WorldWideScience

Sample records for nanotube va-dwcnt arrays

  1. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Chen, Guohai; Shin, Dong Hoon; Lee, Cheol Jin; Iwasaki, Takayuki; Kawarada, Hiroshi

    2008-01-01

    Vertically aligned double-walled carbon nanotube (VA-DWCNT) arrays were synthesized by point-arc microwave plasma chemical vapor deposition on Cr/n-Si and SiO 2 /n-Si substrates. The outer tube diameters of VA-DWCNTs are in the range of 2.5-3.8 nm, and the average interlayer spacing is approximately 0.42 nm. The field emission properties of these VA-DWCNTs were studied. It was found that a VA-DWCNT array grown on a Cr/n-Si substrate had better field emission properties as compared with a VA-DWCNT array grown on a SiO 2 /n-Si substrate and randomly oriented DWCNTs, showing a turn-on field of about 0.85 V μm -1 at the emission current density of 0.1 μA cm -2 and a threshold field of 1.67 V μm -1 at the emission current density of 1.0 mA cm -2 . The better field emission performance of the VA-DWCNT array was mainly attributed to the vertical alignment of DWCNTs on the Cr/n-Si substrate and the low contact resistance between CNTs and the Cr/n-Si substrate

  2. Electron field emission from screen-printed graphene/DWCNT composite films

    International Nuclear Information System (INIS)

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  3. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-02-01

    In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.

  4. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    Science.gov (United States)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  5. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  6. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  7. Fabrication and characterization of CaP-coated nanotube arrays

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Chen, Jia-Ling; Liu, Yen-Ting; Lee, Tzer-Min

    2015-01-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H 3 PO 4 and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells

  8. Fabrication and characterization of CaP-coated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen; Chen, Jia-Ling [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Yen-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-03-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H{sub 3}PO{sub 4} and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells.

  9. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  10. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  11. Optical properties of titanium dioxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmoula, Mohamed [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Close, Thomas; Richter, Christiaan, E-mail: christiaan.richter@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York, 14623 (United States)

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  12. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  13. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators

    KAUST Repository

    Xi, Yi; Song, Jinhui; Xu, Sheng; Yang, Rusen; Gao, Zhiyuan; Hu, Chenguo; Wang, Zhong Lin

    2009-01-01

    We present a systematic study of the growth of hexagonal ZnO nanotube arrays using a solution chemical method by varying the growth temperature (<100 °C), time and solution concentration. A piezoelectric nanogenerator using the as-grown ZnO nanotube arrays has been demonstrated for the first time. The nanogenerator gives an output voltage up to 35 mV. The detailed profile of the observed electric output is understood based on the calculated piezoelectric potential in the nanotube with consideration of the Schottky contact formed between the metal tip and the nanotube; and the mechanism agrees with that proposed for nanowire based nanogenerator. Our study shows that ZnO nanotubes can also be used for harvesting mechanical energy. © 2009 The Royal Society of Chemistry.

  14. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    Science.gov (United States)

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  15. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  16. Density controlled carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  17. Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance

    International Nuclear Information System (INIS)

    Ahn, KiTae; Jang, HyunChul; Hong, Wanshick; Park, Kyoungwan; Sok, Junghyun; Lyu, SeungChul; Lee, Hansung; Lee, Naesung; Han, Moonsup; Park, Yunsun

    2011-01-01

    Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at 800°C. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at 380°C for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

  18. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    Science.gov (United States)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from

  19. Layered growth of aligned carbon nanotube arrays by pyrolysis

    International Nuclear Information System (INIS)

    Zhang Hongrui; Liang Erjun; Ding Pei; Chao Mingju

    2003-01-01

    Based on the study of reaction temperature and duration of the growth of aligned carbon nanotube arrays, layered aligned multi-wall carbon nanotube (MWNT) films grown directly around a reaction quartz tube in an Ar/H 2 atmosphere by pyrolysis of ferrocene in xylene in a suitable reaction furnace with the help of cobalt powder. The scanning electron microscope and transmission electron microscope images indicated that the obtained arrays were composed of many separated layers with MWNTs. The reaction temperature significantly influenced the alignment of the MWNTs, and an appropriate reaction temperature range for growth was 800-900 deg. C. The diameter of the carbon nanotube increased from 46 to 75 nm with the growth temperature. Besides temperature, the reaction duration influenced the length of the well-aligned carbon nanotubes. There was no significant relation between the growth time and the diameter of the carbon nanotubes in the array

  20. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xu, Y. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.; Liu, M. N.

    2015-01-01

    Titanium dioxide (TiO 2 ) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO 2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO 2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO 2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO 2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed

  1. Double-walled ZrO{sub 2} nanotube array. Preparation and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaorui; Hu, Shengliang; Chang, Qing; Wang, Yanzhong [School of Materials Science and Engineering, North University of China, Taiyuan (China); Yang, Jinlong [School of Materials Science and Engineering, North University of China, Taiyuan (China); School of Materials Science and Engineering, Tsinghua University, Beijing (China)

    2017-11-15

    This work demonstrates the formation of self-ordered double-walled ZrO{sub 2} nanotube array via electrochemical anodization in glycerol-based electrolyte. Compared with its counterpart of single-walled ZrO{sub 2} nanotube array, the tube wall of double-walled ZrO{sub 2} nanotube split into outer and inner layers for the decomposition of glycerol during anodization process. Moreover, the double-walled structure showed its advantage of achieving improved utilization of light and higher specific surface area of nanotube array. Due to the unique double-walled structure, the double-walled ZrO{sub 2} nanotube array exhibited better photocatalytic activity than the single-walled ZrO{sub 2} nanotube array. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  3. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    Science.gov (United States)

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  4. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    Science.gov (United States)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  5. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2013-01-01

    Full Text Available To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g increased significantly than that of pure carbon nanotubes (6.7 F/g.

  6. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.

    Science.gov (United States)

    Aria, Adrianus I; Gharib, Morteza

    2014-06-17

    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.

  7. Nanoindentation study of the mechanical behavior of TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C., E-mail: c2.yan@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001 (Australia); Liu, M. N. [i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou (China)

    2015-10-14

    Titanium dioxide (TiO{sub 2}) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO{sub 2} nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO{sub 2} nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO{sub 2} nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO{sub 2} nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  8. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  9. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  10. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  11. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  12. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    Science.gov (United States)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  13. MnO{sub 2} nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-07-01

    Highly ordered MnO{sub 2} nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO{sub 2} nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO{sub 2} nanotube array electrode has superior capacitive behaviour to that of the MnO{sub 2} nanowire array electrode. In addition to high specific capacitance, the MnO{sub 2} nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors. (author)

  14. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  15. Superconductivity in bundles of double-wall carbon nanotubes.

    Science.gov (United States)

    Shi, Wu; Wang, Zhe; Zhang, Qiucen; Zheng, Yuan; Ieong, Chao; He, Mingquan; Lortz, Rolf; Cai, Yuan; Wang, Ning; Zhang, Ting; Zhang, Haijing; Tang, Zikang; Sheng, Ping; Muramatsu, Hiroyuki; Kim, Yoong Ahm; Endo, Morinobu; Araujo, Paulo T; Dresselhaus, Mildred S

    2012-01-01

    We present electrical and thermal specific heat measurements that show superconductivity in double-wall carbon nanotube (DWCNT) bundles. Clear evidence, comprising a resistance drop as a function of temperature, magnetoresistance and differential resistance signature of the supercurrent, suggest an intrinsic superconducting transition below 6.8 K for one particular sample. Additional electrical data not only confirm the existence of superconductivity, but also indicate the T(c) distribution that can arise from the diversity in the diameter and chirality of the DWCNTs. A broad superconducting anomaly is observed in the specific heat of a bulk DWCNT sample, which yields a T(c) distribution that correlates well with the range of the distribution obtained from the electrical data. As quasi one dimensionality of the DWCNTs dictates the existence of electronic density of state peaks, confirmation of superconductivity in this material system opens the exciting possibility of tuning the T(c) through the application of a gate voltage.

  16. Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length

    Directory of Open Access Journals (Sweden)

    Jun-Ha LEE

    2016-05-01

    Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951

  17. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    International Nuclear Information System (INIS)

    Huang Xiao; Zhou, Jijie J; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting-dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension. Among short nanotubes, the self-organized patterns are consistent with the shape of the inherent openings, i.e. slender openings lead to elongated trench-like structures, and circular holes result in relatively round nest-like arrangements. Nanotubes in a relatively high mat are more connected, like in an elastic body, than those in a short mat. Small cracks often initialize themselves in a relatively high mat, along two or more adjacent round openings; each of the cracks evolves into a trench as liquid dries up. Self-organized pattern control with inherent openings needs to initiate the dewetting process above the nanotube tips. If there is no liquid on top, inherent openings barely enlarge themselves after the wetting-dewetting treatment

  18. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    Science.gov (United States)

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  19. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    International Nuclear Information System (INIS)

    Lin Meng; Hu Xiaoke; Ma Zhaohu; Chen Lingxin

    2012-01-01

    Highlights: ► PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. ► PPy nanotube arrays were anchored onto ITO glass without any chemical linker. ► Using SWV, the biosensor was found to be highly sensitive and selective to Cu 2+ . ► The biosensor was successfully applied for the determination of Cu 2+ in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu 2+ ). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium–tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-α-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu 2+ in the range of 0.1–30 μM. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  20. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  1. Real-time imaging of vertically aligned carbon nanotube array growth kinetics

    International Nuclear Information System (INIS)

    Puretzky, A A; Eres, G; Rouleau, C M; Ivanov, I N; Geohegan, D B

    2008-01-01

    In situ time-lapse photography and laser irradiation are applied to understand unusual coordinated growth kinetics of vertically aligned carbon nanotube arrays including pauses in growth, retraction, and local equilibration in length. A model is presented which explains the measured kinetics and determines the conditions for diffusion-limited growth. Laser irradiation of the growing nanotube arrays is first used to prove that the nanotubes grow from catalyst particles at their bases, and then increase their growth rate and terminal lengths

  2. Magnetization Reversal Mechanism for CoFeB Ferromagnetic Nanotube Arrays

    International Nuclear Information System (INIS)

    Hai-Rui, Liu; Qing-Feng, Lu; Shamaila, S.; Jun-Yang, Chen; Sharif, R.; Xiu-Feng, Han

    2009-01-01

    CoFeB nanotube arrays are fabricated in anodic aluminum oxide (AAO) membranes and track etched polycarbonate (PCTE) membranes by using an electrochemical method, and their magnetic properties are investigated by vibrating sample magnetometry. The coercivity H c and remanent squareness S Q of these CoFeB nanotube arrays are derived from hysteresis loops as a function of angle between the field and tube axis. The H c (θ) curves for CoFeB nanotube arrays in AAO and PCTE membranes show M-type variation, while they change shape from M to mountain-type as the tube length increases. However, the overall easy axis perpendicular to tube axis does not change with tube length. The different angular dependences are attributed to different magnetization reversal mechanisms. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  3. Self-assembled ordered carbon-nanotube arrays and membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  4. The rapid growth of vertically aligned carbon nanotubes using laser heating.

    Science.gov (United States)

    Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H

    2009-05-06

    Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.

  5. Preparation of FeS2 nanotube arrays based on layer-by-layer assembly and their photoelectrochemical properties

    International Nuclear Information System (INIS)

    Wang, Mudan; Xue, Dongpeng; Qin, Haiying; Zhang, Lei; Ling, Guoping; Liu, Jiabin; Fang, Youtong; Meng, Liang

    2016-01-01

    Graphical abstract: - Highlights: • Amorphous Fe 2 O 3 nanotube arrays are prepared via layer-by-layer assembly. • Pyrite FeS 2 nanotube arrays are obtained by sulfurizing Fe 2 O 3 nanotube arrays. • Various electrochemical properties are characterized. • A comparison between FeS 2 nanotube and nanoparticle films is conducted. • Nanotube arrays show enhanced corrosion resistance and photoresponse. - Abstract: Well-aligned one-dimensional iron pyrite FeS 2 nanotube arrays have been fabricated via layer-by-layer assembly technique on ZnO nanorod arrays in combination with subsequent sulfurization. The as-prepared products were confirmed to be pure phase pyrite FeS 2 with Fe/S ratio approaching 1/2. Typical nanotube structure was observed for the FeS 2 with average outer diameter of 150 ± 20 nm and wall thickness of 50 ± 5 nm. Comparisons of photoelectrochemical properties between FeS 2 nanotubes and FeS 2 nanoparticles were conducted. Tafel polarization curves and electrochemical impedance spectroscopy indicate that FeS 2 nanotubes possess high corrosion resistance and electrochemical stability. The J–V curves show that the photocurrent at 1.0 V for FeS 2 nanotubes is more than five times larger than that of FeS 2 nanoparticles, indicating enhanced photoresponse and rapid charge transfer performances of 1-D nanotube structure. The enhanced photoelectrochemical properties mainly benefit from the unique architecture features of nanotube array structure.

  6. ZnO nanorod–templated well-aligned ZrO2 nanotube arrays for fibroblast adhesion and proliferation

    International Nuclear Information System (INIS)

    Lu, Zhisong; Hu, Weihua; Ming Li, Chang; Zhu, Zhihong; Liu, Jinping

    2014-01-01

    Cellular responses to porous tubular structures have recently been investigated in highly ordered ZrO 2 nanotube arrays fabricated with anodization. However, the potential applications of the nanotube arrays are hindered by instrument requirements and substrate limitations, as well as by the complicated processes needed for synthesis. In this work, ZrO 2 nanotube arrays were synthesized by in situ hydrolysis of zirconium propoxide with a zinc oxide nanorod array–based template. Fibroblast cells were able to grow on the nanotube array surface with produced elongated filopodia. Studies of the capability of cell growth and the expression of adhesion- and proliferation-related genes reveal that ZrO 2 nanotube arrays may provide a better environment for cell adhesion and growth than a flat titanium surface. These findings not only provide fundamental insight into cell response to nanostructures but also provide an opportunity to use a unique approach to fabricate ZrO 2 nanotube array structures for potential implant applications. (papers)

  7. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    Science.gov (United States)

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  8. The adsorption effect of C6H5 on density of states for double wall carbon nanotubes by tight binding model

    International Nuclear Information System (INIS)

    Fathalian, A.

    2012-01-01

    A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C 6 H 5 gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C 6 H 5 molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C 6 H 5 gas molecules could lead to a (8.0)-(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.

  9. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  10. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    Science.gov (United States)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  11. Preparation and elementary research on electrocatalytic hydrogen evolution of highly ordered titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wu Qinglong; Liao Junsheng; Bai Yun

    2010-01-01

    Well ordered and uniform titanium dioxide nanotube arrays were fabricated by anodiaing process from a bath containing 1% NaF, 1mol/L Na 2 SO 4 , 0.5 mol/L H 2 SO 4 at room temperature. Surface morphology of titanium dioxide nanotube arrays were observed with SEM. The formation process of titanium dioxide nanotube arrays was suggested by current-time transient. Its catalytic hydrogen evolution behavior was studied by electrochemical measurements in a 5%(mass fraction) H 2 SO 4 solution. The results showed that the titanium dioxide nanotube arrays on titanium had better hydrogen evolution activity and trace palladium lead to the maximum electrocatalytic activity of hydrogen production. (authors)

  12. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  13. Dipolar interaction in arrays of magnetic nanotubes

    International Nuclear Information System (INIS)

    Velázquez-Galván, Y; Martínez-Huerta, J M; Encinas, A; De La Torre Medina, J; Danlée, Y; Piraux, L

    2014-01-01

    The dipolar interaction field in arrays of nickel nanotubes has been investigated on the basis of expressions derived from the effective demagnetizing field of the assembly as well as magnetometry measurements. The model incorporates explicitly the wall thickness and aspect ratio, as well as the spatial order of the nanotubes. The model and experiment show that the interaction field in nanotubes is smaller than that in solid nanowires due to the packing fraction reduction in tubes related to their inner cavity. Finally, good agreement between the model and experiment is found for the variation of the interaction field as a function of the tube wall thickness. (paper)

  14. When double-wall carbon nanotubes can become metallic or semiconducting

    International Nuclear Information System (INIS)

    Moradian, Rostam; Azadi, Sam; Refii-tabar, Hashem

    2007-01-01

    The electronic properties of double-wall carbon nanotubes (DWCNTs) are investigated via density functional theory. The DWCNTs are separated into four categories wherein the inner-outer nanotubes are metal-metal, metal-semiconductor, semiconductor-metal and semiconductor-semiconductor single-wall nanotubes. The band structure of the DWCNTs, the local density of states of the inner and outer nanotubes, and the total density of states are calculated. We found that for the metal-metal DWCNTs, the inner and outer nanotubes remain metallic for different distances between the walls, while for the metal-semiconductor DWCNTs, decreasing the distance between the walls leads to a phase transition in which both nanotubes become metallic. In the case of semiconductor-metal DWCNTs, it is found that at some distance the inner wall becomes metallic, while the outer wall becomes a semiconductor, and if the distance is decreased, both walls become metallic. Finally, in the semiconductor-semiconductor DWCNTs, if the two walls are far from each other, then the whole DWCNT and both walls remain semiconducting. By decreasing the wall distance, first the inner, and then the outer, nanotube becomes metallic

  15. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Wang Xin; Zhao Huimin; Quan Xie; Zhao Yazhi; Chen Shuo

    2009-01-01

    This research focused on immersion method synthesis of visible light active salicylic acid (SA)-modified TiO 2 nanotube array electrode and its photoelectrocatalytic (PEC) activity. The SA-modified TiO 2 nanotube array electrode was synthesized by immersing in SA solution with an anodized TiO 2 nanotube array electrode. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), UV-vis diffuse reflectance spectrum (DRS), and Surface photovoltage (SPV) were used to characterize this electrode. It was found that SA-modified TiO 2 nanotube array electrode absorbed well into visible region and exhibited enhanced visible light PEC activity on the degradation of p-nitrophenol (PNP). The degradation efficiencies increased from 63 to 100% under UV light, and 79-100% under visible light (λ > 400 nm), compared with TiO 2 nanotube array electrode. The enhanced PEC activity of SA-modified TiO 2 nanotube array electrode was attributed to the amount of surface hydroxyl groups introduced by SA-modification and the extension of absorption wavelength range.

  16. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor

    International Nuclear Information System (INIS)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-01-01

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  17. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor.

    Science.gov (United States)

    Banerjee, Subarna; Mohapatra, Susanta K; Misra, Mano; Mishra, Indu B

    2009-02-18

    There is a critical need to develop an efficient, reliable and highly selective sensor for the detection of improvised nonmilitary explosives. This paper describes the utilization of functionalized titania nanotube arrays for sensing improvised organic peroxide explosives such as triacetone triperoxide (TATP). TATP forms complexes with titania nanotube arrays (prepared by anodization and sensitized with zinc ions) and thus affects the electron state of the nanosensing device, which is signaled as a change in current of the overall nanotube material. The response is rapid and a signal of five to eight orders of magnitude is observed. These nanotube array sensors can be used as hand-held miniaturized devices as well as large scale portable units for military and homeland security applications.

  18. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong

    2015-01-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO 2 nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO 2 nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO 2 nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO 2 nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO 2 nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO 2 nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO 2 nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO 2 nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO 2 nanotubes. • The highest cell density was observed on 470 nm diameter TiO 2 nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface

  19. Fabrication of DNA nanotubes with an array of exterior magnetic nanoparticles.

    Science.gov (United States)

    Rafati, Adele; Zarrabi, Ali; Gill, Pooria

    2017-10-01

    Described here a methodology for arraying of magnetic nanoparticles (MNPs) on the surface of DNA nanotubes (DNTs). Positioning of magnetic nanoparticles at exterior surface of DNTs were shaped after self-assembling of oligonucleotide staples within an M13mp18 DNA scaffold via an origami process. The staples were partially labeled with biotin to be arrayed at the surface of DNTs. Gel retardation assay of the DNTs carrying magnetic nanoparticles indicated a reversely behavioral electrophoretic movement in comparison to the nanotubes have been demonstrated previously. Also, high resolution transmission electron microscopy confirmed positioning magnetic nanoparticles at the exterior surface of DNTs, correctly. Ultrastructural characteristics of these DNA nanotubes using atomic force microscopy demonstrated topographic heights on their surfaces formed through positioning of magnetic nanoparticles outside the tubules. This nanoarchitecture would be potential for multiple arraying of nanoparticles that those be useful as functionalized chimeric nanocarriers for developing novel nanodrugs and nanobiosensors. Copyright © 2017. Published by Elsevier B.V.

  20. Highly stable palladium-loaded TiO{sub 2} nanotube array electrode for the electrocatalytic hydrodehalogenation of polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chunyue; Wu, Juan; Xin, Yanjun [Qingdao Agricultural University, Qingdao (China); Han, Yanhe [Beijing Institute of Petrochemical Technology, Beijing (China)

    2015-06-15

    Palladized TiO{sub 2} nanotube array electrode was prepared for the electrocatalytic hydrodehalogenation (HDH) of 2,4,5-trichlorobiphenyl (2,4,5-PCB). The TiO{sub 2} nanotube array electrode was successfully fabricated by anodic oxidation method, and Pd was loaded onto the TiO{sub 2} nanotubes by electrochemical deposition. The morphology and structure of the nanotube array electrodes with and without Pd catalysts were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the diameters and lengths of the TiO{sub 2} nanotubes were 30-50 nm and 200-400 nm, respectively. The particle size of the Pd was about 12 nm. Electrocatalytic HDH of 2,4,5-PCB with the Pd/TiO{sub 2} nanotube array electrode was performed in H-cell reactor. Under a constant potential of -1.0 V, the HDH efficiency of 2,4,5-PCB was 90% and the biphenyl yield was 83% (15% current efficiency) within 180min at the Pd/TiO{sub 2} nanotube array electrode. Compared with the Pd/Ti electrode, the Pd/TiO{sub 2} nanotube array electrode exhibited higher HDH efficiency and stability. Additionally, the effect of the primary HDH factors was also investigated.

  1. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M. [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904-4746 (United States)

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  2. Growth of vertically aligned arrays of carbon nanotubes for high field emission

    International Nuclear Information System (INIS)

    Kim, D.; Lim, S.H.; Guilley, A.J.; Cojocaru, C.S.; Bouree, J.E.; Vila, L.; Ryu, J.H.; Park, K.C.; Jang, J.

    2008-01-01

    Vertically aligned multi-walled carbon nanotubes have been grown on Ni-coated silicon substrates, by using either direct current diode or triode plasma-enhanced chemical vapor deposition at low temperature (around 620 deg. C). Acetylene gas has been used as the carbon source while ammonia and hydrogen have been used for etching. However densely packed (∼ 10 9 cm -2 ) CNTs were obtained when the pressure was ∼ 100 Pa. The alignment of nanotubes is a necessary, but not a sufficient condition in order to get an efficient electron emission: the growth of nanotubes should be controlled along regular arrays, in order to minimize the electrostatic interactions between them. So a three dimensional numerical simulation has been developed to calculate the local electric field in the vicinity of the tips for a finite square array of nanotubes and thus to calculate the maximum of the electron emission current density as a function of the spacing between nanotubes. Finally the triode plasma-enhanced process combined with pre-patterned catalyst films (using different lithography techniques) has been chosen in order to grow regular arrays of aligned CNTs with different pitches in the micrometer range. The comparison between the experimental and the simulation data permits to define the most efficient CNT-based electron field emitters

  3. Copper-encapsulated vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  4. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  5. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    Science.gov (United States)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  6. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor

    International Nuclear Information System (INIS)

    Olofsson, Niklas; Eriksson, Anders; Ek-Weis, Johan; Campbell, Eleanor E B; Idda, Tonio

    2009-01-01

    The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

  7. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    Science.gov (United States)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  8. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    Science.gov (United States)

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  9. A fabrication method for field emitter array of carbon nanotubes with improved carbon nanotube rooting

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-11-30

    We have developed a technique for fabrication of a field emitter array (FEA) of carbon nanotubes (CNTs) to obtain a high emission current along with a high current density. The FEA was prepared with many small equidistant circular emitters of randomly oriented multiwall carbon nanotubes. The fabrication of a FEA substrate followed with deposition of titanium nitride (TiN) film on a tantalum (Ta) substrate and circular titanium (Ti) islands on the TiN coated Ta substrate in a DC magnetron sputtering coater. CNTs were dispersed on the substrate and rooted into the circular Ti islands at a high temperature to prepare an array of circular emitters of CNTs. The TiN film was applied on a Ta substrate to make a reaction barrier between the Ta substrate and CNTs in order to root CNTs only into the Ti islands without a reaction with the Ta substrate at the high temperature. A high emission current of 31.7 mA with an effective current density of 34.5 A/cm{sup 2} was drawn at 6.5 V/μm from a FEA having 130 circular emitters in a diameter of 50 μm and with a pitch of 200 μm. The high emission current was ascribed to the good quality rooting of CNTs into the Ti islands and an edge effect, in which a high emission current was expected from the peripheries of the circular emitters. - Highlights: • We developed a method to fabricate a field emitter array of carbon nanotubes (CNTs). • CNT rooting into array of titanium islands was improved at a high temperature. • Titanium nitride film was used to stop reaction between CNT and tantalum substrate. • Strong edge effect was achieved from an array of small circular emitters of CNTs. • The good quality CNT rooting and the edge effect enhanced an emission current.

  10. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  11. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)

  12. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    Science.gov (United States)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  13. The structural and electronic properties of monovalent sidewall functionalized double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Jalili, Seifollah; Jamali, Maryam

    2012-01-01

    Highlights: ► (6,0)-(13,0) DWCNT, built from (6,0) and (13,0) SWCNTs, is a metallic nanotubes. ► NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) is semimetal and semiconductor, respectively. ► In NH 2 /(6,0)-(13,0) electrons transferred mainly from inner tube to NH 2 group. - Abstract: The structural and electronic properties of (6,0)-(13,0) double-walled carbon nanotubes (DWCNTs) and monovalent sidewall functionalized DWCNTs with –NH 2 and –COOH groups were studied using density functional theory. The results show that pure (6,0)-(13,0) DWCNTs are metallic. However, by functionalizing a DWCNT, local distortions are induced in the outer tube sidewall along the radial direction. The resulting structures, NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) DWCNTs, exhibit significant structural changes, and are semimetal with no energy gap and semiconducting with a small energy gap, respectively. In NH 2 /(6,0)-(13,0) DWCNTs, new electronic states are created and distributed on the outer wall and NH 2 group by electron transfer from the inner tube to the NH 2 group. In COOH/(6,0)-(13,0) DWCNTs, new states are created and distributed on the inner wall, but there is insignificant charge transfer between the inner tube and the COOH group. These results confirm that local atomic structural distortion on DWCNTs caused by sidewall functionalization can modify the electronic structures of DWCNTs.

  14. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  15. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  16. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    Science.gov (United States)

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  17. Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy.

    Science.gov (United States)

    Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn

    2016-12-13

    Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.

  18. Structure and dye-sensitized solar cell application of TiO{sub 2} nanotube arrays fabricated by the anodic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won [School of Material Science and Engineering, ERI and i-cube center, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ryu, Kwang-Sun, E-mail: kkcho66@gnu.ac.k [Department of Chemistry, University of Ulsan, Ulsan, 680-749 (Korea, Republic of)

    2010-05-01

    Well-ordered TiO{sub 2} nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH{sub 4}F and H{sub 2}O. The influence of anodization temperature and time on the morphology and formation of TiO{sub 2} nanotube arrays was examined. The TiO{sub 2} nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO{sub 2} nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO{sub 2} nanotube arrays in the manufacturing process of a photoelectrode.

  19. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  20. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-01-01

    Full Text Available Highly ordered Ti-Nb-Zr-O nanotube arrays were fabricated through pulse anodic oxidation of Ti-Nb-Zr alloy in 1 M NaH2PO4 containing 0.5 wt% HF electrolytes. The effect of anodization parameters and Zr content on the microstructure and composition of Ti-Nb-Zr-O nanotubes was investigated using a scanning electron microscope equipped with energy dispersive X-ray analysis. It was found that length of the Ti-Nb-Zr-O nanotubes increased with increase of Zr contents. The diameter and the length of Ti-Nb-Zr-O nanotubes could be controlled by pulse voltage. XRD analysis of Ti-Nb-Zr-O samples annealed at 500°C in air indicated that the (101 diffraction peaks shifted from 25.78° to 25.05° for annealed Ti-Nb-Zr-O samples with different Zr contents because of larger lattice parameter of Ti-Nb-Zr-O compared to that of undoped TiO2.

  1. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  2. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    Science.gov (United States)

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  3. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: liyan-nwnu@163.com [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Chang, Yin [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhao, Yun [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Wang, Jian; Wang, Cheng-wei [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China)

    2016-09-15

    Oriented nickel sulfide (NiS) nanotube arrays were successfully in-situ fabricated on conductive glass substrate and used directly as counter electrode for dye-sensitized solar cells without any post-processing. Compared with Pt counter electrode, for the beneficial effect of electronic transport along the axial direction through the arrays to the substrate, oriented NiS nanotube arrays exhibit both higher electrocatalytic activity for I{sub 3}{sup −} reduction and better electrochemical stability, resulting in a significantly improved power conversion efficiency of 9.8%. Such in-situ grown oriented sulfide semiconductor nanotube arrays is expected to lead a new class structure of composites for highly efficient cathode materials. - Highlights: • In-situ synthesis strategy was proposed to construct oriented NiS nanotube arrays. • Such oriented tube nanostructure benefits the electronic transport along the axial direction of the arrays. • As CE of DSSCs, NiS nanotube arrays exhibit both higher efficiency (9.8%) and electrochemical stability than Pt.

  4. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  5. Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices

    KAUST Repository

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P.

    2012-01-01

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet

  6. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  7. Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices

    KAUST Repository

    In, Jung Bin

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications. © 2012 American Chemical Society.

  8. Functionalization of vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Eloise Van Hooijdonk

    2013-02-01

    Full Text Available This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs. The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  9. Functionalization of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  10. Preparation and characterization of SiO2:Sm3+ nanotube arrays with 1.06 μm laser antireflective property

    International Nuclear Information System (INIS)

    Tan, Wei-min; Huang, Ning; Wang, Li-jun; Song, Tian-shun; Lu, Chun-hua; Wang, Liu-fang; Zhang, Jun-zhi

    2013-01-01

    SiO 2 : Sm 3+ nanotube arrays with excellent antireflective property at 1.06 μm were synthesized by a template-assisted sol–gel process. The molecular structure, morphology and optical properties of the fabricated SiO 2 :Sm 3+ nanotube arrays were investigated by a Fourier transform infrared spectroscope (FTIR), a Scanning electron microscope (SEM), and a spectro-fluorometer, respectively. The experimental results demonstrate that the SiO 2 :Sm 3+ nanotube arrays were formed via the AAO membrane during the sol–gel process. The remarkable antireflective characteristic of about 0.166% at 1.06 μm was attributed to the drastic decrease of effective refraction index which enhances the matching effect between air and substrate. As well as the absorption performance of Sm3+ at 1.06 μm which consumes the energies of incident light. - Graphical abstract: Directional aligned SiO 2 :Sm 3+ nanotube arrays were synthesized in AAO template by sol–gel process, and the antiflective performance of arrays is prominent comparing to the blank AAO template. Highlights: ► SiO 2 :Sm 3+ nanotube arrays are synthesized by a template-assisted sol–gel process. ► SiO 2 :Sm 3+ nanotube arrays have remarkable antireflective properties at 1.06 μm. ► The subwavelength structure results in a decrease of effective refraction index. ► The absorption performance of Sm 3+ at 1.06 μm consume the energies of incident light

  11. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  12. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    Science.gov (United States)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  13. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Antony, Rajini P.; Mathews, Tom; Ajikumar, P.K.; Krishna, D. Nandagopala; Dash, S.; Tyagi, A.K.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO 2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH 4 F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O 2− ions by N 3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO 1.83 N 0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  14. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    Science.gov (United States)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  15. Efficient Photocatalytic Degradation of Rhodamine B Dye by Aligned Arrays of Self-Assembled Hydrogen Titanate Nanotubes

    Directory of Open Access Journals (Sweden)

    Sriparna Chatterjee

    2014-01-01

    Full Text Available We show that an aligned array of hydrothermally grown, multiwalled hydrogen titanate (H2Ti3O7 nanotubes—anchored to both faces of a metallic Ti foil—acts as an efficient photocatalyst. We studied the degradation of rhodamine B dye in the presence of the nanostructured photocatalyst under UV irradiation, by monitoring the optical absorption of the dye. Rhodamine B was chosen as a representative—and particularly harmful—industrial pollutant dye. The inner and outer diameters of the H2Ti3O7 nanotubes were 5 nm and 10 nm, respectively. The nanotube array catalyst is recyclable and structurally stable. Most importantly, it shows comparable or higher photodecomposition rate constant than those of both H2Ti3O7 nanotube powder and P-25 (Degussa. The enhanced photocatalytic performance may be ascribed to the nanotube array having a superhydrophilic surface with a high accessible surface area.

  16. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    Science.gov (United States)

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  17. Hot spot dynamics in carbon nanotube array devices.

    Science.gov (United States)

    Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon

    2015-03-11

    We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.

  18. Highly aligned carbon nanotube arrays fabricated by bias sputtering

    International Nuclear Information System (INIS)

    Hayashi, Nobuyuki; Honda, Shin-ichi; Tsuji, Keita; Lee, Kuei-Yi; Ikuno, Takashi; Fujimoto, Keiichi; Ohkura, Shigeharu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Vertically aligned carbon nanotube (CNT) arrays have been successfully grown on Si substrates by dc bias sputtering. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that the resultant arrays consisted of dense CNTs with diameters of 40-60 nm and lengths of 300-400 nm. The CNTs were found to have a bamboo-like structure at the end of which metallic nanoparticle was formed, indicating tip growth mechanism. The energy enhancement of carbon particles is a key factor for synthesis of CNTs using dc bias sputtering system

  19. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.

    2016-07-01

    Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi

  20. Nanoparticle fractionation using an aligned carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lim Xiaodai [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), 05-01, 28 Medical Drive, 117456 (Singapore); Xu Hairuo; Chin, Wee Shong [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Nicole Chew, Yi Hui; Phua, Yi Hui [Dunman High School, 10 Tanjong Rhu Road, 436895 (Singapore); Sie, Edbert Jarvis; Sum, Tze Chien [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Chia, Guo Hao; Sow, Chorng-Haur, E-mail: chmcws@nus.edu.sg, E-mail: physowch@nus.edu.sg [Department of Physics, Blk S12, Faculty of Science, National University of Singapore, 2 Science Drive 3, 117542 (Singapore)

    2010-07-23

    A technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs. By controlling the terminating point for the flow of QDs across the CNT array, a QD size specific CNT/QD hybrid structure is achieved.

  1. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  2. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Minett, Andrew I.; Zhao, Jie; Razal, Joselito M.; Wallace, Gordon G.; Romeo, Tony; Chen, Jun [Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522 (Australia); Gao, Mei [Division of Materials Science and Engineering, CSIRO, Bayview Ave, Clayton, VIC 3168 (Australia)

    2011-07-15

    A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Characteristics of N-doped TiO{sub 2} nanotube arrays by N{sub 2}-plasma for visible light-driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xu [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Liu Zhongqing, E-mail: 301zql@vip.sina.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Zheng Jian; Yan Xin; Li Dandan; Chen Si [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2011-10-13

    Highlights: > A new pathway is provided to prepare N-doped TiO2 nanotube arrays using N{sub 2}-plasma treatment. > N{sub 2}-plasma treatment did not wreck the structure of nanotube arrays. > Nitrogen doping promoted the phase transition to rutile phase at low annealing temperatures > Nitrogen doping narrow band gap of TiO{sub 2} and improve the photocatalytic activity of samples. - Abstract: N-doped TiO{sub 2} nanotube arrays were prepared by electrochemical anode oxidation of Ti foil followed by treatment with N{sub 2}-plasma and subsequent annealed under Ar atmosphere. The morphologies, composition and optical properties of N-doped TiO{sub 2} nanotube arrays were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectrometer (XRD), Photoluminescence (PL) and UV-vis diffusion reflection spectroscopy (UV-vis DRS). Methylene blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of the samples under visible light irradiation. The results suggested N{sub 2}-plasma treatment created doping of nitrogen onto the surface of photoelectrodes successfully and the N-doped TiO{sub 2} nanotube arrays display a significantly enhancement of the photocatalytic activity comparing with the pure TiO{sub 2} nanotube arrays under the visible light irradiation.

  4. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  5. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep; Kucukayan-Dogu, Gokce; Sen, H. Sener; Boothroyd, Chris; Gulseren, Oguz; Bengu, Erman

    2012-01-01

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  6. WIMP detection and slow ion dynamics in carbon nanotube arrays

    International Nuclear Information System (INIS)

    Cavoto, G.; Cirillo, E.N.M.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  7. WIMP detection and slow ion dynamics in carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cavoto, G. [INFN Sezione di Roma, Rome (Italy); Cirillo, E.N.M. [Sapienza Universita di Roma, Dipartimento SBAI, Rome (Italy); Cocina, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Ferretti, J. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN Sezione di Roma, Rome (Italy); Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); CERN, Theory Division, Geneva (Switzerland); INFN Sezione di Roma, Rome (Italy)

    2016-06-15

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  8. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    Science.gov (United States)

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  9. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  10. Synthesis and photocatalytic properties of Sn-doped TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tu Yafang; Huang Shengyou [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang Jianping, E-mail: jpsang@acc-lab.whu.edu.c [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou Xianwu [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2009-08-12

    TiO{sub 2} nanotube arrays doped by Sn up to 12 at% have been prepared using template-based liquid phase deposition method. Their morphologies, structures and optical properties have been investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and photoluminescence spectroscopy. The photocatalytic properties of the samples were evaluated with the degradation of methylene blue under UV irradiation. The result shows that doping an appropriate amount of Sn can effectively improve the photocatalytic activity of TiO{sub 2} nanotube arrays, and the optimum dopant amount is found to be 5.6 at% in our experiments.

  11. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  12. Preparation of Fe-doped TiO{sub 2} nanotube arrays and their photocatalytic activities under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Ya-Fang; Huang, Sheng-You [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang, Jian-Ping, E-mail: jpsang@acc-lab.whu.edu.cn [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou, Xian-Wu [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    Fe-doped TiO{sub 2} nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO{sub 2} nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO{sub 2} nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.

  13. Fabrication and structural characterization of highly ordered titania nanotube arrays

    Science.gov (United States)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  14. WIMP detection and slow ion dynamics in carbon nanotube arrays

    CERN Document Server

    Cavoto, G.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-06-24

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...

  15. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  16. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    Science.gov (United States)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Gupta, Arunava; Yoriya, Sorachon; Bao, Ningzhong

    2014-09-01

    Vertically-oriented one-dimensional TiO2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH4F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ˜0.5-26.7 μm, inner diameter of ˜13-201 nm, and outer diameter of ˜28-250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts.

  17. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    International Nuclear Information System (INIS)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Bao, Ningzhong; Gupta, Arunava; Yoriya, Sorachon

    2014-01-01

    Vertically-oriented one-dimensional TiO 2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ∼0.5–26.7 μm, inner diameter of ∼13–201 nm, and outer diameter of ∼28–250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts. (paper)

  18. Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Dheeraj Jain

    2011-01-01

    Full Text Available The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO.

  19. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed

  20. Vertically Aligned Carbon Nanotube Array (VANTA Biosensor for MEMS Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Luke JOSEPH

    2009-10-01

    Full Text Available We describe the fabrication, functionalization and characterization of vertically aligned carbon nanotube arrays (VANTAs for biological sensor applications. This structure is created using a standard MEMS process and chemical vapor deposition (CVD multi-walled carbon nanotube (MWNT post-processing. The device is well suited for full integration into microfluidic lab-on-a-chip solutions. Included is a spectroscopic characterization of the galvanostatic impedance of the device, as well as scanning electron microscopy (SEM images of the pre- and post- functionalized device. Interferometric 3D profiling and X-ray spectroscopy were also used to check process assumptions. The work presented validates that this approach is an ideal candidate for low-cost, high-throughput manufacturing of biochemical sensors. Unlike previously published work [1, 2] using SWNT, the use of MWNT arrays allows functionalization over the entirety of the nanotubes. This approach maintains low baseline impedance and increases the surface area leveraging inherent benefits of the VANTA.

  1. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  2. Interaction of a two-dimensional electromagnetic breather with an electron inhomogeneity in an array of carbon nanotubes

    International Nuclear Information System (INIS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, E. G.; Belonenko, Mikhail B.

    2014-01-01

    Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.

  3. Drying induced upright sliding and reorganization of carbon nanotube arrays

    International Nuclear Information System (INIS)

    Li Qingwen; De Paula, Raymond; Zhang Xiefei; Zheng Lianxi; Arendt, Paul N; Mueller, Fred M; Zhu, Y T; Tu Yi

    2006-01-01

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns

  4. Single-layer graphene-TiO{sub 2} nanotubes array heterojunction for ultraviolet photodetector application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deng-Yue [School of Material Sciences and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Ge, Cai-Wang [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Wang, Jiu-Zhen [School of Material Sciences and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Teng-Fei [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Wu, Yu-Cheng, E-mail: ycwu@hfut.edu.cn [School of Material Sciences and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Liang, Feng-Xia, E-mail: fxliang@hfut.edu.cn [School of Material Sciences and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2016-11-30

    Highlights: • Heterostructures comprised of a single-layer graphene and TiO{sub 2} nanotube arrays were constructed for ultraviolet detection. • The electrical properties of the fabricated heterostructures were dependent on the annealing atmospheres. • The effect of anodic TiO{sub 2} nanotube length on the performance of the photodetector were investigated. - Abstract: In this work, we reported on the fabrication of a single-layer graphene (SLG)-TiO{sub 2} nanotube arrays (NTs) heterostructures ultraviolet photodetector (UVPD) by transferring chemical vapor deposition derived MLG on the surface of anodic TiO{sub 2}NTs array. Through varying the annealing atmosphere and anodization time in the TiO{sub 2} synthesis procedure, the electronic and optoelectronic properties of the as-fabricated Schottky junction UVPD were studied. It was revealed that the anodic TiO{sub 2}NTs annealed in air showed a better rectifying behavior and was highly sensitive to UV light irradiation. Further investigation found that the device performance of the UVPD can be readily modulated by the anodization time, and the anodic TiO{sub 2}NTs with a medium tube length of 9.6 μm exhibits the highest device performance. These results demonstrated that the present SLG-TiO{sub 2}NTs array hetero-junction UVPD will be highly promising for fabricating high-performance optoelectronic device and system in the future.

  5. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    Science.gov (United States)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  6. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  7. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng, E-mail: xfxiao@fjnu.edu.cn

    2015-01-01

    Highlights: • P25 nanoparticles decorated on titania nanotube arrays were prepared by hydrothermal treatment. • P25 nanoparticles were conducive to improve the loading effect of ibuprofen into nanotube arrays. • The diameters of the decorated nanotubes were decrease markedly which led to an effective and prolonged drug release. - Abstract: In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO{sub 2}) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs–P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10{sup −4} M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  8. Nanomanipulation of 2 inch wafer fabrication of vertically aligned carbon nanotube arrays by nanoimprint lithography

    DEFF Research Database (Denmark)

    Bu, Ian Y. Y.; Eichhorn, Volkmar; Carlson, Kenneth

    2011-01-01

    Carbon nanotube (CNT) arrays are typically defined by electron beam lithography (EBL), and hence limited to small areas due to the low throughput. To obtain wafer‐scale fabrication we propose large area thermal nanoimprint lithography (NIL). A 2‐inch stamp master is defined using EBL for subsequent......, efficient production of wafer‐scale/larger arrays of CNTs has been achieved. The CNTs have been deposited by wafer‐scale plasma enhanced chemical vapour deposition (PECVD) of C2H2/NH3. Substrates containing such nanotubes have been used to automate nanorobotic manipulation sequences of individual CNTs...

  9. Modelling clustering of vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  10. Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-04-01

    Full Text Available Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wave polarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface plasmon polariton theory. In addition, the minima of the transmission spectra were in agreement with the location predicted by the theory of Wood’s anomalies. Furthermore, it was found that the resonance profiles through the carbon nanotube films could be well described by the Fano model.

  11. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    International Nuclear Information System (INIS)

    Ly, Ngoc Tai; Nguyen, Van Chien; Dao, Thi Hoa; Hoang To, Le Hong; Pham, Duy Long; Do, Hung Manh; Vu, Dinh Lam; Le, Van Hong

    2014-01-01

    Perpendicularly self-aligned TiO 2 nanotube samples of size of 3 × 5 cm 2 were fabricated by the electrochemical anodization method using a solution containing NH 4 F. Influences of the technological conditions such as NH 4 F concentration and anodization voltage were studied. It was found that NH 4 F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO 2 nanotube. The diameter and the length of a TiO 2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH 4 F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO 2 ) was recorded at room temperature for the TiO 2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO 2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells. (paper)

  12. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  13. Investigation of the influence of geometric parameters of carbon nanotube arrays on their adhesion properties

    Science.gov (United States)

    Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.

    2018-03-01

    The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.

  14. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  15. Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Zilli, D; Bonelli, P R; Cukierman, A L

    2006-01-01

    The adsorption characteristics of self-oriented multi-walled carbon nanotube (MWCNT) arrays are examined from N 2 (-196 deg. C) adsorption measurements. The arrays were synthesized in a laboratory by in situ chemical vapour deposition of iron or cobalt phthalocyanines at 880 and 950 deg. C, under otherwise constant conditions, in an attempt to obtain different morphological structures. For both precursors, increasing the temperature leads to MWCNT arrays with lower Brunauer-Emmett-Teller (BET) surface area and total pore volume, though the effect is more pronounced for those arising from the iron-based compound. Despite this, precursor yields of individual nanotubes of larger diameter, higher BET area and total pore volume characterize the resulting arrays compared to those arising from cobalt phthalocyanine for the same temperatures. As evidenced by SEM and TEM images, the arrays synthesized from iron phthalocyanine at 880 deg. C show better vertical alignment and denser structures than those obtained from this compound at 950 deg. C, and also from cobalt phthalocyanine at both temperatures. Further ultrasonication of the arrays produced from the iron compound brings about a significant reduction in their adsorption capacity, attributable to the pronounced disarrangement of the resulting structures. The present results demonstrate that the alignment of MWCNT arrays plays a crucial role in their N 2 adsorption characteristics

  16. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.

    Science.gov (United States)

    Dickey, Michael D; Weiss, Emily A; Smythe, Elizabeth J; Chiechi, Ryan C; Capasso, Federico; Whitesides, George M

    2008-04-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.

  17. Interface feature characterization and Schottky interfacial layer confirmation of TiO{sub 2} nanotube array film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, 341300 Ganzhou (China); Tang, Ningxin; Yang, Hongzhi; Leng, Xian [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Zou, Jianpeng, E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China)

    2015-11-15

    Highlights: • Interfacial fusion of TiO{sub 2} nanotube film increases with annealing temperature. • Interface bonding force of the film increases with annealing temperature. • We report the forth stage of nanofibers formation in the growing mechanism. • TiO{sub 2} nanotubes grow from Schottky interface layer rather than from Ti substrate. • Schottky interface layer's thickness of 35–45 nm is half the diameter of nanotube. - Abstract: We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO{sub 2}) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO{sub 2} nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO{sub 2} nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO{sub 2} nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35–45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO{sub 2} nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  18. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  19. Effects of carbon nanotube arrays on nucleate pool boiling

    OpenAIRE

    Ujereh, Sebastine; Fisher, Timothy; Mudawar, Issam

    2007-01-01

    Experiments were performed to assess the impact coating silicon and copper substrates with nanotubes (CNTs) have on pool boiling performance. Different CNT array densities and area coverages were tested on 1.27 1.27 mm2 samples in FC-72. The CNT preparation techniques used provided strong adherence of CNTs to both substrate materials. Very small contact angle enabled deep penetration of FC-72 liquid inside surface cavities of smooth uncoated silicon surfaces, requiring unusually high surface...

  20. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  1. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    Science.gov (United States)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  2. Vertically aligned BCN nanotubes with high capacitance.

    Science.gov (United States)

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  3. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  4. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  5. Ti/TiO 2 nanotube array electrode as a new sensor to ...

    Indian Academy of Sciences (India)

    The Ti/TiO2 nanotube array (Ti-NTA) electrode was prepared by anodizing of the Ti foil ... and the pH=3.0 and =1.0 V (vs. reference electrode) were determined as the ... It was found that the photocurrent of EG was linearly dependent on the ...

  6. Using Ag-embedded TiO{sub 2} nanotubes array as recyclable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Zhuo, Yuqing; Huang, Liang [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Mao, Duolu [School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, Qinghai 810007 (China)

    2016-12-01

    Highlights: • Ag embedded nanoparticles inside nanotube have better SERS enhancement than surface cap. • Ag NPs reconstruction via self-migration with UV and humidity control. • Self-cleaning effects both on organic molecule photo-oxidation as well as Ag ions photo-reduction. - Abstract: A simple strategy for synthesizing Ag-loaded TiO{sub 2} nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO{sub 2} nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  7. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  8. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  9. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    Science.gov (United States)

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  10. INFLUENCE OF IONIZING IRRADIATION ON THE PARAMETERS OF ZN NANOTUBES ARRAYS FOR DESIGN OF FLEXIBLE ELECTRONICS ELEMENTS

    Directory of Open Access Journals (Sweden)

    D. B. Kadyrzhanov

    2018-01-01

    Full Text Available The aim of the study is establishing the possibility of using Zn nanotube arrays as a basis for design compact and lightweight elements of flexible electronics, including operating under influence of ionizing irradiation.The paper presents the results of the synthesis of Zn nanotubes obtained by electrochemical deposition in the pores of polymer matrices and the study of their structural and electrophysical properties after directional modification by ionizing radiation with different doses. Using the methods of scanning electron microscopy, X-ray diffraction and energy dispersive analysis, the structure of nanotubes having a polycrystalline structure and completely consisting of zinc was studied and it was demonstrated that irradiation with Ar8+ ions with a dose from 1 × 109 to 5 × 1011 ion/cm2 and energy 1.75 MeV/nucleon has an effect on the crystal structure of nanotubes.At high doses, localized highly defect zones arise, leading to a critical change in the structure and physical properties of the nanotubes, respectively. It is shown that the consequence of the modification of the crystal structure is a change in the electrical conductivity of nanotubes: at low doses the electrical conductivity increases, but when the threshold value is reached, it sharply decreases. The change in the crystal structure and the corresponding changes in the conductive properties of Zn nanotubes due to irradiation determine the mechanism of ionizing radiation influence on nanomaterials and determine the possibility of using Zn nanotubes arrays as a basis for creating compact and lightweight elements of flexible electronics.

  11. Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors

    International Nuclear Information System (INIS)

    Huang, Hua; Gan, Mengyu; Ma, Li; Yu, Lei; Hu, Haifeng; Yang, Fangfang; Li, Yanjun; Ge, Chengqiang

    2015-01-01

    Highlights: • The PANI/graphene/TiO 2 nanotube arrays were fabricated firstly. • The composite shows a high specific capacitance and superior rate capability. • A high capacity retention rate of 91% after 1000 cycles can be achieved. • The composite possesses a novel three-dimensional (3D) highly ordered nanostructure. • TiO 2 NTs enhance the adhesion between PANI and substrate. - Abstract: Polyaniline/graphene/titania nanotube arrays (PGTNs) nanocomposite as a supercapacitor electrode is fabricated by in-situ polymerization for the first time. Herein, the PGTNs possesses a novel three-dimensional (3D) highly ordered hybrid nanostructure consisting of coaxial polyaniline (PANI)/TiO 2 nanotube arrays and graphene coated with PANI on the surface of TiO 2 in some degree. The synthesized three-dimensional PGTNs is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy, and its electrochemical performance is measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The maximum specific capacitance of PGTNs is as high as 933 F g −1 at current density of 0.75 A g −1 and the specific capacitance retains 91% of the initial after constant charge–discharge 1000 cycles. The improved electrochemical performance is due to the 3D nanostructure, which effectively prevents the mechanical deformation during the fast charge/discharge process and favors the diffusion of the electrolyte ions into the inner region of active materials. The composite electrode material is very promising for the next generation of high-performance electrochemical supercapacitors

  12. In-vitro bioactivity and electrochemical behavior of polyaniline encapsulated titania nanotube arrays for biomedical applications

    Science.gov (United States)

    Agilan, P.; Rajendran, N.

    2018-05-01

    Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.

  13. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  14. Quantitative control of a rotary carbon nanotube motor under temperature stimulus

    International Nuclear Information System (INIS)

    Cai, Kun; Wan, Jing; Shi, Jiao; Qin, Qing H

    2016-01-01

    Since a double-walled carbon nanotube (DWCNT)-based rotary motor driven by a uniform temperature field was proposed in 2014, how to control quantitatively the rotation of the rotor is still an open question. In this work, we present a mathematical relationship between the rotor’s speed and interaction energy. Essentially, the increment of interaction energy between the rotor and the stator(s) determines the rotor’s rotational speed, whereas the type of radial deviation of an end carbon atom on the stator determines the rotational direction. The rotational speed of the rotor can be specified by adjusting temperature and radial deviation of an end carbon atom on the stator. It is promising for designing a controllable temperature-driven rotary motor based on DWCNTs with length of few nanometers only. (paper)

  15. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Ehlert, Gregory J; Baur, Jeffery W; Dickinson, Ben

    2012-01-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0–1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats. (paper)

  16. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    Science.gov (United States)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  17. Highly efficient photoelectrochemical performance of SrTiO{sub 3}/TiO{sub 2} heterojunction nanotube array thin film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan [Qingdao University, School of Chemistry, Chemical Engineering and Environments (China); Bu Yuyu [Chinese Academy of Sciences, National Engineering Center of Marine Corrosion Protection, Institute of Oceanology (China); Yu Jianqiang, E-mail: yjq@licp.cas.cn; Li Ping [Qingdao University, School of Chemistry, Chemical Engineering and Environments (China)

    2013-06-15

    SrTiO{sub 3}-TiO{sub 2} heterojunction thin-film nanotube arrays (SNTs, the average inner diameter is about 50 nm) was fabricated via electrochemical anodization followed by a hydrothermal treatment. The photo-to-current conversion properties and the photoelectrochemical performance for cathodic protection of carbon steel in 0.5 M of sodium chloride solution under white light illumination were investigated. The results showed that the highly ordered nanotube arrays could provide very excellent cathodic protection for carbon steel under white light irradiation.

  18. Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hua; Gan, Mengyu; Ma, Li, E-mail: mlsys607@126.com; Yu, Lei; Hu, Haifeng; Yang, Fangfang; Li, Yanjun; Ge, Chengqiang

    2015-05-05

    Highlights: • The PANI/graphene/TiO{sub 2} nanotube arrays were fabricated firstly. • The composite shows a high specific capacitance and superior rate capability. • A high capacity retention rate of 91% after 1000 cycles can be achieved. • The composite possesses a novel three-dimensional (3D) highly ordered nanostructure. • TiO{sub 2} NTs enhance the adhesion between PANI and substrate. - Abstract: Polyaniline/graphene/titania nanotube arrays (PGTNs) nanocomposite as a supercapacitor electrode is fabricated by in-situ polymerization for the first time. Herein, the PGTNs possesses a novel three-dimensional (3D) highly ordered hybrid nanostructure consisting of coaxial polyaniline (PANI)/TiO{sub 2} nanotube arrays and graphene coated with PANI on the surface of TiO{sub 2} in some degree. The synthesized three-dimensional PGTNs is characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy, and its electrochemical performance is measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge. The maximum specific capacitance of PGTNs is as high as 933 F g{sup −1} at current density of 0.75 A g{sup −1} and the specific capacitance retains 91% of the initial after constant charge–discharge 1000 cycles. The improved electrochemical performance is due to the 3D nanostructure, which effectively prevents the mechanical deformation during the fast charge/discharge process and favors the diffusion of the electrolyte ions into the inner region of active materials. The composite electrode material is very promising for the next generation of high-performance electrochemical supercapacitors.

  19. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  20. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Yang Guangming; Li Ling; Jiang Jinhe; Yang Yunhui

    2012-01-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 × 10 −7 –5.23 × 10 −4 mol L −1 and 1.43 × 10 −7 –4.64 × 10 −4 mol L −1 , the detection limits were 1.12 × 10 −8 mol L −1 and 2.24 × 10 −8 mol L −1 , respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: ► Gold nanotubes array has been synthesized by cyclic voltammetry. ► The mechanism of deposition of gold nanotube has been discussed. ► A determination of ascorbic acid and uric acid was constructed by gold array. ► A satisfied determination of samples can be obtained by this sensor.

  1. Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors

    Science.gov (United States)

    Patel, Ajay M.; Joshi, Anand Y.

    2016-10-01

    This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.

  2. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  3. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wang, Wei; Xie, Yibing; Du, Hongxiu; Xia, Chi; Wang, Yong; Tian, Fang

    2014-01-01

    A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO 2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM −1 cm −2 , and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication. (author)

  4. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangming, E-mail: yangguangmingbs@126.com [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Ling, Li [Department of Resources and Environment, Baoshan University, Baoshan 678000 (China); Jinhe, Jiang; Yunhui, Yang [College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092 (China)

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.02 Multiplication-Sign 10{sup -7}-5.23 Multiplication-Sign 10{sup -4} mol L{sup -1} and 1.43 Multiplication-Sign 10{sup -7}-4.64 Multiplication-Sign 10{sup -4} mol L{sup -1}, the detection limits were 1.12 Multiplication-Sign 10{sup -8} mol L{sup -1} and 2.24 Multiplication-Sign 10{sup -8} mol L{sup -1}, respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. - Graphical abstract: The schematic diagram of formation of Au nanotube arrays (a) and the stepwise procedure of the sensor (b). Highlights: Black-Right-Pointing-Pointer Gold nanotubes array has been synthesized by cyclic voltammetry. Black-Right-Pointing-Pointer The mechanism of deposition of gold nanotube has been discussed. Black-Right-Pointing-Pointer A determination of ascorbic acid and uric acid was constructed by gold array. Black-Right-Pointing-Pointer A satisfied determination of samples can be obtained by this sensor.

  5. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  6. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  7. Spectroscopic and nonlinear photophysical characterization of organic octupolar-compounds supported by anodic-alumina nanotube-arrays

    International Nuclear Information System (INIS)

    Morales-Saavedra, O.G.; Ontiveros-Barrera, F.G.; Hennrich, G.; Mata-Zamora, M.E.; Rodriguez-Rosales, A.A.; Banuelos, J.G.

    2011-01-01

    Highlights: → Preparation of organic-inorganic nanostructured hybrid materials. → Insertion of octupolar compounds in alumina nanotube arrays. → Linear and nonlinear photophysical characterization of solid-state hybrid structures. → Fabrication of photonic materials. - Abstract: Amorphous anodic alumina membranes (AAM) comprising highly ordered nanometric porous arrays (porous anodic aluminas: PAA) with 1D-nanotube dimensions of ∼75 nm in diameter and 45 microns in depth were successfully prepared and used as nanostructured host networks for different functionalized octupolar chromophores (named here Oct-(n)). Atomic force microscopy (AFM) studies performed on the developed hybrid systems confirmed a homogeneous insertion of these organic molecules into the PAA nanotube-arrays. Samples with high structural quality were selected for several photophysical characterizations: Comprehensive X-ray diffraction (XRD) and optical spectroscopic characterizations performed according to UV-vis absorption, photoluminescent (PL) and Raman measurements revealed the structural and optical performance of these molecules within the PAA-confinement. Since the implemented optical chromophores were specifically functionalized for nonlinear optical (NLO) applications, the obtained Oct-(n)/PAA-based amorphous hybrids were also characterized according to cubic NLO-techniques such as third harmonic generation (THG) and the Z-Scan method. PAA-confined octupolar chromophores have shown interesting linear and NLO optical properties which have not yet been intensively investigated in bulk hybrid systems; hence, the obtained hybrid nanostructures represent a promising field of investigation in the route to functional octupolar-based materials, where different self-assembled molecular structures may be formed, giving rise to enhanced linear and NLO-properties.

  8. Photoelectrochemical oxidation of ibuprofen via Cu_2O-doped TiO_2 nanotube arrays

    International Nuclear Information System (INIS)

    Sun, Qiannan; Peng, Yen-Ping; Chen, Hanlin; Chang, Ken-Lin; Qiu, Yang-Neng; Lai, Shiau-Wu

    2016-01-01

    Highlights: • A p–n junction material was synthesized to enhance photocatalytic ability. • Cu_2O-doped TiO_2 nanotube arrays works as a photoanode in a PEC system. • Recombination of photo-generated holes and electrons were greatly reduced. • Synergetic effect was quantified in PEC degradation. • Recombination of photogenerated holes and electrons was greatly enhanced. - Abstract: A p–n junction based Cu_2O-doped TiO_2 nanotube arrays (Cu_2O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu_2O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu_2O-TNAs was greatly reduced. SEM images revealed that the supported TiO_2 nanotubes had diameters of approximately 80 nm and lengths of about 2.63 μm. Upon doping with Cu_2O, the TiO_2 nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu_2O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu_2O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τ_e_l, of TNAs and Cu_2O/TNAs were 6.91 and 26.26 ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.

  9. Surface-conduction electron-emitter characteristics and fabrication based on vertically aligned carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Li, Kuan-Wei [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Lin, Pao-Hung; Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2017-06-01

    Graphical abstract: The pattern design provides a new structure of surface-conduction electron-emitter display (SED). Delta-star shaped vertically aligned CNT (VACNT) arrays with 20o tips can simultaneously provide three emitters to bombard the sides of equilateral triangles pattern of VACNT, which produces numerous secondary electrons and enhance the SED efficiency. - Highlights: • The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. • The vertically aligned CNT (VACNT) arrays with 20° tips of the delta-star arrangement are used as cathodes that easily emit electrons. The cathode pattern simultaneously provides three emitters to bombard the sides of equilateral triangles pattern of VACNT. • The VACNT arrays were covered with magnesium oxide (MgO) nanostructures to promote the surface-conduction electron-emitter display (SED) efficiency (η). • The η was stably maintained in the 75–85% range. The proposed design provides a facile new method for developing SED applications. - Abstract: The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. Vertically aligned CNT arrays with a delta-star arrangement were patterned and synthesized onto a quartz substrate using photolithography and thermal chemical vapor deposition. Delta-star shaped VACNT arrays with 20° tips are used as cathodes that easily emit electrons because of their high electrical field gradient. In order to improve the field emission and secondary electrons (SEs) in SCE applications, magnesium oxide (MgO) nanostructures were coated onto the VACNT arrays to promote the surface-conduction electron-emitter display (SED) efficiency (η). According to the definition of η in SCE applications, in this study, the η was stably maintained in the 75–85% range. The proposed design provides a facile new method for

  10. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    Science.gov (United States)

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  11. Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Y., E-mail: yxi6@cqu.edu.cn [Department of Applied Physics, Chongqing University, Chongqing 400044 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Wu, W.Z.; Fang, H. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Hu, C.G. [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Tuning the reaction parameters, we got the best reaction conditions on ITO glass. Black-Right-Pointing-Pointer Introduce ZnO NTs design of photoanode featuring high aspect ratio structure. Black-Right-Pointing-Pointer The design strategy integrates the optical fibers or ITO with ZnO NTs grown. - Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material and has been considered as an alternative material in dye-sensitized solar cell (DSSC) applications. A high-performance nanotube (NT) photoanode must have a large surface area for dye adsorption in order to enhance conversion efficiency. In this work, the way of hydrothermally grown ZnO NT arrays on the indium tin oxide (ITO) substrate is presented by utilizing a systematic study. By adjusting the hydrothermal reaction parameters, we attained the optimizing reaction conditions on the ITO substrate. Moreover, ZnO NT arrays are introduced as a photoanode on various substrates, such as optical fiber and ITO glass, for DSSCs applications. We took the contrast test with conversion efficiency of the DSSC based on ZnO NT arrays versus ZnO nanowire arrays on the ITO substrate, which the DSSC based on ZnO NT arrays shows significantly enhanced power conversion efficiency. Furthermore, the conversion efficiency of DSSC based on the ZnO NT arrays grown on an optical fiber substrate is enhanced up to 1.44%.

  12. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes.

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2013-01-21

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer 'smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  13. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2012-12-01

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer `smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  14. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    Science.gov (United States)

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-02

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.

  15. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications

    International Nuclear Information System (INIS)

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O’Riordan, Alan

    2014-01-01

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10 6 , in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated. (paper)

  16. Dye-Sensitized Solar Cells Based on TiO_2 Nanotube and Shelled Arrayed Structures

    International Nuclear Information System (INIS)

    Zhang, Jie; Kusumawati, Yuly; Pauporté, Thierry

    2016-01-01

    Anatase TiO_2 nanostructure arrays were synthetized starting from a template made of self-standing ZnO NWs prepared by an electrodeposition technique. By controlling the liquid phase deposition step, the obtained structures could be varied from free-standing nanotube (NT) arrays with controlled morphology to hierarchical spiky radiating core-shell rods. The nanotubes were made of assembled nanocrystals with an average size of 7–8 nm. The structures were investigated as n-type layers in DSSCs. The efficiency was enhanced for the core-shell layer and by starting with longer initial ZnO NW templates. The limitation of the cell efficiency was shown related to the specific surface area and dye loading. The cell functioning was in-depth investigated by electrochemical impedance spectroscopy over a large applied voltage range and compared to a cell based on a nanoparticle TO_2 mesoporous layer. A slow recombination rate was found. The enhancement of electron transport with nanocrystallite size explained the conductivity results. We also found that the prepared structures presented a high charge collection efficiency.

  17. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    Science.gov (United States)

    2012-08-01

    microid extender followed by a colloidal silica /wetted imperial cloth. The foil was then cut into 1- × 2-cm samples. Then, the substrates were...17. Lei, B.; Liao, J.; Wang, R. J.; Su, C.; Kuang, D. Ordered Crystalline Ti02 Nanotube Arrays on Transparent FTO Glass for Efficient Dye...combined with a transparent , Indium Tin Dioxide coated PET film are attractive candidates for efficient, flexible DSSC’s. Flexible solar cells offer

  18. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    Science.gov (United States)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  19. Multifunctional Material Structures Based on Laser-Etched Carbon Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Aline Emplit

    2014-09-01

    Full Text Available High-power electronics in the transportation and aerospace sectors need size and weight reduction. Multifunctional and multistructured materials are currently being developed to couple electromagnetic (EM and thermal properties, i.e., shielding against electromagnetic impulsions, and thermal management across the thermal interface material (TIM. In this work, we investigate laser-machined patterned carbon nanotube (CNT micro-brushes as an alternative to metallic structures for driving simultaneously EM and heat propagation. The thermal and electromagnetic response of the CNT array is expected to be sensitive to the micro-structured pattern etched in the CNT brush.

  20. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    Science.gov (United States)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  1. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  2. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  3. Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yong, E-mail: caoyangel@126.com [Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Jiao Qingze, E-mail: jiaoqz@bit.edu.cn [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Zhao Yun [School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081 (China); Dong Yingchao [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-09-22

    Graphical abstract: Highlights: > Mg/Fe oxide nanotubes arrayed parallel to each other were prepared by an AAO template method. > The Mg/Fe oxide nanotubes decorated with CN{sub x} were realized by CVD of ethylenediamine on the outer surface of oxide nanotubes. > The magnetic properties of Mg/Fe oxide nanotubes were highly improved after being decorated. - Abstract: Mg/Fe oxide nanotubes decorated with nitrogen-doped carbon nanotubes (CN{sub x}) were fabricated by catalytic chemical vapor deposition of ethylenediamine on the outer surface of oxide nanotubes. Mg/Fe oxide nanotubes were prepared using a 3:1 molar precursor solution of Mg(NO{sub 3}){sub 2} and Fe(NO{sub 3}){sub 3} and anodic aluminum oxide as the substrate. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The XRD pattern shows that the oxide nanotubes are made up of MgO and Fe{sub 2}O{sub 3}. TEM and SEM observations indicate the oxide nanotubes are arrayed roughly parallel to each other, and the outer surface of oxide nanotubes are decorated with CN{sub x}. XPS results show the nitrogen-doped level in CN{sub x} is about 7.3 at.%. Magnetic measurements with VSM demonstrate the saturated magnetization, remanence and coercivity of oxide nanotubes are obvious improved after being decorated with CN{sub x}.

  4. Rational control on floating catalysts for the growth of carbon nanotube assemblies: From vertically aligned carbon nanotube arrays to carbon nanotube films

    International Nuclear Information System (INIS)

    Chen, Hongyuan; Chen, Minghai; Zhang, Yongyi; Li, Qingwen

    2015-01-01

    Graphical abstract: - Highlights: • Floating catalyst CVD for the growth of CNT films and arrays was investigated. • The structure of CNT array grown in floating catalyst CVD was revealed. • Temperature was proved as a key for the growth of different CNT assemblies. • The increase of growth temperature induced the growth of single-walled CNT film. - Abstract: Floating catalyst chemical vapor deposition (FCCVD) has been widely used for the growth of various carbon nanotube (CNT) macrostructures, mainly including vertically aligned CNT (VACNT) arrays and none-woven CNT films. However, it is still unclear for the reason why these CNT macrostructures with largely different morphologies were received via the similar method. In this research, it revealed that the growth temperature largely affected the nucleation status of floating catalysts and thus controlled the morphologies of CNT macrostructures from VACNT arrays to none-woven CNT films. In low temperatures (below 800 °C), VACNTs were grown by bottom-up mechanism with several CNTs, but not one individual from bottom to up along the array height direction. Furthermore, VACNT arrays were only grown on some substrates that can induce iron atoms aggregating to catalyst particles with a suitable size. When increasing the growth temperature higher than 800 °C, more catalyst particles were nucleated in the gas flow, which induced the formation of none-woven CNT films composed of thin CNTs (single-walled CNTs and double-walled CNTs). This research was significative for understanding CNT growth mechanism via FCCVD process and the synthesis of different CNT macrostructures by this strategy.

  5. Rational control on floating catalysts for the growth of carbon nanotube assemblies: From vertically aligned carbon nanotube arrays to carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongyuan; Chen, Minghai, E-mail: mhchen2008@sinano.ac.cn; Zhang, Yongyi; Li, Qingwen

    2015-10-30

    Graphical abstract: - Highlights: • Floating catalyst CVD for the growth of CNT films and arrays was investigated. • The structure of CNT array grown in floating catalyst CVD was revealed. • Temperature was proved as a key for the growth of different CNT assemblies. • The increase of growth temperature induced the growth of single-walled CNT film. - Abstract: Floating catalyst chemical vapor deposition (FCCVD) has been widely used for the growth of various carbon nanotube (CNT) macrostructures, mainly including vertically aligned CNT (VACNT) arrays and none-woven CNT films. However, it is still unclear for the reason why these CNT macrostructures with largely different morphologies were received via the similar method. In this research, it revealed that the growth temperature largely affected the nucleation status of floating catalysts and thus controlled the morphologies of CNT macrostructures from VACNT arrays to none-woven CNT films. In low temperatures (below 800 °C), VACNTs were grown by bottom-up mechanism with several CNTs, but not one individual from bottom to up along the array height direction. Furthermore, VACNT arrays were only grown on some substrates that can induce iron atoms aggregating to catalyst particles with a suitable size. When increasing the growth temperature higher than 800 °C, more catalyst particles were nucleated in the gas flow, which induced the formation of none-woven CNT films composed of thin CNTs (single-walled CNTs and double-walled CNTs). This research was significative for understanding CNT growth mechanism via FCCVD process and the synthesis of different CNT macrostructures by this strategy.

  6. Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose

    International Nuclear Information System (INIS)

    Tian, Taolei; Dong, Junping; Xu, Jiaqiang

    2016-01-01

    The authors describe vertically aligned gold nanotube arrays (Au-NTAs) and gold nanowire arrays (Au-NWAs) that were directly grown in alumina oxide templates by galvanostatic deposition. The morphology of the gold arrays can be controlled by adjusting the pH value of the plating bath. Scanning electron microscopy shows the nanoarrays to be highly ordered (with an average length of around 2 μm), and the opening width of the gold nanotube arrays to be uniform (with diameters of around 50 nm). The electrocatalytic activities of the Au-NTAs and Au-NWAs deposited on a glassy carbon electrode toward glucose oxidation were compared by cyclic voltammetry and amperometry at pH 7.2. The Au-NTAs yield higher amperometric currents. The respective glucose sensor, when operated at a working potential of 0.25 V (vs. SCE), exhibits a linear range that extends from 5 μM to 16.4 mM concentrations of glucose, a sensitivity of 44.2 μA mM"−"1 cm"−"2, and a detection limit of 2.1 μM (at an S/N ratio of 3). The excellent sensing performance is attributed to the large surface area and the fast electron transfer rate for the one-dimensional gold nanoarrays (author)

  7. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

    Directory of Open Access Journals (Sweden)

    Slawomir Boncel

    2014-03-01

    Full Text Available The catalytic chemical vapour deposition (c-CVD technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs. A mixture of toluene (main carbon source, pyrazine (1,4-diazine, nitrogen source and ferrocene (catalyst precursor was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C, composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs. As revealed by electron microscopy studies (SEM, TEM, the individual N-CNTs (half as thick as MWCNTs grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 108 nanotubes per mm2 (100 times more than for MWCNTs grown in the absence of nitrogen precursor. In turn, the internal crystallographic order of the N-CNTs was found to be of a ‘bamboo’-like or ‘membrane’-like (multi-compartmental structure morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp2-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a ‘mixed base-and-tip’ (primarily of the base-type type as compared to the purely

  8. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    Science.gov (United States)

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped

  9. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    Science.gov (United States)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  10. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    Science.gov (United States)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  11. Electrostrictive deformations in small carbon clusters, hydrocarbon molecules, and carbon nanotubes

    International Nuclear Information System (INIS)

    Cabria, I.; Lopez, M. J.; Alonso, J. A.; Amovilli, C.; March, N. H.

    2006-01-01

    The electrostrictive response of small carbon clusters, hydrocarbon molecules, and carbon nanotubes is investigated using the density functional theory. For ringlike carbon clusters, one can get insight on the deformations induced by an electric field from a simple two-dimensional model in which the positive charge of the carbon ions is smeared out in a circular homogeneous line of charge and the electronic density is calculated for a constant applied electric field within a two-dimensional Thomas-Fermi method. According to the Hellmann-Feynman theorem, this model predicts, for fields of about 1 V/A ring , only a small elongation of the ring clusters in the direction of the electric field. Full three-dimensional density functional calculations with an external electric field show similar small deformations in the ring carbon clusters compared to the simple model. The saturated benzene and phenanthrene hydrocarbon molecules do not experience any deformation, even under the action of relatively intense (1 V/A ring ) electric fields. In contrast, finite carbon nanotubes experience larger elongations (∼2.9%) induced by relatively weak (0.1 V/A ring ) applied electric fields. Both C-C bond length elongation and the deformation of the honeycomb structure contribute equally to the nanotube elongation. The effect of the electric field in hydrogen terminated nanotubes is reduced with respect to the nanotubes with dangling bonds in the edges

  12. Solution-processed single-wall carbon nanotube transistor arrays for wearable display backplanes

    Directory of Open Access Journals (Sweden)

    Byeong-Cheol Kang

    2018-01-01

    Full Text Available In this paper, we demonstrate solution-processed single-wall carbon nanotube thin-film transistor (SWCNT-TFT arrays with polymeric gate dielectrics on the polymeric substrates for wearable display backplanes, which can be directly attached to the human body. The optimized SWCNT-TFTs without any buffer layer on flexible substrates exhibit a linear field-effect mobility of 1.5cm2/V-s and a threshold voltage of around 0V. The statistical plot of the key device metrics extracted from 35 SWCNT-TFTs which were fabricated in different batches at different times conclusively support that we successfully demonstrated high-performance solution-processed SWCNT-TFT arrays which demand excellent uniformity in the device performance. We also investigate the operational stability of wearable SWCNT-TFT arrays against an applied strain of up to 40%, which is the essential for a harsh degree of strain on human body. We believe that the demonstration of flexible SWCNT-TFT arrays which were fabricated by all solution-process except the deposition of metal electrodes at process temperature below 130oC can open up new routes for wearable display backplanes.

  13. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  14. Influence of sol–gel parameters in the fabrication of ferromagnetic La2/3Ca1/3MnO3 nanotube arrays

    International Nuclear Information System (INIS)

    Kumaresavanji, M.; Sousa, C.T.; Apolinario, A.; Lopes, A.M.L.; Araujo, J.P.

    2015-01-01

    Graphical abstract: - Highlights: • La 2/3 Ca 1/3 MnO 3 nanotube arrays were fabricated by the alumina template assisted sol–gel method. • By varying molarity, viscosity and pH values of sol–gels, their influence was studied. • Sol–gel with 0.8 M, 29 mPa s and 4 pH is found to be suitable for the fabrication of nanotubes. • Such condition can also be applicable to the fabrication of other multicomponent oxide materials. - Abstract: Highly ordered La 2/3 Ca 1/3 MnO 3 nanotube arrays have been synthesized by porous anodic alumina template assisted sol–gel method. Precursor sol–gels with different molar concentration, viscosity and pH values have been used in the fabrication process in order to find the suitable conditions for the fabrication of such multi component oxides. Diverse characterizations such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were done to verify the structural and morphological behavior of as prepared nanotubes. Magnetic properties were also characterized with respect to temperature and field. Based on the obtained results, a possible nanotubes formation mechanism has been discussed. Depends on the percentage of nanopore filling and the morphology of nanotubes, the sol–gel parameters such as molarity, viscosity and pH have been determined as the key factors in the fabrication of nanostructured manganites which can also be applicable to the fabrication process of other multicomponent nanostructured materials

  15. Fabrication of CdS/H-TiO2 Nanotube Arrays and Their Application for the Degradation of Methyl Orange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhou

    2014-01-01

    Full Text Available The fabrication and characterization of heterogeneous structures based on CdS and self-doped TiO2 nanotube arrays (H-TNTs are reported for the first time. CdS was conformally deposited onto TiO2 nanotube arrays (TNTs using a simple method of electrochemical atomic layer deposition. The as-prepared samples were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffusion reflection spectroscopy (UV-Vis DRS, and photoluminescence spectroscopy (PL techniques. Compared with pure TNTs, CdS/H-TNTs exhibit enhanced photoelectrochemical properties and photocatalytic activity under visible light. Self-doping introduces oxygen vacancies and Ti3+ species, and the electrochemical deposition technique promotes the deposition of CdS onto TiO2 nanotube walls, forming a heterojunction compact structure and resulting in decrease in photocatalytic activity under visible light.

  16. Morphological evolution of TiO{sub 2} nanotube arrays with lotus-root-shaped nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dongliang; Song, Ye; Zhu, Xufei, E-mail: zhuxufei.njust@163.com; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO{sub 2} nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO{sub 2} nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  17. Simultaneous growth of self-patterned carbon nanotube forests with dual height scales

    Science.gov (United States)

    Sam, Ebru Devrim; Kucukayan-Dogu, Gokce; Baykal, Beril; Dalkilic, Zeynep; Rana, Kuldeep; Bengu, Erman

    2012-05-01

    In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf.In this study, we report on a unique, one-step fabrication technique enabling the simultaneous synthesis of vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with dual height scales through alcohol catalyzed chemical vapor deposition (ACCVD). Regions of VA-MWCNTs with different heights were well separated from each other leading to a self-patterning on the surface. We devised a unique layer-by-layer process for application of catalyst and inhibitor precursors on oxidized Si (100) surfaces before the ACCVD step to achieve a hierarchical arrangement. Patterning could be controlled by adjusting the molarity and application sequence of precursors. Contact angle measurements on these self-patterned surfaces indicated that manipulation of these hierarchical arrays resulted in a wide range of hydrophobic behavior changing from that of a sticky rose petal to a lotus leaf. Electronic supplementary information (ESI) available: Fig. S1; AFM image of the Co-O layer which was first dried at 40 °C and then oxidized at 200 °C. Fig. S2; graph relative to the area of CNT islands for different

  18. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    Science.gov (United States)

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  19. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  20. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  1. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Patrick T. O'Shaughnessy

    2014-06-01

    Full Text Available Current interest in the pulmonary toxicity of carbon nanotubes (CNTs has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1 assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs; and (2 assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m3. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL fluid was significantly (p < 0.01 increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure.

  2. TiO2 Nanotube Arrays Composite Film as Photoanode for High-Efficiency Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2014-01-01

    Full Text Available A double-layered photoanode made of hierarchical TiO2 nanotube arrays (TNT-arrays as the overlayer and commercial-grade TiO2 nanoparticles (P25 as the underlayer is designed for dye-sensitized solar cells (DSSCs. Crystallized free-standing TNT-arrays films are prepared by two-step anodization process. For photovoltaic applications, DSSCs based on double-layered photoanodes produce a remarkably enhanced power conversion efficiency (PCE of up to 6.32% compared with the DSSCs solely composed of TNT-arrays (5.18% or nanoparticles (3.65% with a similar thickness (24 μm at a constant irradiation of 100 mW cm−2. This is mainly attributed to the fast charge transport paths and superior light-scattering ability of TNT-arrays overlayer and good electronic contact with F-doped tin oxide (FTO glass provided from P25 nanoparticles as a bonding layer.

  3. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  4. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhou, Xiaosong, E-mail: zxs801213@163.com [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130012 (China); Yang, Fei [The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101 (China); Jin, Bei; Xu, Tan; Li, Guosheng; Li, Manyi [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis light absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.

  5. 1D goes 2D: A Berezinskii-Kosterlitz-Thouless transition in superconducting arrays of 4-Angstrom carbon nanotubes

    KAUST Repository

    Wang, Zhe

    2010-10-01

    We report superconducting resistive transition characteristics for array(s) of coupled 4-Angstrom single wall carbon nanotubes embedded in aluminophosphate-five zeolite. The transition was observed to initiate at 15 K with a slow resistance decrease switching to a sharp, order of magnitude drop between 7.5 and 6.0 K with strong (anisotropic) magnetic field dependence. Both the sharp resistance drop and its attendant nonlinear IV characteristics are consistent with the manifestations of a Berezinskii-Kosterlitz-Thouless transition that establishes quasi long range order in the plane transverse to the c-axis of the nanotubes, leading to an inhomogeneous system comprising 3D superconducting regions connected by weak links. Global coherence is established at below 5 K with the appearance of a well-defined supercurrent gap/low resistance region at 2 K. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of Titanium Oxide Nanotube Arrays with Different Lengths on the Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2013-01-01

    Full Text Available The self-aligned highly ordered TiO2 nanotube (TNT arrays were fabricated by potentiostatic anodization of Ti foil, and we found that the TNT-array length and diameter were dependent on the electrolyte (NH4F concentration in ethylene glycol and anodization time. The characteristics of the fabricated TNT arrays were characterized by XRD pattern, FESEM, and absorption spectrum. As the electrolyte NH4F concentration in the presence of H2O (2 vol% with anodization was changed from 0.25 to 0.75 wt% and the anodization period was increased from 1 to 5 h, the TNT-array length was changed from 9.55 to 30.2 μm and the TNT-array diameter also increased. As NH4F concentration was 0.5 wt%, the prepared TNT arrays were also used to fabricate the dye-sensitized solar cells (DSSCs. We would show that the measured photovoltaic performance of the DSSCs was dependent on the TNT-array length.

  7. Photoelectrochemical oxidation of ibuprofen via Cu{sub 2}O-doped TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiannan [College of Environment and Energy, South China University of Technology, Guangzhou (China); Peng, Yen-Ping, E-mail: yppeng@thu.edu.tw [Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan (China); Chen, Hanlin [College of Environment and Energy, South China University of Technology, Guangzhou (China); Chang, Ken-Lin [School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 51006 China (China); Qiu, Yang-Neng; Lai, Shiau-Wu [Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan (China)

    2016-12-05

    Highlights: • A p–n junction material was synthesized to enhance photocatalytic ability. • Cu{sub 2}O-doped TiO{sub 2} nanotube arrays works as a photoanode in a PEC system. • Recombination of photo-generated holes and electrons were greatly reduced. • Synergetic effect was quantified in PEC degradation. • Recombination of photogenerated holes and electrons was greatly enhanced. - Abstract: A p–n junction based Cu{sub 2}O-doped TiO{sub 2} nanotube arrays (Cu{sub 2}O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu{sub 2}O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu{sub 2}O-TNAs was greatly reduced. SEM images revealed that the supported TiO{sub 2} nanotubes had diameters of approximately 80 nm and lengths of about 2.63 μm. Upon doping with Cu{sub 2}O, the TiO{sub 2} nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu{sub 2}O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu{sub 2}O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τ{sub el}, of TNAs and Cu{sub 2}O/TNAs were 6.91 and 26.26 ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.

  8. Hierarchically structured carbon nanotubes for energy conversion and storage

    Science.gov (United States)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  9. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A., E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wahab, Muhammad A.; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Yuhang [Institute of Solid Mechanics, Beihang University, Beijing 100191 (China); Tomic, Bojan [Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Huang, Jiyuan [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burns, Branden [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Song, Jizhou [Department of Engineering Mechanics and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Huang, Yonggang [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  10. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A.; Wahab, Muhammad A.; Alam, Muhammad A.; Li, Yuhang; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Song, Jizhou; Huang, Yonggang

    2015-01-01

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups

  11. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    Science.gov (United States)

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  12. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    Science.gov (United States)

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  13. Using a cut-paste method to prepare a carbon nanotube fur electrode

    International Nuclear Information System (INIS)

    Zhang, H; Cao, G P; Yang, Y S

    2007-01-01

    We describe and realize an aligned carbon nanotube array based 'carbon nanotube fur (CNTF)' electrode. We removed an 800 μm long aligned carbon nanotube array from the silica substrate, and then pasted the array on a nickel foam current collector to obtain a CNTF electrode. CNTF's characteristics and electrochemical properties were studied systemically in this paper. The cut-paste method is simple, and does not damage the microstructure of the aligned carbon nanotube array. The CNTF electrode obtained a specific capacitance of 14.1 F g -1 and excellent rate capability

  14. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    Science.gov (United States)

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  15. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates

    International Nuclear Information System (INIS)

    Huang Jiaqi; Zhang Qiang; Xu Guanghui; Qian Weizhong; Wei Fei

    2008-01-01

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 μm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9 0 . Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  16. Photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn

    2016-01-01

    The cadmium sulfide quantum dots modified titania nanotube arrays (CdS QDs/TiO{sub 2} NTAs) were prepared through a sequential sonication-assisted chemical bath deposition (CBD) process. The morphology and microstructure of CdS QDs/TiO{sub 2} NTAs were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and UV–vis diffuse reflectance spectroscopy. The photoelectrochemical performance of CdS QDs/TiO{sub 2} NTAs was investigated under solar light illumination. The affecting parameters were studied including the nanotube length of TiO{sub 2} NTAs, CBD cycles of CdS QDs and the annealing treatment of CdS QDs/TiO{sub 2} NTAs. CdS QDs synthesized through 8 CBD cycles could uniformly cover on the tube walls of TiO{sub 2} NTAs to form unique CdS QDs/TiO{sub 2} NTAs with an open pore mouth. The appropriate annealing treatment at 400 °C for 60 min in N{sub 2} atmosphere could improve the crystallinity of CdS QDs, and accordingly enhance the photovoltaic properties of CdS QDs/TiO{sub 2} NTAs. Significantly, the nanotube length was the predominant factor affecting photoelectrochemical performance of CdS QDs/TiO{sub 2} NTAs. The unannealed CdS QDs/TiO{sub 2} NTAs with an optimal nanotube length of 12 μm achieved a short-circuit photocurrent density of 4.37 mA cm{sup −2}, an open circuit photovoltage of 1.10 V and a top photoconversion efficiency of 3.56%. Comparatively, the annealed CdS QDs/TiO{sub 2} NTAs with an optimal nanotube length of 4 μm achieved a short-circuit photocurrent density of 6.31 mA cm{sup −2}, an open circuit photovoltage of 1.23 V and a top photoconversion efficiency of 4.18%. The suitable modification of crystalline CdS QDs could well improve the photoelectrochemical performance of TiO{sub 2} NTAs photoanode. - Highlights: • CdS QDs are uniformly loaded into short and long TiO{sub 2} NTAs to form CdS QDs/TiO{sub 2} NTAs.

  17. A one-step technique to prepare aligned arrays of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mahanandia, Pitamber [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)], E-mail: pitam@physics.iisc.ernet.in

    2008-04-16

    A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 deg. C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.

  18. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    Science.gov (United States)

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  19. Preparation and photoluminescence properties of Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingli [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Zhao, Jianling, E-mail: hebutzhaoj@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Xu, Rongqing [Tianjin Zhonghuan Advanced Material & Technology Co., LTD, Tianjin 300384 (China); Fu, Ning [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Wang, Xixin, E-mail: xixinwang@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-07-25

    Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of a Zr–Tm alloy (3 at.% Tm) obtained by a powder metallurgical method. The morphologies, structures, elemental valence, and photoluminescence properties were characterized by using scanning electron microscope, X-ray diffractometer, X-ray photoelectron spectrometer and photoluminescence analyser, respectively. Results show that preparing conditions and annealing temperatures have significant effects on the crystalline structure and photoluminescence performance. The sample TmZNT-Org prepared in formamide + glycerol organic solution is mainly monoclinic phase and the sample TmZNT-Aq prepared in aqueous solution is mainly tetragonal phase. The sample TmZNT-Org had the strongest photoluminescence peak when annealed at 800 °C, whereas both TmZNT-Aq samples annealed at 600 °C and 800 °C had the strongest photoluminescence peak. The monoclinic phase was conductive to the emission at 454 nm while the tetragonal phase was conductive to the emission at 460 nm. - Highlights: • Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of a Zr-Tm alloy. • Crystal structure had remarkable effects on the photoluminescence properties. • The monoclinic phase was conductive to the emission at 454 nm. • The tetragonal phase was conductive to the emission at 460 nm.

  20. A Porous Perchlorate-Doped Polypyrrole Nanocoating on Nickel Nanotube Arrays for Stable Wide-Potential-Window Supercapacitors.

    Science.gov (United States)

    Chen, Gao-Feng; Li, Xian-Xia; Zhang, Li-Yi; Li, Nan; Ma, Tian Yi; Liu, Zhao-Qing

    2016-09-01

    A bottom-up synthetic strategy is developed to fabricate a highly porous wave-superposed perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays. The delicate nanostructure and the unique surface chemistry synergistically endow the obtained electrode with revealable pseudocapacitance, large operating potential window, and excellent cycling stability, which are highly promising for both asymmetric and symmetric supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance

    Science.gov (United States)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao

    2014-05-01

    Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.

  2. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.

    Science.gov (United States)

    Huang, Fan; Lou, Fengliu; Chen, De

    2012-05-01

    Herein, we demonstrate a new approach towards the construction of supercapacitors consisting of carbon nanotubes (CNTs) and conducting polymers (ECPs) with high specific power, high specific energy, and stable cycling performance through a 3D design of a thin film of polyaniline (PANI) on an aligned small carbon nanotube (ACNT) array on household Al foils. The thin-film strategy is used to fully exploit the specific capacitance of PANI, and obtain regular pores, strong interaction between PANI and CNTs, and reduced electrical resistance for the electrodes. A facile process is developed to fabricate a highly flexible supercapacitor using this binder-free composite on household Al foil as the current collector. It exhibits high specific energy of 18.9 Wh kg(-1) , high maximum specific power of 11.3 kW kg(-1) of the active material in an aqueous electrolyte at 1.0 A g(-1) , and excellent rate performance and cycling stability. A high specific energy of 72.4 Wh kg(-1) , a high maximum specific power of 24.9 kW kg(-1) , and a good cycling performance of the active material are obtained in an organic electrolyte. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of density variation and non-covalent functionalization on the compressive behavior of carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012 (India); Raney, J R; Craig, A E; Daraio, C, E-mail: daraio@caltech.edu [Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-10-21

    Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.

  4. Synthesis and optical characterization of carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mahfuzur, E-mail: mrahman@masdar.ac.ae [Institute Centre for Energy (iEnergy), Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology (MIST), P.O. Box 54224, Abu Dhabi (United Arab Emirates); Younes, Hammad [Institute Centre for Energy (iEnergy), Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology (MIST), P.O. Box 54224, Abu Dhabi (United Arab Emirates); Ni, George [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Zhang, TieJun [Institute Centre for Energy (iEnergy), Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology (MIST), P.O. Box 54224, Abu Dhabi (United Arab Emirates); Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae [Institute Centre for Energy (iEnergy), Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology (MIST), P.O. Box 54224, Abu Dhabi (United Arab Emirates)

    2016-05-15

    Highlights: • Controlling metallicity and vertical alignment of CNT forest by changing hydrogen catalyst annealing time and growth pressure. • Verifying metallicity using Raman spectroscopy of top CNT layer. • Optical characterization of CNT forest using UV–vis–NIR spectrophotometer. - Abstract: Catalyst annealing time and growth pressure play a crucial role in the chiral selective and high-efficiency growth of single-walled carbon nanotubes (SWCNTs) during low pressure chemical vapor deposition (LPCVD). We achieved a high growth rates for SWCNTs and a change the chiral distribution towards metallic (n, m) increasing the catalyst annealing time in hydrogen. A strong correlation is revealed between the catalyst annealing time at lower growth pressures and the shape of the G band, which indicates the metallic or semiconducting nature of the SWCNT and predict the chirality distribution. Under a 15 min annealing time and 10 mbar of growth pressure, the bottom of the G band is broadened with a sharp G{sup −} peak, and the G-band exhibited asymmetrical Breit–Wigner–Fano (BWF) shape. In addition, the growth of SWCNTs with smaller diameters and rich in metallic character is confirmed by the shift of the G-band to a smaller Raman frequency. Homogeneity and vertical alignment of as-grown SWCNT arrays are optically studied using UV/vis/NIR Spectrophotometer. Wavelength-independent and low reflectance resulted from the growth of uniform arrays of SWCNTs. Because of their tunable electronic and optical properties, selective growth of SWCNTs promises great application potential, particularly in electronics and solar industries.

  5. Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays

    KAUST Repository

    Zhang, Bing; Liu, Yang; Chen, Qihong; Lai, Zhiping; Sheng, Ping

    2017-01-01

    The only known approach to fabricate large, uniform arrays of 4-Å single wall carbon nanotubes (SWNTs) is by using zeolite crystals as the template, in which the nanotubes are formed by chemical vapor deposition inside the linear channels of the AlPO-5 (AFI for short) zeolite. However, up to now the pore filling factor has been very low, as evidenced by the weight percentage of carbon in thermal gravimetric analysis (TGA) measurements. In this work, we show that by using a new, micro-platelet AFI crystals as the template, combined with the use of a new CVD process, we can increase the TGA result to 22.5wt%, which translates to a pore filling factor of 91%. We have observed one dimensional (1D) superconductivity in such samples. The temperature dependence of resistance shows a smooth decreasing trend below 60 K, and the differential resistance displays a gap that disappears above the 1D superconducting initiation temperature. The observed behaviour is shown to agree very well with the theoretical predictions of 1D superconductivity.

  6. Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays

    KAUST Repository

    Zhang, Bing

    2017-02-14

    The only known approach to fabricate large, uniform arrays of 4-Å single wall carbon nanotubes (SWNTs) is by using zeolite crystals as the template, in which the nanotubes are formed by chemical vapor deposition inside the linear channels of the AlPO-5 (AFI for short) zeolite. However, up to now the pore filling factor has been very low, as evidenced by the weight percentage of carbon in thermal gravimetric analysis (TGA) measurements. In this work, we show that by using a new, micro-platelet AFI crystals as the template, combined with the use of a new CVD process, we can increase the TGA result to 22.5wt%, which translates to a pore filling factor of 91%. We have observed one dimensional (1D) superconductivity in such samples. The temperature dependence of resistance shows a smooth decreasing trend below 60 K, and the differential resistance displays a gap that disappears above the 1D superconducting initiation temperature. The observed behaviour is shown to agree very well with the theoretical predictions of 1D superconductivity.

  7. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Dai Gaopeng; Liu Suqin; Liang Ying; Luo Tianxiong

    2013-01-01

    Highlights: ► Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by an impregnating–deposition–decompostion method treatment. ► Co 3 O 4 /TiO 2 NTs exhibit high photoelectrocatalytic (PEC) activity. ► The high PEC activity was attribute to the formation of p–n junction between Co 3 O 4 and TiO 2 . - Abstract: Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by depositing Co 3 O 4 nanoparticles (NPs) on the tube wall of the self-organized TiO 2 NTs using an impregnating–deposition–decompostion method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis absorption spectroscopy. The photoelectrocatalytic (PEC) activity is evaluated by degradation of methyl orange (MO) aqueous solution. The prepared Co 3 O 4 /TiO 2 NTs exhibit much higher PEC activity than TiO 2 NTs due to the p–n junction formed between Co 3 O 4 and TiO 2 .

  8. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    Science.gov (United States)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  9. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    International Nuclear Information System (INIS)

    Mesko, Marcel; Ou Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Ogino, Akihisa; Nagatsu, Masaaki; Veis, Martin; Antos, Roman

    2009-01-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 μm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  10. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    Science.gov (United States)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  11. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  12. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, Arrelaine A., E-mail: arrelaine.dameron@nrel.gov [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States); Pylypenko, Svitlana; Bult, Justin B.; Neyerlin, K.C.; Engtrakul, Chaiwat; Bochert, Christopher; Leong, G. Jeremy; Frisco, Sarah L.; Simpson, Lin; Dinh, Huyen N.; Pivovar, Bryan [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States)

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  13. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    Science.gov (United States)

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  14. Fabrication, Modification, and Emerging Applications of TiO2 Nanotube Arrays by Electrochemical Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Jian-Ying Huang

    2013-01-01

    Full Text Available Titania nanotube arrays (TNAs as a hot nanomaterial have a unique highly ordered array structure and good mechanical and chemical stability, as well as excellent anticorrosion, biocompatible, and photocatalytic performance. It has been fabricated by a facile electrochemical anodization in electrolytes containing small amounts of fluoric ions. In combination with our research work, we review the recent progress of the new research achievements of TNAs on the preparation processes, forming mechanism, and modification. In addition, we will review the potential and significant applications in the photocatalytic degradation of pollutants, solar cells, water splitting, and other aspects. Finally, the existing problems and further prospects of this renascent and rapidly developing field are also briefly addressed and discussed.

  15. Aligned Carbon Nanotube Arrays Bonded to Solid Graphite Substrates: Thermal Analysis for Future Device Cooling Applications

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2018-05-01

    Full Text Available Carbon nanotubes (CNTs are known for high thermal conductivity and have potential use as nano-radiators or heat exchangers. This paper focuses on the thermal performance of carpet-like arrays of vertically aligned CNTs on solid graphite substrates with the idea of investigating their behavior as a function of carpet dimensions and predicting their performance as thermal interface material (TIM for electronic device cooling. Vertically aligned CNTs were grown on highly oriented pyrolytic graphite (HOPG substrate, which creates a robust and durable all-carbon hierarchical structure. The multi-layer thermal analysis approach using Netzsch laser flash analysis system was used to evaluate their performance as a function of carpet height, from which their thermal properties can be determined. It was seen that the thermal resistance of the CNT array varies linearly with CNT carpet height, providing a unique way of decoupling the properties of the CNT carpet from its interface. This data was used to estimate the thermal conductivity of individual multi-walled nanotube strands in this carpet, which was about 35 W/m-K. The influence of CNT carpet parameters (aerial density, diameter, and length on thermal resistance of the CNT carpet and its potential advantages and limitations as an integrated TIM are discussed.

  16. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    International Nuclear Information System (INIS)

    Boncel, Slawomir; Koziol, Krzysztof K.K.

    2014-01-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I D /I G ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs

  17. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  18. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    Science.gov (United States)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  19. Far infrared thermal detectors for laser radiometry using a carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, John H.; Lee, Bob; Grossman, Erich N.

    2011-07-20

    We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 {mu}m, 150 {mu}m, and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 {mu}m(760 GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4 mA/W) was equal to that by optical heating (98.0 mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector's surface is, to our knowledge, unprecedented.

  20. Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays

    International Nuclear Information System (INIS)

    Raney, J R; Fraternali, F; Daraio, C

    2013-01-01

    Arrays of nominally-aligned carbon nanotubes (CNTs) under compression deform locally via buckling, exhibit a foam-like, dissipative response, and can often recover most of their original height. We synthesize millimeter-scale CNT arrays and report the results of compression experiments at different strain rates, from 10 −4 to 10 −1 s −1 , and for multiple compressive cycles to different strains. We observe that the stress–strain response proceeds independently of the strain rate for all tests, but that it is highly dependent on loading history. Additionally, we examine the effect of loading direction on the mechanical response of the system. The mechanical behavior is modeled using a multiscale series of bistable springs. This model captures the rate independence of the constitutive response, the local deformation, and the history-dependent effects. We develop here a macroscopic formulation of the model to represent a continuum limit of the mesoscale elements developed previously. Utilizing the model and our experimental observations we discuss various possible physical mechanisms contributing to the system’s dissipative response. (paper)

  1. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    Science.gov (United States)

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  2. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    Science.gov (United States)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  3. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  4. Effects of interfaces on nano-friction of vertically aligned multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Lou, J.; Kim, K.-S.

    2008-01-01

    Sliding friction properties of vertically aligned multi-walled carbon nanotube (VAMWNT) arrays have been investigated in current study in a quantitative manner. The VAMWNT arrays have been fabricated on an anodic aluminum oxide template by chemical vapor deposition at 650 deg. C. Friction force was measured in air by a modified atomic force microscopy (AFM) cantilever-bead assembly with 15 μm diameter borosilicate sphere attached to the end of the regular AFM cantilever. Quantitative measurements were achieved by using a novel in situ calibration methods recently developed based on diamagnetic levitation [Q. Li, K.-S. Kim, A. Rydberg, Rev. Sci. Instrum. 77 (2006) 065105-1-13]. The effects of different interfaces were studied using both cantilever-bead assembly coated with and without Al thin layer coatings. A reverse stick-slip behavior was observed in the current system as compared to the normal stick-slip behavior found in the literature

  5. Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications

    Science.gov (United States)

    Golshadi, Masoud

    Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell

  6. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  7. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  8. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  9. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    Energy Technology Data Exchange (ETDEWEB)

    Boncel, Slawomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge (United Kingdom)

    2014-05-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I{sub D}/I{sub G} ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  10. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    International Nuclear Information System (INIS)

    Jiang Weifen; Zhang Yanfeng; Wang Yusheng; Xu Lei; Li Xinjian

    2011-01-01

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  11. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  12. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  13. Selectivity of multi-wall carbon nanotube network sensoric units to ethanol vapors achieved by carbon nanotube oxidation

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Slobodian, P.; Říha, Pavel; Sáha, P.

    2012-01-01

    Roč. 1, č. 1 (2012), s. 101-106 ISSN 1927-0585 Grant - others:UTB Zlín(CZ) IGA/3/FT/11/D; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * buckypaper * oxidation * sensor * electrical resistance Subject RIV: BK - Fluid Dynamics

  14. Electrical device fabrication from nanotube formations

    Science.gov (United States)

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  15. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  16. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  17. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth

    2009-05-25

    A study was conducted to fabricate wafer-level patterned and aligned polymer nanowire (PNW), micro- and nanotube arrays (PNT), which were created by exposing the polymer material to plasma etching. The approach for producing wafer-level aligned PNWs involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber as etchants at flow rates of 15 sccm, 10 sccm, and 40 sccm. Inert gasses, such as Ar-form positive ions were incorporated to serve as a physical component to assist in the material degradation process. One power source (400 W) was used to generate dense plasma from the input gases, while another power source applied a voltage of approximately 600V to accelerate the plasma toward the substrate.

  18. Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes

    Science.gov (United States)

    Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir

    Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.

  19. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  20. Nanotubes based neutron generator for calibration of neutrino and dark matter detectors

    Science.gov (United States)

    Chepurnov, A. S.; Ionidi, V. Y.; Kirsanov, M. A.; Kitsyuk, E. P.; Klenin, A. A.; Kubankin, A. S.; Oleinik, A. N.; Pavlov, A. A.; Shchagin, A. V.

    2017-12-01

    The compact 2.45 MeV fast neutron generator with a reduced supply voltage for calibration of low-background neutrino and dark matter detectors was tested. The generator is based on an array of carbon nanotubes. Neutron generation is carried out by applying a high voltage in the range of +10 to + 25 kV to a nanotube array, which cause an ionization of deuterium molecules with the following acceleration of ions in the direction of the grounded target covered by a deuterated polyethylene film. The d(d,n)3He nuclear reaction happens as the result of ions collisions with the target. The dependences of the neutron yield as functions of the applied voltage were obtained for two different types of carbon nanotubes array. It is shown that the type of nanotubes array does not influence significantly on the neutron yield.

  1. Preparation of CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode and investigation of its photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingting [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China); College of Civil Engineering and Architecture, Liaoning Technical University, Fuxin 123000 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China); Zhao, Qidong; Teng, Wei [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2014-11-15

    Graphical abstract: Schematic illustration of the synthesis steps of CuInS{sub 2}/TiO{sub 2} heterojunction arrays electrode. - Highlights: • CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode was successfully fabricated via a modified SILAR method. • Morphology, chemical compositions and the photoelectrochemical properties were studied. • The formed heterojunction structure is demonstrated as n–n type heterojunction. - Abstract: CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode was synthesized via a modified successive ionic layer adsorption and reaction (SILAR) method. The morphology, crystalline structure and chemical composition of the composite electrode were characterized with field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS), respectively. The optical properties were investigated by UV–vis diffusion reflection spectra (DRS) and photoluminescence (PL) spectra as well as the photoelectrochemical measurements. Significantly enhanced photoelectrochemical properties of CuInS{sub 2}/TiO{sub 2} NTs electrode were observed under visible light irradiation, which could be attributed to the high absorption coefficient of CuInS{sub 2} in visible region and the heterostructure formed between CuInS{sub 2} and TiO{sub 2}.

  2. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level

    Directory of Open Access Journals (Sweden)

    Riggio Cristina

    2009-01-01

    Full Text Available Abstract In this article, a carbon nanotube (CNT array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF. PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.

  3. Controlled Growth of Carbon Nanotubes on Micropatterned Au/Cr Composite Film and Field Emission from Their Arrays

    Science.gov (United States)

    Kamide, Koichi; Araki, Hisashi; Yoshino, Katsumi

    2003-12-01

    Carbon nanotube (CNT) arrays with a controlled density are prepared on a micropatterned Au/Cr composite film formed on a quartz glass plate by pyrolysis of Ni-phthalocyanine at 800°C. It is clarified from characteristic X-ray analyses for those samples that a catalytic Ni nanoparticle is not contained within the base of the whisker-like CNT in contrast to that of the bamboo-like CNT, suggesting that the growth process of the present novel CNT is incompatible with that of the bamboo-like CNT. In the Au/Cr composite film, both the Cr atomic content of approximately 30% and the presence of the Ni catalyst devoid of a particle-like shape are important factors for the growth of CNTs. Field emission from the novel CNT arrays exhibits a lower turn-on voltage and a higher current density compared with that from the bamboo-like arrays formed on a quartz plate.

  4. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    Science.gov (United States)

    Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.

    2016-08-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.

  5. Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Ageev, O A; Blinov, Yu F; Ilina, M V; Ilin, O I; Smirnov, V A

    2016-01-01

    Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory. (paper)

  6. Investigating the antifungal activity of TiO{sub 2} nanoparticles deposited on branched carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Abdi, Y; Haghighi, N [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F [Department of Medical Mycology, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S, E-mail: y.abdi@ut.ac.ir [Thin Film Laboratory, ECE Department, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-06-22

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO{sub 2} nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 {sup 0}C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO{sub 2}/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO{sub 2}/CNT arrays and thin films of TiO{sub 2}. The TiO{sub 2}/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO{sub 2}/CNTs and TiO{sub 2} film. The excellent visible light-induced photocatalytic antifungal activity of the TiO{sub 2}/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  7. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  8. Carbon treated self-ordered TiO{sub 2} nanotube arrays with enhanced lithium-ion intercalation performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sik [Energy Material Group, Lotte Chemical, 115, Gajeongbuk-ro, Yuseong-gu, Daejeon 305-726 (Korea, Republic of); Yu, Seung-Ho; Sung, Yung-Eun [School of Chemical and Biological Engineering and Research Center for Energy Conversion and Storage, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kang, Soon Hyung, E-mail: skang@jnu.ac.kr [Department of Chemical Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-06-01

    Highlights: • C-doped TONT was prepared by anodization, followed by acetylene treatment. • C-doped TONT exhibited the superior cycle performance and electrochemical kinetics. • It was attributed from the enhanced electrical conductivity from carbon doping. - Abstract: Vertically aligned TiO{sub 2} nanotube (TONT) arrays on titanium substrate developed by facile electrochemical anodization in an aqueous solution of 0.5 M Na{sub 2}SO{sub 4}, 0.5 M H{sub 3}PO{sub 4}, 0.2 M sodium citrate, and 0.5 wt% NaF were prepared having a pore diameter and thickness of 100 nm and 1.2 μm, respectively. The undoped (u-doped) TONT arrays possessing an anatase phase were again annealed at 500 °C under a mixed gas flux of nitrogen (N{sub 2}) and acetylene (C{sub 2}H{sub 2}), to induce the enhancement of electrical conductivity. It was designated as carbon-doped (c-doped) TONT arrays. Undoped and c-doped TONT arrays were compared using various characterization tools, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, based on several electrochemical tests (galvanostatic charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS)), it was observed that c-doped TONT arrays revealed improved charge/discharge capacity, cycle stability, and rate capability, due to the enhanced electrical conductivity of c-doped TONT arrays.

  9. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  10. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Directory of Open Access Journals (Sweden)

    Wang Yiqian

    2009-01-01

    Full Text Available Abstract Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.

  11. Near-field radiation between graphene-covered carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M., E-mail: zhuomin.zhang@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  12. Lithium storage study on MoO3-grafted TiO2 nanotube arrays

    Directory of Open Access Journals (Sweden)

    Tauseef Anwar

    2016-03-01

    Full Text Available Abstract Titanium dioxide nanotube arrays (TNAs were fabricated via anodic ionization. Porous MoO3 was grafted on TNAs with the help of hydrothermal method. Scanning electron microscopy and X-ray powder diffraction was utilized for the confirmation of one dimensional morphology and phase identification. The porous MoO3 nanoflake-grafted TNAs (MoO3/TNAs electrode was used as anode material in lithium ion battery (LIB and it was found that the areal specific capacity of MoO3/TNAs (~797 µAh cm−2 was three times higher than those of anatase TNAs (~287 µAh cm−2 and porous MoO3 (~234 µAh cm−2 at 50 µA cm−2.

  13. Effect of hydrophilicity of carbon nanotube arrays on the release rate and activity of recombinant human bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Han Zhaojun; Ostrikov, Kostya [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, Lindfield, New South Wales 2070 (Australia); Tan, Cher Ming; Tay, Beng Kang [School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore); Peel, Sean A F, E-mail: zhaojun.han@csiro.au [Department of Dentistry, University of Toronto, Toronto, ON, M5G 1G6 (Canada)

    2011-07-22

    Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

  14. Validation of KENO V.a: Comparison with critical experiments

    International Nuclear Information System (INIS)

    Jordan, W.C.; Landers, N.F.; Petrie, L.M.

    1986-12-01

    Section 1 of this report documents the validation of KENO V.a against 258 critical experiments. Experiments considered were primarily high or low enriched uranium systems. The results indicate that the KENO V.a Monte Carlo Criticality Program accurately calculates a broad range of critical experiments. A substantial number of the calculations showed a positive or negative bias in excess of 1 1/2% in k-effective (k/sub eff/). Classes of criticals which show a bias include 3% enriched green blocks, highly enriched uranyl fluoride slab arrays, and highly enriched uranyl nitrate arrays. If these biases are properly taken into account, the KENO V.a code can be used with confidence for the design and criticality safety analysis of uranium-containing systems. Sections 2 of this report documents the results of investigation into the cause of the bias observed in Sect. 1. The results of this study indicate that the bias seen in Sect. 1 is caused by code bias, cross-section bias, reporting bias, and modeling bias. There is evidence that many of the experiments used in this validation and in previous validations are not adequately documented. The uncertainty in the experimental parameters overshadows bias caused by the code and cross sections and prohibits code validation to better than about 1% in k/sub eff/. 48 refs., 19 figs., 19 tabs

  15. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  16. A practical dimensionless equation for the thermal conductivity of carbon nanotubes and CNT arrays

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2014-05-01

    Full Text Available Experimental results reported in the last decade on the thermal conductivity of carbon nanotubes (CNTs have shown a fairly divergent behavior. An underlying intrinsic consistency was believed to exist in spite of the divergence in the thermal conductivity data of various CNTs. A dimenisonless equation that describes the temperature dependence of thermal conductivity was derived by introducing reduced forms relative to a chosen reference point. This equation can serve as a practical approximation to characterize the conductivity of individual CNT with different structural parameters as well as bulk CNT arrays with different bundle configurations. Comparison of predictions by the equation and historical measurements showed good agreements within their uncertainties.

  17. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    Science.gov (United States)

    Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  18. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  19. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  20. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    Science.gov (United States)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (optical waveguide properties of nano-canals. We demonstrated the ability of this SERS substrate for trace level sensing of nitroaromatic explosives by detecting down to 100 zeptogram (˜330 molecules) of DNT.

  1. Covering vertically aligned carbon nanotubes with a multiferroic compound

    KAUST Repository

    Mahajan, Amit; Rodriguez, Brian J.; Saravanan, K. Venkata; Ramana, E. Venkata; Da Costa, Pedro M. F. J.; Vilarinho, Paula M.

    2014-01-01

    This work highlights the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were fabricated in-situ deposited on the surface of VA-MWCNTs by RF (radio frequency) magnetron sputtering. For in situ deposition temperature of 400 °C and deposition time up to 2 h, BFO films cover the MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe.

  2. Covering vertically aligned carbon nanotubes with a multiferroic compound

    KAUST Repository

    Mahajan, Amit

    2014-10-30

    This work highlights the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were fabricated in-situ deposited on the surface of VA-MWCNTs by RF (radio frequency) magnetron sputtering. For in situ deposition temperature of 400 °C and deposition time up to 2 h, BFO films cover the MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by piezo force microscopy. G type antiferromagnetic ordering with weak ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe.

  3. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    Science.gov (United States)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  4. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  5. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  6. Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO{sub 2} nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan [School of Mathematics and Physics, Mianyang Teachers’ College (Mianyang Normal University), Mianyang 621000 (China); Zhang, Guowei; Dong, Zhanmin [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Wei, Jinquan [Key Laboratory for Advanced Materials Processing Technology of Education Ministry, School of Materials Science and Engineering, Tsinghua University, Beijing100084 (China); Zhu, Jia-Lin [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Sun, Jia-Lin, E-mail: jlsun@tsinghua.edu.cn [Department of Physics and State Key Lab of Low-Dimensional Quantum Physics, Tsinghua University, Beijing100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-03-01

    A broadband photodetector based on Au nanoparticle/double-walled carbon nanotube film/TiO{sub 2} nanotube array /Ti multilayer heterojunction structures has been fabricated. A pre-electroforming process at a voltage bias of 35 V was used to switch the photodetector from a high resistance state to a low resistance state. At a voltage bias of 1 V under 532-nm laser illumination in air, the photoresponsivity of the device reached 15.41 mA W{sup −1}, which is enhanced by approximately 1.91 times when compared with that of device before deposition of Au nanoparticles. In addition, in a vacuum under a voltage bias of 1 V, the photoresponsivity of the device reached 23.29 mA W{sup −1} and 6.85 mA W{sup −1} at 532 nm and 1064 nm, respectively. The surface plasmon polaritons of the Au nanoparticles allowed extension of the sensitivity of the photosensitive regions into the mid-infrared range. The experimental results show that the device photoresponsivity reached 2.26 mA W{sup −1} at a voltage bias of 1 V under 10.6-µm laser illumination in air.

  7. Titania nanotube arrays surface-modified with ZnO for enhanced photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nageri, Manoj; Kalarivalappil, Vijila; Vijayan, Baiju K.; Kumar, Viswanathan, E-mail: vkumar10@yahoo.co.in

    2016-05-15

    Highlights: • Heterostructures of TNA/ZnO synthesised through potentiostatic anodisation followed by hydrothermal method. • Evaluation of morphological features of the heterostructure with hydrothermal processing time. • Correlation of photocatalytic activity of the hetrostructure with its morphology and surface texture. - Abstract: Well ordered titanium dioxide nanotube arrays (TNA) of average diameter 129 nm and wall thickness of 25 nm were fabricated through potentiostatic anodisation of titanium (Ti) metal substrates. Such TNA were subsequently surface-modified with various amounts of zinc oxide (ZnO) nanopowders using hydrothermal technique to obtain heterogeneous TNA/ZnO nanostructures. The crystalline phase and surface microstructure of the heterostructures were determined by X-ray diffraction, Raman spectroscopy and scanning electron microscopy respectively. The morphology of the heterostructures strongly depended on the hydrothermal conditions employed. The photocatalytic activity of the heterostructures have also been investigated and correlated with their surface morphology and texture.

  8. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bush, P. Siegal, M.P.; Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Wang, J.H.; Xu, J.W.

    1998-11-10

    Free-standing aligned carbon nanotubes have previously been grown above 7000C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666oC by plasma-enhanced hot filament chemical vapor deposition. Acetylene (C2H2) gas was used as the carbon source and ammonia (NH3) gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

  9. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles.

    Science.gov (United States)

    Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander

    2013-09-03

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.

  11. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    Directory of Open Access Journals (Sweden)

    Catherine Y. Han

    2009-01-01

    Full Text Available We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  12. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. Y.; Xiao, Z.-L.; Wang, H. H.; Lin, X.-M.; Trasobares, S.; Cook, R. E.; Richard J. Daley Coll.; Northern Illinois Univ.; Univ. de Cadiz

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.

  13. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong

    2010-07-01

    Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.

  14. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach

    International Nuclear Information System (INIS)

    Wu, Hui; Li, Dongdong; Zhu, Xufei; Yang, Chunyan; Liu, Dongfang; Chen, Xiaoyuan; Song, Ye; Lu, Linfeng

    2014-01-01

    Although one-dimensional anodic TiO 2 nanotube arrays have shown promise as supercapacitor electrode materials, their poor electronic conductivity embarrasses the practical applications. Here, we develop a simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO 2 nanotube electrodes. These TiO 2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO 2 -H) exhibit a very high average specific capacitance of 20.08 mF cm −2 at a current density of 0.05 mA cm −2 , ∼20 times more than the pristine TiO 2 nanotube electrodes. The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO 2 -H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm −2 and power density of 27.66 mW cm −2 , on average, at the current density of 0.05 mA cm −2 . The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm −2 . More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitor, especially cycling stability

  15. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Yutang; Zhang Xilin; Liu Ronghua; Yang Renbin; Liu Chengbin; Cai Qingyun

    2011-01-01

    A new ZnTe modified TiO 2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO 2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the ZnTe modified TiO 2 NT (ZnTe/TiO 2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO 2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO 2 NT with the ZnTe NPs prepared under the pulsed 'on' potentials of -0.8, -1.0, and -2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe. -- Graphical abstract: Surface-view SEM images of ZnTe/TiO 2 NT prepared under -2.0 V, and the inset is the corresponding enlarged drawings. Display Omitted Research highlights: → A new method to deposit chalcogenides of transition metals on the TiO 2 nanotubes. → The even distribution of ZnTe nanoparticles was well-proportionedly grown onto TiO 2 NT arrays. → ZnTe/TiO 2 NT showed remarkably increased photocurrent density. → ZnTe/TiO 2 NT showed good photocatalytic performance. → The prepared new catalyst has a promising application in practical systems.

  16. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  17. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shayan, Kamran [Department; Rabut, Claire [Department; Kong, Xiaoqing [Department; Li, Xiangzhi [Department; Luo, Yue [Department; Mistry, Kevin S. [National Renewable; Blackburn, Jeffrey L. [National Renewable; Lee, Stephanie S. [Department; Strauf, Stefan [Department

    2017-11-09

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) up to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.

  18. Self-organized TiO{sub 2} nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Lai Yuekun [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhuang Huifang; Sun Lan [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chen Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Lin Changjian [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)], E-mail: cjlin@xmu.edu.cn

    2009-11-01

    The formation of self-organized TiO{sub 2} nanotube array films by electrochemical anodizing titanium foils was investigated in a developed organic-inorganic mixed electrolyte. It was found that the structure and morphology of the TiO{sub 2} nanotube layer were greatly dependent upon the electrolyte composition, anodizing potential and time. Under the optimized electrolyte composition and electrochemical conditions, a controllable, well-ordered TiO{sub 2} nanotube array layer could be fabricated in a short time. The diameters of the as-prepared TiO{sub 2} nanotubes could be adjusted from 20 to 150 nm, and the thickness could be adjusted from a few hundred nanometers to several micrometers. The photoresponse and the photocatalytic activity of the highly ordered TiO{sub 2} nanotube array films were also examined. The nanotube array film with a thickness of about 2.5 {mu}m had the highest incident photon to photocurrent conversion efficiency (IPCE) (34.3%) at the 350 nm wavelength, and had better charge transfer ability under UV light illumination. The photocatalytic experimental results indicated that the 450 deg. C annealing samples have the highest photodegradation efficiency for methyl orange pollutant.

  19. Polymeric Electrolyte Membrane Photoelectrochemical (PEM-PEC Cell with a Web of Titania Nanotube Arrays as Photoanode and Gaseous Reactants

    Directory of Open Access Journals (Sweden)

    Tsampas M.N.

    2017-01-01

    Photoanodes of titania nanotube arrays, TNTAs, were developed, for the first time, on a Ti-web of microfiber substrates, by electrochemical anodization. The performance of TNTAs/Ti-web photoanodes were evaluated in both gaseous and liquid reactants. Due to the presence of reliable reference electrode in gas phase direct comparison of the results was possible. Gas phase operation with He or Air as carrier gases and only 2.5% of water content exhibits very promising photoefficiency in comparison with conventional PEC cells.

  20. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning

    Czech Academy of Sciences Publication Activity Database

    Motola, M.; Satrapinskyy, L.; Roch, T.; Šubrt, Jan; Kupčík, Jaroslav; Klementová, Mariana; Jakubičková, M.; Peterka, F.; Plesch, G.

    2017-01-01

    Roč. 287, JUN (2017), s. 59-64 ISSN 0920-5861. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA) /9./. Strasbourg, 13.06.2016-17.06.2016] R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Titanium mesh * Anatase nanotubes array * Liquid state deposition * NOx removal * Photocatalysis Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  1. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy

    Science.gov (United States)

    Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.

    2015-07-01

    Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.

  2. Sacrificial template method of fabricating a nanotube

    Science.gov (United States)

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  3. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    Science.gov (United States)

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  4. Proton radiation effects on the optical properties of vertically aligned carbon nanotubes

    Science.gov (United States)

    Kuhnhenn, J.; Khavrus, V.; Leonhardt, A.; Eversheim, D.; Noll, C.; Hinderlich, S.; Dahl, A.

    2017-11-01

    This paper discusses proton-induced radiation effects in vertically aligned carbon nanotubes (VA-CNT). VACNTs exhibit extremely low optical reflectivity which makes them interesting candidates for use in spacecraft stray light suppression. Investigating their behavior in space environment is a precondition for the implementation on a satellite.

  5. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass.

    Science.gov (United States)

    Chen, Wei-Ting; Manivannan, Karthikeyan; Yu, Chia-Chi; Chu, Jinn P; Chen, Jem-Kun

    2018-01-18

    The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass Zr 55 Cu 30 Al 10 Ni 5 . Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m -2 ) and detach from (0.26 N m -2 ) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.

  6. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  7. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  8. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  9. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  10. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates

    Science.gov (United States)

    Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang

    2018-06-01

    The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.

  11. Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Ai Lei; Xiang Qi; Zhao Dongshan; Pan Chunxu; Zhao Xingzhong

    2007-01-01

    The field emission (FE) properties of carbon nanotube (CNT) bundle arrays grown on vertically self-aligned ZnO nanorods (ZNRs) are reported. The ZNRs were first synthesized on ZnO-seed-coated Si substrate by the vapour phase transport method, and then the radically grown CNTs were grown directly on the surface of the ZNRs from ethanol flames. The CNT/ZNR composite showed a turn-on field of 1.5 V μm -1 (at 0.1 μA cm -2 ), a threshold field of 4.5 V μm -1 (at 1 mA cm -2 ) and a stable emission current with fluctuations of 5%, demonstrating significantly enhanced FE of ZNRs due to the low work function and high aspect ratio of the CNTs, and large surface-to-volume ratio of the underlying ZNRs

  12. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants

    NARCIS (Netherlands)

    Stoll, T.; Zafeiropoulos, G.; Tsampas, M. N.

    2016-01-01

    A novel photoelectrochemical (PEC) cell design is proposed and investigated for H-2 production with gaseous reactants. The core of the cell is a membrane electrode assembly (MEA) that consists of a TiO2 nanotube arrays photoanode, a Pt/C cathode, a Pt/C reference electrode and a proton conducting

  13. Refined 2D and Exact 3D Shell Models for the Free Vibration Analysis of Single- and Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2015-12-01

    Full Text Available The present paper talks about the free vibration analysis of simply supported Single- and Double-Walled Carbon Nanotubes (SWCNTs and DWCNTs. Refined 2D Generalized Differential Quadrature (GDQ shell methods and an exact 3D shell model are compared. A continuum approach (based on an elastic three-dimensional shell model is used for natural frequency investigation of SWCNTs and DWCNTs. SWCNTs are defined as isotropic cylinders with an equivalent thickness and Young modulus. DWCNTs are defined as two concentric isotropic cylinders (with an equivalent thickness and Young modulus which can be linked by means of the interlaminar continuity conditions or by means of van der Waals interactions. Layer wise approaches are mandatory for the analysis of van der Waals forces in DWCNTs. The effect of van der Waals interaction between the two cylinders is shown for different DWCNT lengths, diameters and vibration modes. The accuracy of beam models and classical 2D shell models in the free vibration analysis of SWCNTs and DWCNTs is also investigated.

  14. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  15. Comparison of outcomes for veterans receiving dialysis care from VA and non-VA providers.

    Science.gov (United States)

    Wang, Virginia; Maciejewski, Matthew L; Patel, Uptal D; Stechuchak, Karen M; Hynes, Denise M; Weinberger, Morris

    2013-01-18

    Demand for dialysis treatment exceeds its supply within the Veterans Health Administration (VA), requiring VA to outsource dialysis care by purchasing private sector dialysis for veterans on a fee-for-service basis. It is unclear whether outcomes are similar for veterans receiving dialysis from VA versus non-VA providers. We assessed the extent of chronic dialysis treatment utilization and differences in all-cause hospitalizations and mortality between veterans receiving dialysis from VA versus VA-outsourced providers. We constructed a retrospective cohort of veterans in 2 VA regions who received chronic dialysis treatment financed by VA between January 2007 and December 2008. From VA administrative data, we identified veterans who received outpatient dialysis in (1) VA, (2) VA-outsourced settings, or (3) both ("dual") settings. In adjusted analyses, we used two-part and logistic regression to examine associations between dialysis setting and all-cause hospitalization and mortality one-year from veterans' baseline dialysis date. Of 1,388 veterans, 27% received dialysis exclusively in VA, 47% in VA-outsourced settings, and 25% in dual settings. Overall, half (48%) were hospitalized and 12% died. In adjusted analysis, veterans in VA-outsourced settings incurred fewer hospitalizations and shorter hospital stays than users of VA due to favorable selection. Dual-system dialysis patients had lower one-year mortality than veterans receiving VA dialysis. VA expenditures for "buying" outsourced dialysis are high and increasing relative to "making" dialysis treatment within its own system. Outcomes comparisons inform future make-or-buy decisions and suggest the need for VA to consider veterans' access to care, long-term VA savings, and optimal patient outcomes in its placement decisions for dialysis services.

  16. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    Science.gov (United States)

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

    Science.gov (United States)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-01

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and

  18. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    Science.gov (United States)

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  19. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  20. Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Koumoulos, Elias P.; Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr

    2017-02-28

    Highlights: • Structure and wall numbers are identified through TEM. • Static contact angle measurements revealed a super-hydrophobic behavior. • Hysteresis was observed (loading–unloading) due to the local stress distribution. • Hardness and modulus mapping for a grid of 70 μm{sup 2} is conducted. • Resistance is clearly divided in 2 regions (MWCNT and MWCNT – MWCNT) interface. - Abstract: Carbon nanotube (CNT) based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance (integrity). In this work, thermal chemical vapor deposition (CVD) method is employed to produce vertically aligned multiwall (VA-MW) CNT carpets. Their structural properties were studied by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated. Additionally, cycle indentation load-depth curve was applied and hysteresis loops were observed in the indenter loading–unloading cycle due to the local stress distribution. Hardness (as resistance to applied load) and modulus mapping, at 200 nm of displacement for a grid of 70 μm{sup 2} is presented. Through trajection, the resistance is clearly divided in 2

  1. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  2. Comparison of outcomes for veterans receiving dialysis care from VA and non-VA providers

    Directory of Open Access Journals (Sweden)

    Wang Virginia

    2013-01-01

    Full Text Available Abstract Background Demand for dialysis treatment exceeds its supply within the Veterans Health Administration (VA, requiring VA to outsource dialysis care by purchasing private sector dialysis for veterans on a fee-for-service basis. It is unclear whether outcomes are similar for veterans receiving dialysis from VA versus non-VA providers. We assessed the extent of chronic dialysis treatment utilization and differences in all-cause hospitalizations and mortality between veterans receiving dialysis from VA versus VA-outsourced providers. Methods We constructed a retrospective cohort of veterans in 2 VA regions who received chronic dialysis treatment financed by VA between January 2007 and December 2008. From VA administrative data, we identified veterans who received outpatient dialysis in (1 VA, (2 VA-outsourced settings, or (3 both (“dual” settings. In adjusted analyses, we used two-part and logistic regression to examine associations between dialysis setting and all-cause hospitalization and mortality one-year from veterans’ baseline dialysis date. Results Of 1,388 veterans, 27% received dialysis exclusively in VA, 47% in VA-outsourced settings, and 25% in dual settings. Overall, half (48% were hospitalized and 12% died. In adjusted analysis, veterans in VA-outsourced settings incurred fewer hospitalizations and shorter hospital stays than users of VA due to favorable selection. Dual-system dialysis patients had lower one-year mortality than veterans receiving VA dialysis. Conclusions VA expenditures for “buying” outsourced dialysis are high and increasing relative to “making” dialysis treatment within its own system. Outcomes comparisons inform future make-or-buy decisions and suggest the need for VA to consider veterans’ access to care, long-term VA savings, and optimal patient outcomes in its placement decisions for dialysis services.

  3. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Zhaoyue; Misra, Mano

    2010-01-01

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO 2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  4. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    Science.gov (United States)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  5. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    Science.gov (United States)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  6. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  7. KENO-VA-PVM KENO-VA-SM, KENO5A for Parallel Processors

    International Nuclear Information System (INIS)

    Ramon, Javier; Pena, Jorge

    2002-01-01

    1 - Description of program or function: This package contains versions KENO-Va-SM (Shared Memory version) and KENO-Va-PVM (Parallel Virtual Machine version) based on SCALE-4.1. KENO-Va three-dimensional Boltzmann transport equation for neutron multiplying systems. The primary purpose of KENO-Va is to determine k-effective. Other calculated quantities include lifetime and generation time, energy-dependent leakages, energy- and region-dependent absorptions, fissions, fluxes, and fission densities. 2 - Method of solution: KENO-Va employs the Monte Carlo technique

  8. Effect of TiO2 nanotube length and lateral tubular spacing on ...

    Indian Academy of Sciences (India)

    Abstract. The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular ... formation of nanotube arrays spread uniformly over a large area. ... 36, 48 and 72 h at an applied voltage of 40 V. The anodized ... and phase analysis for the obtained nanotubes were done .... Using an extra-.

  9. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  11. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

    International Nuclear Information System (INIS)

    L, Jing; Lin Changjian; Li Juntao; Lin Zequan

    2011-01-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO 2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO 2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  12. Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Kang, Gyeongho; Park, Taiho

    2014-09-10

    We systematically investigated the charge transport properties of doubly or singly open-ended TiO2 nanotube arrays (DNT and SNT, respectively) for their utility as electrodes in dye-sensitized solar cells (DSCs). The SNT or DNT arrays were transferred in a bottom-up (B-up) or top-up (T-up) configuration onto a fluorine-doped tin oxide (FTO) substrate onto which had been deposited a 2 μm thick TiO2 nanoparticle (NP) interlayer. This process yielded four types of DSCs prepared with SNTs (B-up or T-up) or DNT (B-up or T-up). The photovoltaic performances of these DSCs were analyzed by measuring the dependence of the charge transport on the DSC geometry. High resolution scanning electron microscopy techniques were used to characterize the electrode cross sections, and electrochemical impedance spectroscopy was used to characterize the electrical connection at the interface between the NT array and the TiO2 NP interlayer. We examined the effects of decorating the DNT or SNT arrays with small NPs (sNP@DNT and sNP@SNT, respectively) in an effort to increase the extent of dye loading. The DNT arrays decorated with small NPs performed better than the decorated SNT arrays, most likely because the Ti(OH)4 precursor solution flowed freely into the array through the open ends of the NTs in the DNT case but not in the SNT case. The sNP@DNT-based DSC exhibited a better PCE (10%) compared to the sNP@SNT-based DSCs (6.8%) because the electrolyte solution flow was not restricted, direct electron transport though the NT arrays was possible, the electrical connection at the interface between the NT array and the TiO2 NP interlayer was good, and the array provided efficient light harvesting.

  13. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  14. Synthesis of PMMA-co-PMAA copolymer brush on multi-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Svoboda, P.; Říha, Pavel; Bořuta, R.; Sáha, P.

    2012-01-01

    Roč. 2, č. 3 (2012), s. 221-226 ISSN 2161-4881 Grant - others:OP VaVpI(XE) CZ.1.05/2.1.00/03.0111; UTB Zlín(CZ) IGA/FT/2012/ 022 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotubes * functionalization * PMMA * PMAA * polymer brush Subject RIV: JI - Composite Materials

  15. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting s...

  16. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    Science.gov (United States)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  17. Self-assembly graphitic carbon nitride quantum dots anchored on TiO_2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light

    International Nuclear Information System (INIS)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-01-01

    Highlights: • Carbon nitride quantum dots (CNQDs) were decorated onto TiO_2 nanotube arrays (NTAs). • The CNQDs/TiO_2 NTAs exhibits much improved photoelectrochemical activity. • The heterojunction displays efficient removal efficiencies for RhB and phenol. • Pollutants degradation mechanism over CNQDs/TiO_2 NTAs was clarified. - Abstract: In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO_2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO_2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO_2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  18. Electromechanical properties of carbon nanotube networks under compression

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Sáha, P.

    2011-01-01

    Roč. 22, č. 12 (2011), s. 124006 ISSN 0957-0233 R&D Projects: GA AV ČR IAA200600803 Grant - others:Interní grantová agentura UTB(CZ) IGA/12/FT/10/D; OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.494, year: 2011

  19. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  20. Growth of nanotubes and chemical sensor applications

    Science.gov (United States)

    Hone, James; Kim, Philip; Huang, X. M. H.; Chandra, B.; Caldwell, R.; Small, J.; Hong, B. H.; Someya, T.; Huang, L.; O'Brien, S.; Nuckolls, Colin P.

    2004-12-01

    We have used a number of methods to grow long aligned single-walled carbon nanotubes. Geometries include individual long tubes, dense parallel arrays, and long freely suspended nanotubes. We have fabricated a variety of devices for applications such as multiprobe resistance measurement and high-current field effect transistors. In addition, we have measured conductance of single-walled semiconducting carbon nanotubes in field-effect transistor geometry and investigated the device response to water and alcoholic vapors. We observe significant changes in FET drain current when the device is exposed to various kinds of different solvent. These responses are reversible and reproducible over many cycles of vapor exposure. Our experiments demonstrate that carbon nanotube FETs are sensitive to a wide range of solvent vapors at concentrations in the ppm range.

  1. Diameter control of vertically aligned carbon nanotubes using CoFe2O4 nanoparticle Langmuir-Blodgett films

    Science.gov (United States)

    Tamiya, Shuhei; Sato, Taiga; Kushida, Masahito

    2018-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) are suggested for utilization as a new catalyst support of polymer electrolyte fuel cells (PEFCs). The independent control of the diameter and number density of VA-CNTs is essential for application in PEFCs. As the catalyst for VA-CNT growth, we fabricated CoFe2O4 nanoparticle (NP) films using the Langmuir-Blodgett (LB) technique. Using the LB technique, we were able to separately control the diameter and number density of VA-CNTs. The number density of VA-CNTs was changed by mixing with the filler moleculer, palmitic acid (C16). The VA-CNT diameter was changed by the adjusting the CoFe2O4 NP diameter. However, the heat-induced aggregation of CoFe2O4 NPs occurred in thermal chemical vapor deposition to synthesize VA-CNTs. Therefore, we examined how to minimize the effect of heat-induced aggregation of CoFe2O4 NPs. As a result, selection of the appropriate number density and diameter of CoFe2O4 NPs was found to be important for the control of VA-CNT diameter.

  2. Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage

    International Nuclear Information System (INIS)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-01-01

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO 2 ) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H 2 ) storage. The TiO 2 nanotube arrays (diameter ∼60 nm and length ∼2-3 μm) are grown on a Ti substrate, and MWCNTs a few μm in length and ∼30-60 nm in diameter are grown inside these TiO 2 nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H 2 storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H 2 at 77 K under 25 bar with more than 90% reversibility.

  3. Synthesis of carbon nanotube-TiO(2) nanotubular material for reversible hydrogen storage.

    Science.gov (United States)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-11-05

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO(2)) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H(2)) storage. The TiO(2) nanotube arrays (diameter ∼60 nm and length ∼2-3 µm) are grown on a Ti substrate, and MWCNTs a few µm in length and ∼30-60 nm in diameter are grown inside these TiO(2) nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H(2) storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H(2) at 77 K under 25 bar with more than 90% reversibility.

  4. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  5. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  6. Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube

    Science.gov (United States)

    2015-07-17

    Final 3. DATES COVERED (From - To) 01-June-2014 to 31-May-2015 4. TITLE AND SUBTITLE Investigation of Chirality Selection Mechanism of...of two significant mechanistic aspects of carbon nanotube (CNT) array growth under chemical vapor deposition conditions: chirality selectivity and...affected by the morphological evolution of catalyst particles. 15. SUBJECT TERMS Carbon Nanotubes, Chirality , Processing, Catalysis

  7. A photoelectrochemical study of CdS modified TiO{sub 2} nanotube arrays as photoanodes for cathodic protection of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    L, Jing; Lin Changjian, E-mail: cjlin@xmu.edu.cn; Li Juntao; Lin Zequan

    2011-06-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO{sub 2} nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO{sub 2} nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  8. Determination of material constants of vertically aligned carbon nanotube structures in compressions

    International Nuclear Information System (INIS)

    Li, Yupeng; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-01-01

    Different chemical vapour deposition (CVD) fabrication conditions lead to a wide range of variation in the microstructure and morphologies of carbon nanotubes (CNTs), which actually determine the compressive mechanical properties of CNTs. However, the underlying relationship between the structure/morphology and mechanical properties of CNTs is not fully understood. In this study, we characterized and compared the structural and morphological properties of three kinds of vertically aligned carbon nanotube (VACNT) arrays from different CVD fabrication methods and performed monotonic compressive tests for each VACNT array. The compressive stress–strain responses and plastic deformation were first compared and analyzed with nanotube buckling behaviours. To quantify the compressive properties of the VACNT arrays, a strain density energy function was used to determine their intrinsic material constants. Then, the structural and morphological effects on the quantified material constants of the VACNTs were statistically investigated and analogized to cellular materials with an open-cell model. The statistical analysis shows that density, defect degree, and the moment of inertia of the CNTs are key factors in the improvement of the compressive mechanical properties of VACNT arrays. This approach could allow a model-driven CNT synthesis for engineering their mechanical behaviours. (paper)

  9. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.

    2012-02-10

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  10. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.; Wang, Peng

    2012-01-01

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  11. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-28

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.

  12. Validation of the Monte Carlo Criticality Program KENO V.a for highly-enriched uranium systems

    International Nuclear Information System (INIS)

    Knight, J.R.

    1984-11-01

    A series of calculations based on critical experiments have been performed using the KENO V.a Monte Carlo Criticality Program for the purpose of validating KENO V.a for use in evaluating Y-12 Plant criticality problems. The experiments were reflected and unreflected systems of single units and arrays containing highly enriched uranium metal or uranium compounds. Various geometrical shapes were used in the experiments. The SCALE control module CSAS25 with the 27-group ENDF/B-4 cross-section library was used to perform the calculations. Some of the experiments were also calculated using the 16-group Hansen-Roach Library. Results are presented in a series of tables and discussed. Results show that the criteria established for the safe application of the KENO IV program may also be used for KENO V.a results

  13. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  14. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    Ramirez, A; Royo, C; Latorre, N; Mallada, R; Monzón, A; Tiggelaar, R M

    2014-01-01

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  15. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  16. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  17. Evaluation of the shear force of single cancer cells by vertically aligned carbon nanotubes suitable for metastasis diagnosis.

    Science.gov (United States)

    Abdolahad, M; Mohajerzadeh, S; Janmaleki, M; Taghinejad, H; Taghinejad, M

    2013-03-01

    Vertically aligned carbon nanotube (VACNT) arrays have been demonstrated as probes for rapid quantifying of cancer cell deformability with high resolution. Through entrapment of various cancer cells on CNT arrays, the deflections of the nanotubes during cell deformation were used to derive the lateral cell shear force using a large deflection mode method. It is observed that VACNT beams act as sensitive and flexible agents, which transfer the shear force of cells trapped on them by an observable deflection. The metastatic cancer cells have significant deformable structures leading to a further cell traction force (CTF) than primary cancerous one on CNT arrays. The elasticity of different cells could be compared by their CTF measurement on CNT arrays. This study presents a nanotube-based methodology for quantifying the single cell mechanical behavior, which could be useful for understanding the metastatic behavior of cells.

  18. OneVA Pharmacy

    Data.gov (United States)

    Department of Veterans Affairs — The OneVA Pharmacy application design consists of 3 main components: VistA Medication Profile screen, Health Data Record Clinical Data Service (HDR/CDS), and OneVA...

  19. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  20. Comparing Catheter-associated Urinary Tract Infection Prevention Programs Between VA and Non-VA Nursing Homes

    Science.gov (United States)

    Mody, Lona; Greene, M. Todd; Saint, Sanjay; Meddings, Jennifer; Trautner, Barbara W.; Wald, Heidi L.; Crnich, Christopher; Banaszak-Holl, Jane; McNamara, Sara E.; King, Beth J.; Hogikyan, Robert; Edson, Barbara; Krein, Sarah L.

    2018-01-01

    OBJECTIVE The impact of healthcare system integration on infection prevention programs is unknown. Using catheter-associated urinary tract infection (CAUTI) prevention as an example, we hypothesize that U.S. Department of Veterans Affairs (VA) nursing homes have a more robust infection prevention infrastructure due to integration and centralization compared with non-VA nursing homes. SETTING VA and non-VA nursing homes participating in the “AHRQ Safety Program for Long-term Care” collaborative. METHODS Nursing homes provided baseline information about their infection prevention programs to assess strengths and gaps related to CAUTI prevention. RESULTS A total of 353 (71%; 47 VA, 306 non-VA) of 494 nursing homes from 41 states responded. VA nursing homes reported more hours/week devoted to infection prevention-related activities (31 vs. 12 hours, P<.001), and were more likely to have committees that reviewed healthcare-associated infections. Compared with non-VA facilities, a higher percentage of VA nursing homes reported tracking CAUTI rates (94% vs. 66%, P<.001), sharing CAUTI data with leadership (94% vs. 70%, P=.014) and nursing personnel (85% vs. 56%, P=.003). However, fewer VA nursing homes reported having policies for appropriate catheter use (64% vs. 81%, P=.004) and catheter insertion (83% vs. 94%, P=.004). CONCLUSIONS Among nursing homes participating in an AHRQ-funded collaborative, VA and non-VA nursing homes differed in their approach to CAUTI prevention. Best practices from both settings should be applied universally to create an optimal infection prevention program within emerging integrated healthcare systems. PMID:27917728

  1. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

    Science.gov (United States)

    Zhang, Chenguang; Peng, Zhiwei; Lin, Jian; Zhu, Yu; Ruan, Gedeng; Hwang, Chih-Chau; Lu, Wei; Hauge, Robert H; Tour, James M

    2013-06-25

    Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

  2. Synthesis and structural determination of twisted MoS2 nanotubes

    International Nuclear Information System (INIS)

    Santiago, P.; Schabes-Retchkiman, P.; Ascencio, J.A.; Mendoza, D.; Perez-Alvarez, M.; Espinosa, A.; Reza-SanGerman, C.; Camacho-Bragado, G.A.; Jose-Yacaman, M.

    2004-01-01

    In the present work we report the synthesis of MoS 2 nanotubes with diameters greater than 10 nm using a template method. The length and properties of these nanotubes are a direct result of the preparation method. High-resolution transmission electron microscopy is used to study the structure of these highly curved entities. Molecular dynamics simulations of MoS 2 nanotubes reveal that one of the stable forms of the nanotubes is a twisted one. The twisting of the nanotubes produces a characteristic contrast in the images, which is also studied using simulation methods. The analysis of the local contrast close to the perpendicular orientation shows geometrical arrays of dots in domain-like structures, which are demonstrated to be a product of the atomic overlapping of irregular curvatures in the nanotubes. The configuration of some of the experimentally obtained nanotubes is demonstrated to be twisted with a behavior suggesting partial plasticity. (orig.)

  3. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    Science.gov (United States)

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array

  4. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  5. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Shang-Chao, E-mail: schung99@gmail.com [Department of Information Technology & Communication, Shih Chien University Kaohsiung Campus, Neimen, Kaohsiung 845, Taiwan (China); Chen, Yu-Jyun [Graduate Institute of Electro-Optical Engineering & Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure, and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.

  6. Bottom-up approach for carbon nanotube interconnects

    International Nuclear Information System (INIS)

    Li Jun; Ye Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han Jie; Meyyappan, M.

    2003-01-01

    We report a bottom-up approach to integrate multiwalled carbon nanotubes (MWNTs) into multilevel interconnects in silicon integrated-circuit manufacturing. MWNTs are grown vertically from patterned catalyst spots using plasma-enhanced chemical vapor deposition. We demonstrate the capability to grow aligned structures ranging from a single tube to forest-like arrays at desired locations. SiO 2 is deposited to encapsulate each nanotube and the substrate, followed by a mechanical polishing process for planarization. MWNTs retain their integrity and demonstrate electrical properties consistent with their original structure

  7. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices

    International Nuclear Information System (INIS)

    Ryu, Hyeyeon; Kaelblein, Daniel; Ante, Frederik; Zschieschang, Ute; Kern, Klaus; Klauk, Hagen; Weitz, R Thomas; Schmidt, Oliver G

    2010-01-01

    Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.

  8. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    Science.gov (United States)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  9. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures.

    Science.gov (United States)

    Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-12-11

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  10. Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Thomas; Gibson, Christopher T.; Constantopoulos, Kristina; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001 (Australia)

    2012-01-15

    Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated 'grafting-from' process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization.

  11. Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Macdonald, Thomas; Gibson, Christopher T.; Constantopoulos, Kristina; Shapter, Joseph G.; Ellis, Amanda V.

    2012-01-01

    Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated “grafting-from” process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization.

  12. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  13. Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection

    Science.gov (United States)

    Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.

    2015-05-01

    There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.

  14. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  15. Batch fabrication of carbon nanotube bearings

    International Nuclear Information System (INIS)

    Subramanian, A; Dong, L X; Tharian, J; Sennhauser, U; Nelson, B J

    2007-01-01

    Relative displacements between the atomically smooth, nested shells in multiwalled carbon nanotubes (MWNTs) can be used as a robust nanoscale motion enabling mechanism. Here, we report on a novel method suited for structuring large arrays of MWNTs into such nanobearings in a parallel fashion. By creating MWNT nanostructures with nearly identical electrical circuit resistance and heat transport conditions, uniform Joule heating across the array is used to simultaneously engineer the shell geometry via electric breakdown. The biasing approach used optimizes process metrics such as yield and cycle-time. We also present the parallel and piecewise shell engineering at different segments of a single nanotube to construct multiple, but independent, high density bearings. We anticipate this method for constructing electromechanical building blocks to be a fundamental unit process for manufacturing future nanoelectromechanical systems (NEMS) with sophisticated architectures and to drive several nanoscale transduction applications such as GHz-oscillators, shuttles, memories, syringes and actuators

  16. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  17. T-gate aligned nanotube radio frequency transistors and circuits with superior performance.

    Science.gov (United States)

    Che, Yuchi; Lin, Yung-Chen; Kim, Pyojae; Zhou, Chongwu

    2013-05-28

    In this paper, we applied self-aligned T-gate design to aligned carbon nanotube array transistors and achieved an extrinsic current-gain cutoff frequency (ft) of 25 GHz, which is the best on-chip performance for nanotube radio frequency (RF) transistors reported to date. Meanwhile, an intrinsic current-gain cutoff frequency up to 102 GHz is obtained, comparable to the best value reported for nanotube RF transistors. Armed with the excellent extrinsic RF performance, we performed both single-tone and two-tone measurements for aligned nanotube transistors at a frequency up to 8 GHz. Furthermore, we utilized T-gate aligned nanotube transistors to construct mixing and frequency doubling analog circuits operated in gigahertz frequency regime. Our results confirm the great potential of nanotube-based circuit applications and indicate that nanotube transistors are promising building blocks in high-frequency electronics.

  18. SiO MASERS AROUND WX PSC MAPPED WITH THE KVN AND VERA ARRAY (KaVA)

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Youngjoo; Cho, Se-Hyung; Kim, Jaeheon; Choi, Yoon Kyung; Kim, Dong-Jin; Yoon, Dong-Hwan; Byun, Do-Young; Chung, Hyunsoo; Chung, Moon-Hee; Han, Myoung-Hee [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong, Daejeon 305-348 (Korea, Republic of); Imai, Hiroshi; Oyadomari, Miyako [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Asaki, Yoshiharu [National Astronomical Observatory of Japan (NAOJ) Chile Observatory/Joint ALMA Observatory (JAO), Alonso de Cordova 3107, Vitacura 763 0355, Santiago (Chile); Chibueze, James O. [Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Carver Building, 1 University Road, Nsukka (Nigeria); Dodson, Richard; Rioja, María J. [International Centre for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009 (Australia); Kusuno, Kozue [Department of Space and Astronautical Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-Ku, Sagamihara, Kanagawa 252-5210 (Japan); Matsumoto, Naoko; Hagiwara, Yoshiaki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Min, Cheulhong, E-mail: yjyun@kasi.re.kr, E-mail: cho@kasi.re.kr [Department of Astronomical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2016-05-01

    We present the first images of the v = 1 and v = 2 J = 1 → 0 SiO maser lines taken with KaVA, i.e., the combined array of the Korean Very Long Baseline Interferometry (VLBI) Network and the VLBI Exploration of Radio Astrometry (VERA), toward the OH/IR star WX Psc. The combination of long and short antenna baselines enabled us to detect a large number of maser spots, which exhibit a typical ring-like structure in both the v = 1 and v = 2 J = 1 → 0 SiO masers as those that have been found in previous VLBI observational results of WX Psc. The relative alignment of the v = 1 and v = 2 SiO maser spots are precisely derived from astrometric analysis, due to the absolute coordinates of the reference maser spot that were well determined in an independent astrometric observation with VERA. The superposition of the v = 1 and v = 2 maser spot maps shows a good spatial correlation between the v = 1 and v = 2 SiO maser features. Nevertheless, it is also shown that the v = 2 SiO maser spot is distributed in an inner region compared to the v = 1 SiO maser by about 0.5 mas on average. These results provide good support for the recent theoretical studies of the SiO maser pumping, in which both the collisional and the radiative pumping predict the strong spatial correlation and the small spatial discrepancy between the v = 1 and v = 2 SiO maser.

  19. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    Science.gov (United States)

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  20. 75 FR 78806 - Agency Information Collection (Create Payment Request for the VA Funding Fee Payment System (VA...

    Science.gov (United States)

    2010-12-16

    ... Payment Request for the VA Funding Fee Payment System (VA FFPS); a Computer Generated Funding Fee Receipt.... 2900-0474.'' SUPPLEMENTARY INFORMATION: Title: Create Payment Request for the VA Funding Fee Payment System (VA FFPS); a Computer Generated Funding Fee Receipt, VA Form 26-8986. OMB Control Number: 2900...

  1. Fabrication of PANI/C-TiO2 Composite Nanotube Arrays Electrode for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Chengcheng Zhang

    2015-01-01

    Full Text Available Polyaniline/carbon doped TiO2 composite nanotube arrays (PANI/C-TiO2 NTAs have been prepared successfully by electrodepositing PANI in C-TiO2 NTAs which were prepared by directly annealing the as-anodized TiO2 NTAs under Ar atmosphere. The organic residual in the TiO2 NTAs during the process of anodization acts as carbon source and is carbonized in Ar atmosphere to manufacture the C-TiO2 NTAs. The specific capacitance of the PANI/C-TiO2 electrode is 120.8 mF cm−2 at a current density of 0.1 mA cm−2 and remains 104.3 mF cm−2 at a current density of 2 mA cm−2 with the calculated rate performance of 86.3%. After 5000 times of charge-discharge cycling at a current density of 0.2 mA cm−2, the specific capacitance retains 88.7% compared to the first cycle. All these outstanding performances of the as-prepared PANI/C-TiO2 NTAs indicate it will be a promising electrode for supercapacitor.

  2. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  3. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    International Nuclear Information System (INIS)

    Jeong, Du Won; Jin Kim, Ju; Jung, Jongjin; Yang, Cheol-Soo; Lee, Jeong-O; Hwa Kim, Gook; Don Jung, Sang

    2015-01-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV–ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions. (paper)

  4. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    Science.gov (United States)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  5. Template directed synthesis of plasmonic gold nanotubes with tunable IR absorbance.

    Science.gov (United States)

    Bridges, Colin R; Schon, Tyler B; DiCarmine, Paul M; Seferos, Dwight S

    2013-04-01

    A nearly parallel array of pores can be produced by anodizing aluminum foils in acidic environments. Applications of anodic aluminum oxide (AAO) membranes have been under development since the 1990's and have become a common method to template the synthesis of high aspect ratio nanostructures, mostly by electrochemical growth or pore-wetting. Recently, these membranes have become commercially available in a wide range of pore sizes and densities, leading to an extensive library of functional nanostructures being synthesized from AAO membranes. These include composite nanorods, nanowires and nanotubes made of metals, inorganic materials or polymers. Nanoporous membranes have been used to synthesize nanoparticle and nanotube arrays that perform well as refractive index sensors, plasmonic biosensors, or surface enhanced Raman spectroscopy (SERS) substrates, as well as a wide range of other fields such as photo-thermal heating, permselective transport, catalysis, microfluidics, and electrochemical sensing. Here, we report a novel procedure to prepare gold nanotubes in AAO membranes. Hollow nanostructures have potential application in plasmonic and SERS sensing, and we anticipate these gold nanotubes will allow for high sensitivity and strong plasmon signals, arising from decreased material dampening.

  6. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance

    International Nuclear Information System (INIS)

    Lamberti, Andrea; Garino, Nadia; Sacco, Adriano; Bianco, Stefano; Chiodoni, Angelica; Gerbaldi, Claudio

    2015-01-01

    Highlights: • Amorphous TiO 2 nanotube (NT) arrays are fabricated by fast and facile anodic oxidation. • Near-theoretical initial specific capacity and remarkable rate capability. • Very long-term cycling stability (>2000 cycles) at a very high C-rate. • High surface area and improved interfacial characteristics for fast diffusion kinetics. • NTs show promising prospects in storage devices conceived for high power applications. - Abstract: Vertically oriented arrays of high surface area TiO 2 nanotubes (NTs) are fabricated by the fast and facile anodic oxidation of a titanium foil. The formation of well-defined one-dimensional nanotubular carpets is assessed by means of morphological Field Emission Scanning Electron Microscopy characterisation, while X-ray diffraction analysis and Transmission Electron Microscopy imaging confirm the amorphous nature of the samples. The electrochemical response evaluated in lab-scale lithium cells is highly satisfying with near-theoretical initial specific capacity and remarkable rate capability, noteworthy in the absence of binders and conductive agents, which would affect the overall energy density. A specific capacity exceeding 200 mAh g −1 is observed at very high 24 C and approx. 80 mAh g −1 are retained even at very high 96 C rate, thus accounting for the promising prospects in storage devices conceived for high power applications. Moreover, the NTs can perform with good cycling stability and capacity retention approaching 50% of the initial value after very long-term operation along with improved durability (> 2000 cycles)

  7. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A.

    Science.gov (United States)

    Hu, Liangsheng; Fong, Chi-Chun; Zhang, Xuming; Chan, Leo Lai; Lam, Paul K S; Chu, Paul K; Wong, Kwok-Yin; Yang, Mengsu

    2016-04-19

    A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).

  8. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2009-11-01

    Full Text Available ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

  9. Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation

    DEFF Research Database (Denmark)

    Nordström Andersen, Karin; Petersen, Dirch Hjorth; Carlson, Kenneth

    2009-01-01

    Microgrippers that are able to manipulate nanoobjects reproducibly are key components in 3-D nanomanipulation systems. We present here a monolithic electrothermal microgripper prepared by silicon microfabrication, and demonstrate pick-and-place of an as-grown carbon nanotube from a 2-D array onto...

  10. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  11. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  12. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  13. Preparations, Properties, and Applications of Periodic Nano Arrays using Anodized Aluminum Oxide and Di-block Copolymer

    Science.gov (United States)

    Noh, Kunbae

    2011-12-01

    Self-ordered arrangements observed in various materials systems such as anodic aluminum oxide, polystyrene nanoparticles, and block copolymer are of great interest in terms of providing new opportunities in nanofabrication field where lithographic techniques are broadly used in general. Investigations on self-assembled nano arrays to understand how to obtain periodic nano arrays in an efficient yet inexpensive way, and how to realize advanced material and device systems thereof, can lead to significant impacts on science and technology for many forefront device applications. In this thesis, various aspects of periodic nano-arrays have been discussed including novel preparations, properties and applications of anodized aluminum oxide (AAO) and PS-b-P4VP (S4VP) di-block copolymer self-assembly. First, long-range ordered AAO arrays have been demonstrated. Nanoimprint lithography (NIL) process allowed a faithful pattern transfer of the imprint mold pattern onto Al thin film, and interesting self-healing and pattern tripling phenomena were observed, which could be applicable towards fabrication of the NIL master mold having highly dense pattern over large area, useful for fabrication of a large-area substrate for predictable positioning of arrayed devices. Second, S4VP diblock copolymer self-assembly and S4VP directed AAO self-assembly have been demonstrated in the Al thin film on Si substrate. Such a novel combination of two dissimilar self-assembly techniques demonstrated a potential as a versatile tool for nanopatterning formation on a Si substrate, capable of being integrated into Si process technology. As exemplary applications, vertically aligned Ni nanowires have been synthesized into an S4VP-guided AAO membrane on a Si substrate in addition to anti-dot structured [Co/Pd]n magnetic multilayer using S4VP self assembly. Third, a highly hexagonally ordered, vertically parallel aluminum oxide nanotube array was successfully fabricated via hard anodization technique

  14. A carbon nanotube immunosensor for Salmonella

    Science.gov (United States)

    Lerner, Mitchell B.; Goldsmith, Brett R.; McMillon, Ronald; Dailey, Jennifer; Pillai, Shreekumar; Singh, Shree R.; Johnson, A. T. Charlie

    2011-12-01

    Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml).

  15. The Geometric-VaR Backtesting Method

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    2014-01-01

    This paper develops a new test to evaluate Value af Risk (VaR) forecasts. VaR is a standard risk measure widely utilized by financial institutions and regulators, yet estimating VaR is a challenging problem, and popular VaR forecast relies on unrealistic assumptions. Hence, assessing...

  16. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    Science.gov (United States)

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gamma radiation effects in vertically aligned carbon nanotubes

    OpenAIRE

    Lubkowski, Grzegorz; Kuhnhenn, Jochen; Suhrke, Michael; Weinand, Udo; Endler, Ingolf; Meißner, Frank; Richter, Sylvia

    2011-01-01

    This paper describes an experimental study of gamma radiation effects in low-density arrays of vertically aligned carbon nanotubes. These arrays are characterized by excellent anti-reflective and absorbing properties for wavelengths from UV to IR, which makes them an interesting option for stray light control in optical space applications. Gamma irradiation equivalent to an estimated surface lifetime exposition in geostationary orbit does not affect the reflectivity of the structures. First h...

  18. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures

    Directory of Open Access Journals (Sweden)

    Noemí Aguiló-Aguayo

    2017-12-01

    Full Text Available New three-dimensional (3D porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions, mechanical stability (e.g., flexibility, high electroactive mass loadings, and electrochemical performance (e.g., low volumetric energy densities and rate capabilities. Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD, and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  19. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    Science.gov (United States)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  20. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfang [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Qin, Yongqiang, E-mail: albon@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Yu, Cuiping [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Jiewu; Zheng, Hongmei; Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-02-15

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated by the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs

  1. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  2. 78 FR 59771 - Proposed Information Collection (Create Payment Request for the VA Funding Fee Payment System (VA...

    Science.gov (United States)

    2013-09-27

    ... Payment Request for the VA Funding Fee Payment System (VA FFPS); a Computer Generated Funding Fee Receipt.... Title: Create Payment Request for the VA Funding Fee Payment System (VA FFPS); A Computer Generated... through the Federal Docket Management System (FDMS) at www.Regulations.gov or to Nancy J. Kessinger...

  3. Langmuir-Blodgett assembly of visible light responsive TiO{sub 2} nanotube arrays/graphene oxide heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan, E-mail: yan.cao@wku.edu

    2017-01-15

    Highlights: • First to report a heterostructure of TNA with GO prepared by LB assembly. • Much better photocurrent (32 μAcm{sup −2}) of TNA-GO, contrasting to TNA (12 μAcm{sup −2}). • Schottky junction formed between TNA and GO enhanced the photocurrent. • GO on TNA improved the hydrophilicity of TNA-GO. - Abstract: The hybrid nanocomposites of titanium dioxide (TiO{sub 2}) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO{sub 2} nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  4. Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Cao, Chenghao [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2015-03-21

    Graphical abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction was fabricated by simple electrochemical method. The heterostructures exhibit high photocatalytic activity and excellent recycling performance. - Highlights: • Ag-bridged Ag{sub 2}O nanowire network self-stability structure. • Ag{sub 2}O nanowire network/TiO{sub 2} nanotube p–n heterojunction. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction (Ag–Ag{sub 2}O/TiO{sub 2} NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO{sub 2} NT and then were partly oxidized to Ag{sub 2}O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag{sub 2}O nanowire network. The Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag–Ag{sub 2}O self-stability structure and p–n heterojunction permitted high and stable photocatalytic activity of Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag–Ag{sub 2}O/TiO{sub 2} NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO{sub 2} NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag–Ag{sub 2}O/TiO{sub 2} NT remained highly stable photocatalytic activity.

  5. Length Dependent Foam-Like Mechanical Response of Axially Indented Vertically Oriented Carbon Nanotube Arrays

    Science.gov (United States)

    2011-01-01

    Sands T, Xu X, Fisher T. Dendrimer -assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology 2007;18...surfaces. Rev Sci Instrum 2006;77(9):095105-1–3. [11] Allaoui A, Hoa S, Evesque P, Bai J. Electronic transport in carbon nanotube tangles under compression

  6. VA Vascular Injury Study (VAVIS): VA-DoD extremity injury outcomes collaboration.

    Science.gov (United States)

    Shireman, Paula K; Rasmussen, Todd E; Jaramillo, Carlos A; Pugh, Mary Jo

    2015-02-03

    Limb injuries comprise 50-60% of U.S. Service member's casualties of wars in Afghanistan and Iraq. Combat-related vascular injuries are present in 12% of this cohort, a rate 5 times higher than in prior wars. Improvements in medical and surgical trauma care, including initial in-theatre limb salvage approaches (IILS) have resulted in improved survival and fewer amputations, however, the long-term outcomes such as morbidity, functional decline, and risk for late amputation of salvaged limbs using current process of care have not been studied. The long-term care of these injured warfighters poses a significant challenge to the Department of Defense (DoD) and Department of Veterans Affairs (VA). The VA Vascular Injury Study (VAVIS): VA-DoD Extremity Injury Outcomes Collaborative, funded by the VA, Health Services Research and Development Service, is a longitudinal cohort study of Veterans with vascular extremity injuries. Enrollment will begin April, 2015 and continue for 3 years. Individuals with a validated extremity vascular injury in the Department of Defense Trauma Registry will be contacted and will complete a set of validated demographic, social, behavioral, and functional status measures during interview and online/ mailed survey. Primary outcome measures will: 1) Compare injury, demographic and geospatial characteristics of patients with IILS and identify late vascular surgery related limb complications and health care utilization in Veterans receiving VA vs. non-VA care, 2) Characterize the preventive services received by individuals with vascular repair and related outcomes, and 3) Describe patient-reported functional outcomes in Veterans with traumatic vascular limb injuries. This study will provide key information about the current process of care for Active Duty Service members and Veterans with polytrauma/vascular injuries at risk for persistent morbidity and late amputation. The results of this study will be the first step for clinicians in VA and

  7. 75 FR 61252 - Proposed Information Collection (Create Payment Request for the VA Funding Fee Payment System (VA...

    Science.gov (United States)

    2010-10-04

    ... Payment Request for the VA Funding Fee Payment System (VA FFPS); A Computer Generated Funding Fee Receipt... Payment Request for the VA Funding Fee Payment System (VA FFPS); A Computer Generated Funding Fee Receipt... information through the Federal Docket Management System (FDMS) at http://www.Regulations.gov or to Nancy J...

  8. 75 FR 61859 - Proposed Information Collection (Create Payment Request for the VA Funding Fee Payment System (VA...

    Science.gov (United States)

    2010-10-06

    ... Payment Request for the VA Funding Fee Payment System (VA FFPS); A Computer Generated Funding Fee Receipt... Payment Request for the VA Funding Fee Payment System (VA FFPS); A Computer Generated Funding Fee Receipt... information through the Federal Docket Management System (FDMS) at http://www.Regulations.gov or to Nancy J...

  9. VA announces aggressive new approach to produce rapid improvements in VA medical centers

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2018-02-01

    Full Text Available No abstract available. Article truncated at 150 words. The U.S. Department of Veterans Affairs (VA announced steps that it is taking as part of an aggressive new approach to produce rapid improvements at VA’s low-performing medical facilities nationwide (1. VA defines its low-performing facilities as those medical centers that receive the lowest score in its Strategic Analytics for Improvement and Learning (SAIL star rating system, or a one-star rating out of five. The SAIL star rating was initiated in 2016 and uses a variety of measures including mortality, length of hospital stay, readmission rates, hospital complications, physician productivity and efficiency. A complete listing of the VA facilities, their star ratings and the metrics used to determine the ratings is available through the end of fiscal year 2017 (2. Based on the latest ratings, the VA currently has 15 one-star facilities including Denver, Loma Linda, and Phoenix in the Southwest (Table 1. Table 1. VA facilities with one-star ratings …

  10. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  11. Effect of ZnS layers on optical properties of prepared CdS/TiO{sub 2} nanotube arrays for photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Gong, Zezhou; Tao, Jiajia; Wang, Xingzhi; Wang, Zhuang; Yang, Lei; He, Gang [Anhui University, School of Physics and Material Science (China); Lv, Jianguo [Hefei Normal University, School of Electronic and Information Engineering (China); Wang, Peihong; Ding, Zongling [Anhui University, School of Physics and Material Science (China); Chen, Xiaoshuang [Chinese Academy of Sciences, National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [Anhui University, School of Physics and Material Science (China)

    2017-03-15

    The TiO{sub 2} nanotube arrays (TiO{sub 2} NTAs) prepared by re-oxidation were chosen as basement. The NTAs prepared through re-oxidation show smoother surface and more uniform tube mouth on large scale compared with the first as-grown one. We use successive ionic layer adsorption and reaction method to deposit quantum dots (ZnS and CdS) onto the sample successively. The findings reveal that two kinds of quantum dots (∼10 nm) distribute regularly and the nanotube mouth is open. From the UV–Vis absorption spectrum of samples, the red shift occurs after the sedimentation of the two quantum dots, which proves that the double modification can expand the absorption to 650 nm. Among all specimens, the sample produced by co-deposition has the highest speed of catalytic efficiency of 90.7% compared with bare TiO{sub 2} NTAs (52.9%) and just CdS QDs sensitized sample (65.8%). In the test of photocatalysis durability, the decay percentages of CdS/TiO{sub 2} NTAs and ZnS/CdS/TiO{sub 2} NTAs were 35.8 and 48.4%, respectively, which means that the ZnS passivation layer plays a crucial role in enhancing photocatalytic activities.

  12. Field emission from a composite structure consisting of vertically aligned single-walled carbon nanotubes and carbon nanocones

    International Nuclear Information System (INIS)

    Yeh, C M; Chen, M Y; Hwang, J; Gan, J-Y; Kou, C S

    2006-01-01

    Vertically aligned single-walled carbon nanotubes (VA-SWCNTs) have been fabricated on carbon nanocones (CNCs) in a gravity-assisted chemical vapour deposition (CVD) process. The CNCs with nanoscale Co particles at the top were first grown on the Co/Si(100) substrate biased at 350 V in a plasma enhanced chemical vapour deposition process. The CNCs typically are ∼200 nm in height, and their diameters are ∼100 nm near the bottom and ∼10 nm at the top. The nanoscale Co particles ∼10 nm in diameter act as catalysts which favour the growth of VA-SWCNTs out of CNCs at 850 0 C in the gravity-assisted CVD process. The average length and the growth time of VA-SWCNTs are ∼150 nm and 1.5 min, equivalent to a growth rate of ∼6 μm h -1 . The diameters of VA-SWCNTs are estimated to be 1.2-2.1 nm. When VA-SWCNTs are fabricated on CNCs, the turn-on voltage is reduced from 3.9 to 0.7 V μm -1 and the emission current density at the electric field of 5 V μm -1 is enhanced by a factor of more than 200. The composite VA-SWCNT/CNC structure is potentially an excellent field emitter. The emission stability of the VA-SWCNT/CNC field emitter is discussed

  13. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

    Science.gov (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye

    2017-07-01

    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  14. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    International Nuclear Information System (INIS)

    Won, Yoonjin; Gao, Yuan; Kenny, Thomas W; Goodson, Kenneth E; Guzman de Villoria, Roberto; Wardle, Brian L; Xiang, Rong; Maruyama, Shigeo

    2015-01-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications. (paper)

  15. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  16. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    Science.gov (United States)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  17. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.

    2014-12-19

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing in a nitrogen atmosphere. Morphology, structure and composition of the N-doped TiO2 nanotube array films were investigated by FE-SEM, XPS, UV-Vis and XRD. The effect of annealing temperature, heating rate and annealing time on the morphology, structure, and photo-electrochemical property of the N-doped TiO2 nanotube array films were investigated. A design of experiments method was applied in order to minimize the number of experiments and obtain a statistical model for this system. From the modelling results, optimum values for the influential factors were obtained in order to achieve the maximum PCE. The optimized experiment resulted in 7.42 % PCE which was within 95 % confidence interval of the predicted value by the model. © 2014 Springer Science+Business Media.

  18. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  19. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir

    2015-04-29

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  20. 48 CFR 853.215-70 - VA Form 10-1170, Application for Furnishing Nursing Home Care to Beneficiaries of VA.

    Science.gov (United States)

    2010-10-01

    ..., Application for Furnishing Nursing Home Care to Beneficiaries of VA. 853.215-70 Section 853.215-70 Federal... 853.215-70 VA Form 10-1170, Application for Furnishing Nursing Home Care to Beneficiaries of VA. VA Form 10-1170, Application for Furnishing Nursing Home Care to Beneficiaries of VA, will be used for...

  1. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  2. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  3. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays.

    Science.gov (United States)

    Kim, Jae-Hun; Zhu, Kai; Yan, Yanfa; Perkins, Craig L; Frank, Arthur J

    2010-10-13

    We report on the synthesis and electrochemical properties of oriented NiO-TiO(2) nanotube (NT) arrays as electrodes for supercapacitors. The morphology of the films prepared by electrochemically anodizing Ni-Ti alloy foils was characterized by scanning and transmission electron microscopies, X-ray diffraction, and photoelectron spectroscopies. The morphology, crystal structure, and composition of the NT films were found to depend on the preparation conditions (anodization voltage and postgrowth annealing temperature). Annealing the as-grown NT arrays to a temperature of 600 °C transformed them from an amorphous phase to a mixture of crystalline rock salt NiO and rutile TiO(2). Changes in the morphology and crystal structure strongly influenced the electrochemical properties of the NT electrodes. Electrodes composed of NT films annealed at 600 °C displayed pseudocapacitor (redox-capacitor) behavior, including rapid charge/discharge kinetics and stable long-term cycling performance. At similar film thicknesses and surface areas, the NT-based electrodes showed a higher rate capability than the randomly packed nanoparticle-based electrodes. Even at the highest scan rate (500 mV/s), the capacitance of the NT electrodes was not much smaller (within 12%) than the capacitance measured at the slowest scan rate (5 mV/s). The faster charge/discharge kinetics of NT electrodes at high scan rates is attributed to the more ordered NT film architecture, which is expected to facilitate electron and ion transport during the charge-discharge reactions.

  4. Decoration of TiO_2 nanotube arrays by graphitic-C_3N_4 quantum dots with improved photoelectrocatalytic performance

    International Nuclear Information System (INIS)

    Sun, Bo; Lu, Na; Su, Yan; Yu, Hongtao; Meng, Xiangyu; Gao, Zhanming

    2017-01-01

    Highlights: • TiO_2 nanotube arrays/graphitic-C_3N_4 quantum dots heterojunction was prepared via a facile dipping method. • The optimized dipping duration and concentration of heterojunction were investigated. • The prepared heterojunction extends optical absorption and reduces the recombination of charge carriers. • The photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times that of pristine TNTAs. • 98.6% of phenol is degraded in 120 min and the degradation rate is 4.9 times as great as that of pristine TNTAs. - Abstract: In this paper, we present a novel method to improve the photoelectrocatalytic (PEC) property of TiO_2 nanotube arrays (TNTAs) by way of decorating it with visible-light-respond graphitic-C_3N_4 quantum dots (g-C_3N_4 QDs). The g-C_3N_4 QDs/TNTAs heterojunction is successfully prepared using a facile dipping method. The optimal condition of preparing g-C_3N_4 QDs/TNTAs heterojunction is found as 60 min of dipping duration and 0.2 mg mL"−"1 of g-C_3N_4 QDs dipping solution. The fabricated g-C_3N_4 QDs/TNTAs heterojunction shows improved PEC activity comparing to TNTAs due to its better separation capability of photo-generated charges and wider optical absorption. And the photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times than that of pristine TNTAs. Besides, the g-C_3N_4 QDs/TNTAs heterojunction also exhibits superior PEC activities in degradation of phenol. 98.6% of phenol is successfully degraded in 120 min and the pseudo-first-order kinetic constant of phenol degradation is 4.9 times as great as that of pristine TNTAs. This work indicates that the g-C_3N_4 QDs/TNTAs heterojunction is expected to be a promising nanomaterial for pollutant degradation and further application in solar energy conversion.

  5. Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas : experiment and modelling

    NARCIS (Netherlands)

    Raziman, T.V.; Duenas, J.A.; Milne, W.I.; Martin, O.J.F.; Dawson, P.

    2018-01-01

    The D- and G-band Raman signals from random arrays of vertically aligned, multi-walled carbon nanotubes are significantly enhanced (up to ∼14×) while the signal from the underlying Si substrate is simultaneously attenuated (up to ∼6×) when the nanotubes are dressed, either capped or coated, with Ag.

  6. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Sáha, P.

    2012-01-01

    Roč. 50, č. 10 (2012), s. 3446-3453 ISSN 0008-6223 Grant - others:OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotubes * polyurethane * high deformation * strain sensor * resistance * biomechanics Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 5.868, year: 2012

  7. A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Sáha, P.

    2012-01-01

    Roč. 50, č. 10 (2012), s. 3446-3453 ISSN 0008-6223 Grant - others:OP VaVpI(XE) CZ.1.05/2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotubes * polyurethane * high deformation * strain sensor * resistance * biomechanics Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.868, year: 2012

  8. Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes

    Science.gov (United States)

    Ya'akobovitz, Assaf

    2016-10-01

    Vertically aligned carbon nanotubes (VA-CNTs) hold the potential to play an instrumental role in a wide variety of applications in micro- and nano-devices and composites. However, their successful large-scale implementation in engineering systems requires a thorough understanding of their material properties, including their thermal behavior, which was the focus of the current study. Thus, the thermal expansion of as-grown VA-CNT microstructures was investigated while increasing the temperature from room temperature to 800 °C and then cooling it down. First thermal transition was observed at 191 ± 68 °C during heating, and an additional thermal transition was observed at 523 ± 138 °C during heating and at similar temperatures during cooling. Each thermal transition was characterized by a significant change in the coefficient of thermal expansion (CTE), which can be related to a morphological change in the VA-CNT microstructures. Measurements of the CTEs in the lateral directions revealed differences in the lateral thermal behaviors of the top, middle, and bottom portions of the VA-CNT microstructures, again indicating that their morphology dominates their thermal characteristics. A hysteretic behavior was observed, as the measured values of CTEs were altered due to the applied thermal loads and the height of the microstructures was slightly higher compared to its initial value. These findings provide an insight into the anisotropic thermal behavior of VA-CNT microstructures and shed light on the relationship between their morphology and thermal behavior.

  9. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO_2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    International Nuclear Information System (INIS)

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-01-01

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO_2 nanotube arrays (Ag/CuO/TiO_2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO_2 was about 2.0, 1.5 and 1.2 times that over TiO_2 nanotubes, CuO/TiO_2 and Ag/TiO_2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO_2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO_2 photocatalyst demonstrated a promising application for organic pollutant removal from water.

  10. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes.

    Science.gov (United States)

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  11. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes

    Science.gov (United States)

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  12. Do Older Rural and Urban Veterans Experience Different Rates of Unplanned Readmission to VA and Non-VA Hospitals?

    Science.gov (United States)

    Weeks, William B.; Lee, Richard E.; Wallace, Amy E.; West, Alan N.; Bagian, James P.

    2009-01-01

    Context: Unplanned readmission within 30 days of discharge is an indicator of hospital quality. Purpose: We wanted to determine whether older rural veterans who were enrolled in the VA had different rates of unplanned readmission to VA or non-VA hospitals than their urban counterparts. Methods: We used the combined VA/Medicare dataset to examine…

  13. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO{sub 2} nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO{sub 2} nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  14. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application

    International Nuclear Information System (INIS)

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-01-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. - Highlights: • Vertical graphene sheets were prepared with Ti as the catalyst via a CVD method. • TiO 2 nanotubes were key transition layers in the formation of the TiC nanorods. • Vertical growth mechanism of graphene products was discussed. • Biomolecules were detected to be a chemical sensor. • Response mechanism for analytes at the graphene/TiC nanorod array was discussed.

  15. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  16. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    Science.gov (United States)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  17. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    Science.gov (United States)

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  18. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    Science.gov (United States)

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Increased sensitivity of multiwalled carbon nanotube network by PMMA functionalization to vapors with affine polarity

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Slobodian, P.; Říha, Pavel; Machovský, M.

    2012-01-01

    Roč. 126, č. 1 (2012), s. 21-29 ISSN 0021-8995 Grant - others:UTB Zlín(CZ) IGA/12/FT/11/D; OP VaVpI(XE) CZ.1.05/2.1.00/ 03.0111 Institutional research plan: CEZ:AV0Z20600510 Keywords : poly(methyl methacrylate) nanocomposites * carbon nanotube networks * electrical resistance * vapor sensing * VOC Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.395, year: 2012

  20. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  1. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    Science.gov (United States)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  2. Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array.

    Science.gov (United States)

    Shan, J; Tucker, A W; Gaalaas, L R; Wu, G; Platin, E; Mol, A; Lu, J; Zhou, O

    2015-01-01

    Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology. A test-bed stationary intraoral tomosynthesis unit was constructed using a CNT X-ray source array and a digital intraoral sensor. The source-to-image distance was modified to make the system comparable in image resolution to current two-dimensional intraoral radiography imaging systems. Anthropomorphic phantoms containing teeth with simulated and real caries lesions were imaged using a dose comparable to D-speed film dose with a rectangular collimation. Images were reconstructed and analysed. Tomosynthesis images of the phantom and teeth specimen demonstrated perceived image quality equivalent or superior to standard digital images with the added benefit of 3D information. The ability to "scroll" through slices in a buccal-lingual direction significantly improved visualization of anatomical details. In addition, the subjective visibility of dental caries was increased. Feasibility of the stationary intraoral tomosynthesis is demonstrated. The results show clinical promise and suitability for more robust observer and clinical studies.

  3. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  4. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  5. Non-VA Hospital System (NVH)

    Data.gov (United States)

    Department of Veterans Affairs — The Veterans Health Administration (VHA) pays for care provided to VA beneficiaries in non-VA hospitals through its contract hospitalization program as mandated by...

  6. Nanopattern formation using localized plasma for growth of single-standing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, Mohammad; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nanophysics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2017-01-15

    We report a novel method for formation of self-organized single-standing carbon nanotubes by customizing a plasma-based process. The growth of carbon nanotubes by plasma-enhanced chemical vapor deposition provides suitable grounds to utilize plasma–solid interactions for nanopatterning. The bulk plasma is utilized to fabricate carbon nanotubes on the prepatterned Ni catalyst which in turn can confine the plasma to the growth region. The plasma localization leads to a dielectrophoretic force exerted on Ni atoms and can be engineered in order to grow a specific pattern of self-organized single-standing carbon nanotubes. Numerical simulations based on the plasma localization and dielectrophoretic force confirmed the experimental results. This method provides a simple and cost-effective approach to obtain nanopatterned arrays of carbon nanotubes which can be used for fabrication of photonic and phononic crystals, self-gated field emission-based transistors and displays.

  7. SWNT array resonant gate MOS transistor.

    Science.gov (United States)

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  8. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F

    2011-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  9. Accessing VA Healthcare During Large-Scale Natural Disasters.

    Science.gov (United States)

    Der-Martirosian, Claudia; Pinnock, Laura; Dobalian, Aram

    2017-01-01

    Natural disasters can lead to the closure of medical facilities including the Veterans Affairs (VA), thus impacting access to healthcare for U.S. military veteran VA users. We examined the characteristics of VA patients who reported having difficulty accessing care if their usual source of VA care was closed because of natural disasters. A total of 2,264 veteran VA users living in the U.S. northeast region participated in a 2015 cross-sectional representative survey. The study used VA administrative data in a complex stratified survey design with a multimode approach. A total of 36% of veteran VA users reported having difficulty accessing care elsewhere, negatively impacting the functionally impaired and lower income VA patients.

  10. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  11. Sodium fluoride-assisted modulation of anodized TiO₂ nanotube for dye-sensitized solar cells application.

    Science.gov (United States)

    Yun, Jung-Ho; Ng, Yun Hau; Ye, Changhui; Mozer, Attila J; Wallace, Gordon G; Amal, Rose

    2011-05-01

    This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO₂ nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO₂ film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2̀-bipyridyl-4,4̀-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO₂ films.

  12. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  13. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  14. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO{sub 2} nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhong; Wang, Longlu [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu, Yutang, E-mail: liuyutang@126.com [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Luo, Shenglian [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2016-08-05

    Highlights: • Bamboo-like architecture of ternary photocatalyst. • High simulated solar light photocatalytic activity. • Integration of p-n heterojunction and Schottky junction. • Excellent stable recycling performance. - Abstract: The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO{sub 2} nanotube arrays (Ag/CuO/TiO{sub 2}), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO{sub 2} was about 2.0, 1.5 and 1.2 times that over TiO{sub 2} nanotubes, CuO/TiO{sub 2} and Ag/TiO{sub 2}, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO{sub 2} photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO{sub 2} photocatalyst demonstrated a promising application for organic pollutant removal from water.

  15. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    Science.gov (United States)

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  16. Structural and morphological transformations of TiO2 nanotube arrays induced by excimer laser treatment

    International Nuclear Information System (INIS)

    Hsu, Ming-Yi; Thang, Nguyen Van; Wang Chih; Leu Jihperng

    2012-01-01

    The structural and morphological transformations of TiO 2 nanotube arrays (TNAs) treated by excimer laser annealing (ELA) were investigated as a function of the laser fluence using parallel and tilted modes. Results showed that the crystallinity of the ELA-treated TNAs reached only about 50% relative to that of TNAs treated by furnace anneal at 400 °C for 1 h. The phase transformation starts from the top surface of the TNAs with surface damage resulting from short penetration depth and limited one-dimensional heat transport from the surface to the bottom under extremely short pulse duration (25 ns) of the excimer laser. When a tilted mode was used, the crystallinity of TNAs treated by ELA at 85° was increased to 90% relative to that by the furnace anneal. This can be attributed to the increased area of the laser energy interaction zone and better heat conduction to both ends of the TNAs. - Highlights: ► We examined the morphology and microstructure of TNAs treated by ELA. ► Crystallinity of parallel ELA-treated TNAs reached ∼50% of furnace anneal. ► Tilted ELA at 85o enhanced the degree of crystallization in TNAs to 90%.

  17. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    Science.gov (United States)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  18. Synthesis and photoelectrical performance of nanoscale PbS and Bi2S3 co-sensitized on Ti02 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    Fanggong Cai; Min Pan; Yong Feng; Guo Yan; Yong Zhang; Yong Zhao

    2017-01-01

    TiO2 films have been widely applied in photovoltaic conversion techniques.TiO2 nanotube arrays (TiO2 NAs) can be grown directly on the surface of metal Ti by the anodic oxidation method.Bi2S3 and PbS nanoparticles (NPs) were firstly co-sensitized on TiO2 NAs (denoted as PbS/Bi2S3(n)/TiO2 NAs) by a two-step process containing hydrothermal and sonication-assisted SILAR method.When the concentration of Bi3+ is 5 mmol/L,the best photoelectrical performance was obtained under simulated solar irradiation.The short-circuit photocurrent (Jsc) and photoconversion efficiency (η) of PbS/Bi2S3(5)/TiO2 NAs electrode were 4.70 mA/cm and 1.13 %,respectively.

  19. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    International Nuclear Information System (INIS)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-01-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO 2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO 2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu 2+ . The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO 2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  20. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO{sub 2} nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO{sub 2} NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu{sup 2+}. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO{sub 2} NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  1. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    Science.gov (United States)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária

    2015-02-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.

  2. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    International Nuclear Information System (INIS)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Omastová, Mária; Šmatko, Vasilij; Campo, Eva M; Pavlova, Ewa

    2015-01-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators. (paper)

  3. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Cai, Kun, E-mail: caikun1978@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Wan, Jing [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Gao, Zhaoliang, E-mail: coopcg@163.com [Institute of Soil and Water Conservation, Northwest A& F University, Yangling, 712100 (China); Chen, Zhen [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The rotational transmission performance of a rotational transmission system (RTS) with different types of C−H bonding layouts on the edge of motor and rotor is investigated using MD simulation method. • The L–J interaction between covalently bonded hydrogen atoms and sp1 carbon atoms is too weak to support a stable rotational transmission when only the motor or rotor has bonded hydrogen atoms. • When both the motor and rotor have the same C−H bonding layout on their adjacent ends, a stable output rotational speed of rotor can be obtained. • A low input rotational speed (e.g., 100 GHz) would lead to a synchronous rotational transmission if the system has (+0.5H) C−H bonding layout. - Abstract: In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (C−H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same C−H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has C−H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp{sup 1} bonded carbon atoms on the other

  4. Long-term monitoring of Sgr A* at 7 mm with VERA and KaVA

    Science.gov (United States)

    Akiyama, K.; Kino, M.; Sohn, B.; Lee, S.; Trippe, S.; Honma, M.

    2014-05-01

    We present the results of radio monitoring observations of Sgr A* at 7 mm (i.e. 43 GHz) with the VLBI Exploration of Radio Astrometry (VERA), which is a VLBI array in Japan. VERA provides angular resolution on millisecond scales, resolving structures within 100 Schwarzschild radii of Sgr A* , similar to the Very Large Baseline Array (VLBA). We performed multi-epoch observations of Sgr A* in 2005 - 2008, and started monitoring it again with VERA from 2013 January to trace the current G2 encounter event. Our preliminary results in 2013 show that Sgr A* on mas scales has been in an ordinary state as of August 2013, although some fraction of the G2 cloud already passed the pericenter of Sgr A* in April 2013. We will continue monitoring Sgr A* with VERA and the newly developed KaVA (KVN and VERA Array).

  5. Nanorobotic Manipulation Setup for Pick-and-Place Handling and non-destructive Characterization of Carbon Nanotubes

    DEFF Research Database (Denmark)

    Eicchorn, V.; Carlson, Kenneth; Andersen, Karin Nordström

    2007-01-01

    . The pick-and-place task is carried out by using an electrothermal actuated microgripper, designed for controlled manipulation of nanotubes. The nanotube is picked up from an array of multiwalled carbon nanotubes (MWCNTs) and transferred to the tip of an atomic force microscope (AFM) probe in order...... to assemble a high-aspect ratio AFM supertip. Another application of the nanorobotic setup considered in this paper is the nondestructive mechanical characterization of CNTs. A piezoresistive AFM probe is used to bend MWCNTs, while the bending force is measured, in order to estimate the Young's modulus...

  6. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  7. VA office of inspector general releases scathing report of Phoenix VA

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-08-01

    Full Text Available No abstract available. Article truncated at 150 words. The long-awaited Office of Inspector General’s (OIG report on the Phoenix VA Health Care System (PVAHCS was released on August 27, 2014 (1. The report was scathing in its evaluation of VA practices and leadership. Five questions were investigated: 1.Were there clinically significant delays in care? 2. Did PVAHCS omit the names of veterans waiting for care from its Electronic Wait List (EWL? 3. Were PVAHCS personnel not following established scheduling procedures? 4. Did the PVAHCS culture emphasize goals at the expense of patient care? 5. Are scheduling deficiencies systemic throughout the VA? In each case, the OIG found that the allegations were true. Despite initial denials, the OIG report showed that former PVAHCS director Sharon Helman, associate director Lance Robinson, hospital administration director Brad Curry, chief of staff Darren Deering and other senior executives were aware of delays in care and unofficial wait lists. Perhaps most disturbing is ...

  8. Carbon nanotube based photocathodes

    International Nuclear Information System (INIS)

    Hudanski, Ludovic; Minoux, Eric; Schnell, Jean-Philippe; Xavier, Stephane; Pribat, Didier; Legagneux, Pierre; Gangloff, Laurent; Teo, Kenneth B K; Robertson, John; Milne, William I

    2008-01-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an I ON /I OFF ratio of 30

  9. Influence of surface chemistry on inkjet printed carbon nanotube films

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Straw, David C.; Spurrell, Kathryn C.

    2011-01-01

    Carbon nanotube ink chemistry and the proper formulation are crucial for direct-write printing of nanotubes. Moreover, the correct surface chemistry of the self-assembled monolayers that assist the direct deposition of carbon nanotubes onto the substrate is equally important to preserve orientation of the printed carbon nanotubes. We report that the successful formulation of two single walled carbon nanotube (SWNT) inks yields a consistent, homogenous printing pattern possessing the requisite viscosities needed for flow through the microcapillary nozzles of the inkjet printer with fairly modest drying times. The addition of an aqueous sodium silicate allows for a reliable method for forming a uniform carbon nanotube network deposited directly onto unfunctionalized surfaces such as glass or quartz via inkjet deposition. Furthermore, this sodium silicate ingredient helps preserve applied orientation to the printed SWNT solution. Sheet resistivity of this carbon nanotube ink formula printed on quartz decreases as a function of passes and is independent of the substrate. SWNTs were successfully patterned on Au. This amine-based surface chemistry dramatically helps improve the isolation stabilization of the printed SWNTs as seen in the atomic force microscopy (AFM) image. Lastly, using our optimized SWNT ink formula and waveform parameters in the Fuji materials printer, we are able to directly write/print SWNTs into 2D patterns. Dried ink pattern expose and help orient roped carbon nanotubes that are suspended in ordered arrays across the cracks.

  10. Functionalized Carbon Nanotubes Produced by APCVD using Camphor

    Directory of Open Access Journals (Sweden)

    A. H. Mahdizadeh Moghaddam

    2015-01-01

    Full Text Available A simple chemical vapor deposition technique at atmospheric pressure (APCVD is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for production of carbon nanotubes (CNTs. The oxygen atoms in camphor oxidize the amorphous carbons and create hydroxyl functional groups in AMWCNTs. The molecular structure of camphor lead to form hexagonal and pentagonal carbon rings which increase the growth rate and alignment of MWCNTs. In this work, AMWCNTs are grown on silicon substrate, copper, and quartz. The synthesized AMWCNTs are characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR and transmission electron microscopy (TEM. The SEM results show that the deposited CNTs are formed in vertical aligned arrays and each has a functional OH group which is seen in FTIR spectroscopy results.

  11. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  12. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  13. Synthesis of Ag-loaded SrTiO_3/TiO_2 heterostructure nanotube arrays for enhanced photocatalytic performances

    International Nuclear Information System (INIS)

    Hu, Zijun; Chen, Da; Zhan, Xiaqiang; Wang, Fang; Qin, Laishun; Huang, Yuexiang

    2017-01-01

    In this work, the effect of loading Ag nanoparticles on the photocatalytic activity of SrTiO_3/TiO_2 nanotube arrays (TNTAs) was investigated. TNTAs were partially transformed to SrTiO_3 through a hydrothermal treatment, which could preserve the tubular structure of TNTAs, and then, Ag nanoparticles were well deposited on the surface of SrTiO_3/TNTAs heterostructure by a chemical reduction process. Compared to the TNTAs sample, the Ag-loaded SrTiO_3/TNTAs sample showed significantly enhanced photocatalytic activities for photodegradation of rhodamine B. The enhanced photocatalytic activity of Ag-loaded SrTiO_3/TNTAs could be attributed to the increased optical absorption as well as the efficient charge transfer and separation of photogenerated electron-hole pairs induced by the SrTiO_3/TNTAs heterojunction and the Schottky barrier between metallic Ag and SrTiO_3/TNTAs. On the basis of the trapping experiments, the possible photocatalytic mechanism was also discussed. (orig.)

  14. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    Energy Technology Data Exchange (ETDEWEB)

    Han Jingbin; Fan Fengru; Xu Chen; Lin Shisheng; Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Wei Min; Duan Xue, E-mail: zhong.wang@mse.gatech.edu, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-10-08

    High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 {mu}m-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices.

  15. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices

    KAUST Repository

    Han, Jingbin

    2010-09-10

    Abstract High-density vertically aligned ZnO nanotube arrays were fabricated on FTO substrates by a simple and facile chemical etching process from electrodeposited ZnO nanorods. The nanotube formation was rationalized in terms of selective dissolution of the (001) polar face. The morphology of the nanotubes can be readily controlled by electrodeposition parameters for the nanorod precursor. By employing the 5.1 μm-length nanotubes as the photoanode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.18% was achieved. Furthermore, we show that the DSSC unit can serve as a robust power source to drive a humidity sensor, with a potential for self-powered devices. © 2010 IOP Publishing Ltd.

  16. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Directory of Open Access Journals (Sweden)

    Wojciech Szmyt

    2017-01-01

    Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  17. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin; Zhang, Jie; Ma, Junjun; Zhang, Yuxin; Yao, Kexin

    2015-01-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  18. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    KAUST Repository

    Zhu, Shijin

    2015-03-01

    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.

  19. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells

    NARCIS (Netherlands)

    Iraj, M.; Kolahdouz, M.; Asl-Soleimani, E.; Esmaeili, E.; Kolahdouz Esfahani, Z.

    2016-01-01

    In this paper, we present the synthesis of TiO2 nanotube (NT) arrays formed by anodization of Ti film deposited on a fluorine-doped tin oxide-coated glass substrate by direct current magnetron sputtering. NH4F/ethylene glycol electrolyte was used to demonstrate the growth of stable nanotubes at room

  20. Anisotropically functionalized carbon nanotube array based hygroscopic scaffolds.

    Science.gov (United States)

    Ozden, Sehmus; Ge, Liehui; Narayanan, Tharangattu N; Hart, Amelia H C; Yang, Hyunseung; Sridhar, Srividya; Vajtai, Robert; Ajayan, Pulickel M

    2014-07-09

    Creating ordered microstructures with hydrophobic and hydrophilic moieties that enable the collection and storage of small water droplets from the atmosphere, mimicking structures that exist in insects, such as the Stenocara beetle, which live in environments with limited amounts of water. Inspired by this approach, vertically aligned multiwalled carbon nanotube forests (NTFs) are asymmetrically end-functionalized to create hygroscopic scaffolds for water harvesting and storage from atmospheric air. One side of the NTF is made hydrophilic, which captures water from the atmosphere, and the other side is made superhydrophobic, which prevents water from escaping and the forest from collapsing. To understand how water penetrates into the NTF, the fundamentals of water/NTF surface interaction are discussed.

  1. Assessing the quality of VA Human Research Protection Programs: VA vs. affiliated University Institutional Review Board.

    Science.gov (United States)

    Tsan, Min-Fu; Nguyen, Yen; Brooks, Robert

    2013-04-01

    We compared the Human Research Protection Program (HRPP) quality indicator data of the Department of Veterans Affairs (VA) facilities using their own VA institutional review boards (IRBs) with those using affiliated university IRBs. From a total of 25 performance metrics, 13 did not demonstrate statistically significant differences, while 12 reached statistically significance differences. Among the 12 with statistically significant differences, facilities using their own VA IRBs performed better on four of the metrics, while facilities using affiliate IRBs performed better on eight. However, the absolute difference was small (0.2-2.7%) in all instances, suggesting that they were of no practical significance. We conclude that it is acceptable for facilities to use their own VA IRBs or affiliated university IRBs as their IRBs of record.

  2. Superemission in vertically-aligned single-wall carbon nanotubes

    Science.gov (United States)

    Khmelinskii, Igor; Makarov, Vladimir

    2016-09-01

    Presently we used two samples of vertically aligned single-wall carbon nanotubes (VA SWCNTs) with parallelepiped geometry, sized 0.02 cm × 0.2 cm × 1.0 cm and 0.2 cm × 0.2 cm × 1.0 cm. We report absorption and emission properties of the VA SWCNTs, including strong anisotropy in both their absorption and emission spectra. We found that the emission spectra extend from the middle-IR range to the near-IR range, with such extended spectra being reported for the first time. Pumping the VA SWCNTs in the direction normal to their axis, superemission (SE) was observed in the direction along their axis. The SE band maximum is located at 7206 ± 0.4 cm-1. The energy and the power density of the superemission were estimated, along with the diffraction-limited divergence. At the pumping energy of 3 mJ/pulse, the SE energy measured by the detector was 0.74 mJ/pulse, corresponding to the total SE energy of 1.48 mJ/pulse, with the energy density of 18.5 mJ cm-2/pulse and the SE power density of 1.2 × 105 W cm-2/pulse. We report that a bundle of VA SWCNTs is an emitter with a relatively small divergence, not exceeding 3.9 × 10-3 rad. We developed a theoretical approach to explain such absorption and emission spectra. The developed theory is based on the earlier proposed SSH theory, which we extended to include the exchange interactions between the closest SWCNT neighbors. The developed theoretical ideas were implemented in a homemade FORTRAN code. This code was successfully used to calculate and reproduce the experimental spectra and to determine the SWCNT species that originate the respective absorption bands, with acceptable agreement between theory and experiment.

  3. Characteristics Associated With Utilization of VA and Non-VA Care Among Iraq and Afghanistan Veterans With Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Finley, Erin P; Mader, Michael; Bollinger, Mary J; Haro, Elizabeth K; Garcia, Hector A; Huynh, Alexis K; Pugh, Jacqueline A; Pugh, Mary Jo

    2017-11-01

    Post-traumatic stress disorder (PTSD) affects nearly one-fifth of Iraq and Afghanistan Veterans (IAV). The Department of Veterans Affairs (VA) has invested in making evidence-based psychotherapies for PTSD available at every VA facility nationwide; however, an unknown number of veterans opt to receive care in the community rather than with VA. We compared PTSD care utilization patterns among Texas IAV with PTSD, an ethnically, geographically, and economically diverse group. To identify IAV in Texas with service-connected disability for PTSD, we used a crosswalk of VA administrative data from the Operation Enduring Freedom/Operation Iraqi Freedom Roster and service-connected disability data from the Veterans Benefits Administration. We then surveyed a random sample of 1,128 veterans from the cohort, stratified by sex, rurality, and past use/nonuse of any VA care. Respondents were classified into current utilization groups (VA only, non-VA only, dual care, and no professional PTSD treatment) on the basis of reported PTSD care in the prior 12 months. Responses were weighted to account for sample stratification and for response rate within each strata. Utilization group characteristics were compared to the population mean using the one sample Z-test for proportions, or the t-test for means. A multinomial logistic regression model was used to identify survey variables significantly associated with current utilization group. 249 IAV completed the survey (28.4% response rate). Respondents reported receiving PTSD care: in the VA only (58.3%); in military or community-based settings (including private practitioners) (non-VA only, 8.7%); and in both VA and non-VA settings (dual care, 14.5%). The remainder (18.5%) reported no professional PTSD care in the prior year. Veterans ineligible for Department of Defense care, uncomfortable talking about their problems, and opposed to medication were more likely to receive non-VA care only, whereas those with lower household income

  4. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  5. Controlling Structural Characteristics of Single-Walled Carbon Nanotubes (SWNT) by Tailoring Catalyst Composition and Synthesis Conditions

    International Nuclear Information System (INIS)

    Resasco, Daniel E.

    2010-01-01

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  6. UV light-assisted fabrication of Cu{sub 0.91}In{sub 0.09}S microspheres sensitized TiO{sub 2} nanotube arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinyu; Gu, Hongmei [School of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province (China); Yin, Yuanyuan; Guan, Yue [Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province (China); Rong, Shengzhong; Yin, Yongkui; Chen, Yingying [School of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province (China); Wu, Qunhong; Hao, Yanhua [Department of Social Medicine, School of Health Management, Harbin Medical University, Harbin, Heilongjiang Province (China); Li, Miaojing, E-mail: limiaojing@aliyun.com [School of Public Health, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province (China)

    2015-04-15

    Highlights: • Cu{sub 0.91}In{sub 0.09}S microspheres were deposited on TiO{sub 2} NTs by a photodeposition method. • The average diameter of Cu{sub 0.91}In{sub 0.09}S microspheres is 600 nm. • The TiO{sub 2} NTs/CIS shows high photocurrents and visible photocatalytic activity. - Abstract: TiO{sub 2} nanotube arrays sensitized with Cu{sub 0.91}In{sub 0.09}S microspheres (TiO{sub 2} NTs/CIS) were successfully fabricated by a two-step process of anodization and followed by an in situ photodeposition method. The structural investigation by scanning electron microscopy and transmission electron microscopy indicated that the Cu{sub 0.91}In{sub 0.09}S microspheres with average diameter of 600 nm grew on the surface of the TiO{sub 2} nanotubes. The TiO{sub 2} NTs/CIS exhibited more excellent photoelectrochemical properties and photocatalytic activities than those of TiO{sub 2} NTs under visible light irradiation, and the corresponding electron transformation was proposed in detail.

  7. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  8. KENO V.a Primer: A Primer for Criticality Calculations with SCALE/KENO V.a Using CSPAN for Input

    International Nuclear Information System (INIS)

    Busch, R.D.

    2003-01-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory (ORNL) is widely used and accepted around the world for criticality safety analyses. The well-known KENO V.a three-dimensional Monte Carlo criticality computer code is the primary criticality safety analysis tool in SCALE. The KENO V.a primer is designed to help a new user understand and use the SCALE/KENO V.a Monte Carlo code for nuclear criticality safety analyses. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with SCALE/KENO V.a in particular. The primer is designed to teach by example, with each example illustrating two or three features of SCALE/KENO V.a that are useful in criticality analyses. The primer is based on SCALE 4.4a, which includes the Criticality Safety Processor for Analysis (CSPAN) input processor for Windows personal computers (PCs). A second edition of the primer, which uses the new KENO Visual Editor, is currently under development at ORNL and is planned for publication in late 2003. Each example in this first edition of the primer uses CSPAN to provide the framework for data input. Starting with a Quickstart section, the primer gives an overview of the basic requirements for SCALE/KENO V.a input and allows the user to quickly run a simple criticality problem with SCALE/KENO V.a. The sections that follow Quickstart include a list of basic objectives at the beginning that identifies the goal of the section and the individual SCALE/KENO V.a features which are covered in detail in the example problems in that section. Upon completion of the primer, a new user should be comfortable using CSPAN to set up criticality problems in SCALE/KENO V.a

  9. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  10. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin.

    Science.gov (United States)

    Hong, Soo Yeong; Lee, Yong Hui; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Yun, Junyeong; You, Ilhwan; Zi, Goangseup; Ha, Jeong Sook

    2016-02-03

    A stretchable polyaniline nanofiber temperature sensor array with an active matrix consisting of single-walled carbon nanotube thin-film transistors is demonstrated. The integrated temperature sensor array gives mechanical stability under biaxial stretching of 30%, and the resultant spatial temperature mapping does not show any mechanical or electrical degradation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Gao, M.; Feng, B.; Sun, Y.; Xing, G.; Li, S.; Yang, J.; Yang, L.; Zhang, Y.; Liu, H.; Fan, H.; Sui, Y.; Zhang, Z.; Liu, S.; Song, H.

    2012-01-01

    We report on the fabrication of a highly aligned silver-decorated array of zinc oxide nanotubes for use in surface-enhanced Raman spectroscopy (SERS). The ZnO nanotube array was first prepared by chemical etching, and the silver nanoparticles (AgNPs) were then deposited on their surface by magnetron sputtering. Such ZnO/Ag hybrid structures are shown to act as SERS-active substrates with remarkable sensitivity. The enhancement factor can be as high as 10 5 when using 4-mercaptopyridine in solution as a SERS probe. The synergistic combination between SERS 'hot spots' and the formation of an interfacial electric field between the zinc oxide nanotubes and the AgNPs in our opinion contribute to the high sensitivity. The relative standard deviations of signal intensities for the major SERS peaks are <7 %. This demonstrates that the optimized ZnO/Ag hybrid represents an excellent SERS substrate that may be used in trace analysis and ultrasensitive molecular sensing. (author)

  12. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    Science.gov (United States)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  13. The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater.

    Science.gov (United States)

    Noeiaghaei, T; Yun, J-H; Nam, S W; Zoh, K D; Gomes, V G; Kim, J O; Chae, S R

    2015-01-01

    The effects of geometrical characteristics such as surface area (SA) and porosity of TiO2 nanotube arrays (TNAs) on its photocatalytic activity were investigated by applying variable voltages and reaction times for the anodization of Ti substrates. While larger SA of nanotubes was observed under higher applied potential, the porosity of TNAs decreased by increasing anodizing voltage. Under applied potential of 80 V, the SA of TNAs increased from 0.164 to 0.471 m2/g as anodization time increased from 1 to 5 hours, respectively. However, no significant effect on the porosity of TNAs was observed. On the other hand, both SA and porosity of TNAs, synthesized at 60 V, increased by augmenting the anodization time from 1 to 3 hours. But further increasing of anodization time to 5 hours resulted in a decreased SA of TNAs with no effect on their porosity. Accordingly, the TNAs with SA of 0.368 m2/g and porosity of 47% showed the highest photocatalytic activity for degradation of 4-chlorobenzoic acid (4CBA). Finally, the degradation of refractory model compounds such as carbamazepine and bisphenol-A was tested and more than 50% of both compounds could be degraded under UV-A irradiation (λmax=365 nm).

  14. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  15. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  16. Report of VA Medical Training Programs

    Data.gov (United States)

    Department of Veterans Affairs — The Report of VA Medical Training Programs Database is used to track medical center health services trainees and VA physicians serving as faculty. The database also...

  17. Electrochemical method for rapid synthesis of Zinc Pentacyanonitrosylferrate Nanotubes

    Directory of Open Access Journals (Sweden)

    Rogaieh Bargeshadi

    2014-10-01

    Full Text Available In this paper, a rapid and simple approach was developed for the preparation of zinc pentacyanonitrosylferrate nanotubes (ZnPCNF NTs within the cylindrical pores of anodic aluminum oxide (AAO template by electrochemical method. The AAO was fabricated in two steps anodizing from aluminum foil. The first anodization of aluminum foil was performed in 0.2 mol L-1 H2C2O4 followed by removal of the formed porous oxide film by a solution of 6 wt% of phosphoric acid. The second anodization step was then performed using the same conditions as the previous step. Scanning electron microscope (SEM and X-ray diffraction (XRD method were employed to characterize the resulting highly oriented uniform hollow tube array which its diameter was in the range of 25-75 nm depending on the applied voltage and the length of nanotubes was equal to the thickness of AAO which was about 2 m. The growth properties of the ZnPCNF NTs array film can be achieved by controlling the structure of the template and applied potential across the cell.

  18. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  19. Polyaniline–multi-wall-carbon nanotube nanocomposites as a dopamine sensor

    Directory of Open Access Journals (Sweden)

    REZA EMAMALI SABZI

    2010-04-01

    Full Text Available A composite of polyaniline with multi-wall-carbon nanotubes (PANi/ /MWCNTs was synthesized by an in situ chemical oxidative polymerization method. The PANi nanoparticles were synthesized chemically using aniline as the monomer and ammonium peroxydisulfate as the oxidant. The nanocomposites were prepared as a carbon paste using functionalized MWCNTs and PANi nanoparticles. The PANi–MWCNTs were characterized physically using scanning electron microscopy (SEM and the electrochemical behavior of the composites in acidic solution (HCl was investigated using cyclic voltammetry. The PANi/MWCNT composite electrode was used for studying dopamine (DA as an electroactive material. The cyclic voltammetric results indicated that multi-wall carbon nanotubes (MWCNTs significantly enhanced the electrocatalytic activity in favor of the oxidation of DA. The kinetics of the catalytic reaction was investigated using the chronoamperometry technique whereby the average va¬lue of the diffusion coefficient (D and the catalytic rate constant (k for DA were determined to be (7.98±0.8×10-7 cm2 s-1 and (8.33±0.072×104 dm3 mol-1 s-1, respectively.

  20. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    Science.gov (United States)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.