Stylianou, Andreas; Stylianopoulos, Triantafyllos

    2017-03-15

    A hallmark of cancer cells is their ability to invade surrounding tissues and form metastases. Cell-extracellular matrix (ECM)-adhesion proteins are crucial in metastasis, connecting tumor ECM with actin cytoskeleton thus enabling cells to respond to mechanical cues. Vasodilator-stimulated phosphoprotein (VASP) is an actin-polymerization regulator which interacts with cell-ECM adhesion protein Migfilin, and regulates cell migration. We compared VASP expression in MCF-7 and MDA-MB-231 breast cancer (BC) cells and found that more invasive MDA-MB-231 cells overexpress VASP. We then utilized a 3-dimensional (3D) approach to study metastasis in MDA-MB-231 cells using a system that considers mechanical forces exerted by the ECM. We prepared 3D collagen I gels of increasing concentration, imaged them by atomic force microscopy, and used them to either embed cells or tumor spheroids, in the presence or absence of VASP. We show, for the first time, that VASP silencing downregulated Migfilin, β-catenin and urokinase plasminogen activator both in 2D and 3D, suggesting a matrix-independent mechanism. Tumor spheroids lacking VASP demonstrated impaired invasion, indicating VASP's involvement in metastasis, which was corroborated by Kaplan-Meier plotter showing high VASP expression to be associated with poor remission-free survival in lymph node-positive BC patients. Hence, VASP may be a novel BC metastasis biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  12. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  13. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  14. Carbon nanotube woven textile photodetector

    Science.gov (United States)

    Zubair, Ahmed; Wang, Xuan; Mirri, Francesca; Tsentalovich, Dmitri E.; Fujimura, Naoki; Suzuki, Daichi; Soundarapandian, Karuppasamy P.; Kawano, Yukio; Pasquali, Matteo; Kono, Junichiro

    2018-01-01

    The increasing interest in mobile and wearable technology demands the enhancement of functionality of clothing through incorporation of sophisticated architectures of multifunctional materials. Flexible electronic and photonic devices based on organic materials have made impressive progress over the past decade, but higher performance, simpler fabrication, and most importantly, compatibility with woven technology are desired. Here we report on the development of a weaved, substrateless, and polarization-sensitive photodetector based on doping-engineered fibers of highly aligned carbon nanotubes. This room-temperature-operating, self-powered detector responds to radiation in an ultrabroad spectral range, from the ultraviolet to the terahertz, through the photothermoelectric effect, with a low noise-equivalent power (a few nW/Hz 1 /2) throughout the range and with a Z T -factor value that is twice as large as that of previously reported carbon nanotube-based photothermoelectric photodetectors. Particularly, we fabricated a ˜1 -m-long device consisting of tens of p+-p- junctions and weaved it into a shirt. This device demonstrated a collective photoresponse of the series-connected junctions under global illumination. The performance of the device did not show any sign of deterioration through 200 bending tests with a bending radius smaller than 100 μ m as well as standard washing and ironing cycles. This unconventional photodetector will find applications in wearable technology that require detection of electromagnetic radiation.

  15. Vasodilator-Stimulated Phosphoprotein (VASP) depletion fr