WorldWideScience

Sample records for nanotechnology initiative driving

  1. German innovation initiative for nanotechnology

    Rieke, Volker; Bachmann, Gerd

    2004-10-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative "Nanotechnologie erobert Märkte" (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society.

  2. German innovation initiative for nanotechnology

    Rieke, Volker; Bachmann, Gerd

    2004-01-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative 'Nanotechnologie erobert Maerkte' (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society

  3. National Nanotechnology Initiative Strategic Plan

    2011-02-01

    Manufactured Nanomaterials, supported by NIST staff in important leadership roles and coordinated with other agencies through the Global Issues in...groups are Global Issues in Nanotechnology (GIN); Nanotechnology Environmental and Health Implications (NEHI); Nanomanufacturing, Industry Liaison...existing or new working groups in terms of focus, intended participation, and scope, as reflected in the groups’ charters. Global Issues in Nanotechnology

  4. 75 FR 75707 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    2010-12-06

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  5. 76 FR 2428 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    2011-01-13

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  6. Nanotechnology

    Abdul Kadir Masrom

    2005-01-01

    The following subjects discussed: What is nanotechnology, Nanotechnology research and development, whats new about nanosciences, nano research facilities, impact of nanotechnology, commercially available nanotechnology, review on research status

  7. The National Nanotechnology Initiative. Strategic Plan

    2007-01-01

    .... Realizing these possibilities requires continued research and accelerated innovation. The United States has been and is now the recognized leader in nanotechnology research and development (R&D...

  8. National Nanotechnology Initiative Investments by Agency and Program Component Area

    Office of Science and Technology Policy, Executive Office of the President — Data represents National Nanotechnology Initiative investments by agency and program component area (PCA) from FY 2001 through FY 2010 (requested). While this data...

  9. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years

    Roco, Mihail C.

    2011-01-01

    A global scientific and societal endeavor was set in motion by the nanotechnology vision formulated in 1999 that inspired the National Nanotechnology Initiative (NNI) and other national and international R and D programs. Establishing foundational knowledge at the nanoscale has been the main focus of the nanotechnology research community in the first decade. As of 2009, this new knowledge underpinned about a quarter of a trillion dollars worldwide market, of which about $91 billion was in US products that incorporate nanoscale components. Nanotechnology is already evolving toward becoming a general-purpose technology by 2020, encompassing four generations of products with increasing structural and dynamic complexity: (1) passive nanostructures, (2) active nanostructures, (3) nanosystems, and (4) molecular nanosystems. By 2020, the increasing integration of nanoscale science and engineering knowledge and of nanosystems promises mass applications of nanotechnology in industry, medicine, and computing, and in better comprehension and conservation of nature. Nanotechnology’s rapid development worldwide is a testimony to the transformative power of identifying a concept or trend and laying out a vision at the synergistic confluence of diverse scientific research areas. This chapter provides a brief perspective on the development of the NNI since 2000 in the international context, the main outcomes of the R and D programs after 10 years, the governance aspects specific to this emerging field, lessons learned, and most importantly, how the nanotechnology community should prepare for the future.

  10. Regional, State, and Local Initiatives in Nanotechnology: Report of the National Nanotechnology Initiative Workshop, April 1-3, 2009, Oklahoma City, OK

    2009-04-01

    nanotechnology to generate more student curiosity regarding STEM topics and STEM careers, nanotechnology could also turn out to be a significant...imperative to be proactive about disposal and recycling of nanomaterials and products containing nanomaterials. These initiatives, programs, and

  11. 78 FR 69462 - National Nanotechnology Initiative Strategic Plan; National Science and Technology Council...

    2013-11-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY OFFICE National Nanotechnology Initiative Strategic Plan; National Science and Technology Council; National Nanotechnology Coordination Office AGENCY: Executive... Science, Engineering, and Technology Subcommittee requests public comments on the draft 2014 National...

  12. The National Nanotechnology Initiative: Second Assessment and Recommendations of the National Nanotechnology Advisory Panel

    2008-04-01

    Council on Bioethics . NNI member agencies and the National Nanotechnology Coordination Office (NNCO) also provided valuable information. The NNAP...societal aspects of nanotechnology. In consultation with the President’s Council on Bioethics , the panel concluded that at present, nanotechnology...biomarker. One is a magnetic particle probe that captures the target from complex media . The other is a gold nanoparticle probe that is specific to the

  13. 75 FR 67149 - Request for Public Comment on the Draft 2010 National Nanotechnology Initiative Strategic Plan

    2010-11-01

    ... Nanotechnology Initiative Strategic Plan AGENCY: White House Office of Science and Technology Policy. ACTION... Technology Policy and the Nanoscale Science, Engineering, and Technology [[Page 67150

  14. Nanotechnology

    CERN. Geneva

    2003-01-01

    Structuring matter on the nanometer range is much more that just making things smaller than in existing microscale devices. Rather the exploitation of phenomena that stem exclusively from the nanoscale dimensions of device elements holds the promise of new functionalities and applications in various fields as electronics, mechanics, optics or medicine. I will give a general introduction in the basics of nanotechnology, illustrated by existing and envisaged applications from which a strong impact on both science and our daily life is to be expected. I will also discuss the methodology and experimental techniques, as scanning probe microscopies and lithography.

  15. Nanotechnology

    Chan-Remillard, S.; Kapustka, L.; Goudey, S.

    Nanotechnology is a rapidly emerging field. There are currently over 500 consumer products available in the marketplace and the field of nanotechnology itself that will be worth over 1 trillion by 2012. However, with an increasing number of products emerging, there is also a consequent rise in ecological and human exposure. The risk and degree of exposure to nanoscale particles (NP) will vary depending on the form of the particle, for example, powder, liquid or encapsulated, when contact occurs. Although, general public exposure to NP is increasing due to the shear number of products available, the majority of human exposure still occurs in an occupational setting. Preliminary exposure studies demonstrate that NP may enter the body via the gastrointestinal, respiratory and integumentary systems and then translocate to other vital organs and systems (for example via the olfactory bulb). Historical data on ultrafine particles have shown a higher incidence of lung cancer and respiratory disorders associated with exposure. Due to these data and evidence emerging directly on NP, precautionary measures may be warranted to ensure worker safety. Regulatory agencies and manufacturers are beginning to consider standard practices that adequately protect workers from nanoscale particle exposure. The occupational hazards associated with exposure and the current safety recommendations will be discussed.

  16. Nanotechnology

    Biaggi-Labiosa, Azlin

    2016-01-01

    Present an overview of the Nanotechnology Project at NASA's Game Changing Technology Industry Day. Mature and demonstrate flight readiness of CNT reinforced composites for future NASA mission applications?Sounding rocket test in a multiexperiment payload?Integrate into cold gas thruster system as propellant storage?The technology would provide the means for reduced COPV mass and improved damage tolerance and flight qualify CNT reinforced composites. PROBLEM/NEED BEING ADDRESSED:?Reduce weight and enhance the performance and damage tolerance of aerospace structuresGAME-CHANGING SOLUTION:?Improve mechanical properties of CNTs to eventually replace CFRP –lighter and stronger?First flight-testing of a CNT reinforced composite structural component as part of an operational flight systemUNIQUENESS:?CNT manufacturing methods developed?Flight qualify CNT reinforced composites

  17. From Vision to the Implementation of the U.S. National Nanotechnology Initiative

    Roco, M. C.

    2001-02-01

    All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale. Fundamental discoveries and potential implications of nanotechnology to wealth, health and peace have captured the imagination of scientists, industry and government experts. The National Nanotechnology Initiative (NNI) has become a top national priority in science and technology in U.S. for fiscal year 2001, with a Federal nanotechnology investment portfolio of 422 million. Nanotechnology is expected to have a profound impact on our economy and society in the earlier 21st century. The vision, research and development strategy, and timeline of NNI are presented by using several recent scientific discoveries and results from industry.

  18. From Vision to the Implementation of the U.S. National Nanotechnology Initiative

    Roco, M.C.

    2001-01-01

    All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale. Fundamental discoveries and potential implications of nanotechnology to wealth, health and peace have captured the imagination of scientists, industry and government experts. The National Nanotechnology Initiative (NNI) has become a top national priority in science and technology in U.S. for fiscal year 2001, with a Federal nanotechnology investment portfolio of $422 million. Nanotechnology is expected to have a profound impact on our economy and society in the earlier 21st century.The vision, research and development strategy, and timeline of NNI are presented by using several recent scientific discoveries and results from industry

  19. Report to the President and Congress on the Third Assessment of the National Nanotechnology Initiative

    Alper, Joe; Amato, Ivan

    2010-01-01

    The National Nanotechnology Initiative (NNI) is the U.S. Government's crosscutting program that coordinates Federal research and development (R&D) activities in nanoscale science, engineering, technology, and related efforts among various participating agencies. The Federal Government launched the NNI in FY 2001 with an initial $500 million…

  20. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    Broadbridge, Christine C. [Southern Connecticut State University

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  1. 78 FR 60319 - Request for Information: NNI Nanotechnology for Sensors and Sensors for Nanotechnology Signature...

    2013-10-01

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY NATIONAL NANOTECHNOLOGY COORDINATION OFFICE Request for Information: NNI Nanotechnology for Sensors and Sensors for Nanotechnology Signature Initiative ACTION: Notice... the value of the National Nanotechnology Initiative (NNI) and of the Nanotechnology Signature...

  2. The Ne3LS Network, Quebec's initiative to evaluate the impact and promote a responsible and sustainable development of nanotechnology

    Endo, Charles-Anica; Emond, Claude; Battista, Renaldo; Parizeau, Marie-Helene; Beaudry, Catherine

    2011-01-01

    The spectacular progress made by nanosciences and nanotechnologies elicits as much hope and fear. Consequently, a great number of research and training initiatives on the ethical, environmental, economic, legal and social issues regarding nanotechnology development (Ne 3 LS) are emerging worldwide. In Quebec, Canada, a Task Force was mandated by NanoQuebec to conceive a Ne 3 LS research and training strategy to assess those issues. This Task Force brought together experts from universities, governments or industry working in nanosciences and nanotechnologies or in Ne 3 LS. Their resulting action plan, made public in November 2006, contained several recommendations, including the creation of a knowledge network (Ne 3 LS Network). In the following years, after consulting with numerous key players concerned with the possible impacts of nanosciences and nanotechnologies in Quebec, the Ne 3 LS Network was launched in January 2010 in partnership with the Fonds quebecois de la recherche sur la nature et les technologies, the Fonds quebecois de la recherche sur la societe et la culture and the Fonds de la recherche en sante du Quebec, NanoQuebec, the Institut de recherche Robert-Sauve en sante et en securite du travail as well as the University of Montreal. Its objectives are to 1) Foster the development of Ne 3 LS research activities (grants and fellowships); 2) Spearhead the Canadian and international Ne 3 LS network; 3) Take part in the training of researchers and experts; 4) Encourage the creation of interactive tools for the general public; 5) Facilitate collaboration between decision-makers and experts; 6) Involve the scientific community through a host of activities (symposium, conferences, thematic events); 7) Build multidisciplinary research teams to evaluate the impact of nanotechnology.

  3. Devices of Responsibility: Over a Decade of Responsible Research and Innovation Initiatives for Nanotechnologies.

    Shelley-Egan, Clare; Bowman, Diana M; Robinson, Douglas K R

    2017-10-10

    Responsible research and innovation (RRI) has come to represent a change in the relationship between science, technology and society. With origins in the democratisation of science, and the inclusion of ethical and societal aspects in research and development activities, RRI offers a means of integrating society and the research and innovation communities. In this article, we frame RRI activities through the lens of layers of science and technology governance as a means of characterising the context in which the RRI activity is positioned and the goal of those actors promoting the RRI activities in shaping overall governance patterns. RRI began to emerge during a time of considerable deliberation about the societal and governance challenges around nanotechnology, in which stakeholders were looking for new ways of integrating notions of responsibility in nanotechnology research and development. For this reason, this article focuses on nanotechnology as the site for exploring the evolution and growth of RRI.

  4. The National Nanotechnology Initiative. Research and Development Leading to a Revolution in Technology and Industry. Supplement to the President's 2006 Budget

    2005-01-01

    The National Nanotechnology Initiative (NNI) is a multi-agency U.S. Government program aimed at accelerating the discovery, development, and deployment of nanoscale science, engineering, and technology...

  5. Initiatives and strategies for development of nanotechnology in nations: a lesson for Africa and other least developed countries

    Ezema, Ikechukwu C.; Ogbobe, Peter O.; Omah, Augustine D.

    2014-03-01

    It is a known fact that the progress and development of different nations of the world is strongly connected with the type of materials under their use. This paper highlighted the development of nanotechnology in some selected countries of the world through a careful review of their road maps by way of public and private initiatives, funding/investment profile, human resources development, industrial potentials, and focus in order to draw inferences. The peculiar challenges and opportunities for some African nations and other least developed countries (LDC) were drawn for their economic and technological developments. This investigation was simply based on open access literatures. The review showed that although nanotechnology is new globally, most countries of the world have had growing public and private investments aimed at bringing about new materials and systems that can impact positively on their economy and ensure their global competitiveness and sustainability. The global scenario suggests the crucial role of cooperation in a multidisciplinary collaboration/partnership between government ministries, agencies, institutions, and private sector/donor agencies in order to pool enough resource capital required for activities in nanotechnology.

  6. Initiatives and strategies for development of nanotechnology in nations: a lesson for Africa and other least developed countries

    2014-01-01

    It is a known fact that the progress and development of different nations of the world is strongly connected with the type of materials under their use. This paper highlighted the development of nanotechnology in some selected countries of the world through a careful review of their road maps by way of public and private initiatives, funding/investment profile, human resources development, industrial potentials, and focus in order to draw inferences. The peculiar challenges and opportunities for some African nations and other least developed countries (LDC) were drawn for their economic and technological developments. This investigation was simply based on open access literatures. The review showed that although nanotechnology is new globally, most countries of the world have had growing public and private investments aimed at bringing about new materials and systems that can impact positively on their economy and ensure their global competitiveness and sustainability. The global scenario suggests the crucial role of cooperation in a multidisciplinary collaboration/partnership between government ministries, agencies, institutions, and private sector/donor agencies in order to pool enough resource capital required for activities in nanotechnology. PMID:24650295

  7. Initiative for safe driving and enhanced utilization of crash data

    Wagner, John F.

    1994-03-01

    This initiative addresses the utilization of current technology to increase the efficiency of police officers to complete required Driving Under the Influence (DUI) forms and to enhance their ability to acquire and record crash and accident information. The project is a cooperative program among the New Mexico Alliance for Transportation Research (ATR), Science Applications International Corporation (SAIC), Los Alamos National Laboratory, and the New Mexico State Highway and Transportation Department. The approach utilizes an in-car computer and associated sensors for information acquisition and recording. Los Alamos artificial intelligence technology is leveraged to ensure ease of data entry and use.

  8. Nanotechnology in Military Development

    Andrus Pedai; Igor Astrov

    2014-01-01

    Nanotechnology is the new cyber, according to several major leaders in this field. Just as cyber is entrenched across global society now, nano is poised to be major capabilities enabler of the next decades. Expert members from the National Nanotechnology Initiative (in U.S.) representing government and science disciplines say nano has great significance for the military and the general public. It is predicted that after next 15 years nanotechnology will replace information technology as the m...

  9. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  10. [Nanotechnology future of medicine].

    Terlega, Katarzyna; Latocha, Małgorzata

    2012-10-01

    Nanotechnology enables to produce products with new, exactly specified, unique properties. Those products are finding application in various branches of electronic, chemical, food and textile industry as well as in medicine, pharmacy, agriculture, architectural engineering, aviation and in defense. In this paper structures used in nanomedicine were characterized. Possibilities and first effort of application of nanotechnology in diagnostics and therapy were also described. Nanotechnology provides tools which allow to identifying changes and taking repair operations on cellular and molecular level and applying therapy oriented for specific structures in cell. Great hope are being associated with entering nanotechnology into the regenerative medicine. It requires astute recognition bases of tissue regeneration biology--initiating signals as well as the intricate control system of the progress of this process. However application of nanotechnology in tissue engineering allows to avoiding problems associated with loss properties of implants what is frequent cause of performing another surgical procedure at present.

  11. Nanotechnology Innovations

    Malroy, Eric

    2010-01-01

    Nanotechnology is rapidly affecting all engineering disciplines as new products and applications are being found and brought to market. This session will present an overview of nanotechnology and let you learn about the advances in the field and how it could impact you. Some of the areas touched upon will be nanomaterials with their multifunctional capabilities, nanotechnology impact on energy systems, nanobiotechnology including nanomedicine, and nanotechnology relevant to space systems with a focus on ECLSS. Also, some important advances related to thermal systems will be presented as well as future predictions on nanotechnology.

  12. National Nanotechnology Initiative. Research and Development Supporting the Next Industrial Revolution. Supplement to the President's 2004 Budget

    2004-01-01

    .... Advances in nanoscience and nanoengineering are already ushering in new applications or nanotechnologies that are leading to improved products across a broad realm of sectors, from textiles to electronics...

  13. Nanotechnology in the environment industry : opportunities and trends[Final report and bibliography for the nano-environmental cross-sector initiative

    Schmidt, K. [DK3 Scientific Ltd., Edmonton, AB (Canada); Backs, S.; Janzen, K. [SynchroComm Inc., Edmonton, AB (Canada); Theriault, Y. [CHI 3 Consulting Inc., Edmonton, AB (Canada)

    2005-03-04

    Extensive oil and gas production in Alberta has resulted in contaminated soil at several thousand well sites. The petrochemical infrastructure and industrial development has also contributed to other site contamination challenges. Alberta's Nano-Environmental Cross Sector Initiative was launched to help remediate existing environmental pollutants and to reduce or prevent future pollution problems, particular in areas of immediate interest to Alberta industry such as soil remediation, water purification, desalination, and high-sensitivity chemical sensors for field use. This presentation discussed the potential for nanotechnology to provide enabling technologies for wastewater and hazardous waste management, resource recovery, pollution prevention, green manufacturing and energy efficiency. A search of the United States patent database was conducted for relevant nanotechnologies and a review was conducted of primary scientific literature. Members of the Environmental Services Association of Alberta (ESAA) were surveyed to determine the current status of nanotechnology awareness and implementation within the Alberta environmental industry. Current products and precommercialization of nanotechnology for the environmental industry were presented. refs., tabs., figs.

  14. The Ne3LS Network, Québec's initiative to evaluate the impact and promote a responsible and sustainable development of nanotechnology

    Endo, Charles-Anica; Emond, Claude; Battista, Renaldo; Parizeau, Marie-Hélène; Beaudry, Catherine

    2011-07-01

    The spectacular progress made by nanosciences and nanotechnologies elicits as much hope and fear. Consequently, a great number of research and training initiatives on the ethical, environmental, economic, legal and social issues regarding nanotechnology development (Ne3LS) are emerging worldwide. In Québec, Canada, a Task Force was mandated by NanoQuébec to conceive a Ne3LS research and training strategy to assess those issues. This Task Force brought together experts from universities, governments or industry working in nanosciences and nanotechnologies or in Ne3LS. Their resulting action plan, made public in November 2006, contained several recommendations, including the creation of a knowledge network (Ne3LS Network). In the following years, after consulting with numerous key players concerned with the possible impacts of nanosciences and nanotechnologies in Québec, the Ne3LS Network was launched in January 2010 in partnership with the Fonds québécois de la recherche sur la nature et les technologies, the Fonds québécois de la recherche sur la société et la culture and the Fonds de la recherche en santé du Québec, NanoQuébec, the Institut de recherche Robert-Sauvé en santé et en sécurité du travail as well as the University of Montreal. Its objectives are to 1) Foster the development of Ne3LS research activities (grants and fellowships); 2) Spearhead the Canadian and international Ne3LS network; 3) Take part in the training of researchers and experts; 4) Encourage the creation of interactive tools for the general public; 5) Facilitate collaboration between decision-makers and experts; 6) Involve the scientific community through a host of activities (symposium, conferences, thematic events); 7) Build multidisciplinary research teams to evaluate the impact of nanotechnology.

  15. Wondrous nanotechnology

    Awan, I.Z.; Hussain, S.B.

    2016-01-01

    In the last two decades, a lot of progress has been made in Nanotechnology and Nanoscience, an exploitation of matter on atomic, molecular and supermolecular scale. Nanotechnology because of its size is widely used in such varied fields as surface science, molecular biology, organic chemistry, semi-conductor physics, micro fabrication, medical sciences, electronics, biomaterials, energy production, etc. Using nanotechnology, Researchers have been able to develop new materials with nanoscale dimensions to directly control matter on the atomic or molecular scale. Due to the range of many potential applications, both industrial and military, many governments boast invested billions of dollars in nanotechnology and nanoscience research. This brief review deals with the fundamentals of nanotechnology and nanoscience and its application in various fields. It also discusses the future of nanotechnology and the risks involved in it. (author)

  16. EDITORIAL: Nanotechnological selection Nanotechnological selection

    Demming, Anna

    2013-01-01

    California, Riverside [4]. Mangu et al in the US have developed highly sensitive and selective room temperature gas sensors made from composites of multiwalled carbon nanotubes and polymers [5]. They report sensitivities as high as 28% when exposed to 100 ppm of NH3 and 29.8% to 100 ppm of NO2. Nanopore structures are also showing increasing promise for sensing and biophysical characterization applications, in particular DNA [6]. An applied potential drives negatively charged DNA molecules through nanopores in a membrane and gives rise to current blockage pulses that are characteristic of specific analytes. Solid-state nanopore structures hold advantages over biological pores, such as those in α-haemolysin protein, as they are more resilient to experimental conditions, and ideally should also allow control of the nanopore diameter, channel length and surface composition. Asghar and colleagues have now reported a method that enables just that, 'a rapid solid-state nanopore fabrication and controlled pore shrinking process which does provide simultaneous in situ control of surface properties' [7]. In addition, they demonstrate the viability of the approach for single molecule sensor applications using double-stranded DNA. In this issue, researchers in China report on a different approach which allows control over the transport of ionic fluids through nanopore-type structures. They describe the rapid field effect control of electrical conductance in single nanotube nanofluidic transistors [1]. Rather than seeking to control the charge of thenanotube inner surface, Gong and colleagues control polarity switching based on negative and positive ion selectivity using an external charge. 'The polarity of the nanotube can be reversed and tuned by the external field, which could find interesting applications in the field of ion separation and energy conversion', they explain, adding that the system may also find a use as a voltage sensor through the detection of the type of ions

  17. National Nanotechnology Initiative. Research and Development Supporting the Next Industrial Revolution. Supplement to the President’s 2004 Budget

    2004-01-01

    and Development Supporting the Next Industrial Revolution Supplement to the President’s FY 2004 Budget National Science and Technology Council...potential to profoundly change our economy, to improve our standard of living, and to bring about the next industrial revolution . Nanotechnology: From

  18. The future of nanotechnology

    Jones, Richard

    2005-01-01

    Visions of self-replicating nanomachines that could devour the Earth in a 'grey goo' are probably wide of the mark, but 'radical nanotechnology' could still deliver great benefits to society. The question is how best to achieve this goal. What we could call 'incremental nanotechnology' involves improving the properties of many materials by controlling their nano-scale structure. Plastics, for example, can be reinforced using nano-scale clay particles, making them stronger, stiffer and more chemically resistant. Cosmetics can be formulated such that the oil phase is much more finely dispersed, thereby improving the feel of the product on the skin. These are the sorts of commercially available products that are said to be based on nanotechnology. The science underlying them is sophisticated and the products are often big improvements on what has gone before. However, they do not really represent a decisive break from the past. In 'evolutionary nanotechnology' we move beyond simple materials that have been redesigned at the nano-scale to actual nano-scale devices that do something interesting. Such devices can, for example, sense the environment, process information or convert energy from one form to another. They include nano-scale sensors, which exploit the huge surface area of carbon nanotubes and other nano-structured materials to detect environmental contaminants or biochemicals. Other products of evolutionary nanotechnology are semiconductor nanostructures - such as quantum dots and quantum wells - that are being used to build better solid-state lasers. Scientists are also developing ever more sophisticated ways of encapsulating molecules and delivering them on demand for targeted drug delivery. Taken together, incremental and evolutionary nanotechnology are driving the current excitement in industry and academia for all things nano-scale. The biggest steps are currently being made in evolutionary nanotechnology, more and more products of which should appear on

  19. Impact of nanotechnology on drug delivery.

    Farokhzad, Omid C; Langer, Robert

    2009-01-27

    Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.

  20. Lipid Nanotechnology

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  1. Nanotechnology Applications

    This book chapter discusses various nanotechnologies for water sustainability. Detailed information on catalysis as an advanced oxidation process, nanofiltration, adsorption, water disinfection, and groundwater remediation is provided for water treatment. These nanomaterials effe...

  2. Nanotechnology applications for glioblastoma.

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Nanotechnology: Fundamental Principles and Applications

    Ranjit, Koodali T.; Klabunde, Kenneth J.

    Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.

  4. Refining search terms for nanotechnology

    Porter, Alan L.; Youtie, Jan; Shapira, Philip; Schoeneck, David J.

    2008-01-01

    The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as 'nano') given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed

  5. Refining search terms for nanotechnology

    Porter, Alan L. [Georgia Institute of Technology (United States); Youtie, Jan [Georgia Institute of Technology, Enterprise Innovation Institute (United States)], E-mail: jan.youtie@innovate.gatech.edu; Shapira, Philip [Georgia Institute of Technology (United States); Schoeneck, David J. [Search Technology, Inc. (United States)

    2008-05-15

    The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as 'nano') given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.

  6. Lipid Nanotechnology

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and

  7. DNA nanotechnology

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  8. Cancer Nanotechnology Plan

    The Cancer Nanotechnology Plan serves as a strategic document to the NCI Alliance for Nanotechnology in Cancer as well as a guiding document to the cancer nanotechnology and oncology fields, as a whole.

  9. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  10. Nanotechnology Applications for Glioblastoma

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  11. International strategy for Nanotechnology Research

    Roco, M.C.

    2001-01-01

    The worldwide nanotechnology research and development (R and D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed $1 trillion in 10-15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R and D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R and D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations

  12. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    Coomes, E.P.; Dagle, J.E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI

  13. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  14. Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.

    Ganapati V Hegde

    Full Text Available Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs. We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence.

  15. The Grand Challenges of Nanotechnology

    Lane, Neal

    2001-01-01

    Amazing breakthroughs and advances continue to be made in nanoscale science and engineering and the rapidly emerging field of nanotechnology, including near-commercial applications in biomedicine, computing and environmental protection. The National Nanotechnology Initiative, begun by the Clinton Administration has placed nanoscale research on a new funding trajectory. But, many 'grand challenges' must be overcome, technical ones as well as those related to funding, science and technology workforce, and the need for stronger collaboration across discipline, organizations, government agencies and with other countries

  16. Initiatives driving accelerated access to medicines in Europe: Review of recent concepts and developments

    Mia Gannedahl

    2018-03-01

    Full Text Available Improving timely patient access to new medicines, particularly in areas with high unmet need, has been a healthcare priority during the past 5–10 years, with several new regulatory initiatives from the European Medicines Agency, as well as on national level within the European Union. Nevertheless, evidence suggests that medicines going through these regulatory initiatives experience variable reimbursement outcomes due to uncertainties in the clinical or economic evidence base. New initiatives, including the adaptive pathways concept, have therefore been introduced that embrace a holistic view of a medicine’s route to patient access. These involve expanded clusters of stakeholders working together to prospectively influence and design evidence generation strategies, including use of real-world evidence, to ensure that development plans meet the needs of multiple stakeholders including regulatory agencies and health technology assessment bodies. Multi-stakeholder dialogues, provided through scientific advice, are already available for medicines in Europe in various forms and are important tools for regulators, health technology assessment bodies and pharmaceutical companies to develop evidence generation plans optimised to support decision-making on marketing authorisation and reimbursement of new medicines. Multiple stakeholder groups have been actively engaged in advancing developments of initiatives driving timely access and it is likely to continue due to the need to balance this with affordability. The aim of this article is to provide a review of the latest, as well as a future perspective on, developments with respect to accelerated access of medicines in the European Union with a particular focus on procedures for formal scientific advice.

  17. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS

    G?K?AY, Banu; ARDA, Berna

    2015-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will...

  18. Microsystems and nanotechnology

    Zhou, Zhaoying [Tsinghua Univ., Beijing (China). Dept. of Precision Instruments and Mechanology; Lin, Liwei [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering; Wang, Zhonglin (eds.) [Georgia Institute of Technology, Atlanta, GA (United States). Center for Nanostructure Characterization and Fabrication (CNCF)

    2012-07-01

    This book presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts - the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects.

  19. Public perception of nanotechnology

    Burri, Regula Valerie; Bellucci, Sergio

    2008-01-01

    While several studies on the public opinion of nanotechnology have pointed to a rather enthusiastic U.S. public, the public uptake of nanotechnology in Europe is more contained. The results of the Swiss publifocus on nanotechnology reveal a pragmatic attitude of citizens toward the emerging technologies, thus confirming what has been identified as a 'balanced approach' in the NanoJury UK

  20. Responsible nanotechnology development

    Forloni, Gianluigi

    2012-08-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity's well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach to

  1. Responsible nanotechnology development

    Forloni, Gianluigi

    2012-01-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity’s well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach

  2. Functionalized surfaces and nanostructures for nanotechnological applications

    2003-01-01

    not know where to look. Over the last decade, technology has become synonymous with computers, software and communications, whether the internet or mobile telephones. Many of the initial applications of nanotechnology are materials related, such as additives for plastics, nanocarbon particles for improved steels, coatings and improved catalysts for the petrochemical industry. All of these are technology based industries, maybe not new ones, but industries with multi-billion dollar markets. 5. The nanotechnology industry It is increasingly common to hear people referring to `the nanotechnology industry', just like the software or mobile phone industries, but will such a thing ever exist? Many of the companies working with nanotechnology are simply applying our knowledge of the nanoscale to existing industries, whether it is improved drug delivery mechanisms for the pharmaceutical industry, or producing nanoclay particles for the plastics industry. In fact nanotechnology is an enabling technology rather than an industry in its own right. No one would ever describe Microsoft or Oracle as being part of the electricity industry, even though without electricity the software industry could not exist. Rather, nanotechnology is a fundamental understanding of how nature works at the atomic scale. New industries will be generated as a result of this understanding, just as the understanding of how electrons can be moved in a conductor by applying a potential difference led to electric lighting, the telephone, computing, the internet and many other industries, all of which would not have been possible without it. While it is possible to buy a packet of nanotechnology, a gram of nanotubes for example, it would have zero intrinsic value. The real value of the nanotubes would be in their application, whether within existing industry, or to enable the creation of a whole new one. 6. Fantastic voyage Shrinking machines down to the size where they can be inserted into the human body in

  3. EDITORIAL: Nanotechnology in vivo Nanotechnology in vivo

    Demming, Anna

    2010-04-01

    -imaging labels [4]. A surface hydroxyl group renders silicon quantum dots soluble in water and the photoluminescence can be made stable with oxygen-passivation. In addition, researchers in Japan have demonstrated how the initially modest yield in the preparation of silicon quantum dots can be improved to tens of milligrams per batch, thus further promoting their application in bio-imaging [5]. In the search for non-toxic quantum dots, researchers at the Amrita Centre for Nanoscience in India have prepared heavy metal-free quantum dot bio-probes based on single phase ZnS [6]. The quantum dots are selectively doped with metals, transition metals and halides to provide tuneable luminescence properties, and they are surface conjugated with folic acid for cancer targeting. The quantum dots were demonstrated to be water-soluble, non-toxic in normal and cancer cell lines, and have bright, tuneable luminescence. So far most of the quantum dots developed for bio-imaging have had excitation and emission wavelengths in the visible spectrum, which is highly absorbed by tissue. This limits imaging with these quantum dots to superficial tissues. This week, researchers in China and the US reported work developing functionalized dots for in vivo tumour vasculature in the infrared part of the spectrum [7]. In addition the quantum dots were functionalised with glycine-aspartic acid (RGD) peptides, which target the vasculature of almost all types of growing tumours, unlike antibody- or aptamer-mediated targeting strategies that are specific to a particular cancer type. In this issue, researchers in China and the US demonstrate a novel type of contrast agent for ultrasonic tumour imaging [8]. Contrast-enhanced ultrasonic tumour imaging extends the diagnostic and imaging capabilities of traditional techniques. The use of nanoparticles as ultrasound contrast agents exploits the presence of open pores in the range of 380 to 780 nm in tumour blood vessels, which enhance the permeability and retention

  4. National Needs Drivers for Nanotechnology

    Yonas, G.; Picraux, S.T.

    2000-10-09

    Societal needs related to demographics, resources, and human behavior will drive technological advances over the next 20 years. Nanotechnology is anticipated to be an important enabler of these advances, and thus maybe anticipated to have significant influence on new systems approaches to solving societal problems as well as on extending current science and technology-based applications. To examine the potential implications of nanotechnology a societal needs-driven approach is taken. Thus the methodology is to present the definition of the problem, and then examine system concepts, technology issues, and promising future directions. We approach the problem definition from a national and global security perspective and identify three key areas involving the condition of the planet, the human condition, and global security. In anticipating societal issues in the context of revolutionary technologies, such as maybe enabled by nanoscience, the importance of working on the entire life cycle of any technological solution is stressed.

  5. Broader Societal Issues of Nanotechnology

    Roco, M.C.

    2003-01-01

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R and D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about $30 million (of which National Science Foundation (NSF) awards about $23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about $50 million (of which NSF awards about $30 million and EPA about $6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public

  6. Broader Societal Issues of Nanotechnology

    Roco, M. C.

    2003-08-01

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R&D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about 30 million (of which National Science Foundation (NSF) awards about 23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about 50 million (of which NSF awards about 30 million and EPA about 6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.

  7. Broader Societal Issues of Nanotechnology

    Roco, M.C. [National Science Foundation (NSF) (United States)], E-mail: mroco@nsf.gov

    2003-08-15

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R and D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about $30 million (of which National Science Foundation (NSF) awards about $23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about $50 million (of which NSF awards about $30 million and EPA about $6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.

  8. Nanovate commercializing disruptive nanotechnologies

    Anis, Mohab; Sarhan, Wesam; Elsemary, Mona

    2017-01-01

    This book introduces readers from diverse backgrounds to the principles underlying nanotechnology, from devices to systems, while also describing in detail how businesses can use nanotechnology to redesign their products and processes, in order to have a clear edge over their competition. The authors include 75 case studies, describing in a highly-accessible manner, real nanotechnology innovations from 15 different industrial sectors. For each case study, the technology or business challenges faced by the company are highlighted, the type of nanotechnology adopted is defined, and the eventual economic and social impact is described. Introduces fundamentals of nanotechnology and its applications in a highly-accessible manner Includes 75 case studies of commercializing nanotechnology from 15 industrial sectors, including Automotive, Consumer Electronics, and Renewable Energy Enables nanotechnology experts to learn simple and important business concepts to facilitate the transfer of science to the market Introdu...

  9. Biomedical Applications of Nanotechnology and Nanomaterials

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  10. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS.

    Gökçay, Banu; Arda, Berna

    2015-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will not cause social and ethical outcomes. In general, the definition of nanotechnology is the reconfiguration of nanomaterials by human; there also are different definitions according to the history of nanotechnology and different point of views. First of all, in comparison to the other tehnology fields, what is the cause of excellence of nanotechnology, what human can do is to foresee the advantages and disadvantages of it, what are the roles of developed and developping countries for the progression of nanotechnology, what is the attitude of nanoethics and what is view of global politics to nanotechological research according to international regulations are all the focus of interests of this study. Last but not least, our apprehension capacity of nanotechnology, our style of adoption and evaluation of it and the way that how we locate nanotechnology in our lifes and ethical values are the other focus of interests.

  11. Public perceptions about nanotechnology: Risks, benefits and trust

    Cobb, Michael D.; Macoubrie, Jane

    2004-01-01

    We report data from the first representative national phone survey of Americans' perceptions about nanotechnology (N =1536). Public opinion about nanotechnology is in its infancy, and knowledge about it is quite limited. Yet, Americans' initial reaction to nanotechnology is thus far generally positive, probably rooted in a generally positive view of science overall. Survey respondents expected benefits of nanotechnology to be more prevalent than risks, and they reported feeling hopeful about nanotechnology rather than worried. Their most preferred potential benefit of nanotechnology is 'new and better ways to detect and treat human diseases,' and they identified 'losing personal privacy to tiny new surveillance devices' as the most important potential risk to avoid. The most discouraging aspect to the data is respondents' lack of trust in business leaders to minimize nanotechnology risks to human health. Overall, these data indicate that while Americans do not necessarily presume benefits and the absence of risks, their outlook is much more positive than not

  12. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Loss, Daniel

    2009-10-01

    of quantum cellular automata, a new paradigm for computing as reported by Craig S Lent and colleagues (Lent C S, Tougaw P D, Porod W and Bernstein G H 1993 Nanotechnology 4 49-57). The increasingly sophisticated manipulation of spin has been an enduring theme of research throughout this decade, providing a number of interesting developments such as spin pumping (Cota E, Aguado R, Creffield C E and Platero G 2003 Nanotechnology 14 152-6). The idea of spin qubits, proposed by D Loss and D P DiVincenzo (1998 Phys. Rev. A 57 120), developed into an established option for advancing research in quantum computing and continues to drive fruitful avenues of research, such as the integrated superconductive magnetic nanosensor recently devised by researchers in Italy (Granata C, Esposito E, Vettoliere A, Petti L and Russo M 2008 Nanotechnology 19 275501). The device has a spin sensitivity in units of the Bohr magneton of 100 spin Hz-1/2 and has large potential for applications in the measurement of nanoscale magnetization and quantum computing. The advance of science and technology at the nanoscale is inextricably enmeshed with advances in our understanding of quantum effects. As Nanotechnology celebrates its 20th volume, research into fundamental quantum phenomena continues to be an active field of research, providing fertile pasture for developing nanotechnologies.

  13. Public Attitudes Toward Nanotechnology

    Sims Bainbridge, William

    2002-01-01

    Data from 3909 respondents to an Internet survey questionnaire provide the first insights into public perceptions of nanotechnology. Quantitative analysis of statistics about agreement and disagreement with two statements, one positive and the other negative, reveals high levels of enthusiasm for the potential benefits of nanotechnology and little concern about possible dangers. The respondents mentally connect nanotechnology with the space program, nuclear power, and cloning research, but rate it more favorably. In contrast, they do not associate nanotechnology with pseudoscience, despite its imaginative exploitation by science fiction writers. Qualitative analysis of written comments from 598 respondents indicates that many ideas about the value of nanotechnology have entered popular culture, and it provides material for an additional 108 questionnaire items that can be used in future surveys on the topic. The findings of this exploratory study can serve as benchmarks against which to compare results of future research on the evolving status of nanotechnology in society

  14. Multifunctional Nanotechnology Research

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  15. Nanotechnology and accounting issues

    Abedalqader Rababah

    2017-01-01

    Nanotechnology is a new advanced technology used in the industry. This study conducted an investigation on the literature and highlighted the accounting issues which related to the implement of nanotechnology, especially the change of cost structure and expected solutions for the increasing of indirect costs which need more accurate allocation to the unit of products. Also, this study investigated on the future expected accounting risks for using nanotechnology. Finally, this study will open ...

  16. Nanotechnology: A Policy Primer

    2013-06-24

    savings in the United States of 24 million barrels of oil.4 • Universal access to clean water. Nanotechnology water desalination and filtration...CRS Report for Congress Prepared for Members and Committees of Congress Nanotechnology : A Policy Primer John F. Sargent Jr. Specialist...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  17. Nanotechnology Characterization Lab

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  18. Nanotechnology Characterization Laboratory

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  19. Nanotechnology: Future of Oncotherapy.

    Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K

    2015-07-15

    Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise. ©2015 American Association for Cancer Research.

  20. Nanotechnology in Aerospace Applications

    Meyyappan, M

    2007-01-01

    The aerospace applications for nanotechnology include high strength, low weight composites, improved electronics and displays with low power consumption, variety of physical sensors, multifunctional...

  1. Nanotechnology applications in urology: a review.

    Maddox, Michael; Liu, James; Mandava, Sree Harsha; Callaghan, Cameron; John, Vijay; Lee, Benjamin R

    2014-11-01

    The objectives of this review are to discuss the current literature and summarise some of the promising areas with which nanotechnology may improve urological care. A Medline literature search was performed to elucidate all relevant studies of nanotechnology with specific attention to its application in urology. Urological applications of nanotechnology include its use in medical imaging, gene therapy, drug delivery, and photothermal ablation of tumours. In vitro and animal studies have shown initial encouraging results. Further study of nanotechnology for urological applications is warranted to bridge the gap between preclinical studies and translation into clinical practice, but nanomedicine has shown significant potential to improve urological patient care. © 2014 The Authors. BJU International © 2014 BJU International.

  2. Skill Needs and Human Resources Development in the Emerging Field of Nanotechnology

    Yawson, Robert Mayfield

    2010-01-01

    Strong societal requirements and consumer acceptance are the driving force of nanotechnology development. The necessity for qualified experts and strong demand on education in the multi-, trans- and interdisciplinary field of nanotechnology is a logical consequence of this driving force. There is the need for a comprehensive national…

  3. The effects of perception of risk and importance of answering and initiating a cellular phone call while driving.

    Nelson, Erik; Atchley, Paul; Little, Todd D

    2009-05-01

    Recent data suggest that laws banning cellular phone use while driving may not change use patterns, especially among young drivers with high rates of mobile phone adoption. We examined reasons younger drivers choose or do not choose to talk on a phone while driving among a sample of young drivers (n=276) with very high ownership of cellular phones (over 99%) and a very high use of cellular phones while driving (100% for those that were primary operators of an automobile). Respondents were surveyed for patterns of use, types of call, perceived risk, and motivations for use. The data were analyzed using structural equation modeling (SEM) to explore the relationships between perceived risk of the behavior, emotionality of the call, perceived importance of the call, and how often calls were initiated versus answered. The model suggests that even though people believe that talking on a cellular phone while driving is dangerous, they will tend to initiate a cellular conversation if they believe that the call is important.

  4. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology Subcommittee, National Science and Technology Council, Committee on Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public...

  5. QUALITATIVE ANALYSIS OF DEPENDENCE OF DRIVE POWER HORIZONTAL-INCLINED BELT CONVEYOR ON ITS INITIAL PARAMETERS

    V. M. Bohomaz

    2017-02-01

    Full Text Available Purpose.One of the main elements of band conveyors is a drive. To analyze the effect of design parameters on the drive power it is necessary to carry out the calculations according to standard procedures outlined in the current technical literature. The main design parameters of the band conveyor are: the type of cargo, project performance, the geometric dimensions of sections and track configuration as a whole. The feature of band conveyor calculation as compared to the elevators is the dependence of the band width on its performance, the inclination angle and the type of cargo. In the article for the account of this fact during calculations it is necessary to construct the dependence of the band width on the generalized parameter, which takes into account change in the design parameters. To determine the general pattern of changing the value of band conveyor drive power when varying its design parameters in the article it is necessary to construct the corresponding graphic dependences taking into account the standard sizes and bands parameters. Methodology. We consider the band conveyor with two sections: the inclined and horizontal one. It is conducted a detailed analysis of dependence of the conveyor band width and its drive power on the type of cargo, project performance, geometric dimensions and configuration of the conveyor track, using the appropriate parameter dependences constructed by the authors in previous papers. Findings. For band conveyors of this type there were constructed the graphics dependences of the band width on the parameter characterizing the project performance and the inclination angle of the track section, and on the performance at a fixed angle of inclination. Taking into account the changes in the band width with an increase in the value of project performance the graph dependences of drive power on the productivity and the inclination angle of the inclined section were built. Originality. For the first time there

  6. Nanotechnology at KT

    Glarborg, Peter; Hassager, Ole; Jonsson, Gunnar Eigil

    2002-01-01

    The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"......The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"...

  7. Nanotechnologies for sustainable construction

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...

  8. The risks of nanotechnology.

    Williams, David

    2005-11-01

    Nanotechnology is extremely fashionable, especially in the medical products sector, but questions are now being asked about the potential for new health risks that are introduced with the products and processes associated with nanotechnology. This article discusses some of the principal findings of a new report on this subject.

  9. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  10. Nanotechnology for missiles

    Ruffin, Paul B.

    2004-07-01

    Nanotechnology development is progressing very rapidly. Several billions of dollars have been invested in nanoscience research since 2000. Pioneering nanotechnology research efforts have been primarily conducted at research institutions and centers. This paper identifies developments in nanoscience and technology that could provide significant advances in missile systems applications. Nanotechnology offers opportunities in the areas of advanced materials for coatings, including thin-film optical coatings, light-weight, strong armor and missile structural components, embedded computing, and "smart" structures; nano-particles for explosives, warheads, turbine engine systems, and propellants to enhance missile propulsion; nano-sensors for autonomous chemical detection; and nano-tube arrays for fuel storage and power generation. The Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is actively collaborating with academia, industry, and other Government agencies to accelerate the development and transition of nanotechnology to favorably impact Army Transformation. Currently, we are identifying near-term applications and quantifying requirements for nanotechnology use in Army missile systems, as well as monitoring and screening research and developmental efforts in the industrial community for military applications. Combining MicroElectroMechanical Systems (MEMS) and nanotechnology is the next step toward providing technical solutions for the Army"s transformation. Several research and development projects that are currently underway at AMRDEC in this technology area are discussed. A top-level roadmap of MEMS/nanotechnology development projects for aviation and missile applications is presented at the end.

  11. [Nanotechnology, nanomedicine and nanopharmacology].

    Fernández, Pedro Lorenzo

    2007-01-01

    Based on Nanotechnology methods, Nanomedicine and Nanotecnology will obtain significant advances in areas such as Diagnostic, Regenerative Medicine and pharmacological Therapeutics. With nanotechnology-based drug delivery systems,important improvement on pharmacokinetics of drugs will take place, due to increased solubility, protection against decrease in drug effects due to excessive metabolism and subsequent increase of bioavailability. Improvement on pharmacodynamic parameters will occur also due to increased drug concentration in target tissues. Also the use of Nanotechnology in the modern pharmacology will serve for a more accurate control of doses, which will decrease significantly drug toxicity.

  12. Societal implications of nanoscience and nanotechnology: Maximizinghuman benefit

    Roco, M. C.; Bainbridge, W.S.

    2005-01-01

    The balance between the potential benefits and risks of nanotechnology is discussed based on judgments expressed by leading industry, academe and government experts at a U.S. National Nanotechnology Initiative (NNI) sponsored meeting. The results are summarized in various themes related to: economic impacts and commercialization; social scenarios; technological convergence; quality of life; ethics and law; governance, public perceptions, and education

  13. An initial examination of aging related degradation in turbine drives and governors for safety related pumps

    Cox, D.F.

    1991-01-01

    This study is being performed to examine the relationship between time dependent degradation, and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized water reactor (PWR) plants, and the Reactor Core Isolation Cooling (RCIC) and High Pressure Coolant Injection (HPCI) systems for Boiling Water Reactor (BWR) facilities. This research has been conducted by examining current information in NPRDS, reviewing Licensee Event Reports, and thoroughly investigating contacts with operating plant personnel, and by personal observation. The reported information was reviewed to determine the cause of the event and the method of discovery. From this data attempts have been made at determining the predictability of events and possible preventive measures that may be implemented. Findings in a recent study on the Auxiliary Feedwater System (NUREG/CR-5404) indicate that the turbine drive is the single largest contributor to AFW system degradation. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design seem to indicate that this equipment can be a reliable component in safety systems

  14. Nanotechnology, ethics and nanoethics

    Mishatkina, T.V.; Vishnevskaya, Yu.A.

    2014-01-01

    The necessity of creating a new field of applied Ethics – Nanoethics - is justified by specificity and magnitude of potential hazards and risks associated with the development and use of nanotechnology. (authors)

  15. Nanotechnology in Cancer Research

    The NCI Office of Cancer Nanotechnology Research has had a major impact on bringing novel nano-enabled solutions through the pre-clinical space. The strategic framework of this effort is presented here.

  16. Carbon Based Nanotechnology: Review

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation reviews publicly available information related to carbon based nanotechnology. Topics covered include nanomechanics, carbon based electronics, nanodevice/materials applications, nanotube motors, nano-lithography and H2O storage in nanotubes.

  17. Future of Computing. Nanotechnology

    Florin Frant

    2006-10-01

    Full Text Available Nanotechnology is a field of applied science and technology covering a broad range of topics. The impetus for nanotechnology has stemmed from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM and the scanning tunneling microscope (STM. Combined with refined processes such as electron beam lithography, these instruments allow the deliberate manipulation of nanostructures, and in turn led to the observation of novel phenomena.

  18. Nanotechnologies for sustainable construction

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...... technological field which covers many aspects. The chapter therefore seeks to provide a framework for addressing relevant issues of green nanoconstruction and to bring an overview and illustrative examples of current early developments....

  19. Effect of Nanotechnology

    D.Baswaraj; Vasanthi,; Sareddy Deepthi; Mohammad Zainuddin

    2012-01-01

    In this paper, we will put forward the vast effect on nanotechnology in various fields. A basic definition of Nanotechnology is the study manipulation and manufacture of extremely minute machines or devices. The future of technology at times becomes easier to predict. Computers will compute faster, materials will become stronger and medicine will cure more diseases .the technology that works at the nanometer scale of molecules and atoms will be a large part of this future, enabling great impr...

  20. Artificial intelligence in nanotechnology

    Sacha, Gómez Moñivas; Varona, Pablo

    2013-01-01

    This is the author’s version of a work that was accepted for publication in Nanotechnology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nanotechnology 24.45 (2013): 452002 During the last decade there has been an incre...

  1. Nanotechnology for telecommunications

    Anwar, Sohail; Qazi, Salahuddin; Ilyas, Mohammad

    2010-01-01

    With its unique promise to revolutionize science, engineering, technology, and other fields, nanotechnology continues to profoundly impact associated materials, components, and systems, particularly those used in telecommunications. These developments are leading to easier convergence of related technologies, massive storage data, compact storage devices, and higher-performance computing. Nanotechnology for Telecommunications presents vital technical scientific information to help readers grasp issues and challenges associated with nanoscale telecommunication system development and commerciali

  2. Taking nanotechnology to schools

    Lakhtakia, Akhlesh

    2005-01-01

    After a primer on nanotechnology and a review of current educational practices in secondary schools, the concept of just-in-time education is proposed to integrate technosciences and humanities so that both future technoscientists and non-technoscientists develop a common understanding, possibly even a common language, to deal with social, ethical, legal, and political issues that arise from the development of nanotechnology and its convergence with other technoscientific developments.

  3. The governance of nanotechnology

    Jim Whitman

    2007-01-01

    Despite the promises made for nanotechology, its direction and momentum as it has developed to date already pose very considerable problems of regulation and control in quite fundamental ways. This article will review these difficulties under four themes. First, the principal agents for framing governance agreements (states) are also the principal proponents of nanoscience and nanotechnology. Second, the speed of new advances in nanotechnology and the reach of their implications are already o...

  4. 76 FR 62469 - National Science and Technology Council, Committee on Technology; 2011 National Nanotechnology...

    2011-10-07

    ... Technology; 2011 National Nanotechnology Initiative Environmental, Health, and Safety Strategy Webinar ACTION: Notice of webinar. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the..., telephone (703) 292-7128, National Nanotechnology Coordination Office. E-mail: [email protected] . Ted...

  5. Commercialization of nanotechnology.

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization. (c) 2009 John Wiley & Sons, Inc.

  6. Driving force of PCMI failure under reactivity initiated accident conditions and influence of hydrogen embrittlement on failure limit

    Tomiyasu, Kunihiko; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi

    2005-09-01

    In order to clarify the driving force of PCMI (Pellet/Cladding Mechanical Interaction) failure on high burnup fuels and to investigate the influence of hydrogen embrittlement on failure limit under RIA (Reactivity Initiated Accident) conditions, RIA-simulation experiments were performed on fresh fuel rods in the NSRR (Nuclear Safety Research Reactor). The driving force of PCMI was restricted only to thermal expansion of pellet by using fresh UO 2 pellets. Fresh claddings were pre-hydrided to simulate hydrogen absorption of high burnup fuel rods. In seven experiments out of fourteen, test rods resulted in PCMI failure, which has been observed in the NSRR tests on high burnup PWR fuels, in terms of the transient behavior and the fracture configuration. This indicates that the driving force of PCMI failure is sufficiently explained with thermal expansion of pellet and a contribution of fission gas on it is small. A large number of incipient cracks were generated in the outer surface of the cladding even on non-failed fuel rods, and they stopped at the boundary between hydride rim, which was a hydride layer localized in the periphery of the cladding, and metallic layer. It suggests that the integrity of the metallic layer except for the hydride rim has particular importance for failure limit. Fuel enthalpy at failure correlates with the thickness of hydride rim, and tends to decrease with thicker hydride layer. (author)

  7. Optimizing the prevention of venous thromboembolism: recent quality initiatives and strategies to drive improvement.

    Amin, Alpesh N; Deitelzweig, Steven B

    2009-11-01

    Venous thromboembolism (VTE) is associated with a substantial health care and economic burden, yet many VTE events are preventable. Despite the availability of evidence-based guidelines derailing effective thromboprophylaxis strategies, the underuse and inappropriate prescribing of VTE prophylaxis are common. Current national quality initiatives were reviewed to identify strategies that may help hospitals and health care professionals optimize current VTE prophylaxis practices. A computerized literature search was performed using PubMed and MEDLINE, and this was complemented by hand searches of relevant journals and Web sites to identify additional literature related to VTE prevention and quality improvement. Many organizations, including the Centers for Medicare & Medicaid Services, the National Quality Forum, the Joint Commission, and the Agency for Healthcare Research and Quality have developed performance measures, quality indicators, public reporting initiatives, incentive programs, and "negative reimbursement" that are designed to help improve VTE prevention. It remains the responsibility of individual hospitals to identify specific areas in which they can improve their VTE prophylaxis rates to obtain positive results from the reporting initiatives and incentive programs. If performance measures are to be met, all hospital departments will need to implement effective VTE prevention policies, including early risk assessment, appropriate prophylaxis prescribing, monitoring, and follow-up. Multifaceted, integrated initiatives involving risk assessment tools, decision support, electronic alert systems, and hospitalwide education, with a mechanism for audit and feedback, may help ensure that all health care professionals comply with VTE-prevention policies and initiatives.

  8. EDITORIAL: Nanotechnology under the skin Nanotechnology under the skin

    Demming, Anna

    2011-07-01

    Concerns over health and ecological implications as living organisms are increasingly exposed to nanoparticles are constantly raised. Yet the use of nanoscale structures in technology and medicine has already infiltrated daily life in countless ways. from cosmetics and sun cream to mobile phones. The potential of nanotechnology in medicine is particularly difficult to ignore and ranges from cancer treatment to immune system activation [1]. The reduced dimensions of nanostructures lend them to targeted diagnostic and therapeutic practices that enable treatment with greater accuracy and less discomfort. Striking a balance between over caution and recklessness can be tricky, and provides an additional drive to investigate and learn more about the science of the nanoscale. Alongside investigations to exploit nanoparticles in medicine and technology, there have been a substantial number of studies to investigate the possible effects on our health, as well as some studies on the environmental ramifications. Researchers in the US have investigated the effects on aquatic life of ZnO nanoparticles, which may pollute lakes and rivers through accidental release during fabrication or as wash out from consumer materials [2]. The study is focused on zebrafish during early development. Zhu et al observe that while there may be evidence that Zn2+ ions and ZnO nanoparticles have toxic effects on zebrafish embryos, these effects are apparently mitigated by a type of sediment formulated from the nanoparticles. The positive contribution of nanotechnology in cancer treatment is an area of particularly high research activity at present. Although traditional chemotherapeutic agents can be effective against the growth of cancerous cells, they can have a detrimental effect on the immune system, which is critical in combating cancer. Researchers in China studied the behaviour of C60(OH)20 nanoparticles in vivo and found that they play important roles in the anti-tumour process by activating

  9. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  10. Quality initiatives: department scorecard: a tool to help drive imaging care delivery performance.

    Donnelly, Lane F; Gessner, Kevin E; Dickerson, Julie M; Koch, Bernadette L; Towbin, Alexander J; Lehkamp, Todd W; Moskovitz, Jay; Brody, Alan S; Dumoulin, Charles L; Jones, Blaise V

    2010-11-01

    The radiology department at a midwestern U.S. children's hospital has created a scorecard that is presented quarterly to the institutional leadership and is available to all radiology employees on the institutional intranet. The scorecard currently has 33 measures in six areas: clinical services (safety, quality, timeliness); education; research; professionalism, communication, and user satisfaction; finances and administration; and staffing. For each measure, the goal, current value of the measure, interval at which the measure is updated, date of last update, and previous value of the measure are listed. Each measure was reviewed over time to determine those measures for which target goals were met. Results indicate that a visible and transparent department scorecard is one of the more powerful tools available to the radiology leadership to call attention to and improve performance in specific areas. The use of such a scorecard can help develop a departmental culture of quality improvement, focus healthcare providers on specific quality improvement projects, and drive departmental performance. © RSNA, 2010.

  11. Verbal semantics drives early anticipatory eye movements during the comprehension of verb-initial sentences

    Sebastian eSauppe; Sebastian eSauppe; Sebastian eSauppe

    2016-01-01

    Studies on anticipatory processes during sentence comprehension often focus on the prediction of postverbal direct objects. In subject-initial languages (the target of most studies so far), however, the position in the sentence, the syntactic function, and the semantic role of arguments are often conflated. For example, in the sentence The frog will eat the fly the syntactic object (fly) is at the same time also the last word and the patient argument of the verb. It is therefore not apparent ...

  12. Verbal Semantics Drives Early Anticipatory Eye Movements during the Comprehension of Verb-Initial Sentences.

    Sauppe, Sebastian

    2016-01-01

    Studies on anticipatory processes during sentence comprehension often focus on the prediction of postverbal direct objects. In subject-initial languages (the target of most studies so far), however, the position in the sentence, the syntactic function, and the semantic role of arguments are often conflated. For example, in the sentence "The frog will eat the fly" the syntactic object ("fly") is at the same time also the last word and the patient argument of the verb. It is therefore not apparent which kind of information listeners orient to for predictive processing during sentence comprehension. A visual world eye tracking study on the verb-initial language Tagalog (Austronesian) tested what kind of information listeners use to anticipate upcoming postverbal linguistic input. The grammatical structure of Tagalog allows to test whether listeners' anticipatory gaze behavior is guided by predictions of the linear order of words, by syntactic functions (e.g., subject/object), or by semantic roles (agent/patient). Participants heard sentences of the type "Eat frog fly" or "Eat fly frog" (both meaning "The frog will eat the fly") while looking at displays containing an agent referent ("frog"), a patient referent ("fly") and a distractor. The verb carried morphological marking that allowed the order and syntactic function of agent and patient to be inferred. After having heard the verb, listeners fixated on the agent irrespective of its syntactic function or position in the sentence. While hearing the first-mentioned argument, listeners fixated on the corresponding referent in the display accordingly and then initiated saccades to the last-mentioned referent before it was encountered. The results indicate that listeners used verbal semantics to identify referents and their semantic roles early; information about word order or syntactic functions did not influence anticipatory gaze behavior directly after the verb was heard. In this verb-initial language, event semantics

  13. Verbal semantics drives early anticipatory eye movements during the comprehension of verb-initial sentences

    Sebastian eSauppe

    2016-02-01

    Full Text Available Studies on anticipatory processes during sentence comprehension often focus on the prediction of postverbal direct objects. In subject-initial languages (the target of most studies so far, however, the position in the sentence, the syntactic function, and the semantic role of arguments are often conflated. For example, in the sentence The frog will eat the fly the syntactic object (fly is at the same time also the last word and the patient argument of the verb. It is therefore not apparent which kind of information listeners orient to for predictive processing during sentence comprehension. A visual world eye tracking study on the verb-initial language Tagalog (Austronesian tested what kind of information listeners use to anticipate upcoming postverbal linguistic input. The grammatical structure of Tagalog allows to test whether listeners' anticipatory gaze behavior is guided by predictions of the linear order of words, by syntactic functions (e.g., subject/object, or by semantic roles (agent/patient. Participants heard sentences of the type Eat frog fly or Eat fly frog (both meaning The frog will eat the fly while looking at displays containing an agent referent (frog, a patient referent (fly and a distractor. The verb carried morphological marking that allowed the order and syntactic function of agent and patient to be inferred. After having heard the verb, listeners fixated on the agent irrespective of its syntactic function or position in the sentence. While hearing the first-mentioned argument, listeners fixated on the corresponding referent in the display accordingly and then initiated saccades to the last-mentioned referent before it was encountered. The results indicate that listeners used verbal semantics to identify referents and their semantic roles early; information about word order or syntactic functions did not influence anticipatory gaze behavior directly after the verb was heard. In this verb-initial language, event semantics

  14. Fairness and nanotechnology concern.

    McComas, Katherine A; Besley, John C

    2011-11-01

    Research suggests that fairness perceptions matter to people who are asked to evaluate the acceptability of risks or risk management. Two separate national random surveys (n = 305 and n = 529) addressed Americans' concerns about and acceptance of nanotechnology risk management in the context of the degree to which they view scientists and risk managers as fair. The first survey investigated general views about scientists across four proposed dimensions of fairness (distributional, procedural, interpersonal, and informational). The results show that respondents who believe that the outcomes of scientific research tend to result in unequal benefits (distributional fairness) and that the procedures meant to protect the public from scientific research are biased (procedural fairness) were more concerned about nanotechnology. Believing scientists would treat them with respect (interpersonal fairness) and ensure access to information (informational fairness) were not significant predictors of concern. The second study also looked at these four dimensions of fairness but focused on perceptions of risk managers working for government, universities, and major companies. In addition to concern, it also examined acceptance of nanotechnology risk management. Study 2 results were similar to those of study 1 for concern; however, only perceived informational fairness consistently predicted acceptance of nanotechnology risk management. Overall, the study points to the value of considering fairness perceptions in the study of public perceptions of nanotechnology. © 2011 Society for Risk Analysis.

  15. Nanotechnology in cancer treatment

    Mironidou-Tzouveleki, Maria; Imprialos, Konstantinos; Kintsakis, Athanasios

    2011-10-01

    The purpose of this paper is to analyze the current evolutions on nanotechnology and its applications on cancer theragnostics.Rapid advances and emerging technologies in nanotechnology are having a profound impact on cancer treatment. Applications of nanotechnology, which include liposomes, nanoparticles, polymeric micelles, dendrimers, nanocantilever, carbon nanotubes and quantum dots have significantly revolutionized cancer theragnostics. From a pharmaceutical viewpoint, it is critical that the biodistribution of active agents has to be controlled as much as possible. This aspect is vital in order to assure the proper efficiency and safety of the anticancer agents. These biocompatible nanocomposites provide specific biochemical interactions with receptors expressed on the surface of cancer cells. With passive or active targeting strategies, an increased intracellular concentration of drugs can be achieved in cancer cells , while normal cells are being protected from the drug simultaneously. Thus, nanotechnology restricts the extent of the adverse effects of the anticancer therapy. Treatment for metastatic breast cancer, sarcoma in AIDS patients, ovarian and lung cancer is already on market or under final phases of many clinical trials, showing remarkable results. As nanotechnology is perfected, side effects due to normal cell damage will decrease, leading to better results and lengthening patient's survival.

  16. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  17. The industrial relevance of nanotechnology and nanomaterial

    Porcari, Andrea; Mantovani, Elvio

    2015-01-01

    The article consists of four parts: a brief summary of the EU policy for nanotechnology and for Key Enabling Technologies; a general information framework, including definitions, fields of application, on production and market data; a general examination of the actors and of the application areas in Italy; conclusions. Nanotechnology, along with five other Key Enabling Technologies (Kets), have been identified as the engine for industrial growth in Europe within the Horizon 2020 program and other EU initiatives. These technologies promise to have a growing impact on materials, tools and processes through a great variety of industries important to the Italian economy and the European one. Nanotechnology is still largely a phase of research and development and other challenges are still to be solved for their full value. The Innovation and Research Manager are among those challenges, and are critical to their success [it

  18. Verbal Semantics Drives Early Anticipatory Eye Movements during the Comprehension of Verb-Initial Sentences

    Sauppe, Sebastian

    2016-01-01

    Studies on anticipatory processes during sentence comprehension often focus on the prediction of postverbal direct objects. In subject-initial languages (the target of most studies so far), however, the position in the sentence, the syntactic function, and the semantic role of arguments are often conflated. For example, in the sentence “The frog will eat the fly” the syntactic object (“fly”) is at the same time also the last word and the patient argument of the verb. It is therefore not appar...

  19. Sustainability Initiatives Driving Supply Chain: Climate Governance on Beef Production System

    Ieda Kanashiro Makiya

    2015-04-01

    Full Text Available Two conceptual frameworks have been analytically dominant in researching innovation dynamics in sustainability transition processes, namely technological innovation systems (TIS and the multi-level perspective (MLP. The innovation systems has been principally concerned with emerging new technologies and their potential contribution to future sustainability, whereas MLP has been more strongly oriented toward reconstructing historical processes of sectorial change. In this perspective, this study aims to analyses how global climate change and environmental pressures impact on the governance of supply chain and the ripple effects on natural resource-intensive economies. Some initiatives are taken to address regulatory issues and reconcile decision-making tools on quality assurance program on value chains. This includes a multi-level perspective (MLP as Carbon Disclosure Project (CDP and technological innovation systems (TIS as Geographic Information System (GIS used as a tracking system for monitoring sustainable practices. The paper discuss the drivers of sustainable beef production system, mainly in Legal Amazon, Brazil, and requirements from a largest retailer aligned to Brazilian public policies. This study presents three distinct strategies: (1 government and public policies to control deforestation related to beef cattle production system, (2 economic approach related to transnational supermarket chain and sustainability initiatives, (3 collective action for decision-making by multiple drivers

  20. Nanotechnology in the marketplace: how the nanotechnology industry views risk

    Becker, Sean

    2013-01-01

    Despite uncertainty about the potential human health and environmental risks of nanotechnology, major stakeholders such as regulatory agencies and the nanotechnology industry are already negotiating the emerging regulatory framework for nanotechnology. Because of a relative lack of nano-specific regulations, the future of nanotechnology development will depend greatly on the views held by the nanotechnology industry. This study fills the research gap in understanding how the nanotechnology industry perceives the risks of nanotechnology. This is the first interview-based study of the nanotechnology industry in the United States. Semi-structured, open-ended phone interviews were conducted with 17 individuals involved in the commercialization of nanotechnology in the United States. Results indicate that while the industry acknowledges uncertainty about the potential risks of nanotechnology and takes significant precaution in ensuring the safety of their products, they do not see nanotechnology as novel or risky. They do not believe that uncertainty over risk ought to delay the further development of nanotechnology. The industry sees itself as the primary agent in ensuring consumer safety and believes that consumers are adequately protected. They are also largely benefit-centric and view product labeling as inefficacious.

  1. Nanotechnology in the marketplace: how the nanotechnology industry views risk

    Becker, Sean, E-mail: seanlouisbecker@gmail.com [University of Wisconsin-Madison (United States)

    2013-05-15

    Despite uncertainty about the potential human health and environmental risks of nanotechnology, major stakeholders such as regulatory agencies and the nanotechnology industry are already negotiating the emerging regulatory framework for nanotechnology. Because of a relative lack of nano-specific regulations, the future of nanotechnology development will depend greatly on the views held by the nanotechnology industry. This study fills the research gap in understanding how the nanotechnology industry perceives the risks of nanotechnology. This is the first interview-based study of the nanotechnology industry in the United States. Semi-structured, open-ended phone interviews were conducted with 17 individuals involved in the commercialization of nanotechnology in the United States. Results indicate that while the industry acknowledges uncertainty about the potential risks of nanotechnology and takes significant precaution in ensuring the safety of their products, they do not see nanotechnology as novel or risky. They do not believe that uncertainty over risk ought to delay the further development of nanotechnology. The industry sees itself as the primary agent in ensuring consumer safety and believes that consumers are adequately protected. They are also largely benefit-centric and view product labeling as inefficacious.

  2. Broadening nanotechnology's impact on development

    Beumer, K.

    2016-01-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world’s poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  3. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  4. Nanotechnology in Dermatology*

    Antonio, João Roberto; Antônio, Carlos Roberto; Cardeal, Izabela Lídia Soares; Ballavenuto, Julia Maria Avelino; Oliveira, João Rodrigo

    2014-01-01

    The scientific community and general public have been exposed to a series of achievements attributed to a new area of knowledge: Nanotechnology. Both abroad and in Brazil, funding agencies have launched programs aimed at encouraging this type of research. Indeed, for many who come into contact with this subject it will be clear the key role that chemical knowledge will play in the evolution of this subject. And even more, will see that it is a science in which the basic structure is formed by distilling different areas of inter-and multidisciplinary knowledge along the lines of new paradigms. In this article, we attempt to clarify the foundations of nanotechnology, and demonstrate their contribution to new advances in dermatology as well as medicine in general. Nanotechnology is clearly the future. PMID:24626657

  5. Nanotechnology in Textiles.

    Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun

    2016-03-22

    Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.

  6. Artificial intelligence in nanotechnology.

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  7. Nanotechnology in Radiation Oncology

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  8. Artificial intelligence in nanotechnology

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  9. Nanotechnology for chemical engineers

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  10. The track nanotechnology

    Waheed, A.; Forsyth, D.; Watts, A.; Saad, A.F.; Mitchell, G.R.; Farmer, M.; Harris, P.J.F.

    2009-01-01

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  11. The track nanotechnology

    Waheed, A. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Forsyth, D., E-mail: dforsyth@bite.ac.u [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Watts, A. [Department of Physics, UCL, London Centre of Nanotechnology (LCN), 17-19 Gordon Street, London WC1H OAH (United Kingdom); Saad, A.F. [Physics Department, Faculty of Science, Garyounis University, Benghazi (Libyan Arab Jamahiriya); Mitchell, G.R. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Farmer, M. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Harris, P.J.F. [Physics Department, University of Reading, Reading RG6 6AF (United Kingdom)

    2009-10-15

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  12. Nanotechnology in the Security

    Kruchinin, Sergei

    2015-01-01

    The topics discussed at the NATO Advanced Research Workshop "Nanotechnology in the Security Systems" included nanophysics,   nanotechnology,  nanomaterials, sensors, biosensors security systems, explosive  detection . There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena  are found when systems are reduced in size with  dimensions, comparable to the fundamental microscopic  length scales of the investigated material. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of transport properties of nanodevices. This work will be of interest to researchers working in spintronics, molecular electronics and quantum information processing.

  13. Artificial intelligence in nanotechnology

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  14. NANOTECHNOLOGY AND SPORT

    Zoran Mašić

    2010-03-01

    Full Text Available We can say that sports are continuously evolving. To improve the quality of this work, changes are being made in all of these segments: development and selection of athletes, the improvement of technology for preparation and performance tactics, training methods for relaxation. On the other hand these are followed by rule changes, modern sports facilities, as well as legal regulations. One direction in the improvement of sports results is an attempt at rational spending of existing resources for athletes, regardless of whether in team or individual sports. Nanotechnology is also contributioning toward this direction. This paper points out the appearance of nanotechnology, its essence, i.e., the way it may effect the development of sports. Of course, it also points to the potential risk of applying nanotechnology to sports.

  15. The Nanotechnology R(evolution)

    Tahan, Charles

    2006-01-01

    Nanotechnology as a social concept and investment focal point has drawn much attention. Here we consider the place of nanotechnology in the second great technological revolution of mankind that began some 200 years ago. The so-called nanotechnology revolution represents both a continuation of prior science and technology trends and a re-awakening to the benefits of significant investment in fundamental research. We consider the role the military might play in the development of nanotechnology...

  16. Nanotechnologies in oil production

    Alieva, M.K; Kazimov, F.K.; Ismailov, E.

    2010-01-01

    Extraction of remaining, laboriously developed oil reserves at the last stage of development of deposits require drastically improved methods of oil recovery. From this point of view it is more expedient to apply high-tech nanotechnologies. Application of metal nanoparticles in solutions consisting of conventional reagents (deemulgators, SAA and etc.) allows to improve their rheology considerably to increase permaibility and washing of highly viscous components from the smallest pores. Thus, nanofluids influence layer system on atomic-molecular-ionic level which will lead to a complex synergetic effect from the application of nanotechnologies in oil and gas production.

  17. Nanotechnology in health care

    Sahoo, Sanjeeb K

    2012-01-01

    Nanomedicine: Emerging Field of Nanotechnology to Human HealthNanomedicines: Impacts in Ocular Delivery and TargetingImmuno-Nanosystems to CNS Pathologies: State of the Art PEGylated Zinc Protoporphyrin: A Micelle-Forming Polymeric Drug for Cancer TherapyORMOSIL Nanoparticles: Nanomedicine Approach for Drug/Gene Delivery to the BrainMagnetic Nanoparticles: A Versatile System for Therapeutic and Imaging SystemNanobiotechnology: A New Generation of Biomedicine Application of Nanotechnology-Based Drug Delivery and Targeting to LungsAptamers and Nanomedicine in C

  18. ALTERNATE MECHANISMS OF INITIAL PATTERN RECOGNITION DRIVE DIFFERENTIAL IMMUNE RESPONSES TO RELATED POXVIRUSES

    O’Gorman, William E.; Sampath, Padma; Simonds, Erin F.; Sikorski, Rachel; O’Malley, Mark; Krutzik, Peter O.; Chen, Hannah; Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran; Lewis, David B.; Thorne, Steve H.; Nolan, Garry P.

    2010-01-01

    Summary Although vaccinia virus infection results in induction of a robust immunizing response, many closely related poxviruses such as variola (smallpox) and ectromelia (mousepox) are highly pathogenic in their natural hosts. We developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses leading to IL-6 production, which then initiated STAT3 signaling in dendritic cells and T cells. In contrast, ectromelia did not induce TLR2 activation and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These results indicate that vaccination with vaccinia is dependent on rapid TLR2 and IL-6 driven responses and link the earliest immune signaling events to the outcome of infection. PMID:20709294

  19. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies.

    Fadel, Tarek R; Farrell, Dorothy F; Friedersdorf, Lisa E; Griep, Mark H; Hoover, Mark D; Meador, Michael A; Meyyappan, M

    2016-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

  20. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  1. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis.

    Chao-Hsuan Chang

    Full Text Available Invariant natural killer T (iNKT cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC. To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r-1-O-(α-D-galactopyranosyl-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH, can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.

  2. EDITORIAL: Multitasking in nanotechnology Multitasking in nanotechnology

    Demming, Anna

    2013-06-01

    O nanowires generate a piezoelectric signal that acts as both the power source and the gas sensing information as a result of the different screening effects different gases present on the piezoelectric charges. As they explain 'Our results can provoke a possible new direction for the development of next-generation gas sensors and will further expand the scope of self-powered nanosystems'. Over 50 years ago C P Snow delivered and subsequently published a lecture entitled 'The Two Cultures and the Scientific Revolution'. In it he lamented a gaping fissure separating the sciences and the humanities to the ultimate detriment of civilization and progress. The increasingly specialized activities in academia may suggest that if anything the gulf separating the two cultures may yet be increasing. It may seem that not only do 'natural scientists' speak a different language from 'literary intellectuals' but that biologists speak a different language from physicists, and so on down the increasingly fine dichotomies of academic endeavour. One of the exciting accompaniments to the rise in nanotechnology research has been a certain amount of liberation from these academic segregations. The breadth of fascinating properties found in a single system beg a strongly multidisciplinary approach and has attracted conversations not only between different sectors within the sciences, but with art as well [12]. The resulting cross-fertilisation between disciplines has already yielded an awesome cornucopia of multitasking devices, and no doubt the best is yet to come. References [1] Xue X, Nie Y, He B, Xing L, Zhang Y and Wang Z L 2013 Surface free-carrier screening effect on the output of ZnO nanowire nanogenerator and its potential as self-powered active gas sensors Nanotechnology 24 225501 [2] Torchilin V P 2006 Multifunctional nanocarriers Adv. Drug Deliv. Rev. 58 1532-55 [3] Weissleder R, Lee A S, Khaw B A, Shen T and Brady T J 1992 Antimyosin-labeled monocrystalline iron oxide allows detection

  3. A Webometric Investigation of Visibility and Collaboration of Iranian Nanotechnology Websites

    Faramarz Sohili

    2007-07-01

    Full Text Available The present investigation intends to review the extent of visibility, impact and collaboration of Iranian nanotechnology websites using webometric method of link analysis. The sample consists of all websites dealing with nanotechnology in Iran. Findings showed that these sites have low visibility, web impact factor and page count. Iranian Nanotechnology Initiative, Nano Ideas and Iranian Nanotechnology Association had the highest number of inlinks and therefore highest visibility, while Nanotechnology Department Website had the lowest visibility. Findings also indicated that Amir Kabir Technical University Nanotechnology Committee website, Iran Nanotechnology initiative and Nano Ideas websites had the highest web impact factor, while Kashan University Institute for Nano Science and Technology had the lowest web impact factor. It was further established that Iranian Nanotech websites collaborate within two clusters. A Multi-dimensional scale was used.

  4. Nanotechnology and the Law

    Desmoulin-Canselier, Sonia; Lacour, Stéphanie

    Law and nanotechnology form a vast subject. The aim here will be to examine them from the societal standpoint of nanoethics, if necessary without due reference to the work that has been undertaken. For while law differs from ethics, as we shall attempt to explain throughout this reflection, it must also be studied in its relationship with social realities.

  5. Nanotechnologies for sustainable construction

    Lazaro Garcia, A.; Yu, Q.; Brouwers, H.J.H.; Khatib, J.M.

    2016-01-01

    Nanotechnology has been gaining popularity among the industrial sector and researchers in the last decades. The number of products containing nanomaterials that enter the market has also increased rapidly, and this trend is going to be even more pronounced in the coming years. The total value of

  6. Nanotechnology in Agriculture

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  7. Nanotechnology in respiratory medicine.

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  8. Advanced Environment Friendly Nanotechnologies

    Figovsky, O.; Beilin, D.; Blank, N.

    The economic, security, military and environmental implications of molecular manufacturing are extreme. Unfortunately, conflicting definitions of nanotechnology and blurry distinctions between significantly different fields have complicated the effort to understand those differences and to develop sensible, effective policy for each. The risks of today's nanoscale technologies cannot be treated the same as the risks of longer-term molecular manufacturing. It is a mistake to put them together in one basket for policy consideration — each is important to address, but they offer different problems and will require far different solutions. As used today, the term nanotechnology usually refers to a broad collection of mostly disconnected fields. Essentially, anything sufficiently small and interesting can be called nanotechnology. Much of it is harmless. For the rest, much of the harm is of familiar and limited quality. Molecular manufacturing, by contrast, will bring unfamiliar risks and new classes of problems. The advanced environment friendly nanotechnologies elaborated by Israel Company Polymate Ltd. — International Research Center are illustrated.

  9. Medical applications of nanotechnology.

    Zdrojewicz, Zygmunt; Waracki, Mateusz; Bugaj, Bartosz; Pypno, Damian; Cabała, Krzysztof

    2015-10-29

    Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future. The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  10. Medical applications of nanotechnology

    Zygmunt Zdrojewicz

    2015-10-01

    Full Text Available Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future.The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  11. Nanotechnology - An emerging technology

    Buckingham, D.

    2007-01-01

    The science of nanotechnology is still in its infancy. However, progress is being made in research and development of potential beneficial properties of nanomaterials that could play an integral part in the development of new and changing uses for mineral commodities. Nanotechnology is a kind of toolbox that allows industry to make nanomaterials and nanostructures with special properties. New nanotechnology applications of mineral commodities in their nanoscale form are being discovered, researched and developed. At the same time, there is continued research into environmental, human health and safety concerns that inherently arise from the development of a new technology. Except for a few nanomaterials (CNTs, copper, silver and zinc oxide), widespread applications are hampered by processing and suitable commercial-scale production techniques, high manufacturing costs, product price, and environmental, and human health and safety concerns. Whether nanotechnology causes a tidal wave of change or is a long-term evolutionary process of technology, new applications of familiar mineral commodities will be created. As research and development continues, the ability to manipulate matter at the nanoscale into increasingly sophisticated nanomaterials will improve and open up new possibilities for industry that will change the flow and use of mineral commodities and the materials and products that are used.

  12. Nanotechnology in agri-food production: an overview

    Sekhon, Bhupinder Singh

    2014-01-01

    Nanotechnology is one of the most important tools in modern agriculture, and agri-food nanotechnology is anticipated to become a driving economic force in the near future. Agri-food themes focus on sustainability and protection of agriculturally produced foods, including crops for human consumption and animal feeding. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use. Nanotechnology can boost agricultural production, and its applications include: 1) nanoformulations of agrochemicals for applying pesticides and fertilizers for crop improvement; 2) the application of nanosensors/nanobiosensors in crop protection for the identification of diseases and residues of agrochemicals; 3) nanodevices for the genetic manipulation of plants; 4) plant disease diagnostics; 5) animal health, animal breeding, poultry production; and 6) postharvest management. Precision farming techniques could be used to further improve crop yields but not damage soil and water, reduce nitrogen loss due to leaching and emissions, as well as enhance nutrients long-term incorporation by soil microorganisms. Nanotechnology uses include nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant varieties, food processing and storage, nanofeed additives, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuels production technologies. Experts feel that the potential benefits of nanotechnology for agriculture, food, fisheries, and aquaculture need to be balanced against concerns for the soil, water, and environment and the occupational health of workers. Raising awareness of nanotechnology in the agri-food sector, including feed and food ingredients, intelligent packaging and quick-detection systems, is one of the keys to influencing consumer acceptance. On the basis of only a handful of toxicological studies, concerns have

  13. Bladder tissue engineering through nanotechnology.

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  14. Nanotechnology: Principles and Applications

    Logothetidis, S.

    Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel nano- and biomaterials, and nanodevices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below 100 nm. The application and use of nanomaterials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of nanoproducts is rapidly growing since more and more nanoengineered materials are reaching the global market The continuous revolution in nanotechnology will result in the fabrication of nanomaterials with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaics offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes The advances in nanomaterials necessitate parallel progress of the nanometrology tools and techniques to characterize and manipulate nanostructures. Revolutionary new approaches

  15. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Demming, Anna

    2012-02-01

    development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue

  16. Risk of nanotechnology

    Louda, Petr; Bakalova, Totka

    2014-05-01

    Nano-this and nano-that. These days it seems you need the prefix "nano" for products or applications if you want to be either very trendy or incredibly scary. This "nano-trend" has assumed "mega" proportions. Vague promises of a better life are met by equally vague, generalized fears about a worse future. These debates have some aspects in common: the subject is complex and not easy to explain; there is no consensus on risks and benefits. - A particular problem with nanotechnology lies in the huge gap between the public perception of what the hype promises and the scientific and commercial reality of what the technology actually delivers today and in the near future. There is nanoscience, which is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Then there is nanotechnology, which is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Nanotechnology should really be called nanotechnologies: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field really, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures. In addressing the health and environmental impact of nanotechnology we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device ("fixed" nanoparticles); and (2) "free" nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures. Once within the body they are highly mobile and

  17. Springer handbook of nanotechnology

    2017-01-01

    This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for ...

  18. Nanotechnology Applications for Glaucoma.

    Cetinel, Sibel; Montemagno, Carlo

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide, and the antiglaucoma treatments currently available suffer from various complications. Nanotechnology-based treatments show a great deal of promise in overcoming these complications and form the basis for next-generation glaucoma treatment strategies, with the help of applications such as controlled release, targeted delivery, increased bioavailability, diffusion limitations, and biocompatibility. Significant progress has been made in nanomedicine in the efficiency of antiglaucoma medications, nanofabrication systems such as microelectromechanical systems that remove the limitations of nanodevices, and tissue regeneration vesicles for developing glaucoma treatments not based on intraocular pressure. With the use of these advanced technologies, the prevention of glaucoma-induced blindness will be possible in the near future. Herein, we reviewed the recent advances in nanotechnology-based treatment strategies for glaucoma.

  19. Nanotechnologies a general introduction

    CERN. Geneva; Ferrari, M; Li Bassi, A

    2007-01-01

    After a brief description of what is nanotechnology (a triple definition will be attempted) and of its importance for the society, this first lecture manly aims at showing how nanoscience makes various nanotechnologies possible. The surprising story of direct imaging and manipulation of atoms (scanning probe microscopies will be the specific subject of the third lecture by prof. Andrea Li Bassi) is told to naturally introduce the crucial role of quantum confinement and surface defects. The electronic and vibrational properties of nanostructures are then discussed to understand the connection between the deeply modified (with respect to the bulk) quantum spectra and the physico-chemical properties of nanoscopic objects. In this context the concept of superatom (and its generalizations) is stressed. The essential role of both size and size control is finally emphasized discussing some significant applications in the fields of materials, devices and medicine. To this last argument (nanomedicine) the second lectu...

  20. Nanotechnology and animal health

    Shiva Kumar

    Full Text Available Nanotechnology, although still in the early stages of its development, is beginning to equip scientists, engineers and biologists to work at the cellular and molecular levels for significant benefits in healthcare and animal medicine. It is reasonable to presume over the next couple of decades that nanobiotechnology industries and unique developments will be revolutionising animal health and medicine. [Veterinary World 2010; 3(12.000: 567-569

  1. Food nanoscience and nanotechnology

    Hernández-Sánchez, Humberto

    2015-01-01

    Nanoscience and nanotechnology have had a great impact on the food industry. They have increased the nutritional and functional properties of a number of food products and have aided in food preservation through the addition of antimicrobials or the reduction of water activity. These and many other applications have emerged in recent years to transform food science and technology. This book proposes to look at some of these applications and their effect on food production and innovation.

  2. Nanotechnology and cancer applications

    Gökdeniz, Mehmet; Akbaba, Muhsin; Nazlıcan, Ersin

    2018-01-01

    Applicationsof nanotechnology in various disciplines of medicine particularly cancer careare becoming increasingly popular so much so that the process of replacingtraditional health‑care by nanomedicine had already begun. Nanomedicine focuseson the formulations of imaging, diagnostic and therapeutic agents, which can becarried by biocompatible nanoparticles, for the purpose of cancer/ diseasemanagement.Common nanomaterials and devices applicable in cancer medicine are liposomes,polymeric‑mice...

  3. How interdisciplinary is nanotechnology?

    Porter, Alan L.; Youtie, Jan

    2009-01-01

    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using 'science overlay maps' of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative-but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.

  4. Nanoscience, nanotechnology and spectrometry

    Adams, Freddy C.; Barbante, Carlo

    2013-01-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science

  5. How interdisciplinary is nanotechnology?

    Porter, Alan L., E-mail: aporter@isye.gatech.ed [Georgia Institute of Technology, Technology Policy and Assessment Center, School of Public Policy (United States); Youtie, Jan, E-mail: jan.youtie@innovate.gatech.ed [Georgia Institute of Technology Enterprise Innovation Institute (United States)

    2009-07-15

    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using 'science overlay maps' of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative-but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.

  6. Nanoscience, nanotechnology and spectrometry

    Adams, Freddy C. [Department of Chemistry, University of Antwerp, B-2610 Wilrijk (Belgium); Barbante, Carlo, E-mail: barbante@unive.it [Institute for the Dynamics of Environmental Processes — CNR, Venice (Italy); Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Venice (Italy)

    2013-08-01

    Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues. - Highlights: • We review the analysis of nano-structured materials. • Nano-structured materials can be used as new tools for analysis. • Use of nano electro mechanical systems, of quantum dots and of mass spectrometry • Nanotechnologies are among the most promising tools in analytical science.

  7. Nanotechnology and vaccine development

    Mi-Gyeong Kim

    2014-10-01

    Full Text Available Despite the progress of conventional vaccines, improvements are clearly required due to concerns about the weak immunogenicity of these vaccines, intrinsic instability in vivo, toxicity, and the need for multiple administrations. To overcome such problems, nanotechnology platforms have recently been incorporated into vaccine development. Nanocarrier-based delivery systems offer an opportunity to enhance the humoral and cellular immune responses. This advantage is attributable to the nanoscale particle size, which facilitates uptake by phagocytic cells, the gut-associated lymphoid tissue, and the mucosa-associated lymphoid tissue, leading to efficient antigen recognition and presentation. Modifying the surfaces of nanocarriers with a variety of targeting moieties permits the delivery of antigens to specific cell surface receptors, thereby stimulating specific and selective immune responses. In this review, we introduce recent advances in nanocarrier-based vaccine delivery systems, with a focus on the types of carriers, including liposomes, emulsions, polymer-based particles, and carbon-based nanomaterials. We describe the remaining challenges and possible breakthroughs, including the development of needle-free nanotechnologies and a fundamental understanding of the in vivo behavior and stability of the nanocarriers in nanotechnology-based delivery systems.

  8. Nanotechnology, nanotoxicology, and neuroscience.

    Suh, Won Hyuk; Suslick, Kenneth S; Stucky, Galen D; Suh, Yoo-Hun

    2009-02-01

    Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.

  9. Nanotechnology and bone healing.

    Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T

    2010-03-01

    Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.

  10. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.

  11. Public perceptions about nanotechnology: Risks, benefits and trust

    Cobb, Michael D.; Macoubrie, Jane [North Carolina State University, Department of Political Science (United States)

    2004-08-15

    We report data from the first representative national phone survey of Americans' perceptions about nanotechnology (N =1536). Public opinion about nanotechnology is in its infancy, and knowledge about it is quite limited. Yet, Americans' initial reaction to nanotechnology is thus far generally positive, probably rooted in a generally positive view of science overall. Survey respondents expected benefits of nanotechnology to be more prevalent than risks, and they reported feeling hopeful about nanotechnology rather than worried. Their most preferred potential benefit of nanotechnology is 'new and better ways to detect and treat human diseases,' and they identified 'losing personal privacy to tiny new surveillance devices' as the most important potential risk to avoid. The most discouraging aspect to the data is respondents' lack of trust in business leaders to minimize nanotechnology risks to human health. Overall, these data indicate that while Americans do not necessarily presume benefits and the absence of risks, their outlook is much more positive than not.

  12. Molecular Imaging in Nanotechnology and Theranostics.

    Andreou, Chrysafis; Pal, Suchetan; Rotter, Lara; Yang, Jiang; Kircher, Moritz F

    2017-06-01

    The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.

  13. Nanotechnology Cancer Therapy and Treatment

    Nanotechnology offers the means to target therapies directly and selectively to cancerous cells and neoplasms. With these tools, clinicians can safely and effectively deliver chemotherapy, radiotherapy, and the next generation of immuno- and gene therapies to the tumor. Futhermore, surgical resection of tumors can be guided and enhanced by way of nanotechnology tools. Find out how nanotechnology will offer the next generation of our therapeutic arsenal to the patient.

  14. Strategic Workshops on Cancer Nanotechnology

    Nagahara, Larry A.; Lee, Jerry S H.; Molnar, Linda K.; Panaro, Nicholas J.; Farrell, Dorothy; Ptak, Krzysztof; Alper, Joseph; Grodzinski, Piotr

    2010-01-01

    Nanotechnology offers the potential for new approaches to detecting, treating and preventing cancer. To determine the current status of the cancer nanotechnology field and the optimal path forward, the National Cancer Institute’s Alliance for Nanotechnology in Cancer held three strategic workshops, covering the areas of in-vitro diagnostics and prevention, therapy and post-treatment, and in-vivo diagnosis and imaging. At each of these meetings, a wide range of experts from academia, industry, the non-profit sector, and the Federal government discussed opportunities in the field of cancer nanotechnology and barriers to its implementation. PMID:20460532

  15. Welcome to NNIN | National Nanotechnology Infrastructure Network

    Skip to main content National Nanotechnology Infrastructure Network National Nanotechnology Infrastructure Network Serving Nanoscale Science, Engineering & Technology Search form Search Search Home facilities feature over 1100 modern nanotechnology instruments such as these Reactive Ion Etch systems at the

  16. Nanotechnology in paper electronics

    Demming, Anna; Österbacka, Professor Ronald; Han, Jin-Woo, Dr

    2014-03-01

    devices. If 'writing is thinking on paper' [15], it seems researchers are finding yet more powerful means of putting their ideas on paper. References [1] Barquinha P, Martins R, Pereira L and Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (Chichester: Wiley) [2] Zocco A T, You H, Hagen J A and Steckl A J 2014 Pentacene organic thin film transistors on flexible paper and glass substrates Nanotechnology 25 094005 [3] Pereira L, Gaspar D, Guerin D, Delattre A, Fortunato E and Martins R 2014 The influence of fibril composition and dimension on the performance of paper gated oxide transistors Nanotechnology 25 094007 [4] Wu G, Wan C, Zhou J, Zhu L and Wan Q 2014 Low-voltage protonic/electronic hybrid indium-zinc-oxide synaptic transistors on paper substrates Nanotechnology 25 094001 [5] Shin H, Yoon B, Park I S and Kim J-M 2014 An electrothermochromic paper display based on colorimetrically reversible polydiacetylenes Nanotechnology 25 094011 [6] Ihalainen P, Pettersson F, Pesonen M, Viitala T, Määttänen A, Österbacka R and Peltonen J 2014 An impedimetric study of DNA hybridization on paper supported inkjet-printed gold electrodes Nanotechnology 25 094009 [7] Wang Y, Shi Y, Zhao C X, Wong J I, Sun X W and Yang H Y 2014 Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage device Nanotechnology 25 094010 [8] Andersson H A, Manuilskiy A, Haller S, Hummelgård M, Sidén J, Hummelgård C, Olin H and Nilsson H-E 2014 Assembling surface mounted components on ink-jet printed double sided paper circuit board Nanotechnology 25 094002 [9] Gaspar D, Fernandes S N, de Oliveira A G, Fernandes J G, Grey P, Pontes R V, Pereira L, Martins R, Godinho M H and Fortunato E 2014 Nanocrystalline cellulose applied simultaneously as gate dielectric and substrate on flexible field effect transistors Nanotechnology 25 094008 [10] Männl U, van den Berg C, Magunje B, Härting M, Britton D T, Jones S, Mvan Staden M J and Scriba M

  17. Drug Delivery Systems: A New Frontier in Nano-technology

    Chamindri Witharana

    2017-09-01

    Full Text Available Nano-technology is a recent advancement in science, defined as “Science, engineering, and technology conducted at the Nano scale” (National nanotechnology initiatives in USA. Applications of Nano-technology cover a vast range from basic material science, personal care applications, agriculture, and medicine. Nano-technology is used in field of medicine for treatment, diagnostic, monitoring, genetic engineering, and drug delivery. There are two main types of Nano Particles (NPs used in drug delivery; organic NPs and inorganic NPs. In drug delivery, the drug-Nano- Particle (NP conjugate should be able to deliver drugs to the target site without degradation in gastrointestinal track and without reducing drug activity. Further, it should attack to target cells without causing any adverse effects. The ultimate goal of NP drug delivery is to improve proper treatment, effectiveness, less side effects with safety and patient adherence as well as reduction in the cost.

  18. Nanotechnology for dental implants.

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  19. Computers, Nanotechnology and Mind

    Ekdahl, Bertil

    2008-10-01

    In 1958, two years after the Dartmouth conference, where the term artificial intelligence was coined, Herbert Simon and Allen Newell asserted the existence of "machines that think, that learn and create." They were further prophesying that the machines' capacity would increase and be on par with the human mind. Now, 50 years later, computers perform many more tasks than one could imagine in the 1950s but, virtually, no computer can do more than could the first digital computer, developed by John von Neumann in the 1940s. Computers still follow algorithms, they do not create them. However, the development of nanotechnology seems to have given rise to new hopes. With nanotechnology two things are supposed to happen. Firstly, due to the small scale it will be possible to construct huge computer memories which are supposed to be the precondition for building an artificial brain, secondly, nanotechnology will make it possible to scan the brain which in turn will make reverse engineering possible; the mind will be decoded by studying the brain. The consequence of such a belief is that the brain is no more than a calculator, i.e., all that the mind can do is in principle the results of arithmetical operations. Computers are equivalent to formal systems which in turn was an answer to an idea by Hilbert that proofs should contain ideal statements for which operations cannot be applied in a contentual way. The advocates of artificial intelligence will place content in a machine that is developed not only to be free of content but also cannot contain content. In this paper I argue that the hope for artificial intelligence is in vain.

  20. Nanotechnologies in regenerative medicine

    Kubinová, Šárka; Syková, Eva

    2010-01-01

    Roč. 19, 3-4 (2010), s. 144-156 ISSN 1364-5706 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554; GA AV ČR KAN201110651 Grant - others:GA ČR(CZ) 1M0538; GA ČR(CZ) GA203/09/1242; GA AV ČR(CZ) KAN200520804; EC FP6 project ENIMET(XE) LSHM-CT-2005-019063 Program:1M; GA; KA Institutional research plan: CEZ:AV0Z50390703 Keywords : Nanotechnology * regenerative medicine * nanofibers Subject RIV: FH - Neurology Impact factor: 1.051, year: 2010

  1. Nanotechnology and society

    Keller, Kenneth H.

    2007-01-01

    Past experience has shown that the successful introduction of a new technology requires careful attention to the interactions between the technology and society. These interactions are bi-directional: on the one hand, technology changes and challenges social patterns and, on the other hand, the governance structures and values of the society affect progress in developing the technology. Nanotechnology is likely to be particularly affected by these kinds of interactions because of its great promise and the unusually early public attention it has received. Moreover, it represents a new kind of experiment in packaging a rather wide range of fundamental research activities under a single 'mission-like' umbrella. Although this gives it more impetus as a field, it sets a higher bar for showing successful applications early on and because it links disparate fields, regulatory regimes reasonable for one kind of nanotechnology development may be inappropriately extended to others. There are a number of lessons to be gleaned from experience with the introduction of other technologies, which offer guidance with respect to what pitfalls to avoid and what issues to be sensitive to as we move forward with the development of nanotechnology applications. The problems encountered by nuclear power point out the dangers of over-promising and the role the need for the technology plays in ameliorating fears of risk. The public reaction to biomedical engineering and biotechnology highlights, in addition, the cultural factors that come into play when technologies raise questions about what is 'natural' and what is 'foreign' and what conceptions are involved in defining 'personhood'. In all cases, it has been clear that a main task for those introducing new technology is building public trust-in the safety of the technologies and the integrity of those introducing it. The advocates of nanotechnology have already shown that they are generally aware of the need to consider the public

  2. Biomedical engineering and nanotechnology

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  3. Nanotechnology and public health

    Ferdi Tanır

    2015-08-01

    Full Text Available Nanotechnology is a new revolution in technology; being used in different parts of life such as self-cleaning paints, dirt repellent fabrics, the destruction of cancer cells without harming the person, biosensors that can detect even a single bacterium, odorless socks due to the destruction of bacteria, germ-free refrigerators, disinfection etc. In this article, we consider in the perspective of public health the possible risks of this new technology, which is starting to appear in all areas of our daily lives. 

  4. Nanotechnology: The Incredible Invisible World

    Roberts, Amanda S.

    2011-01-01

    The concept of nanotechnology was first introduced in 1959 by Richard Feynman at a meeting of the American Physical Society. Nanotechnology opens the door to an exciting new science/technology/engineering field. The possibilities for the uses of this technology should inspire the imagination to think big. Many are already pursuing such feats…

  5. Nanotechnology applications in thoracic surgery.

    Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-07-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Nanotechnology overview: Opportunities and challenges

    Nanotechnology can be defined as the science of manipulating matter at the nanometer scale in order to discover new properties and possibly produce new products. For the past 30 years, a considerable amount of scientific interest and R&D funding devoted to nanotechnology has led to rapid developmen...

  7. Hearts and minds and nanotechnology

    Toumey, Chris

    2009-03-01

    New research by social scientists is presenting a clearer picture of the factors that influence the public perception of nanotechnology and, as Chris Toumey reports, the results present challenges for those working to increase public acceptance of nanoscience and technology.See focus on public perceptions of nanotechnology.

  8. Nanotechnology: From "Wow" to "Yuck"?

    Kulinowski, Kristen

    2004-01-01

    Nanotechnology is science and engineering resulting from the manipulation of matter's most basic building blocks: atoms and molecules. As such, nanotechnology promises unprecedented control over both the materials we use and the means of their production. Such control could revolutionize nearly every sector of our economy, including medicine,…

  9. Food nanotechnology – an overview

    Bhupinder S Sekhon

    2010-05-01

    Full Text Available Bhupinder S SekhonInstitute of Pharmacy and Department of Biotechnology, Punjab College of Technical Education, Jhande, Ludhiana, IndiaAbstract: Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity.Keywords: nanotechnology, nanofood, food packaging, nanoparticles, nanoencapsulation

  10. How nanotechnology works in medicine

    Arshpreet Kaur; Ms. Amandeep Kaur; Ms. Nitika Shahi

    2012-01-01

    Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future. The National Nanotechnol...

  11. Nanotechnologies in Latvia: Commercialisation Aspect

    Geipele I.

    2014-12-01

    Full Text Available The authors consider the possibilities to apply the nanotechnology products of manufacturing industries in Latvia for further commercialisation. The purpose of the research is to find out the preliminary criteria for the system of engineering economic indicators for multifunctional nanocoating technologies. The article provides new findings and calculations for the local nanotechnology market research characterising the development of nanotechnology industry. The authors outline a scope of issues as to low activities rankings in Latvia on application of locally produced nanotechnologies towards efficiency of the resource use for nanocoating technologies. For the first time in Latvia, the authors make the case study research and summarise the latest performance indicators of the Latvian companies operating in the nanotechnology industry.

  12. Developing nanotechnology in Latin America

    Kay, Luciano; Shapira, Philip

    2009-01-01

    This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R and D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies.

  13. Robotics, Ethics, and Nanotechnology

    Ganascia, Jean-Gabriel

    It may seem out of character to find a chapter on robotics in a book about nanotechnology, and even more so a chapter on the application of ethics to robots. Indeed, as we shall see, the questions look quite different in these two fields, i.e., in robotics and nanoscience. In short, in the case of robots, we are dealing with artificial beings endowed with higher cognitive faculties, such as language, reasoning, action, and perception, whereas in the case of nano-objects, we are talking about invisible macromolecules which act, move, and duplicate unseen to us. In one case, we find ourselves confronted by a possibly evil double of ourselves, and in the other, a creeping and intangible nebula assails us from all sides. In one case, we are faced with an alter ego which, although unknown, is clearly perceptible, while in the other, an unspeakable ooze, the notorious grey goo, whose properties are both mysterious and sinister, enters and immerses us. This leads to a shift in the ethical problem situation: the notion of responsibility can no longer be worded in the same terms because, despite its otherness, the robot can always be located somewhere, while in the case of nanotechnologies, myriad nanometric objects permeate everywhere, disseminating uncontrollably.

  14. Nanotechnology in agri-food production: an overview

    Sekhon BS

    2014-05-01

    Full Text Available Bhupinder Singh SekhonInstitute of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, IndiaAbstract: Nanotechnology is one of the most important tools in modern agriculture, and agri-food nanotechnology is anticipated to become a driving economic force in the near future. Agri-food themes focus on sustainability and protection of agriculturally produced foods, including crops for human consumption and animal feeding. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use. Nanotechnology can boost agricultural production, and its applications include: 1 nanoformulations of agrochemicals for applying pesticides and fertilizers for crop improvement; 2 the application of nanosensors/nanobiosensors in crop protection for the identification of diseases and residues of agrochemicals; 3 nanodevices for the genetic manipulation of plants; 4 plant disease diagnostics; 5 animal health, animal breeding, poultry production; and 6 postharvest management. Precision farming techniques could be used to further improve crop yields but not damage soil and water, reduce nitrogen loss due to leaching and emissions, as well as enhance nutrients long-term incorporation by soil microorganisms. Nanotechnology uses include nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant varieties, food processing and storage, nanofeed additives, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuels production technologies. Experts feel that the potential benefits of nanotechnology for agriculture, food, fisheries, and aquaculture need to be balanced against concerns for the soil, water, and environment and the occupational health of workers. Raising awareness of nanotechnology in the agri-food sector, including feed and food ingredients, intelligent packaging and quick-detection systems, is

  15. The current state of public understanding of nanotechnology

    Waldron, Anna M; Spencer, Douglas; Batt, Carl A

    2006-01-01

    The growing importance of nanotechnology in industry and society has not been accompanied by a widespread understanding of the subject among the general public. Simple questions to initially probe the smallest thing that people can see and can think of reveals a divide in the understanding of the general public. A survey of 1500 individuals ranging in age from 6 to 74 has revealed a lack of knowledge of nanotechnology and especially a lack of understanding of the context of nanotechnology in the world that is too small to see. Survey findings are corroborated by in-depth interviews with 400 adults in studies of nanoscience literacy commisioned by University of California, Berkeley and Cornell in 2002 and 2004, respectively. In general, with the exception of 14-28 year olds, over 60% of respondents say they have never heard of nano or nanotechnology. The results suggest that the general public, especially middle-school children, has no firm foundation to understand nanotechnology and likely will continue to be equally impressed by credible scientific information as well as pure fictional accounts of nanotechnology

  16. The current state of public understanding of nanotechnology

    Waldron, Anna M [Cornell University, Nanobiotechnology Center (United States)], E-mail: amw37@cornell.edu; Spencer, Douglas [Edu, Inc. (United States); Batt, Carl A [Cornell University (United States)

    2006-10-15

    The growing importance of nanotechnology in industry and society has not been accompanied by a widespread understanding of the subject among the general public. Simple questions to initially probe the smallest thing that people can see and can think of reveals a divide in the understanding of the general public. A survey of 1500 individuals ranging in age from 6 to 74 has revealed a lack of knowledge of nanotechnology and especially a lack of understanding of the context of nanotechnology in the world that is too small to see. Survey findings are corroborated by in-depth interviews with 400 adults in studies of nanoscience literacy commisioned by University of California, Berkeley and Cornell in 2002 and 2004, respectively. In general, with the exception of 14-28 year olds, over 60% of respondents say they have never heard of nano or nanotechnology. The results suggest that the general public, especially middle-school children, has no firm foundation to understand nanotechnology and likely will continue to be equally impressed by credible scientific information as well as pure fictional accounts of nanotechnology.

  17. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  18. Nanotechnology Environmental and Health Implications (NEHI) | Nano

    Skip main navigation Nano.gov Nanotechnology 101 What It Is and How It Works What is Nanotechnology What's So Special about the Nanoscale? NNI Accomplishments NNI Accomplishments Archive Nanotechnology Timeline Frequently Asked Questions Glossary Nanotechnology and You Benefits and Applications Networks and

  19. EDITORIAL: Ensuring sustainability with green nanotechnology Ensuring sustainability with green nanotechnology

    Wong, Stanislaus; Karn, Barbara

    2012-07-01

    Nanotechnology offers immense promise for developing new technologies that are more sustainable than current technologies. All major industrial sectors have felt nanotechnology's impact, mainly from the incorporation of nanomaterials into their products. For example, nanotechnology has improved the design and performance of products in areas as diverse as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy, as well as many others. Moreover, the revenues from nanotechnology-enabled products are not trivial. For instance, Lux Research maintains that commercial sales in both Europe and the USA will attain revenues of over 1 trillion from nano-enabled products by 2015. The manufacturing of the nanomaterials for these products uses many processes equivalent to chemical manufacturing processes. As a result, manufacturing nanomaterials can produce either harmful pollutants or adverse environmental impacts similar to those from chemical manufacturing. Unlike the chemical industry, however, those same processes are not ingrained in the manufacturing of nanomaterials, and the opportunity exists at the initial design stage to purposely account for and mitigate out potentially harmful environmental impacts. While prevention has not been a priority in current industries, it can become a main concern for the new and future industries that manufacture nanomaterials on a bulk commercial scale. This is where green nanotechnology comes in. Green nanotechnology involves deliberate efforts aimed at developing meaningful and reasonable protocols for generating products and their associated production processes in a benign fashion. The goal is a conscious minimization of risks associated with the products of nanoscience. The green products of nanotechnology are those that are used in either direct or indirect environmental applications. Direct environmental applications provide benefits such as monitoring using nano

  20. Nanostructures and nanotechnology

    Natelson, Douglas

    2015-01-01

    Focusing on the fundamental principles of nanoscience and nanotechnology, this carefully developed textbook will equip students with a deep understanding of the nanoscale. • Each new topic is introduced with a concise summary of the relevant physical principles, emphasising universal commonalities between seemingly disparate areas, and encouraging students to develop an intuitive understanding of this diverse area of study • Accessible introductions to condensed matter physics and materials systems provide students from a broad range of scientific disciplines with all the necessary background • Theoretical concepts are linked to real-world applications, allowing students to connect theory and practice • Chapters are packed with problems to help students develop and retain their understanding, as well as engaging colour illustrations, and are accompanied by suggestions for additional reading. Containing enough material for a one- or two-semester course, this is an excellent resource for senior undergra...

  1. Nanoscience Nanotechnologies and Nanophysics

    Dupas, Claire; Lahmani, Marcel

    2007-01-01

    Nanotechnologies and nanosciences are a fast-developing field of research, which sit at the point of convergence of several disciplines (physics, chemistry, biology, mechanics, etc.). This practically-oriented overview is designed to provide students and researchers with essential information on both the tools of manufacture and specific features of the nanometric scale, as well as applications within the most active fields (electronics, magnetism, information storage, biology). Specific applications and techniques covered include nanolithography, STM and AFM, nanowires and supramolecules, molecular electronics, optronics, and simulation. Each section of the book devotes considerable space to industrial applications and prospective developments. The carefully edited contributions are written by reserach workers and unirveisty instructors who are experts in their own fields and full up-to-date with the latest developments. Their uniform and self-contained nature permit users to access the most relevant chapter...

  2. Materials and nanotechnology

    2014-01-01

    The focus of the Materials and Nanotechnology Program is technology development related to processing, analysis, testing and characterization of materials in general. These are achieved through execution of R&D projects in engineering and materials science, cooperative projects with private and public sector companies, universities and other research institutes. Besides technology development, this Program also fosters training and human resource development in association with the University of São Paulo and many industrial sectors. This Program is divided into sub-programs in broad areas such as ceramic, composite and metallic materials as well as characterization of physical and chemical properties of materials. The sub-programs are further divided into general topics and within each topic, R&D projects. A brief description of progress in each topic during the last three years follows. (author)

  3. Current standardisation for nanotechnology

    Bard, Delphine; Mark, David; Moehlmann, Carsten

    2009-01-01

    Standardisation and standards provide an important mechanism to support both innovation and the application of regulations. There is currently no specific regulation for any nanomaterials. Health, safety and environmental protection aspects associated with nanomaterials are however in principle covered to different levels by current EU regulatory framework. There are a number of national, European and international organisations developing standards associated with the development, description and use of nanomaterials as well as the protection of human health and the environment from the production and use of chemicals and consumer products, including nanomaterials. These organisations have also established specific committees on nanotechnology. This paper outlines the different relevant regulations and standards. This paper will mainly be focused on a European health and safety perspective.

  4. Current situation and industrialization of Taiwan nanotechnology

    Su, H.-N.; Lee, P.-C.; Tsai, M.-H.; Chien, K.-M.

    2007-01-01

    Nanotechnology is projected to be a very promising field, and the impact of nanotechnology on society is increasingly significant as the research funding and manufactured goods increase exponentially. A clearer picture of Taiwan's current and future nanotechnology industry is an essential component for future planning. Therefore, this investigation studies the progress of industrializing nanotechnology in Taiwan by surveying 150 companies. Along with understanding Taiwan's current nanotechnology industrialization, this paper also suggests ways to promote Taiwan's nanotechnology. The survey results are summarized and serve as the basis for planning a nanotechnology industrialization strategy

  5. NASA Applications of Molecular Nanotechnology

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  6. Effects of Mothers against Drunk Driving's (MADD's) Victim Impact Panels on First-Time DWI Offenders: Some Initial Results.

    Rao, Nagesh; And Others

    A study assessed the effects of victim impact panels (VIP) on first-time DWI (Driving While Intoxicated) offenders in Albuquerque, New Mexico. The VIP is an emotional presentation by the victim or their parents about how they were injured or their child was killed by a drunk driver. Subjects, 350 first-time offenders participated in a Mothers…

  7. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Cox, Elena K.

    2012-01-01

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a…

  8. Nanotechnologies. Proceedings of Kharkiv Nanotechnology Congress-2008. Volume 1

    Neklyudov, I.M.; Shulaeva, V.M.

    2008-01-01

    The materials of Kharkiv Nanotechnology Congress-2008 held in Kharkiv of 26-30 May, 2008 are presented here. The scientific and practical research aspects as well as development of ion-plasma nanotechnologies, current problems of thin film physics in optics and electronics, as well as the issues of creation of new type of vacuum technological equipment are considered in papers to be published.

  9. Safety Assessment of Nanotechnology Products

    Nanotechnology has important opportunities to affect technological challenges in such diverse areas as electronics, energy, water purification, food storage, and therapeutics. These emerging technologies hold great promise both for global economic growth and a sustainable environ...

  10. Nanotechnology in electrocatalysis for energy

    Lavacchi, Alessandro; Vizza, Francesco

    2014-01-01

    Accessible to researchers in a wide range of disciplines, this book examines the energy applications of using nanotechnology in electrocatalysis. It covers their use in numerous contexts including low-temperature fuel cells and electrochemical valorization.

  11. Accelerating nano-technological innovation in the Danish construction industry

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

    . The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked......  By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which...... concludes that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterised by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse...

  12. Nanoparticles, nanotechnology and pulmonary nanotoxicology

    Ferreira, AJ; Cemlyn-Jones, J; Robalo-Cordeiro, C

    2012-01-01

    The recently emergent field of Nanotechnology involves the production and use of structures at the nanoscale. Research at atomic, molecular or macromolecular levels, has led to new materials, systems and structures on a scale consisting of particles less than 100 nm and showing unique and unusual physical, chemical and biological properties, which has enabled new applications in diverse fields, creating a multimillion-dollar high-tech industry. Nanotechnologies have a wide variety of uses fro...

  13. Shared Learning and the Drive to Improve Patient Safety: Lessons Learned from the Pittsburgh Regional Healthcare Initiative

    Sirio, Carl A; Keyser, Donna J; Norman, Heidi; Weber, Robert J; Muto, Carlene A

    2005-01-01

    Based on lessons learned through implementation of the Pittsburgh Regional Healthcare Initiative's region-wide shared learning model, we have identified the environmental, cultural, and infrastructure...

  14. QUALITY PARAMETERS IN NANOTECHNOLOGIC APPLICATIONS

    Ayşegül Akdoğan Eker

    2013-06-01

    Full Text Available Nanotechnology concept which has added a new dimension to our lives in recent years, is finding a place in every sector day by day. The combined effect of nanotechnology is almost equal to the industrial revolution of last 200 years and have is able to fill all developments in a few years. However this development should be taken under control. Otherwise unstoppable new structures will not ease life but will be a problem for humanity. For this purpose, the main parameters (from the start up stage of nano-technologic applications to the obtained product should be checked. These parameters are actually not different than the adaptation of the classical quality indicators for nanotechnology applications. Especially it plays an important role in obtaining a uniform distribution and regarding the features of the end product in nano-technological ceramic and etc. applications. The most important problem faced in particles of that size is the accumulation they create. Another problem is the increasing friction force as size gets smaller. The friction force of asubstance increases proportionally with the cube of its surface area. Another problem is surface tension. The increasing surface tension due to increasing surface area will cause the particles to attract and stick to each other. The structures aimed to be obtained are mostly complex and especially in upwards approach, it is thermodynamically very hard for the atoms to get into that order. Therefore in this announcement, we stated the quality parameters that will be taken into consideration in nano-technological applications and the methods for obtaining those parameters. The aim is to explain these parameters with all dimensions so that they will lead the way to the future nano-technological applications.

  15. NANOTECHNOLOGY IN TEXTILE INDUSTRY [REVIEW

    RATIU Mariana

    2015-05-01

    Full Text Available Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanotechnology overcomes the limitation of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of the textile industry. Nanotextiles are nanoscale fibrous materials that can be fictionalized with a vast array of novel properties, including antibiotic activity, self-cleaning and the ability to increase reaction rates by providing large surface areas to potential reactants. These materials are used not only as cloth fabric, but as filter materials, wound-healing gauzes and antibacterial food packaging agents in food industry. World demand for nano-materials will rise more than two-and-a-half times to $5.5 billion in 2016 driven by a combination of increased market penetration of existing materials, and ongoing development of new materials and applications. In recent years was demonstrated that nanotechnology can be used to enhance textile attributes, such as fabric softness, durability and breathability, water repellency, fire retardancy, antimicrobial properties in fibers, yarns and fabrics. The development of smart nanotextiles has the potential to revolutionize the production of fibers, fabrics or nonwovens and functionality of our clothing and all types of textile products and applications. Nanotechnology is considered one of the most promising technologies for the 21st century. Today is said that if the IT is the wave of the present, the nanotechnology is the wave of the present, the nanotechnology is the wave of the future.

  16. Trends in worldwide nanotechnology patent applications: 1991 to 2008

    Dang Yan; Zhang Yulei; Fan Li; Chen Hsinchun; Roco, Mihail C.

    2010-01-01

    Nanotechnology patent applications published during 1991-2008 have been examined using the 'title-abstract' keyword search on esp-cenet 'worldwide' database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People's Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant 'home advantage.' The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.

  17. Trends in worldwide nanotechnology patent applications: 1991 to 2008

    Dang, Yan; Zhang, Yulei; Fan, Li; Chen, Hsinchun; Roco, Mihail C.

    2010-03-01

    Nanotechnology patent applications published during 1991-2008 have been examined using the "title-abstract" keyword search on esp@cenet "worldwide" database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People's Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant "home advantage." The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.

  18. Trends in worldwide nanotechnology patent applications: 1991 to 2008

    Dang Yan, E-mail: ydang@email.arizona.edu; Zhang Yulei, E-mail: ylzhang@email.arizona.edu; Fan Li, E-mail: fanli@email.arizona.edu; Chen Hsinchun, E-mail: hchen@eller.arizona.ed [University of Arizona, Department of Management Information Systems, Eller College of Management (United States); Roco, Mihail C., E-mail: mroco@nsf.go [National Science Foundation (United States)

    2010-03-15

    Nanotechnology patent applications published during 1991-2008 have been examined using the 'title-abstract' keyword search on esp-cenet 'worldwide' database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People's Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant 'home advantage.' The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.

  19. Nanotechnology for sustainable energy

    Ali, M.; Ali, A.

    2011-01-01

    Nanotechnology and its applications have captured a worldwide market. Nanomaterials that have been developed using this technology can be incorporated into the devices so that renewable energy can be converted or generated more efficiently. Nanomaterials have the potential to change the way we generate, deliver and use energy. Hydrogen cells are used in auto industry as a viable power source. Compressed hydrogen tanks are used to supply Hydrogen, and Oxygen is used from the air directly. There is no pollution caused by hydrogen fuel cell autos since the only emission is water. Organic dyes (dye sensitizers), which are sensitive to light, can absorb a broader range of the sun's spectrum. A dye-sensitized solar cell has three primary parts. On top is a transparent anode made of fluoride-doped tin dioxide (SnO/sub 2/: F) deposited on the back typically of a glass plate. On the back of this conductive plate is a thin layer of titanium dioxide (TiO/sub 2/), which forms into a highly nanoporous structure with an extremely large surface-area. After soaking the film in the dye solution, a thin layer of the dye is left covalently bonded to the surface of the TiO/sub 2/ . Computational material science and nanoscience can play many critical roles in renewable energy research. These include: finding the right materials for hydrogen storage; finding the most reliable and efficient catalyst for water dissociation in hydrogen production; finding a cheap, environmentally benign, and stable material for efficient solar cell applications; and understanding the photo-electron process in a nanosystem, and hence helping design efficient nanostructure solar cells. (author)

  20. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  1. NCI Alliance for Nanotechnology in Cancer

    The NCI Alliance for Nanotechnology in Cancer funds the Cancer Nanotechnology Training Centers collectively with the NCI Cancer Training Center. Find out about the funded Centers, to date, that train our next generation of scientists in the field of Canc

  2. Chemical engineers, nanotechnology and future green economy

    Musee, N

    2012-01-01

    Full Text Available Nanotechnology is envisaged to address present human needs and secure living comforts of future generations cheaply, faster and more cleanly. To date, nanotechnology's impact on the economy and on our daily lives has been enormous....

  3. Scope of nanotechnology in modern textiles

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  4. Scenario planning and nanotechnological futures

    Farber, Darryl; Lakhtakia, Akhlesh

    2009-01-01

    Scenario planning may assist us in harnessing the benefits of nanotechnology and managing the associated risks for the good of the society. Scenario planning is a way to describe the present state of the world and develop several hypotheses about the future of the world, thereby enabling discussions about how the world ought to be. Scenario planning thus is not only a tool for learning and foresight, but also for leadership. Informed decision making by experts and political leaders becomes possible, while simultaneously allaying the public's perception of the risks of new and emerging technologies such as nanotechnology. Two scenarios of the societal impact of nanotechnology are the mixed-signals scenario and the confluence scenario. Technoscientists have major roles to play in both scenarios.

  5. Intellectual property rights in nanotechnology

    Bastani, Behfar; Fernandez, Dennis

    2002-01-01

    Intellectual property (IP) rights are essential in today's technology-driven age. Building a strategic IP portfolio is economically important from both an offensive and defensive standpoint. After an introduction to intellectual property rights and acquisitions, we provide an overview of current efforts in nanotechnology. Research into nano-scale materials and devices and requirements for their efficient mass production are outlined, with focus on the applicable IP rights and strategies. We present current and future applications of nanotechnology to such fields as electronics, sensors, aerospace, medicine, environment and sanitation, together with the IP rights that can be brought to bear in each. Finally, some challenging issues surrounding the acquisition of intellectual property rights in nanotechnology are presented

  6. Cultural diversity in nanotechnology ethics.

    Schummer, Joachim

    2011-01-01

    Along with the rapid worldwide advance of nanotechnology, debates on associated ethical issues have spread from local to international levels. However unlike science and engineering issues, international perceptions of ethical issues are very diverse. This paper provides an analysis of how sociocultural factors such as language, cultural heritage, economics and politics can affect how people perceive ethical issues of nanotechnology. By attempting to clarify the significance of sociocultural issues in ethical considerations my aim is to support the ongoing international dialogue on nanotechnology. At the same time I pose the general question of ethical relativism in engineering ethics, that is to say whether or not different ethical views are irreconcilable on a fundamental level.

  7. Nanotechnology in dentistry: Current achievements and prospects

    Ramandeep Singh Gambhir; G M Sogi; Ashutosh Nirola; Rajdeep Brar; Tegbir Sekhon; Heena Kakar

    2013-01-01

    Nanotechnology offers advances particularly in each and every field of human activity such as electronics, industry, telecommunications, environmental science, etc., The field of nanotechnology has got remarkable potential that can bring considerable improvements to the human health, enhanced use of natural resources, and reduced environmental pollution. Since 1990s, nanotechnology has been exploited for potential medical and dental applications. Nanotechnology holds promise for advanced diag...

  8. Determining the efficacy of a nanotechnology media product in enhancing children’s engagement with nanotechnology

    Waldron, Anna M.; Batt, Carl A.; Lui, Clarissa S.

    2011-01-01

    Public engagement in nanotechnology media products can lead to a greater interest in understanding of nanotechnology. A study was undertaken to determine middle school student engagement in Nanooze, a magazine featuring nanotechnology research that has been developed for a young adult audience. Teachers at 116 Detroit middle schools distributed two issues of the magazine to their students, and surveys were collected from 870 students after reading the magazines. Results suggest that the majority of students liked reading the magazine and learned something about nanotechnology. Engagement in nanotechnology led to understanding of nanotechnology. The Nanooze magazine was an effective medium for engaging middle school students in learning about nanotechnology.

  9. Nanotechnology in medicine emerging applications

    Koprowski, Gene

    2014-01-01

    This book will describe some of the most recent breakthroughs and promising developments in the search for improved diagnostics and therapies at the very small scales of living biological systems. While still very much a technology in the research and development stage, nanotechnology is already transforming today's medicine. This book, written by a general science author, provides a general overview of medical treatment potentials of nanotechnology in new, more effective drug delivery systems, in less invasive, ultra-small scale medical tools, and in new materials that can mimic or enhance natural materials like living tissue.

  10. DNA nanotechnology and fluorescence applications.

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Applications of nanotechnology in cancer.

    Johnson, Laura; Gunasekera, Ayanthi; Douek, Michael

    2010-04-01

    Modern cancer therapy is more individualized to specific cancer subtypes, in an attempt to treat those patients who are likely to obtain greater benefit and avoid treatment induced side effects in those who will not. Nanotechnology heralds an era whereby cancer could be diagnosed by a single agent, treated simultaneously while the diagnosis is being made, and its response to treatment monitored. Whilst nanotechnology is still mostly in the research stage, several applications are ready for translation from the bench to the bedside, in particular in the field of breast cancer. This is exciting new area of research where science fiction may become a reality.

  12. Russia's Policy and Standing in Nanotechnology

    Terekhov, Alexander I.

    2013-01-01

    In this article, I consider the historical stages of development of nanotechnology in Russia as well as the political framework for this. It is shown that early federal nanotechnology programs in Russia date back to the 1990s and that since the mid-2000s, nanotechnology has attracted the increasing attention of government. I characterize the…

  13. Overview of Nanotechnology in Road Engineering

    Arpit Singh; Dr. Sangita; Arpan Singh

    2015-01-01

    Nanotechnology has changed our vision, expectations, and abilities to control the material world. This paper examines and document applicable nanotechnology based product that can be improve the overall competitiveness of the Road engineering industry. In this review, nanotechnology is applying in road sector.

  14. Patent, Nanotechnology, and the Role of University

    Sardjono, Agus

    2011-01-01

    University has significant contribution tot the development of nanotechnology, The role of university can be implemented through the TTLO, particulary in an effort to build a bridge for bottom-up nanotechnology for commercial purposes. There will be an increasingly significant link betweent the patent system on the university role in the development of nanotechnology.

  15. 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine

    Zhang, Lijie Grace; Leong, Kam

    2015-01-01

    3D Bioprinting and Nanotechnology in Tissue Engineering provides an in depth introduction to these two technologies and their industrial applications. Stem cells in tissue regeneration are covered, along with nanobiomaterials. Commercialization, legal and regulatory considerations are also discussed in order to help you translate nanotechnology and 3D printing-based products to the marketplace and the clinic. Dr. Zhang's and Dr. Fishers' team of expert contributors have pooled their expertise in order to provide a summary of the suitability, sustainability and limitations of each technique for each specific application. The increasing availability and decreasing costs of nanotechnologies and 3D printing technologies are driving their use to meet medical needs, and this book provides an overview of these technologies and their integration. It shows how nanotechnology can increase the clinical efficiency of prosthesis or artificial tissues made by bioprinting or biofabrication. Students and professionals will r...

  16. Nanotechnology: an evidence-based analysis.

    2006-01-01

    required for new nano-treatments Patient education - people may be concerned regarding the use of nanodevices inside their bodies.Longer time to specialize in medicine in order to use nanotechnology clinically?Insufficient number of dendrimer specialists to treat everyone with personalized dendrimersRestricted to specialized centres Possible in-house nanodevice production required to keep up with the demand for use.Will the same specialized centres that offer imaging also offer treatment?How many specialized centres will be required?Only specialized centres can perform this combined imaging/treatmentPossible nano-monitoring from patient home via wireless technology. This may free hospital beds for other patients.After imaging with nanodevices, specifically targeted therapeutic nanodevices may also be required for immediate treatment of the patient. Will both of these nanodevices be commercially available in sufficient quantities?Possible waiting time for preparation of appropriately targeted nanodevice after imaging (will a therapeutic nanodevice be immediately available?)Will a patient receive conventional treatment if there is a waiting period required to prepare the therapeutic nanodevice?Will there be a patient waiting time required for preparation of personalized dendrimers (hours, days, weeks after a patient sees a physician)?*MRI indicates magnetic resonance imaging; PSA, prostate-specific antigen; QD, quantum dot. The United States National Nanotechnology Initiative (NNI) funds a variety of research in the economic, ethical, legal, and cultural implications of the use of nanotechnology, as well as the implications for science, education and quality of life. There are many uncertainties that are sparsely or not addressed at all in the literature regarding second generation nanodevices. (ABSTRACT TRUNCATED)

  17. Healthy competition drives success in results-based aid: Lessons from the Salud Mesoamérica Initiative.

    El Bcheraoui, Charbel; Palmisano, Erin B; Dansereau, Emily; Schaefer, Alexandra; Woldeab, Alexander; Moradi-Lakeh, Maziar; Salvatierra, Benito; Hernandez-Prado, Bernardo; Mokdad, Ali H

    2017-01-01

    The Salud Mesoamérica Initiative (SMI) is a three-operation strategy, and is a pioneer in the world of results-based aid (RBA) in terms of the success it has achieved in improving health system inputs following its initial operation. This success in meeting pre-defined targets is rare in the world of financial assistance for health. We investigated the influential aspects of SMI that could have contributed to its effectiveness in improving health systems, with the aim of providing international donors, bilateral organizations, philanthropies, and recipient countries with new perspectives that can help increase the effectiveness of future assistance for health, specifically in the arena of RBA. Qualitative methods based on the criteria of relevance and effectiveness proposed by the Development Assistance Committee of the Organization for Economic Co-operation and Development. Our methods included document review, key informant interviews, a focus group discussion, and a partnership analysis. A purposive sample of 113 key informants, comprising donors, representatives from the Inter-American Development Bank, ministries of health, technical assistance organizations, evaluation organizations, and health care providers. During May-October 2016, we interviewed regarding the relevance and effectiveness of SMI. Themes emerged relative to the topics we investigated, and covered the design and the drivers of success of the initiative. The success is due to 1) the initiative's regional approach, which pressured recipient countries to compete toward meeting targets, 2) a robust and flexible design that incorporated the richness of input from stakeholders at all levels, 3) the design-embedded evaluation component that created a culture of accountability among recipient countries, and 4) the reflective knowledge environment that created a culture of evidence-based decision-making. A regional approach involving all appropriate stakeholders, and based on knowledge sharing and

  18. National Strategic Computing Initiative Strategic Plan

    2016-07-01

    23 A.6 National Nanotechnology Initiative...program, lack the memory capacity to perform current and anticipated new classes of scientific and engineering applications, and be potentially...Initiative: https://www.nitrd.gov/nitrdgroups/index.php?title=Big_Data_(BD_SSG)  National Nanotechnology Initiative: http://www.nano.gov  Precision

  19. Advancing cellulose-based nanotechnology

    Theodore H. Wegner; Philip E. Jones

    2006-01-01

    Nanotechnology has applications across most economic sectors and allows the development of new enabling science with broad commercial potential. Cellulose and lignocellulose have great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. To...

  20. Food Nanotechnology - Food Packaging Applications

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part, the impetus for this predicted growth is the ...

  1. Analyzing the complexity of nanotechnology

    Vries, de M.J.; Schummer, J.; Baird, D.

    2006-01-01

    Nanotechnology is a highly complex technological development due to many uncertainties in our knowledge about it. The Dutch philosopher Herman Dooyeweerd has developed a conceptual framework that can be used (1) to analyze the complexity of technological developments and (2) to see how priorities

  2. Outlining ethical issues in nanotechnologies.

    Spagnolo, Antonio G; Daloiso, Viviana

    2009-09-01

    Nanotechnologies are an expression of the human ability to control and manipulate matter on a very small scale. Their use will enable an even and constant monitoring of human organisms, in a new and perhaps less invasive way. Debates at all levels--national, European and international--have pointed out the common difficulty of giving a complete, clear definition of nanotechnologies. This is primarily due to the variety of their components, to the fact that there is not just one technology but several. The most significant medical applications of nanotechnologies are in the diagnostic and the therapeutic fields, eg biosensors and molecular imaging, providing diagnosis and drug delivery with no invasive methods involved. Like any other emerging field, such technologies imply new possibilities for improving health but, on the other hand, they are still at an experimental stage and therefore should be implemented under rigorous safety testing before going on general release. For this purpose, the ethical, legal and social implications (ELSI) of nanotechnologies have been elaborated by study groups, in order to develop solutions before the results of the tests are diffused into medical practice. The aim of this paper is to define some of the ethical issues concerning biomedical applications and to evaluate whether there is a need for new or additional guidelines and regulations.

  3. Nanotechnology for the developing world

    El Naschie, M. Saladin

    2006-01-01

    The letter discusses the indispensable importance of Nanotechnology for the scientific and economical revival of the developing world. Similar to the nuclear age, and maybe far more so, the nanoage will be something of a Hemingway line of demarcation between the have and the have nots

  4. Nanotechnology for the developing world

    El Naschie, M. Saladin [Department of Physics, University of Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)

    2006-11-15

    The letter discusses the indispensable importance of Nanotechnology for the scientific and economical revival of the developing world. Similar to the nuclear age, and maybe far more so, the nanoage will be something of a Hemingway line of demarcation between the have and the have nots.

  5. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  6. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  7. Introductory quantum mechanics for semiconductor nanotechnology

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  8. Machine Phase Fullerene Nanotechnology: 1996

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  9. Visual framing of nanotechnology in newspapers

    Nielsen, Kristian Hvidtfelt

    discourse, very little research into to the visual communication of science in public has been carried out. Nanotechnology is an emerging scientific discipline that just recently has entered the public sphere. Surveys show that most Europeans and most Americans have very little knowledge about...... nanotechnology. Even so, there is a marked difference between Europeans who generally are cautious, it not skeptical about nanotechnology, and American who seem to have a much more positive attitude towards nanotechnology. Objective This paper surveys visual images used to communicate nanotechnology (and...... nanotechnology-related issues) in the printed press in Denmark from 1993 to 2006. Based on a representative sample of newspaper articles referring to nanotechnology, the survey categorizes and analyzes the images used. Studies have shown that to a high degree newspaper readers use images to navigate...

  10. Continuous quality improvement programs provide new opportunities to drive value innovation initiatives in hospital-based radiology practices.

    Steele, Joseph R; Schomer, Don F

    2009-07-01

    Imaging services constitute a huge portion of the of the total dollar investment within the health care enterprise. Accordingly, this generates competition among medical specialties organized along service lines for their pieces of the pie and increased scrutiny from third-party payers and government regulators. These market and political forces create challenge and opportunity for a hospital-based radiology practice. Clearly, change that creates or builds greater value for patients also creates sustainable competitive advantage for a radiology practice. The somewhat amorphous concept of quality constitutes a significant value driver for innovation in this scenario. Quality initiatives and programs seek to define and manage this amorphous concept and provide tools for a radiology practice to create or build more value. Leadership and the early adoption of these inevitable programs by a radiology practice strengthens relationships with hospital partners and slows the attrition of imaging service lines to competitors.

  11. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  12. Competing feedbacks drive state transitions during initial catchment evolution: Examples from post-mining landscape and ecosystems evolution

    Hinz, Christoph; Wolfgang, Schaaf; Werner, Gerwin

    2014-05-01

    Within the context of severely disturbed landscapes with little or no ecological memory, such as post-mining landscapes, we propose a simple framework that explains the catchment evolution as a result of competing feedbacks influenced by the initial conditions and the atmospheric drivers such as rainfall intermittency and intensity. The first stage of the evolution is dominated by abiotic feedbacks triggered by rainfall and subsequent fluid flow causing particle mobilisation on the surface and in the subsurface leading to flow concentration or in some instances to densification of surface and subsurface substrates. Subsequently, abiotic-biotic feedbacks start to compete in the sense that biological activity generally stabilizes substrate by preventing particle mobilisation and hence contribute to converting the substrate to a habitat. We suggest that these competing feedbacks may generate alternative stable states in particular under semi-arid and arid climatic conditions, while in temperate often energy limited environments biological process "outcompete" abiotic processes leading to a stable state, in particular from the water balance point of view for comparable geomorphic situations. To illustrate this framework, we provide examples from post-mining landscapes, in which soil, water and vegetation was monitored. In case of arid regions in Australia, we provide evidence that the initial conditions of a mine waste disposal "locked" the system into a state that was limited by water and nutrient storage capacity while at the same time it was stable from a geomorphic point of view for the observation period. The cause of the system to be locked in, is the very high hydraulic conductivity of the substrate, that has not undergone any changes during the first years. In contrast to this case study, we illustrate how this framework explains the evolution of an artificial catchment (Hühnerwasser Catchment) in Lusatia (150 km southeast of Berlin, Germany). During the

  13. Application of Radiation in Nanotechnology

    Chmielewska, D.K.; Chmielewski, A.G.; Michalik, J.

    2005-01-01

    The Nanotechnology is one of the fastest growing new areas in science and engineering. The subject arises from the convergence of electronics, physics, chemistry, biology and materials science to create new functional systems of nano-scale dimensions. Nanotechnology deals with science and technology associated with dimensions in the range of 0.1 to 100 nm. The ability to fabricate structures with nano-metric precision is of fundamental importance to any exploitation of nanotechnology. Nanotechnology is predicted to have a major impact on the manufacturing technology in 20 to 30 years from now. The ability to fabricate structures with nano-metric precision is of fundamental importance to any exploitation of nanotechnology. The potential of combining radiation effects with nano-materials has been recognized from the very early stages of nano-science research. In the many uses of nano- structures, and nano-particles in particular, from catalysis, bio-sensing, nano-electronics, magnetic applications including separations, mechano-chemical conversion, and to molecular computing, radiation can play a significant role. The use of radiation, UV beam, electron-beam, or focused ion-beam is clearly central to the fabrication of the nanostructured systems. The relative advantages and deficiencies of each of them are still to be clarified as the technology advances. Whether UV or electron beam will lead to the highest resolution is still debated but it is clear that these techniques offer unmatched reproducibility and very narrow size distribution. Other studies concern formation and synthesis of nano-particles and nano-composites. Radiation synthesis of copper, silver and other metals' nanoparticles is studied. Metal and salt-polymer composites are synthesized by this method. Metal sulphide semiconductors of nano-metric matrices are prepared using gamma irradiation of a suitable solution of monomer, sulphur and metal sources. These products find application in photoluminescent

  14. The effect of nanotechnology on education

    Viriyavejakul, Chantana

    2008-04-01

    The research objective was to study 1) the situation and readiness of the Thai education for the integration of nanotechnology and 2) to propose the plans, the strategies and guidelines for educational reform to adapt nanotechnology to the system. The data collection was done by 4 methods: 1) documentary study, 2) observation, 3) informal interviews, and 4) group discussion. The findings revealed that: 1. William Wresch's Theory (1997) was used in this research to study of the situation and readiness of the Thai education for the integration of nanotechnology. 1) Getting connected to nanotechnology by search engine websites, libraries, magazines, books, and discussions with experts. 2) Curriculum integration: nanotechnology should be integrated in many branches of engineering, such as industrial, computer, civil, chemical, electrical, mechanical, etc. 3) Resources for educators: nanotechnology knowledge should be spread in academic circles by publications and the Internet websites. 4) Training and professional resources for teachers: Teachers should be trained by experts in nanotechnology and researchers from the National Nanotechnology Center. This will help trainees get correct knowledge, comprehension, and awareness in order to apply to their professions and businesses in the future. 2. As for the plans, the strategies, and guidelines for educational reform to adapt nanotechnology to the present system, I analyzed the world nanotechnology situation that might have an effect on Thai society. The study is based on the National Plan to Develop Nanotechnology. The goal of this plan is to develop nanotechnology to be the national strategy within 10 years (2004-2013) and have it integrated into the Thai system. There are 4 parts in this plan: 1) nanomaterials, 2) nanoelectronics, 3) nanobiotechnology, and 4) human resources development. Data for human resource development should be worked with the present technology and use the country's resources to produce many

  15. Nanotechnology research among some leading OIC member states

    Bajwa, R. S.; Yaldram, K.; Hussain, S. S.; Ahmed, T.

    2012-01-01

    In this study we present an overview of the research activities in nanotechnology for the period 2001–2011 for six selected countries belonging to the Organization of Islamic cooperation (OIC). The selection has been made based on the research output of these countries. The countries are Iran, Turkey, Egypt, Malaysia, Saudi Arabia, and Pakistan. The factors considered are the number of publications, citations per paper, p-index, and collaborative research output. Iran with 7,795 publications and an annual growth rate of 41 % leads the group, followed by Turkey with 3,169 publications and an annual growth rate of 29 %. Turkey however, has a much better citation per paper (8.96), and p-index (63.34) as compared to Iran (4.59 and 54.36, respectively). We can classify the six countries into two categories. Those, that have a well coordinated national program in nanotechnology, namely, Iran, Malaysia, and Saudi Arabia and those that do not have any national program but are still showing a reasonable good activity in nanotechnology namely Turkey, Egypt, and Pakistan. A brief account of the initiatives taken by the six selected countries of OIC in the field of nanotechnology is also presented.

  16. Launch of the London Centre for Nanotechnology.

    Aeppli, Gabriel; Pankhurst, Quentin

    2006-12-01

    Is nanomedicine an area with the promise that its proponents claim? Professors Gabriel Aeppli and Quentin Pankhurst explore the issues in light of the new London Centre for Nanotechnology (LCN)--a joint enterprise between Imperial College and University College London--opened on November 7, 2006. The center is a multidisciplinary research initiative that aims to bridge the physical, engineering and biomedical sciences. In this interview, Professor Gabriel Aeppli, LCN co-Director, and Deputy Director Professor Quentin Pankhurst discuss the advent and future role of the LCN with Nanomedicine's Morag Robertson. Professor Aeppli was formerly with NEC, Bell Laboratories and MIT and has more than 15 years' experience in the computer and telecommunications industry. Professor Pankhurst is a physicist with more than 20 years' experience of working with magnetic materials and nanoparticles, who now works closely with clinicians and medics on innovative healthcare applications. He also recently formed the new start-up company Endomagnetics Inc.

  17. Medical biofilms--nanotechnology approaches.

    Neethirajan, Suresh; Clond, Morgan A; Vogt, Adam

    2014-10-01

    Biofilms are colonies of bacteria or fungi that adhere to a surface, protected by an extracellular polymer matrix composed of polysaccharides and extracellular DNA. They are highly complex and dynamic multicellular structures that resist traditional means of killing planktonic bacteria. Recent developments in nanotechnology provide novel approaches to preventing and dispersing biofilm infections, which are a leading cause of morbidity and mortality. Medical device infections are responsible for approximately 60% of hospital acquired infections. In the United States, the estimated cost of caring for healthcare-associated infections is approximately between $28 billion and $45 billion per year. In this review, we will discuss our current understanding of biofilm formation and degradation, its relevance to challenges in clinical practice, and new technological developments in nanotechnology that are designed to address these challenges.

  18. Nanotechnology and the Nanodermatology Society.

    Nasir, Adnan; Friedman, Adam

    2010-07-01

    Nanotechnology is a rapidly developing discipline with enormous promise for consumers and patients. Currently, it is entering an inflection point in its growth phase--both in the number and diversity of products developed or soon to be available for society and medicine. It is no surprise that a vast number of patents have been issued for nanotechnology in the cosmetics arena as a means of enhancing topical delivery of a broad range of over-the-counter products. In fact, the skin is the first point of contact for a whole host of nanomaterials, ranging from topical preparations, articles of clothing and household products, to sporting goods and industrial manufactured goods. Very little is known about the safety aspects of the nano-engineered materials that are being released in the environment, as well as those in consumer and healthcare products.

  19. [Nanotechnology--possibilities and hazards].

    Snopczyński, Tomasz; Góralczyk, Katarzyna; Czaja, Katarzyna; Struciński, Paweł; Hernik, Agnieszka; Korcz, Wojciech; Ludwicki, Jan K

    2009-01-01

    Nanoparticles are the objects with at least one demension smaller than 100 nm. Nanoparticles exist in nature or can be produced by human activities, intentionally or unintentionally. Nanotechnology is an emerging science involving manipulation of matter at nanometer scale. Nanoparticles find numerous applications in many fields, starting with electronics, throught medicine, cosmetology, and ending with automotive industry and construction industry. Depending on the use of nanoparticles, the routes of exposure may be inhalation, dermal, oral or parenteral. Nanoparticles have a greater active surface area per unit mass than larger particles. Together with an increase of surface area, toxicity and potential health effects may also increase. Toxicity of nanoparticles depend on many factors, for example: size, shape, chemical composition, solubility, surface area and surface charge. Risk assessment related to human health, should be integrated at all stages of the life cycle of the nanotechnology, starting at the point of conception and including research and development, manufacturing, distribution, use and disposal or recycling.

  20. Community Drive

    Magnussen, Rikke

    2018-01-01

    Schools and educational institutions are challenged by not adequately educating students for independent knowledge collaboration and solving of complex societal challenges (Bundsgaard & Hansen, 2016; Slot et al., 2017). As an alternative strategy to formal learning has Community-driven research...... opportunity to break boundaries between research institutions and surrounding communities through the involvement of new types of actors, knowledge forms and institutions (OECD, 2011). This paper presents the project Community Drive a three year cross disciplinary community-driven game– and data-based project....... In the paper we present how the project Community Drive initiated in May 2018 is based on results from pilot projects conducted from 2014 – 2017. Overall these studies showed that it is a strong motivational factor for students to be given the task to change their living conditions through redesign...

  1. Nanotechnology Safety Self-Study

    Grogin, Phillip W. [Los Alamos National Laboratory

    2016-03-29

    Nanoparticles are near-atomic scale structures between 1 and 100 nanometers (one billionth of a meter). Engineered nanoparticles are intentionally created and are used in research and development at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). This course, Nanotechnology Safety Self-Study, presents an overview of the hazards, controls, and uncertainties associated with the use of unbound engineered nanoscale particles (UNP) in a laboratory environment.

  2. Textbook of Nanoscience and Nanotechnology

    Murty, B S; Raj, Baldev; Rath, B B; Murday, James

    2013-01-01

    This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.

  3. Applications of Nanotechnology in Dermatology

    DeLouise, Lisa A.

    2012-01-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintended nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature sugge...

  4. Applications of Nanotechnology in Dermatology

    DeLouise, Lisa A.

    2014-01-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintended nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease, out weigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three different therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology. PMID:22217738

  5. Nanotechnology in bone tissue engineering.

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Improving Peptide Applications Using Nanotechnology.

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  7. Application of nanotechnologies and nanomaterials

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  8. Applications of nanotechnology in dermatology.

    DeLouise, Lisa A

    2012-03-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.

  9. The NCI Alliance for Nanotechnology in Cancer: achievement and path forward.

    Ptak, Krzysztof; Farrell, Dorothy; Panaro, Nicholas J; Grodzinski, Piotr; Barker, Anna D

    2010-01-01

    Nanotechnology is a 'disruptive technology', which can lead to a generation of new diagnostic and therapeutic products, resulting in dramatically improved cancer outcomes. The National Cancer Institute (NCI) of National Institutes of Health explores innovative approaches to multidisciplinary research allowing for a convergence of molecular biology, oncology, physics, chemistry, and engineering and leading to the development of clinically worthy technological approaches. These initiatives include programmatic efforts to enable nanotechnology as a driver of advances in clinical oncology and cancer research, known collectively as the NCI Alliance for Nanotechnology in Cancer (ANC). Over the last 5 years, ANC has demonstrated that multidisciplinary approach catalyzes scientific developments and advances clinical translation in cancer nanotechnology. The research conducted by ANC members has improved diagnostic assays and imaging agents, leading to the development of point-of-care diagnostics, identification and validation of numerous biomarkers for novel diagnostic assays, and the development of multifunctional agents for imaging and therapy. Numerous nanotechnology-based technologies developed by ANC researchers are entering clinical trials. NCI has re-issued ANC program for next 5 years signaling that it continues to have high expectations for cancer nanotechnology's impact on clinical practice. The goals of the next phase will be to broaden access to cancer nanotechnology research through greater clinical translation and outreach to the patient and clinical communities and to support development of entirely new models of cancer care.

  10. Nanotechnology: Development and challenges in Indonesia

    Joni, I. Made; Muthukannan, Vanitha; Hermawan, Wawan; Panatarani, Camellia

    2018-02-01

    Nanotechnology today is regarded as a revolutionary technology that can help to address the key needs related to energy, environment, health and agriculture in developing countries. This paper is a short review on the development and challenges of nanotechnology in Indonesia. Nanotechnology offers great potential benefits, there is emerging concerns arising from its novel physicochemical properties. The main applications of nanotechnology in the different sectors which is vital and its economic impact in Indonesia is also discussed. The achievment and development of nanotechnology including synthesis and dispersion of nanoparticles (NPs) and its applications in various fields is briefly addressed in Nanotehcnology and Graphene Research Center, Universitas Padjadjaran (Unpad). Despite significant progress in developmental goals, many challenges in the development of nanotechnology proccesing need to be resolved such as support infrastructure and evolution of new form of collaborative arrangements between various sectors and policies which is emerged as an important factor enabling development.

  11. The state of research after 25 years of Nanotechnology

    Demming, Anna

    2013-01-01

    arylation techniques further empowers this approach. While the electronics industry may have been the major driving force in nanotechnology research at the start, today the impact on research in medicine and biology is at least as significant. Nanofibrous networks provide invaluable tools in the development of tissue engineering techniques, and as demonstrated by Christman and colleagues at the University of California, San Diego, work in this field continues to progress [10]. Nanoparticles also have extraordinary potential as therapeutic agents not only as drug carriers but with a vast range of inherent properties that can mediate molecular processes and fight infection as reviewed by Kim and Hyeon in Korea [11]. Imaging and sensing are also important applications of nanoparticles in biology and medicine as well as other sectors. Observed surface enhanced Raman signal (SERS) enhancements of eight orders of magnitude have spurred numerous studies to effectively harness the effect. In this issue Xia and colleagues in the US present their study using 100-nm Ag nanocubes as the substrate [12]. 'This work quantitatively evaluated, for the first time, some of the fundamental parameters of SERS imaging such as blur, spatial resolution, and penetration depth', they explain. As well as this special issue we are publishing a brochure of some of the top 25 papers over the past 25 years, accompanied by interviews with the authors describing how their research came about and what it has led to since. There is also an opportunity to listen in on James K Gimzewski, Christoph Gerber and Franz Gießibl as they discuss nanotechnology as it emerged, where it is today and where it may be heading [1]. However tempted we may be to speculate on the next 25 years for the field in general, there seems little room for doubt that the next 12 months in Nanotechnology promises to be a feast. References [1] Nanotechnology Discussions podcasts http://iopscience.iop.org/0957-4484/page/Nanotechnology%20

  12. Inventory of nanotechnology companies in Mexico

    Appelbaum, Richard; Zayago Lau, Edgar; Foladori, Guillermo; Parker, Rachel; Vazquez, Laura Liliana Villa; Belmont, Eduardo Robles; Figueroa, Edgar Ramón Arteaga

    2016-02-01

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.

  13. Nanophotonics: The link between nanotechnology and photonics

    Sinha Ray, S

    2012-10-01

    Full Text Available and importance ? CSIR 2012 www.csir.co.za/nano Slide 2 ? Birth and definition of nanotechnology ? Benefits of nanotechnology ? The link between nanotechnology and photonics: Nanophotonics ? Importance and future of nanophotonics... ? Conclusions ? Our on-going research on nanophotonics ? CSIR 2006 www.csir.co.zaSlide 3 MISSION: The DST/CSIR NATIONAL CENTRE FOR NANOSTRUCTURED MATERIALS coordinates, facilitates, disseminates new knowledge, and expedites...

  14. Inventory of nanotechnology companies in Mexico

    Appelbaum, Richard; Zayago Lau, Edgar; Foladori, Guillermo; Parker, Rachel; Vazquez, Laura Liliana Villa; Belmont, Eduardo Robles; Figueroa, Edgar Ramón Arteaga

    2016-01-01

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications

  15. NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE: AN UPDATE

    Tejpal Dhewa

    2015-01-01

    Although the scientific studies on the applications of nanotechnology in the agriculture are less than a decade old yet the prospects of nanotechnology in this field has been considerable. The rapid developments in the nanosciences have a great impact on agricultural practices and food manufacturing industries. Nanotechnology has an enormous potential to offer smarter, stronger, cost-effective packaging materials, biosensors for the rapid detection of the food pathogens, toxins and other cont...

  16. Nanotechnology tools in pharmaceutical R&D

    Challa S.S.R. Kumar

    2010-01-01

    Nanotechnology is a new approach to problem solving and can be considered as a collection of tools and ideas which can be applied in pharmaceutical industry. Application of nanotechnology tools in pharmaceutical R&D is likely to result in moving the industry from ‘blockbuster drug’ model to ‘personalized medicine’. There are compelling applications in pharmaceutical industry where inexpensive nanotechnology tools can be utilized. The review explores the possibility of categorizing various nan...

  17. Inventory of nanotechnology companies in Mexico

    Appelbaum, Richard, E-mail: rich@global.ucsb.edu [University of California at Santa Barbara, MacArthur Foundation Chair in Sociology and Global & International Studies Co-PI, Center for Nanotechnology and Society, Social Science and Media Studies 2103 (United States); Zayago Lau, Edgar [Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV, Zacatenco)., Multidisciplinary Graduate Programs (Mexico); Foladori, Guillermo [Universidad Autónoma de Zacatecas. Latin American Nanotechnology & Society Network (ReLANS), Unidad Académica en Estudios del Desarrollo (Mexico); Parker, Rachel [Canadian Institute for Advanced Research, Research Programs (Canada); Vazquez, Laura Liliana Villa [Universidad Autónoma de Zacatecas (Mexico); Belmont, Eduardo Robles [UNAM, Institute for Research in Applied Mathematics and Systems (IIMAS) (Mexico); Figueroa, Edgar Ramón Arteaga [Universidad Autónoma de Zacatecas. Latin American Nanotechnology & Society Network (ReLANS), Unidad Académica en Estudios del Desarrollo (Mexico)

    2016-02-15

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.

  18. Action GRID: assessing the impact of Nanotechnology on biomedical informatics.

    Lopez-Alonso, Victoria; Hermosilla-Gimeno, Isabel; Lopez-Campos, Guillermo; Maojo, Victor; Martin-Sanchez, Fernando J

    2008-11-06

    Recent advances in Nanotechnology are slowly extending their influence in biomedical research and clinical practice (nanomedicine). The authors have recently been granted with an European Commission research project, Action-GRID. This initiative will review current developments in nanomedicine, and analyze the area of nanoinformatics. Its main outcome will be the identification of needs and the discussion of future challenges and priorities for Biomedical Informatics in terms of information processing in nanomedicine and regenerative medicine.

  19. Computational nanotechnology modeling and applications with MATLAB

    Musa, Sarhan M

    2012-01-01

    .... Offering thought-provoking perspective on the developments that are poised to revolutionize the field, the author explores both existing and future nanotechnology applications, which hold great...

  20. The applications of nanotechnology in food industry.

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  1. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    Brugger, Jürgen

    2009-10-01

    A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although

  2. New Dimensions for Manufacturing: A UK Strategy for Nanotechnology

    Taylor, John M

    2002-01-01

    ... R&D for nanotechnology. This report, of the UK Advisory Group on Nanotechnology Applications, examines the growth of nanotechnology, its potential implications for industry in the UK, and proposes the elements of a strategy...

  3. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where

  4. Multidisciplinary cognitive content of nanoscience and nanotechnology

    Milojević, Staša

    2012-01-01

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981–1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., “carbon nanotube”) shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals is

  5. The Formation of Data on Nanotechnological Processes

    Oleynik Olga Stepanovna

    2015-05-01

    Full Text Available The article presents the statistical monitoring of the main trends of nanotechnology development in Russia, as well as the review of the modern programs and documents devoted to urgent issues of nanotechnology development. The formation of system of statistical monitoring of nanotechnologies development in the Russian Federation includes the development of methodology and tools of statistical supervision over creation, commercialization, the use of nanotechnologies, and also the nanotechnological production. The authors carry out the analysis of the main directions and structure of co-funding of “The Program of nanotech industry development in the Russian Federation till 2015”. The sources of official statistical data on nanotechnologies in Russia are considered. The purpose of forming this essentially new direction of statistics consists in the creation of system of collecting, processing and submission of the regular, systematized and complex data which are adequately reflecting the state, the level of development and the prospects of nanotechnological sphere capacity which provide informational support to state policy and adoption of reasonable administrative decisions. The authors describe the system of statistical observations in the sphere of nanotechnologies. Today the statistics of nanotechnologies in Russia remains at the stage of formation and modernization according to the international standards, being supplemented every year with the new indicators which allow investigating different sides and tendencies of nanotech industry development. Nowadays the following aspects of the activity connected with nanotechnologies have already being studied by means of statistical methods: scientific research and developments; creation and use of nanotechnologies; demand for staff; production, including the innovative one.

  6. Engineering extracellular matrix through nanotechnology.

    Kelleher, Cassandra M; Vacanti, Joseph P

    2010-12-06

    The goal of tissue engineering is the creation of a living device that can restore, maintain or improve tissue function. Behind this goal is a new idea that has emerged from twentieth century medicine, science and engineering. It is preceded by centuries of human repair and replacement with non-living materials adapted to restore function and cosmetic appearance to patients whose tissues have been destroyed by disease, trauma or congenital abnormality. The nineteenth century advanced replacement and repair strategies based on moving living structures from a site of normal tissue into a site of defects created by the same processes. Donor skin into burn wounds, tendon transfers, intestinal replacements into the urinary tract, toes to replace fingers are all examples. The most radical application is that of vital organ transplantation in which a vital part such as heart, lung or liver is removed from one donor, preserved for transfer and implanted into a patient dying of end-stage organ failure. Tissue engineering and regenerative medicine have advanced a general strategy combining the cellular elements of living tissue with sophisticated biomaterials to produce living structures of sufficient size and function to improve patients' lives. Multiple strategies have evolved and the application of nanotechnology can only improve the field. In our era, by necessity, any medical advance must be successfully commercialized to allow widespread application to help the greatest number of patients. It follows that business models and regulatory agencies must adapt and change to enable these new technologies to emerge. This brief review will discuss the science of nanotechnology and how it has been applied to this evolving field. We will then briefly summarize the history of commercialization of tissue engineering and suggest that nanotechnology may be of use in breeching the barriers to commercialization although its primary mission is to improve the technology by solving some

  7. An intelligent approach to nanotechnology

    Demming, Anna

    2013-11-01

    Control counts for little without a guiding principle. Whether manipulating atoms with a scanning probe or controlling carrier concentration in thin film deposition, intelligent intervention is required to steer the process from aimless precision towards a finely optimized design. In this issue G M Sacha and P Varona describe how artificial intelligence approaches can help towards modelling and simulating nanosystems, increasing our grasp of the nuances of these systems and how to optimize them for specific applications [1]. More than a labour-saving technique their review also suggests how genetic algorithms and artificial neural networks can supersede existing capabilities to tackle some of the challenges in moving a range of nanotechnologies forward. Research has made giant strides in determining not just what system parameters enhance performance but how. Nanoparticle synthesis is a typical example, where the field has shifted from simple synthesis and observation to unearthing insights as to dominating factors that can be identified and enlisted to control the morphological and chemical properties of synthesized products. One example is the neat study on reaction media viscosity for silver nanocrystal synthesis, where Park, Im and Park in Korea demonstrated a level of size control that had previously proved hard to achieve [2]. Silver nanoparticles have many potential applications including catalysis [3], sensing [4] and surface enhanced Raman scattering [5]. In their study, Park and colleagues obtain size-controlled 30 nm silver nanocrystals in a viscosity controlled medium of 1,5-pentanediol and demonstrate their use as sacrificial cores for the fabrication of a low-refractive filler. Another nanomaterial that has barely seen an ebb in research activity over the past two decades is ZnO, with a legion of reports detailing how to produce ZnO in different nanoscale forms from rods [6], belts [7] and flowers [8] to highly ordered arrays of vertically aligned

  8. RNA Study Using DNA Nanotechnology.

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nanotechnology tools for antibacterial materials.

    Rizzello, Loris; Cingolani, Roberto; Pompa, Pier Paolo

    2013-05-01

    The understanding of the interactions between biological systems and nanoengineered devices is crucial in several research fields, including tissue engineering, biomechanics, synthetic biology and biomedical devices. This review discusses the current knowledge of the interactions between bacteria and abiotic nanostructured substrates. First, the effects of randomly organized nanoscale topography on bacterial adhesion and persistence are described. Second, the interactions between microorganisms and highly organized/ordered micro- and nano-patterns are discussed. Finally, we survey the most promising approaches for the fabrication of silver polymeric nanocomposites, which have important applications as antimicrobial materials. The advantages, drawbacks and limitations of such nanotechnologies are critically discussed in view of potential future applications.

  10. DNA Nanotechnology for Cancer Therapy

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  11. Nanotechnology in medicine: nanofilm biomaterials.

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  12. Drive Stands

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  13. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    Jürgens, Björn, E-mail: bjurgens@agenciaidea.es [Agency of Innovation and Development of Andalusia, CITPIA PATLIB Centre (Spain); Herrero-Solana, Victor, E-mail: victorhs@ugr.es [University of Granada, SCImago-UGR (SEJ036) (Spain)

    2017-04-15

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  14. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    Jürgens, Björn; Herrero-Solana, Victor

    2017-01-01

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  15. Nanotechnology for forest products. Part 2

    Theodore Wegner; Phil Jones

    2005-01-01

    In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...

  16. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  17. Nanotechnology: Advancing the translational respiratory research

    Dua, Kamal; Shukla, Shakti Dhar; de Jesus Andreoli Pinto, Terezinha; Hansbro, Philip Michael

    2017-01-01

    Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can he...

  18. Nanotechnology based diagnostics for neurological disorders

    Kurek, Nicholas S; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  19. Potentials of nanotechnology application in forest protection

    Yadong Qi; K. Lian; Q. Wu; Y. Li; M. Danzy; R. Menard; K.L. Chin; D. Collins; F. Oliveria; Kier Klepzig

    2013-01-01

    This joint research project formed by Southern University, Louisiana State University, and the USDA Forest Service focuses on applying nanotechnology in forest health and natural resource management. The targeted nanotechnology is derived from a new generation of renewable composite nano-material called Copper-Carbon Core-Shell Nanoparticles (CCCSNs), which have...

  20. Nanotechnology Education: Contemporary Content and Approaches

    Ernst, Jeremy V.

    2009-01-01

    Nanotechnology is a multidisciplinary field of research and development identified as a major priority in the United States. Progress in science and engineering at the nanoscale is critical for national security, prosperity of the economy, and enhancement of the quality of life. It is anticipated that nanotechnology will be a major transitional…

  1. Engines of Second Creation: Stories about Nanotechnology

    Shew, Ashley

    2013-01-01

    We are in a position today to appreciate the ambiguity of technologies: that they are good, and bad, and neutral and present challenges in different ways. Reading U.S. national nanotechnology documents and histories of nanotechnology, one finds that rhetoric idealizing progress without serious consideration of negative side-effects remains…

  2. Engaging Undergraduates through Interdisciplinary Research in Nanotechnology

    Goonewardene, Anura U.; Offutt, Christine; Whitling, Jacqueline; Woodhouse, Donald

    2012-01-01

    To recruit and retain more students in all science disciplines at our small (5,000 student) public university, we implemented an interdisciplinary strategy focusing on nanotechnology and enhanced undergraduate research. Inherently interdisciplinary, the novelty of nanotechnology and its growing career potential appeal to students. To engage…

  3. Grand Challenges: Nanotechnology and the Social Studies

    Manfra, Meghan McGlinn

    2013-01-01

    This article explores a multidisciplinary lesson on nanotechnology that can provide an effective means for teaching about both STEM and social studies topics. This approach encourages students to consider the "role that science and technology play in our lives and in our cultures." The extraordinary promise of nanotechnology, however, is…

  4. Nanotechnology for membranes, filters and sieves

    Eijkel, Jan C.T.; van den Berg, Albert

    2006-01-01

    This mini-review is dedicated to the use of nanotechnology for membranes, filters and sieves. With the advent of nanotechnology researchers have acquired an unprecedented freedom to sculpt device geometry almost down to the molecular scale. Such structures can now replace the gels, membranes and

  5. Nanotechnology based diagnostics for neurological disorders

    Kurek, Nicholas S.; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  6. Capability, Governance and Nanotechnology : Focus on India ...

    Nanotechnology is the study and manipulation of matter on an ultra-small scale, generally in the range of 1-100 nanometres (1 metre = 1 billion nanometres). Like biotechnology, nanotechnology has the potential to bring huge benefits to the poor, but also huge costs. Focusing on India, this project will examine the ...

  7. Consumer attitudes towards nanotechnology in food products

    Steenis, Nigel D.; Fischer, Arnout R.H.

    2016-01-01

    Purpose – Nanotechnology is a technology that holds much promise for food production. It is, however not clear to what extent consumers will accept different types of nanotechnologies in food products. The purpose of this paper is to research consumer attitudes towards differing applications of

  8. Nanotechnology based diagnostics for neurological disorders

    Kurek, Nicholas S.; Chandra, Sathees B.

    2012-01-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  9. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research. PMID:28203204

  10. Food neophobia, nanotechnology and satisfaction with life

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José

    2013-01-01

    This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured...... knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Foodrelated Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished...... with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life...

  11. Nanotechnology policy in Korea for sustainable growth

    So, Dae Sup; Kim, Chang Woo; Chung, Pil Seung; Jhon, Myung S.

    2012-01-01

    Korea has become one of the leading countries in nanotechnology along with the U.S., Japan, and Germany. Since 2001, the Korean Government established the “Nanotechnology Development Plan.” Since then, the trend in nanotechnology is steadily changing from fundamental research to application-driven technologies. In this paper, we examine the nanotechnology development and policy during the past decade, which includes the investments in R and D, infrastructure, and education. The Third Phase (2011–2020) on clean nanotechnology convergence and integration in information, energy, and the environmental sector is also given. Furthermore, the program on long-term strategy dealing with sustainability in resolving future societal demand and plans for sustainable energy and environmental activities will be discussed in depth. The outcomes and national evaluations of research and education are also given.

  12. Nanotechnology applications in medicine and dentistry.

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications. © 2011 Blackwell Publishing Asia Pty Ltd.

  13. Nanotechnology: The new perspective in precision agriculture

    Joginder Singh Duhan

    2017-09-01

    Full Text Available Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

  14. Food neophobia, nanotechnology and satisfaction with life

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José

    2013-01-01

    knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Foodrelated Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished......This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured...... with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life...

  15. Targeted Nanotechnology for Cancer Imaging

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  16. Material Binding Peptides for Nanotechnology

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  17. Nanotechnology research for aerospace applications

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  18. Dementia & Driving

    ... have to give up driving. Many people associate driving with self-reliance and freedom; the loss of driving privileges ... familiar roads and avoid long distances. Avoid heavy traffic and heavily traveled roads. Avoid driving at night and in bad weather. Reduce the ...

  19. Application of nanotechnology in the treatment and diagnosis of gastrointestinal cancers: review of recent patents.

    Prados, Jose; Melguizo, Consolacion; Perazzoli, Gloria; Cabeza, Laura; Carrasco, Esther; Oliver, Jaime; Jiménez-Luna, Cristina; Leiva, Maria C; Ortiz, Raúl; Álvarez, Pablo J; Aranega, Antonia

    2014-01-01

    Gastrointestinal cancers remain one of the main causes of death in developed countries. The main obstacles to combating these diseases are the limitations of current diagnostic techniques and the low stability, availability, and/or specificity of pharmacological treatment. In recent years, nanotechnology has revolutionized many fields of medicine, including oncology. The association of chemotherapeutic agents with nanoparticles offers improvement in the solubility and stability of antitumor agents, avoidance of drug degradation, and reductions in therapeutic dose and toxicity, increasing drug levels in tumor tissue and decreasing them in healthy tissue. The use of specific molecules that drive nanoparticles to the tumor tissue represents a major advance in therapeutic specificity. In addition, the use of nanotechnology in contrast agents has yielded improvements in the diagnosis and the follow-up of tumors. These nanotechnologies have all been applied in gastrointestinal cancer treatment, first in vitro, and subsequently in vivo, with promising results reported in some clinical trials. A large number of patents have been generated by nanotechnology research over recent years. The objective of this paper is to review patents on the clinical use of nanoparticles for gastrointestinal cancer diagnosis and therapy and to offer an overview of the impact of nanotechnology on the management of this disease.

  20. Tweeting nano: how public discourses about nanotechnology develop in social media environments

    Runge, Kristin K., E-mail: kkrunge@wisc.edu; Yeo, Sara K.; Cacciatore, Michael; Scheufele, Dietram A.; Brossard, Dominique [University of Wisconsin, Department of Life Sciences Communication (United States); Xenos, Michael [University of Wisconsin, Department of Communication Arts (United States); Anderson, Ashley; Choi, Doo-hun; Kim, Jiyoun; Nan, Li; Xuan, Liang; Stubbings, Maria; Su, Leona Yi-Fan [University of Wisconsin, Department of Life Sciences Communication (United States)

    2013-01-15

    The growing popularity of social media as a channel for distributing and debating scientific information raises questions about the types of discourse that surround emerging technologies, such as nanotechnology, in online environments, as well as the different forms of information that audiences encounter when they use these online tools of information sharing. This study maps the landscape surrounding social media traffic about nanotechnology. Specifically, we use computational linguistic software to analyze a census of all English-language nanotechnology-related tweets expressing opinions posted on Twitter between September 1, 2010 and August 31, 2011. Results show that 55 % of tweets expressed certainty and 45 % expressed uncertainty. Twenty-seven percent of tweets expressed optimistic outlooks, 32 % expressed neutral outlooks and 41 % expressed pessimistic outlooks. Tweets were mapped by U.S. state, and our data show that tweets are more likely to originate from states with a federally funded National Nanotechnology Initiative center or network. The trend toward certainty in opinion coupled with the distinct geographic origins of much of the social media traffic on Twitter for nanotechnology-related opinion has significant implications for understanding how key online influencers are debating and positioning the issue of nanotechnology for lay and policy audiences.

  1. Tweeting nano: how public discourses about nanotechnology develop in social media environments

    Runge, Kristin K.; Yeo, Sara K.; Cacciatore, Michael; Scheufele, Dietram A.; Brossard, Dominique; Xenos, Michael; Anderson, Ashley; Choi, Doo-hun; Kim, Jiyoun; Li Nan; Liang Xuan; Stubbings, Maria; Su, Leona Yi-Fan

    2013-01-01

    The growing popularity of social media as a channel for distributing and debating scientific information raises questions about the types of discourse that surround emerging technologies, such as nanotechnology, in online environments, as well as the different forms of information that audiences encounter when they use these online tools of information sharing. This study maps the landscape surrounding social media traffic about nanotechnology. Specifically, we use computational linguistic software to analyze a census of all English-language nanotechnology-related tweets expressing opinions posted on Twitter between September 1, 2010 and August 31, 2011. Results show that 55 % of tweets expressed certainty and 45 % expressed uncertainty. Twenty-seven percent of tweets expressed optimistic outlooks, 32 % expressed neutral outlooks and 41 % expressed pessimistic outlooks. Tweets were mapped by U.S. state, and our data show that tweets are more likely to originate from states with a federally funded National Nanotechnology Initiative center or network. The trend toward certainty in opinion coupled with the distinct geographic origins of much of the social media traffic on Twitter for nanotechnology-related opinion has significant implications for understanding how key online influencers are debating and positioning the issue of nanotechnology for lay and policy audiences.

  2. Food neophobia, nanotechnology and satisfaction with life.

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José; Mora, Marcos; Lobos, Germán; Miranda, Horacio; Grunert, Klaus G

    2013-10-01

    This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Food-related Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life and with food-related life and also had the highest acceptance of packaging and foods produced with nanotechnology. The results suggest that the degree of food neophobia is associated with satisfaction with life and with food-related life, as well as with the acceptance of products with nanotechnological applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Nanotechnology for the energy challenge

    2013-01-01

    With the daunting energy challenges faced by Mankind in the 21st century, revolutionary new technologies will be the key to a clean, secure and sustainable energy future. Nanostructures often have surprising and very useful capabilities and are thus paving the way for new methodologies in almost every kind of industry. This exceptional monograph provides an overview of the subject, and presents the current state of the art with regard to different aspects of sustainable production, efficient storage and low-impact use of energy. Comprised of eighteen chapters, the book is divided in three thematic parts: Part I Sustainable Energy Production covers the main developments of nanotechnology in clean energy production and conversion, including photovoltaics, hydrogen production, thermal-electrical energy conversion and fuel cells. Part II Efficient Energy Storage is concerned with the potential use of nanomaterials in more efficient energy storage systems such as advanced batteries, supercapacitors and hydrogen st...

  4. Journal information flow in nanotechnology

    Andrievski, Rostislav A.; Klyuchareva, Svetlana V.

    2011-01-01

    The nanotechnology development is accompanied by an intensive growth of information flow which is specially noticeable as applied to journal information flow. Now over the world there are the 69 nano-titled journals with the impact factor and/or a settled periodicity as well as the 70 those which lack stability periodicity and are in an organization stage. Only 49 nano-titled have the impact factor with the comparatively high mean value of about 3.44. The domestic nano-titled journals published in Russia, India, China, and other countries are also considered. The attention is taken that in the 2006–2010 period the 95 new nano-titled journals were organized and in 2011 this process is continuing and seems to be the most impressive. Many nano-related journals (including classical physical, chemical and materials science ones) are also described and discussed.

  5. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  6. Nanotechnology for Early Cancer Detection

    Joon Won Park

    2010-01-01

    Full Text Available Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment.

  7. Caring for nanotechnology? Being an integrated social scientist.

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration.

  8. A social shaping perspective on nanotechnologies

    Clausen, Christian; Jørgensen, Michael Søgaard

    2005-01-01

    in areas where visions are manifold and applications and markets are non-existing or unclear. The emerging idea of 'nanotechnologies' is an example of this kind, where techno-economic networks are unstable or under construction and consequences are difficult, if not impossible to evaluate. The paper...... explores the potential of a social shaping of technology approach in the area of emerging nano-technologies and debate the methodological aspects based on an ongoing Danish foresight project concerned with environmental risks and opportunities in nanotechnologies. The focus is on the identification...

  9. Sociocultural Meanings of Nanotechnology: Research Methodologies

    Bainbridge, William Sims

    2004-06-01

    This article identifies six social-science research methodologies that will be useful for charting the sociocultural meaning of nanotechnology: web-based questionnaires, vignette experiments, analysis of web linkages, recommender systems, quantitative content analysis, and qualitative textual analysis. Data from a range of sources are used to illustrate how the methods can delineate the intellectual content and institutional structure of the emerging nanotechnology culture. Such methods will make it possible in future to test hypotheses such as that there are two competing definitions of nanotechnology - the technical-scientific and the science-fiction - that are influencing public perceptions by different routes and in different directions.

  10. Nanotechnology in biorobotics: opportunities and challenges

    Ricotti, Leonardo; Menciassi, Arianna

    2015-01-01

    Nanotechnology recently opened a series of unexpected technological opportunities that drove the emergence of novel scientific and technological fields, which have the potential to dramatically change the lives of millions of citizens. Some of these opportunities have been already caught by researchers working in the different fields related to biorobotics, while other exciting possibilities still lie on the horizon. This article highlights how nanotechnology applications recently impacted the development of advanced solutions for actuation and sensing and the achievement of microrobots, nanorobots, and non-conventional larger robotic systems. The open challenges are described, together with the most promising research avenues involving nanotechnology

  11. Nanotechnology impact on the automotive industry.

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  12. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging.

    Siegrist, Michael; Stampfli, Nathalie; Kastenholz, Hans; Keller, Carmen

    2008-09-01

    Nanotechnology has the potential to generate new food products and new food packaging. In a mail survey in the German speaking part of Switzerland, lay people's (N=337) perceptions of 19 nanotechnology applications were examined. The goal was to identify food applications that are more likely and food applications that are less likely to be accepted by the public. The psychometric paradigm was employed, and applications were described in short scenarios. Results suggest that affect and perceived control are important factors influencing risk and benefit perception. Nanotechnology food packaging was assessed as less problematic than nanotechnology foods. Analyses of individual data showed that the importance of naturalness in food products and trust were significant factors influencing the perceived risk and the perceived benefit of nanotechnology foods and nanotechnology food packaging.

  13. New technical solutions in nanotechnology. Part 4

    IVANOV Leonid Alexeevich

    2016-10-01

    Full Text Available The new technical solutions including inventions in the area of nanotechnology and nanomaterials are efficiently applied in communal and housing services as well as in construction and other joint fields. The invention «The method to produce binder based on phenolformaldehyde resol resin for stratified material, binder and stratified material based on binder and reinforcing fiber base (RU 2594014» refers to polymer composite materials that can be used in manufacture of products designed for aircraft, construction, automobile and household industries. This method is based on component mixing. Resin and fospoliol are taken in dissolvent that is a mix of ethyl alcohol and dimethylformamide. This is the ratio of the components (mass.%: resin – 23,7, dissolvent – 75,3, fospoliol – 1,0. Nanomodifier – mechanically activated diamond - is dispersed into the obtained mixture. The mechanically activated diamond is produced in ball crusher when ration of ball mass and initial detonation nanodiamond is 20:1 respectively and the speed of ball rotation is 900 rotations per minute for 5 minutes. Stratified material based on binder and reinforcing paper fiber is based on aromatic polyamide and possesses finishing layer which composition contents polyamide, ethyl alcohol and water. The binder is applied evenly on the surface of finishing layer, its quantity is equal to the mass of fibers. The technical result is the binder on the basis of phenolformaldehyde resin without volatile flammable liquid and high-toxic substances, 3 times increased shift voltage for compressed products made of stratified materials and 1,3 time decreased inflammability of them. The specialists may be also interested in the following nanotechnological inventions: the method to produce carbon nanostructures modified by metal (RU 2593875; the method of deep purification of monosilane (RU 2593634; the method to produce conductive reticular micro- and nanostructures and the

  14. Nanoscale science and nanotechnology education in Africa ...

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  15. Nanotechnology in dentistry: prevention, diagnosis, and therapy.

    Abou Neel, Ensanya Ali; Bozec, Laurent; Perez, Roman A; Kim, Hae-Won; Knowles, Jonathan C

    2015-01-01

    Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation.

  16. Microspheres and Nanotechnology for Drug Delivery.

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  17. MEMS and Nano-Technology Clean Room

    Federal Laboratory Consortium — The MEMS and Nano-Technology Clean Room is a state-of-the-art, 800 square foot, Class 1000-capable facility used for development of micro and sub-micro scale sensors...

  18. Nanotechnology for Site Remediation: Fact Sheet

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  19. Institutional profile: the London Centre for Nanotechnology.

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  20. Nanotechnology Concepts at MSFC: Engineering Directorate

    Bhat, Biliyar; Kaul, Raj; Shah, Sandeep; Smithers, Gweneth; Watson, Michael D.

    2000-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has needs for miniaturization of components, minimization of weight and maximization of performance, and nanotechnology will help us get there. MSFC - Engineering Directorate (ED) is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science and space optics manufacturing. MSFC-ED has a dedicated group of technologists who are currently developing high pay-off nanotechnology concepts. This poster presentation will outline some of the concepts being developed at this time including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  1. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  2. Nanotechnology in sustainable agriculture: Present concerns and ...

    Nanotechnology in sustainable agriculture: Present concerns and future aspects. ... of those living in developing countries face daily food shortages as a result of ... applications in agricultural, food, and water safety that could have significant ...

  3. Nanotechnology in dentistry: prevention, diagnosis, and therapy

    Abou Neel, Ensanya Ali; Bozec, Laurent; Perez, Roman A; Kim, Hae-Won; Knowles, Jonathan C

    2015-01-01

    Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. PMID:26504385

  4. Nanotechnology - A path forward for developing nations

    Shah, S. Ismat; Powers, Thomas M.

    2015-10-01

    One of the major issues with technology in general, and nanotechnology in particular, is that it could exacerbate the divide between developed and developing nations. If the benefits of the research do not flow beyond the national and geographical borders of the traditional major bastions of R&D, these benefits will not be equally and globally available. The consequence is that the technological divide becomes wider at the expense of mutual reliance. As much as developed nations need to rethink the strategy and the policy to bring nanotechnology products to market with the goal of global prosperity, developing nations cannot afford to simply wait for the lead from the developed nations. In the spirit of collaboration and collegiality, we describe issues with the current practices in nanotechnology R&D in the developing world and suggest a path for nanotechnology research in energy, water and the environment that developing nations could follow in order to become contributors rather than simply consumers.

  5. Advances in Nanotechnology for Restorative Dentistry

    Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar

    2015-01-01

    Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients. PMID:28787967

  6. Nanotechnology for Advanced Imaging and Detectors

    National Aeronautics and Space Administration — The goal of this IRAD is to apply nanotechnology to create new devices to enhance both the imaging and detection of light. We have demonstrated the capability to...

  7. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of

  8. Distracted driving

    ... including maps) The Dangers of Talking on the Phone While Driving You are four times more likely to get ... of reach. If you are caught using a phone while driving, you may risk a ticket or fine. Most ...

  9. Distracted Driving

    ... and increased awareness of distracted driving using radio advertisements, news stories, and similar media. After the projects ... available at www.trafficsafetymarketing.gov . Distracted Driving Enforcement – TV Ads (Paid). For re-tagging, go to: www. ...

  10. Nano-technology and nano-toxicology

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  11. Regulatory roadmap for nanotechnology based medicines

    Limaye, Vaidehi; Fortwengel, Gerhard; Limaye, Dnyanesh

    2014-01-01

    Nanotechnology is emerging as one of the key technologies of the 21st century and is expected to enable developments across a wide range of sectors that can benefit citizens. Nanomedicine is an application of nanotechnology in the areas of healthcare, disease diagnosis, treatment and prevention of disease. Nanomedicines pose problem of nanotoxicity related to factors like size, shape, specific surface area, surface morphology, and crystallinity. Currently, nanomedicines are regulate...

  12. Sustainability evaluation of nanotechnology processing and production

    Teresa M. Mata; Nídia de Sá Caetano; António A. Martins

    2015-01-01

    This article discusses the current situation and challenges posed by nanotechnology from a sustainability point of view. It presents an objective methodology to evaluate the sustainability of nanotechnology products, based on a life cycle thinking approach, a framework particularly suited to assess all current and future relevant economic, societal and environmental impacts products and processes. It is grounded on a hierarchical definition of indicators, starting from 3D indicators that take...

  13. Nanowarriors: Military Nanotechnology and Comic Books

    Milburn, Colin

    2005-01-01

    (Colin Milburn, "Nanowarriors: Military Nanotechnology and Comic Books," Intertexts 9.1 (2005): 77-103. This article is posted at the University of California eScholarship Repository by permission of Texas Tech University Press.) In 2002, MIT's Institute for Soldier Nanotechnologies (ISN) appropriated copyrighted images from the comic book Radix in a grant proposal to the U.S. Army—a proposal that succeeded in securing $50 million for foundation of the Institute. While this case d...

  14. Nanotechnologies and advanced devices; Nanotechnology to sentan device

    Arakawa, Y [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1994-11-01

    This paper introduces studies on nanotechnologies performed at the Production Technology Research Institute at Tokyo University. Conceiving the future optical devices is based on a desire to control electrons and lights by means of nano construction technologies to use the interactions between electrons and photons in ways as they are wanted and realize the next generation laser. The nano-construction making technology targets working on making boxes and lines with a size of 10 nm in arbitrary patterns at high precision. The method using an atom operating technology is such a method as building a house with bricks of atoms bringing them one by one. The crystallization technology applies some kind of magic on a crystallizing substrate, and then sprinkle crystalline seeds over the substrate to have them grow to crystals that build a structure. The Production Technology Research Institute uses a crystal growing technique called an MOCVD process. This is a representative technology comparable with the MBO in the thin film forming technologies. Because of chemically reactive process entering into the technique, building an interesting self-structural construction can occur. 14 figs.

  15. National nanotechnology partnership to protect workers

    Howard, John; Murashov, Vladimir

    2009-10-01

    Nanotechnology is predicted to improve many aspects of human life. By 2015, it is estimated to represent 3.1 trillion in manufactured goods. Data is emerging that exposure to nanomaterials may pose a health risk to workers. If the economic promise of nanotechnology is to be achieved, ways need to be found to protect nanotechnology workers now. The Occupational Safety and Health Act of 1970 (OSHAct) gave the responsibility to protect workers to the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) through research, standards adoption, and standards enforcement. Since 1980, adopting new occupational health standards has grown more complex. The increased complexity has greatly slowed efforts to adopt protective standards for toxic agents that are well-known to pose significant risks. The likelihood of rapidly adopting standards to protect workers from nanomaterials, whose risks are just emerging, seems even more unlikely. Use of the OSHAct's general duty clause to protect workers also seems uncertain at this time. In the interim, a national partnership led by NIOSH involving nanotech manufacturers and downstream users, workers, academic researchers, safety, and health practitioners is proposed. A National Nanotechnology Partnership would generate knowledge about the nature and the extent of worker risk, utilize that knowledge to develop risk control strategies to protect nanotechnology workers now, and provide an evidence base for NIOSH recommendations to OSHA for a nanotechnology program standard at a future date.

  16. Anticipatory Standards and the Commercialization of Nanotechnology

    Rashba, Edward; Gamota, Daniel

    2003-01-01

    Standardization will play an increasing role in creating a smooth transition from the laboratory to the marketplace as products based on nanotechnology are developed and move into broad use. Traditionally, standards have evolved out of a need to achieve interoperability among existing products, create order in markets, simplify production and ensure safety. This view does not account for the escalating trend in standardization, especially in emerging technology sectors, in which standards working groups anticipate the evolution of a technology and facilitate its rapid development and entree to the market place. It is important that the nanotechnology community views standards as a vital tool to promote progress along the nanotechnology value chain - from nanoscale materials that form the building blocks for components and devices to the integration of these devices into functional systems.This paper describes the need for and benefits derived from developing consensus standards in nanotechnology, and how standards are created. Anticipatory standards can nurture the growth of nanotechnology by drawing on the lessons learned from a standards effort that has and continues to revolutionize the telecommunications industry. Also, a brief review is presented on current efforts in the US to create nanotechnology standards

  17. Nanotechnology and the need for risk governance

    Renn, O.; Roco, M. C.

    2006-01-01

    After identifying the main characteristics and prospects of nanotechnology as an emerging technology, the paper presents the general risks associated with nanotechnology applications and the deficits of the risk governance process today, concluding with recommendations to governments, industry, international organizations and other stakeholders. The International Risk Governance Council (IRGC) has identified a governance gap between the requirements pertaining to the nano- rather than the micro-/macro- technologies. The novel attributes of nanotechnology demand different routes for risk-benefit assessment and risk management, and at present, nanotechnology innovation proceeds ahead of the policy and regulatory environment. In the shorter term, the governance gap is significant for those passive nanostructures that are currently in production and have high exposure rates; and is especially significant for the several 'active' nanoscale structures and nanosystems that we can expect to be on the market in the near future. Active nanoscale structures and nanosystems have the potential to affect not only human health and the environment but also aspects of social lifestyle, human identity and cultural values. The main recommendations of the report deal with selected higher risk nanotechnology applications, short- and long-term issues, and global models for nanotechnology governance

  18. Nanotechnology Research: Applications in Nutritional Sciences12

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  19. Nanotechnology research: applications in nutritional sciences.

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  20. Nanotechnology in Science and Art

    Bearinger, J

    2007-02-21

    The burgeoning field of nanotechnology opens windows between science and art. Exploration of this interplay encourages interaction between scientists, artists and educators alike. The image below serves as an example of the fertile ground for exchange. The substrate that this image captures is made of silicon, the material from which computer chips are made. A thin ({approx}1 nm thick) chemical coating was applied homogeneously to the silicon. Specific regions of the coating, 600 nm wide (approximately 150 times smaller than the diameter of a human hair), were then locally removed from the silicon via photocatalytic nanolithography (PCNL(Bearinger, Hiddessen et al. 2005)). PCNL engages light, such as from a light emitting diode or an ultraviolet source, to activate molecules that are attached to a transparent mask above the silicon substrate. These molecules can be compounds similar to chlorophyll, the photoactive material that aids plants in photosynthesis, or may be semiconductor materials, such as TiO{sub 2}. Once these molecules are activated, chemical reactions result in local destruction of the coating on the silicon. Thus, only regions of the coated silicon in close contact with mask are affected. A non-fouling polymer hydrogel ({approx}10 nm thick) was then grafted to the retained coating. Hydrogels are superabsorbent and are therefore used on the bulk scale in common items including contact lenses and diapers. They also find utility in topical drug delivery and tissue engineering applications. Because the hydrogel is so absorbent, exposing the silicon chip with patterned hydrogel to water vapor from one's breath reveals the pattern that the lithography dictates(Lopez, Biebuyck et al. 1993). The myriad of colors seen in the image are due to optical interference. The thickness of the swollen layer determines the colors that are visible. While the field of view immediately following hydration appears like a big drop of oil shining in the sun, the oil

  1. Electric drives

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  2. DNA nanotechnology: a future perspective

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  3. DNA nanotechnology for nanophotonic applications.

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  4. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk

    2013-02-01

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R&D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  5. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk

    2013-01-01

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R and D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  6. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    Lee, Cheol-Ju [SME Innovation Center, KEIT (Korea Evaluation Institute of Industrial Technology) (Korea, Republic of); Lee, SuKap [Nano and Convergence PD Team, KEIT, Korea Technology Center (Korea, Republic of); Jhon, Myung S. [Sungkyunkwan University, School of Advanced Materials Science and Engineering (Korea, Republic of); Shin, Juneseuk, E-mail: jsshin@skku.edu [Sungkyunkwan University, Department of Systems Management Engineering and Graduate School of Management of Technology (MOT) (Korea, Republic of)

    2013-02-15

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R and D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  7. Nanotechnology: An Untapped Resource for Food Packaging.

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  8. NASA GSFC Strategic Nanotechnology Interests: Symposium on High-Rate Nanoscale Printing for Devices and Structures

    Ericsson, Aprille J.

    2014-01-01

    The seminars invitees include representatives from industry, nonprofit research facility and universities. The presentation provides an overview of the NASAGSFC locations, technical capabilities and applied nanotechnology interests. Initially presented are advances by the broader technological communities on current miniaturized multiscale advanced manufacturing and 3D printing products on the micro and macro scale. Briefly assessed is the potential of moving toward the nanoscale for possible space flight applications and challenges. Lastly, highlighted are GSFCs current successes in nano-technology developments and targeted future applications.

  9. Nanoparticles, nanotechnology and pulmonary nanotoxicology

    A.J. Ferreira

    2013-01-01

    Full Text Available The recently emergent field of Nanotechnology involves the production and use of structures at the nanoscale. Research at atomic, molecular or macromolecular levels, has led to new materials, systems and structures on a scale consisting of particles less than 100 nm and showing unique and unusual physical, chemical and biological properties, which has enabled new applications in diverse fields, creating a multimillion-dollar high-tech industry. Nanotechnologies have a wide variety of uses from nanomedicine, consumer goods, electronics, communications and computing to environmental applications, efficient energy sources, agriculture, water purification, textiles, and aerospace industry, among many others.The different characteristics of nanoparticles such as size, shape, surface charge, chemical properties, solubility and degree of agglomeration will determine their effects on biological systems and human health, and the likelihood of respiratory hazards. There are a number of new studies about the potential occupational and environmental effects of nanoparticles and general precautionary measures are now fully justified.Adverse respiratory effects include multifocal granulomas, peribronchial inflammation, progressive interstitial fibrosis, chronic inflammatory responses, collagen deposition and oxidative stress.The authors present an overview of the most important studies about respiratory nanotoxicology and the effects of nanoparticles and engineered nanomaterials on the respiratory system. Resumo: O campo recentemente emergente da nanotecnologia envolve a produção e o uso de estruturas em nanoescala. A pesquisa a níveis atómicos, moleculares e macro moleculares conduziu a novos materiais, sistemas e estruturas numa escala constituída por partículas menores que 100 nm, apresentando propriedades físicas, químicas e biológicas únicas e incomuns, o que tem permitido novas aplicações em diversos campos, criando uma indústria de alta

  10. Nanotechnology in the 21st century

    Aguilar, Zoraida P.; Xu, Hengyi; Al Ogaidi, Israa; Wu, Nianqiang

    2015-01-01

    Nanotechnology is the manipulation structures in materials that are smaller than one billionth of a meter in size. Various successful advances in nanotechnology compelled an almost universal interest in the study of nanomaterials worldwide. The diminutive size of nanomaterials that are smaller than or comparable to a virus (20-450 nm), a protein (5-50 nm), or a gene (2nm wide and 10-100 nm long) pave the way to innumerable engineering and manipulations that triggered a multitude of applications in electronics, solar energy, optics, sports, security, food, agriculture, biology, construction, water, and medicine. The structural features and properties of nanomaterials that are in between those of single atoms/molecules and continuous bulk materials with at least one dimension in the nanometer range bring physical, chemical, electronic, and magnetic properties incomparable with any other materials. Various kinds of nanomaterials possess common as well as individual properties or group properties that allow their unique applications. The broad scope of nanotechnology can be thought of as a territory within which a range of disciplines converge, including chemistry, physics, materials science and engineering, medicine, biology, pharmacology, biotechnology, construction, automotive and aviation, microfabrication, systems architecture for computing, and many more. Nanotechnology holds promise to change the way most things have been designed and manufactured, including drugs, vaccines, fertilizers, TV screens, light fixtures, surgery, skin care products, tennis rackets, cars, paints, and objects unimaginable at this point. Advances in nanotechnology holds promise to repair the damage we have done to our environment, capturing carbon out of the air to return it back to the earth, or using it to build light, strong, diamond-like materials that nanotech-enabled human-scale technology will depend on. Nanotechnology is revolutionizing a wide array of consumer products and

  11. A framing theory-based content analysis of a Turkish newspaper's coverage of nanotechnology

    Şenocak, Erdal

    2017-07-01

    This study aims at examining how nanotechnology is covered in Turkish print media. As an initial part of this objective, a total of 76 articles derived from a widespread national newspaper were analyzed based on the framing theory. These articles were analyzed using both quantitative and qualitative traditions of content analysis; however, the quantitative method was the primary form of investigation. The analyses showed that the first news about nanotechnology appeared in 1991 and the frequencies of articles had increased in the subsequent years; but the number of articles had decreased after a while. The findings demonstrated a remarkable positive tone in the articles; there were only a few articles in negative tones and these articles were published in the first years of nanotechnology news. It was further found that the articles were mostly concerned with the implementations of nanotechnology, such as research and education centers, medical, and electronics. The study also investigated the presentation style of nanotechnology news. In other words, it investigated how the articles were framed. The results showed that the articles were mostly framed with scientific researches or discoveries and future expectations.

  12. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  13. Development of Taiwan's strategies for regulating nanotechnology-based pharmaceuticals harmonized with international considerations.

    Guo, Jiun-Wen; Lee, Yu-Hsuan; Huang, Hsiau-Wen; Tzou, Mei-Chyun; Wang, Ying-Jan; Tsai, Jui-Chen

    2014-01-01

    Nanotechnology offers potential in pharmaceuticals and biomedical developments for improving drug delivery systems, medical imaging, diagnosis, cancer therapy, and regenerative medicine. Although there is no international regulation or legislation specifically for nanomedicine, it is agreed worldwide that considerably more attention should be paid to the quality, safety, and efficacy of nanotechnology-based drugs. The US Food and Drug Administration and the European Medicines Agency have provided several draft regulatory guidance and reflection papers to assist the development of nanomedicines. To cope with the impact of nanotechnology and to foster its pharmaceutical applications and development in Taiwan, this article reviews the trends of regulating nanotechnology-based pharmaceuticals in the international community and proposes strategies for Taiwan's regulation harmonized with international considerations. The draft regulatory measures include a chemistry, manufacturing, and controls (CMC) review checklist and guidance for CMC review of liposomal products. These have been submitted for discussion among an expert committee, with membership comprised of multidisciplinary academia, research institutions, the pharmaceutical industry, and regulators, and are currently approaching final consensus. Once a consensus is reached, these mechanisms will be recommended to the Taiwan Food and Drug Administration for jurisdiction and may be initiated as the starting point for regulating nanotechnology-based pharmaceuticals in Taiwan.

  14. Enabling individualized therapy through nanotechnology.

    Sakamoto, Jason H; van de Ven, Anne L; Godin, Biana; Blanco, Elvin; Serda, Rita E; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I; De Rosa, Enrica; Martinez, Jonathan O; Smid, Christine A; Buchanan, Rachel M; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-08-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon "-omic" technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to "self-correct" in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. Copyright 2010 Elsevier Ltd. All rights

  15. Progress in nanotechnology for healthcare.

    Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A

    2010-06-01

    This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle

  16. Enabling individualized therapy through nanotechnology

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  17. Nuclear radiation application to nanotechnology

    Chakarvarti, S.K.

    2012-01-01

    Out of the numerous uses and applications of nuclear radiation, in particular heavy ions, the interaction of radiation with materials have culminated into a gamut of fine tools and technologies for taming the synergetic potential of the interaction. One such field of the immense importance is nanotechnology through nuclear radiation via use of ion-crafted polymeric membranes- so called 'Template Synthesis'. This talk will be addressed to the users of membranes - organic (polymeric) in general, formed through irradiation of polymeric foils with heavy and energetic ions followed by chemical processing leading finally to what is known as 'Track Etch Membranes (TEMs)', and present the review of the innovative uses of these membranes from filtration to electro-kinetic based applications and nano-/micro fabrication of devices- the potent aspect of emerging technologies. The emphasis would be on the dependence of useful and novel usages including applications in nano devices' fabrication. A membrane, with its most comprehensive and clear definition, is an intervening phase separating two phases and/or acting as an active or passive barrier to the transport of matter between phases. The very existence of a membrane relies upon the functionality domain of the pores contained therein. The geometrical traits and morphology of the pore ensembles dictate the applications, which any membrane can serve to. There are variety of membranes being developed and used in myriad of applications in diverse fields of science and technology. The range of commercially available membrane materials is quiet diverse and varies widely in terms of composition, and physical structure. The creation of pores, whether through natural self-assembling phenomenon or man-made processes, might itself be an issue of interest but these are the pore-traits which are fundamentally more important, whether the membrane is being used for sieving-one of the ever most important applications the mankind has been

  18. Nanotechnology tolls the bell for plastic surgeons.

    Salehahmadi, Zeinab; Hajiliasgari, Fatemeh

    2013-06-01

    Nanotechnology is an emerging discipline, having power to revolutionarize every scientific field to a very deep level which previously thought to be a science fiction. Having a great potential to beneficially change the way a disease is diagnosed, treated and prevented, nanotechnology practically impacts on state of the art healthcare technologies and plays a crucial role in changing the field of surgery. Surgeons are constantly looking for minimally invasive ways to treat their patients, as recovery is faster when a lesser trauma is inflicted upon a patient, scarring is lessened and there are usually fewer complications in the aftermath of the operation. Through nanotechnology, tiny biosensors could be constructed which could take these factors into account, thus shortening the patient recovery period and saving hospitals money, reducing infection rates within the hospital, reducing the waiting lists for operation and allowing doctors to treat more patients in the same period of time. This review employs a thematic analysis of online series of academic papers focuses on the potentials of nanotechnology in surgery, especially in plastic surgery and addresses the possible future prospects of nanotechnology in this field.

  19. An evaluation scheme for nanotechnology policies

    Soltani, Ali M.; Tabatabaeian, Seyed H.; Hanafizadeh, Payam; Bamdad Soofi, Jahanyar

    2011-01-01

    Dozens of countries are executing national nanotechnology plans. No rigorous evaluation scheme for these plans exists, although stakeholders—especially policy makers, top-level agencies and councils, as well as the society at large—are eager to learn the outcome of these policies. In this article, we recommend an evaluation scheme for national nanotechnology policies that would be used to review the whole or any component part of a national nanotechnology plan. In this scheme, a component at any level of aggregation is evaluated. The component may be part of the plan’s overarching policy goal, which for most countries is to create wealth and improve the quality of life of their nation with nanotechnology. Alternatively, the component may be a programme or an activity related to a programme. The evaluation could be executed at different times in the policy’s life cycle, i.e., before the policy is formulated, during its execution or after its completion. The three criteria for policy evaluation are appropriateness, efficiency and effectiveness. The evaluator should select the appropriate qualitative or quantitative methods to evaluate the various components of national nanotechnology plans.

  20. NANOTECHNOLOGY WHITE PAPER | Science Inventory | US ...

    Nanotechnology is the science of manipulating materials at the atomic and molecular level to develop new or enhanced materials and products. In December 2004, EPA’s Science Policy Council created a cross-Agency workgroup to identify and describe the issues EPA must address to ensure protection of human health and the environment as this new technology is developed. The draft white paper on nanotechnology is the product of the workgroup. The draft white paper describes the technology, and provides a discussion of the potential environmental benefits of nanotechnology and its applications that can foster sustainable use of resources. Risk management issues and the Agency’s statutory mandates are outlined, followed by an extensive discussion of risk assessment issues. The paper identifies research needs for both environmental applications and implications of nanotechnology and concludes with recommendations on next steps for addressing science policy issues and research needs. Supplemental information is provided in a number of appendices. The Agency will use the white paper to address research needs and risk assessment issues concerning nanotechnology. The draft white paper will undergo independent expert review, which will be conducted in the February time frame. All public comments received by January 31, 2006 will be submitted to the external review panel for their consideration. Comments received beyond that time will be considered by EPA. Follo

  1. Nanotechnology and the environment: A European perspective

    D.G. Rickerby et al

    2007-01-01

    Full Text Available The potential positive and negative effects of nanotechnology on the environment are discussed. Advances in nanotechnology may be able to provide more sensitive detection systems for air and water quality monitoring, allowing the simultaneous measurement of multiple parameters and real time response capability. Metal oxide nanocatalysts are being developed for the prevention of pollution due to industrial emissions and the photocatalytic properties of titanium dioxide nanoparticles can be exploited to create self-cleaning surfaces that reduce existing pollution. However, while nanotechnology might provide solutions for certain environmental problems, relatively little is known at present about the environmental impact of nanoparticles, though in some cases chemical composition, size and shape have been shown to contribute to toxicological effects. Nanotechnology can assist resource saving through the use of lightweight, high strength materials based on carbon nanotubes and metal oxide frameworks as hydrogen storage materials. Other energy related applications include nanostructured electrode materials for improving the performance of lithium ion batteries and nanoporous silicon and titanium dioxide in advanced photovoltaic cells. It is important to develop an efficient strategy for the recycling and recovery of nanomaterials and methods are needed to assess whether the potential benefits of nanotechnology outweigh the risks. Life cycle analysis will be a useful tool for assessing the true environmental impacts.

  2. Nanotechnology in food processing sector-An assessment of emerging trends.

    Kalpana Sastry, R; Anshul, Shrivastava; Rao, N H

    2013-10-01

    Use of nanoscience based technology in the food industry is fast emerging as new area for research and development. Several research groups including private companies in the industry have initiated research programmes for exploring the wide scope of nanotechnology into the value chain of food processing and manufacturing. This paper discusses the current focus of research in this area and assesses its potential impacts. Using the developed relational database framework with R&D indicators like literature and patent documents for assessment of the potential of nanotechnology in food sector, a model to organize and map nanoresearch areas to the food processing sector was developed. The study indicates that the about five basic categories of nanotechnology applications and functionalities currently in the development of food sector, include food processing, packaging, nutraceuticals delivery, food safety and functional foods.

  3. Risk perceptions starting to shift? U.S. citizens are forming opinions about nanotechnology

    Priest, Susanna; Greenhalgh, Ted; Kramer, Victoria

    2010-01-01

    This article presents early results from an opinion formation study based on a 76-member panel of U.S. citizens, with comparison data from a group of 177 nanotechnology experts. While initially similar to the expert group in terms of their perceptions of the risks, benefits, and need for regulation characterizing several forms of nanotechnology, the first follow-up survey indicates that the panel is beginning to diverge from the experts, particularly with respect to perceptions of the levels of various 'societal' risks that nanotechnology might present. The data suggest that responding to public concerns may involve more than attention to physical risks in areas such as health and environment; concerns about other forms of risk actually appear more salient.

  4. Pile Driving

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  5. Nanofiltration and nanostructured membranes--should they be considered nanotechnology or not?

    Mueller, Nicole C; van der Bruggen, Bart; Keuter, Volkmar; Luis, Patricia; Melin, Thomas; Pronk, Wouter; Reisewitz, Robert; Rickerby, David; Rios, Gilbert M; Wennekes, Wilco; Nowack, Bernd

    2012-04-15

    Nanofiltration is frequently associated with nanotechnology - obviously because of its name. However, the term "nano" in nanofiltration refers - according to the definition of the International Union of Pure and Applied Chemistry (IUPAC) - to the size of the particles rejected and not to a nanostructure as defined by the International Organisation of Standardisation (ISO) in the membrane. Evidently, the approach to standardisation of materials differs significantly between membrane technology and nanotechnology which leads to considerable confusion and inconsistent use of the terminology. There are membranes that can be unambiguously attributed to both membrane technology and nanotechnology such as those that are functionalized with nanoparticles, while the classification of hitherto considered to be conventional membranes as nanostructured material is questionable. A driving force behind the efforts to define nanomaterials is not least the urgent need for the regulation of the use of nanomaterials. Since risk estimation is the basis for nanotechnology legislation, the risk associated with nanomaterials should also be reflected in the underlying standards and definitions. This paper discusses the impacts of the recent attempts to define nanomaterials on membrane terminology in the light of risk estimations and the need for regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Introducing time delay in the evolution of new technology: the case study of nanotechnology

    Georgalis, Evangelos E.; Aifantis, Elias C.

    2013-12-01

    Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.

  7. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    Chen, Hsinchun [The University of Arizona, Department of Management Information Systems (United States); Roco, Mihail C. [National Science Foundation (United States); Son, Jaebong; Jiang, Shan, E-mail: jiangs@email.arizona.edu; Larson, Catherine A.; Gao, Qiang [The University of Arizona, Department of Management Information Systems (United States)

    2013-09-15

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991-2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991-2000, 2001-2010, and 2011-2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields.

  8. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    Chen, Hsinchun; Roco, Mihail C.; Son, Jaebong; Jiang, Shan; Larson, Catherine A.; Gao, Qiang

    2013-01-01

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991–2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991–2000, 2001–2010, and 2011–2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields

  9. Published Research - NCI Alliance for Nanotechnology in Cancer

    The NCI Alliance for Nanotechnology in Cancer has published much exciting and impactful research over the years. Find here a list of all of these listed in PubMed and others across the field of Cancer Nanotechnology.

  10. Review on Early Technology Assessment of Nanotechnologies in oncology.

    Retel, Valesca; Retèl, Valesca P.; Hummel, J. Marjan; van Harten, Willem H.

    2009-01-01

    Nanotechnology is expected to play an increasingly important role in the diagnostics, prognostics, and management of targeted cancer treatments. While papers have described promising results for nanotechnology in experimental settings, the translation of fundamental research into clinical

  11. Use of nanotechnology in food processing, packaging and safety ...

    Use of nanotechnology in food processing, packaging and safety – review. ... application of nanotechnology in food packaging and food contact materials, ... developing active antimicrobial and antifungal surfaces, and sensing as well as ...

  12. MHSS 2020 Focused Study on Biotechnology & Nanotechnology, 29 July 1997

    1998-01-01

    .... This focused study on biotechnology and nanotechnology has two primary goals: (1) examine the future strategic impact of biotechnology and nanotechnology as it relates to the military health system, and (2...

  13. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  14. Nano-technology and nano-toxicology.

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  15. 2006-2007 Academic training programme: Nanotechnologies

    2007-01-01

    LECTURE SERIES Monday 11 June from 11:00 to 12:00 - Main Auditorium, bldg. 500 Nanotechnologies: a general introduction (1/3) C. Bottani / Nuclear Engineering Department, Polytechnic of Milano, IT After a brief description of what is nanotechnology (a triple definition will be attempted) and of its importance for the society, this first lecture mainly aims at showing how nanoscience makes various nanotechnologies possible. The surprising story of direct imaging and manipulation of atoms (scanning probe microscopies will be the specific subject of the third lecture by Prof. Andrea Li Bassi) is told to naturally introduce the crucial role of quantum confinement and surface defects. The electronic and vibrational properties of nanostructures are then discussed to understand the connection between the deeply modified (with respect to the bulk) quantum spectra and the physico-chemical properties of nanoscopic objects. In this context the concept of superatom (and its generalizations) is stressed. The essential ro...

  16. Transnational models for regulation of nanotechnology.

    Marchant, Gary E; Sylvester, Douglas J

    2006-01-01

    Like all technologies, nanotechnology will inevitably present risks, whether they result from unintentional effects of otherwise beneficial applications, or from the malevolent misuse of technology. Increasingly, risks from new and emerging technologies are being regulated at the international level, although governments and private experts are only beginning to consider the appropriate international responses to nanotechnology. In this paper, we explore both the potential risks posed by nanotechnology and potential regulatory frameworks that law may impose. In so doing, we also explore the various rationales for international regulation including the potential for cross-boundary harms, sharing of regulatory expertise and resources, controlling protectionism and trade conflicts, avoiding a "race to the bottom" in which governments seek economic advantage through lax regulation, and limiting the "nano divide" between North and South. Finally, we examine some models for international regulation and offer tentative thoughts on the prospects for each.

  17. Uncertainties of nanotechnology: environmental and health risks

    Delgado Ramos, Giancarlo

    2007-01-01

    The nanotechnology, as any leading edge technology, develops in the border of the unknown thing and, as such, it provokes a degree of uncertainty. On having manipulated the matter to a nanometric scale (thousand millionth of a meter), the potential risks suggest to be not only relatively unpredictable, but also imperceptible to our senses. In such a tenor, evaluating the eventual implications of the nanotechnological progress is a very complex task. And even more if we take into consideration all ethic, legal, socioeconomic, environmental and health issues. The present article evaluates studies and discourses related to promises about the use of nanostructures and their environmental impact. It also treats health impact by evaluating nanotechnology to medicine application, nano make-up and new cancer treatment.

  18. Applied Nanotechnology for Human Space Exploration

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  19. Colloid and interface chemistry for nanotechnology

    Kralchevsky, Peter; Ravera, Francesca

    2016-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthes...

  20. Nanomaterials and nanotechnologies in nuclear energy chemistry

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  1. Nanotechnology in gastrointestinal endoscopy: A primer

    Ashish Kumar Jha

    2012-01-01

    Full Text Available Nanotechnology is the understanding, control of matter and development of engineered devices in nanometer range (1-100 nm. Nanoparticles have different physicochemical properties (small size, large surface area to volume ratio, and high reactivity in comparison to bulk materials of the same composition. The nanotechnology has proved its usefulness in early diagnosis, proteonomics, imaging diagnostics and multifunctional therapeutics. Recent studies have shown its role in early diagnosis and targeted therapy of various gastrointestinal disorders such as hepatitis B virus and hepatitis C virus related liver disease, inflammatory bowel disease, gastric ulcer, and malignancy. Application of this technology appears promising in diagnostic and therapeutic endoscopy such as the endoscopic hemostasis of peptic ulcer bleeding, prevention of clogging of plastic stent and advance capsule endoscopy. This article will highlight the basic concepts of nanotechnology and its potential application in gastrointestinal endoscopy.

  2. Nanotechnology in dentistry: reduction to practice.

    Ure, David; Harris, Jonathan

    2003-01-01

    The speed at which advances are being made in science has catapulted nanotechnology from its theoretical foundations straight into the real world. There are now many examples of commercially available products demonstrating that, in given situations, the technology really does work and that its scope for further application is wide. Healthcare, along with society as a whole, is facing a major revolution in the wake of ongoing technological developments in the field of nanotechnology. Dentistry as an individual healthcare discipline is not exempt, having already been targeted directly with novel 'nano-materials' at the same time as indirectly enjoying the benefits of nano-related advances in the electronics industry through the ongoing computerization of the modern practice. This article examines current practical applications of nanotechnology alongside proposed applications in the future and aims to demonstrate that, as well as a good deal of science fiction, there is some tangible science fact emerging from this novel multi-disciplinary science.

  3. Nanosprings, Another Piece of the Nanotechnology Puzzle

    McIlroy, David

    2003-11-01

    Nanotechnology is being touted as the next significant advancement in science and technology. The proposed applications for nanotechnology range from biological sensors to nanorobotics, to name a few. In order to take nanotechnology from the realm of science fiction to reality we need determine what is possible, as dictated by the laws of physics, and what is not. Often times when approaching a new problem we have a tendency to over complicate the problem. Therefore, when developing nanomachines we should start simple. An excellent place to start is with toys. Toys are designed to perform complex functions using the simplest of designs. If we dictate that our toy performs a function or action then energy will be needed, as well as a means for storing energy. The simplest mechanism that satisfies these two requirements is a spring. In this presentation a summary of the efforts to develop nanosprings, springs that are on the order of tens of nanometers, will be presented.

  4. Nutritional and nanotechnological modulators of microglia

    Dusica Maysinger

    2016-07-01

    Full Text Available Microglia are the essential responders to alimentary, pharmacological and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota and nanotechnological products have been investigated in microglia at the single cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.

  5. Corporate social responsibility for nanotechnology oversight.

    Kuzma, Jennifer; Kuzhabekova, Aliya

    2011-11-01

    Growing public concern and uncertainties surrounding emerging technologies suggest the need for socially-responsible behavior of companies in the development and implementation of oversight systems for them. In this paper, we argue that corporate social responsibility (CSR) is an important aspect of nanotechnology oversight given the role of trust in shaping public attitudes about nanotechnology and the lack of data about the health and environmental risks of nanoproducts. We argue that CSR is strengthened by the adoption of stakeholder-driven models and attention to moral principles in policies and programs. In this context, we examine drivers of CSR, contextual and leadership factors that influence CSR, and strategies for CSR. To illustrate these concepts, we discuss existing cases of CSR-like behavior in nanotechnology companies, and then provide examples of how companies producing nanomedicines can exhibit morally-driven CSR behavior.

  6. Nanotechnology platforms in Parkinson’s Disease

    Rishi Rajat Adhikary

    2015-09-01

    Full Text Available Parkinson’s disease (PD remains a serious concern due to its effects on the quality of life of patients and its socioeconomic burden to society. Present day management of PD has limitations in both diagnosis and treatment. Nanotechnology may provide smart solutions to this problem. The present review highlights the recent advancements in the development of nanotechnology platforms for PD. The review focuses on the use of such platforms in diagnostics, treatments, deep brain stimulation, neurosurgery and other modalities of management and the role of nanotechnology in each of these fields. The review also sheds light on the translation of technologies from labs to clinics and the essential advantages as well as concerns that accompany the translation.

  7. Nanotechnology: emerging tools for biology and medicine.

    Wong, Ian Y; Bhatia, Sangeeta N; Toner, Mehmet

    2013-11-15

    Historically, biomedical research has been based on two paradigms. First, measurements of biological behaviors have been based on bulk assays that average over large populations. Second, these behaviors have then been crudely perturbed by systemic administration of therapeutic treatments. Nanotechnology has the potential to transform these paradigms by enabling exquisite structures comparable in size with biomolecules as well as unprecedented chemical and physical functionality at small length scales. Here, we review nanotechnology-based approaches for precisely measuring and perturbing living systems. Remarkably, nanotechnology can be used to characterize single molecules or cells at extraordinarily high throughput and deliver therapeutic payloads to specific locations as well as exhibit dynamic biomimetic behavior. These advances enable multimodal interfaces that may yield unexpected insights into systems biology as well as new therapeutic strategies for personalized medicine.

  8. The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues

    2013-08-09

    corporations, and other investors to create products and bring them to market. Some refer to this gap as the “ valley of death.”29 Still others in industry...applications.” (ATP Rule, 15 C.F.R. Part 295). 29 The term “ valley of death” is used by business executives, economists, and venture capitalists to describe...subsidy programs; currency valuation ; science-based industrial parks; and worker training) that can affect national competitiveness. The NRC

  9. Proceedings of the international conference on nanoscience and nanotechnology: abstracts

    2011-01-01

    In recent years nanoscience has started to enter every field of science and technology. Recent research has shown that the development towards the nanotechnology domains are tremendous and without doubt, the major themes of the conference like nanomaterials - synthesis and characterization, nanotubes, nanowires and nanorods, bio-nanotechnology, nanotechnology for energy, quantum computing etc. will trigger the researchers and scientists and make them to do innovative work in the area of nanoscience and nanotechnology. Papers relevant to INIS are indexed separately

  10. Nanotechnology And Examination Of Multi Walled Carbon Nanotubes

    Kutucu, Burcu

    2010-01-01

    The main subject of this study is the definition of nanotechnology, benefits of nanotechnology, nanotechnology applications in Turkey and world and the history of nanotechnology. Also single and multi walled carbon nanotubes and Van der Waals bands are examined in this study. At first a fixed end frame loaded with a load P is studied and governing equations solved in MATHEMATICA. Secontly the same procedure is repeated for a fixed and frame loaded with moment M is studied and governing equati...

  11. 3D DNA Crystals and Nanotechnology

    Paul J. Paukstelis

    2016-08-01

    Full Text Available DNA’s molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.

  12. The changing face of dentistry: nanotechnology

    Kanaparthy, Rosaiah; Kanaparthy, Aruna

    2011-01-01

    The human body comprises molecules; hence, the availability of molecular nanotechnology will permit dramatic progress to address medical problems and will use molecular knowledge to maintain and improve human health at the molecular scale. Nanomedicine could develop devices that are able to work inside the human body in order to identify the early presence of a disease, and to identify and quantify toxic molecules and tumor cells, for example. Nanodentistry will make possible the maintenance of comprehensive oral health by employing nanomaterials, including tissue engineering and, ultimately, dental nanorobots. This review is an attempt to highlight the possible applications of nanotechnology and the use of nanomaterials in dentistry. PMID:22131826

  13. Modulating the immune system through nanotechnology.

    Dacoba, Tamara G; Olivera, Ana; Torres, Dolores; Crecente-Campo, José; Alonso, María José

    2017-12-01

    Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Application of nanotechnologies in high energy physics

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  15. Nanotechnology Review: Molecular Electronics to Molecular Motors

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  16. Nanotechnologies, technologies converging and potential biomedical applications

    Capuano, Vincenzo

    2005-01-01

    The applications of nanotechnology to biology and medicine appear really promising far diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nanotechnology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievements. It appears therefore necessary a careful assessment of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  17. Using a Deliberative Exercise to Foster Public Engagement in Nanotechnology

    Jones, Angela R.; Anderson, Ashley A.; Yeo, Sara K.; Greenberg, Andrew E.; Brossard, Dominique; Moore, John W.

    2014-01-01

    Nanotechnology is an emerging technology poised to benefit society both technically and socially, but as with any new advance, there is potential risk. This paper describes a novel deliberative exercise involving nanotechnology that engages the public in debate regarding the funding of nanotechnology-related research while also discussing…

  18. Integrating Nanotechnology into School Education: A Review of the Literature

    Ghattas, Nadira I.; Carver, Jeffrey S.

    2012-01-01

    Background: In this era of rapid technical advancement, there are growing debates around the idea of nanotechnology, which are both timely and controversial. Nanotechnology materials are being utilized in our daily lives in many ways, often without consumer knowledge. Due to the explosion of nanotechnology applications, there is a necessity to…

  19. Effect of Nanotechnology Instructions on Senior High School Students

    Lu, Chow-Chin; Sung, Chia-Chi

    2011-01-01

    In this research, we cooperate with senior high school teachers to understand current nanotechnology model of senior high school nanotechnology curriculum in Taiwan. Then design senior high school nanotechnology (nano-tech) curriculum to teach 503 senior high school students. After teaching the nano-tech curriculum we use the "Nanotechnology…

  20. Nanotechnology, Big things from a Tiny World: a Review

    Debnath Bhattacharyya; Shashank Singh; Niraj Satnalika; Ankesh Khandelwal; Seung-Hwan Jeon

    2009-01-01

    The purpose of this paper is to look into the present aspects of “Nanotechnology”. This paper gives a brief description of what Nanotechnology is?? And its application in various fields viz. computing, medicine, food technology, Robotics, Solar cells etc. It also deals with the future perspectives of Nanotechnology, risks in advanced nanotechnology.

  1. Nanotechnology and Drug Delivery Part 1: Background and ...

    Nanotechnology in general and as it relates to drug delivery in humans has been reviewed in a two-part article, the first part of which is this paper. In this paper, nanotechnology in nature, history of nanotechnology and methods of synthesis are discussed, while also outlining its applications, benefits and risks.

  2. Nanotechnology and its application in dentistry | Abiodun‑Solanke ...

    Nanotechnology influences almost every facet of everyday life from security to medicine. The concept of nanotechnology is that when one goes down to the bottom of things, one can discover unlimited possibilities and potential of the basic particle. In nanotechnology, analysis can be made to the level of manipulating atoms, ...

  3. Nanotechnology and nuclear medicine; research and preclinical applications.

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  4. Military Applications of Nanotechnology: Implications for Strategic Cooperation & Conflict

    Center on Contemporary Conflict

    2012-01-01

    FY 2012-2013. Project Leads: Kosal, Margaret E. The report will advance critical thinking on the potential role and impact of nanotechnology on defense policy. It will view nanotechnology through the prism of international cooperation and competition, examining whether emerging nanotechnology will exacerbate or mitigate regional security challenges. NA

  5. The social and economic challenges of nanotechnology

    Wood, Stephen; Jones, Richard; Geldart, Alison

    2003-07-01

    Nanotechnology is being heralded as a new technological revolution, one so profound that it will touch all aspects of human society. Some believe that these influences will be overwhelmingly positive, while others see more sinister implications. This report assesses this debate in the light of our current knowledge of nanotechnology. Conceptions of nanotechnology are not always clear or indeed agreed upon. The domain of nanotechnology is defined in terms of a length scale - from one nanometre up to 100 nanometres, called the nanoscale - and by the appearance at these scales of novel physical properties. These derive from the importance at these scales of physical phenomena that are less obvious for larger objects, such as quantum mechanics, strong surface forces and Brownian motion. Nanotechnotogy will produce economic and social impacts on three broad timescales. Current applications are largely the result of incremental advances in already well-established branches of applied science, such as material science and colloid technology. Medium-term applications of nanotechnology will apply principles only now being established in the laboratory to overcome foreseeable barriers to continued technological progress. In the tong term, entirely new applications may emerge. Current applications for nanotechnology are dominated by tools for scientists, and by new materials that are structured on the nanoscale. Such materials are used in cosmetics, health and medicine and in a variety of manufactured goods. The electronics and information technology industries are also a prominent driver for these new technologies. Debate on the social implications of nanotechnotogy has largely focused not on the relatively mundane applications that have arrived so far, but on the longer-term possibilities of radical nanotechnology. This debate anticipates a degree of control over matter on the nanoscale that permits fabrication from a molecular level of virtually any material or structure

  6. The social and economic challenges of nanotechnology

    Wood, Stephen; Jones, Richard; Geldart, Alison

    2003-01-01

    Nanotechnology is being heralded as a new technological revolution, one so profound that it will touch all aspects of human society. Some believe that these influences will be overwhelmingly positive, while others see more sinister implications. This report assesses this debate in the light of our current knowledge of nanotechnology. Conceptions of nanotechnology are not always clear or indeed agreed upon. The domain of nanotechnology is defined in terms of a length scale - from one nanometre up to 100 nanometres, called the nanoscale - and by the appearance at these scales of novel physical properties. These derive from the importance at these scales of physical phenomena that are less obvious for larger objects, such as quantum mechanics, strong surface forces and Brownian motion. Nanotechnotogy will produce economic and social impacts on three broad timescales. Current applications are largely the result of incremental advances in already well-established branches of applied science, such as material science and colloid technology. Medium-term applications of nanotechnology will apply principles only now being established in the laboratory to overcome foreseeable barriers to continued technological progress. In the tong term, entirely new applications may emerge. Current applications for nanotechnology are dominated by tools for scientists, and by new materials that are structured on the nanoscale. Such materials are used in cosmetics, health and medicine and in a variety of manufactured goods. The electronics and information technology industries are also a prominent driver for these new technologies. Debate on the social implications of nanotechnotogy has largely focused not on the relatively mundane applications that have arrived so far, but on the longer-term possibilities of radical nanotechnology. This debate anticipates a degree of control over matter on the nanoscale that permits fabrication from a molecular level of virtually any material or structure

  7. Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment

    Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo

    This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission......, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The main program of the workshop consisted of introductory lectures, group discussions and a final plenary...... identified and discussed by the groups. The purpose of the workshop was to determine whether existing LCA tools and methods are adequate to use on a new technology. This document provides an overview of LCA and nanotechnology, discusses the current state of the art, identifies current knowledge gaps that may...

  8. Nanotechnology Research Directions: IWGN Workshop Report. Vision for Nanotechnology R&D in the Next Decade

    Roco, M

    1999-01-01

    Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures...

  9. 1 Pharmaceutical Nanotechnology: Strategies and Techniques of ...

    toxic, new modes of drug delivery systems are necessary to transport them to the ... art of characterizing, manipulating and organizing matter systemically, at the ... diseases. There is another aspect for using pharmaceutical nanotechnology. ... fluids), and microarrays (different kind of biological assay e.g. DNA, protein,.

  10. Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine

    Vizirianakis, Ioannis S.; Amanatiadou, Elsa P.

    The target of personalized medicine to achieve major benefits for all patients in terms of diagnosis and drug delivery can be facilitated by creating a sincere multidisciplinary information-based infrastructure in health care. To this end, nanotechnology, pharmacogenomics, and informatics can advance the utility of personalized medicine, enable clinical translation of genomic knowledge, empower healthcare environment, and finally improve clinical outcomes.

  11. Articulation: how societal goals matter in nanotechnology

    Bos, C.|info:eu-repo/dai/nl/338018387

    2016-01-01

    Science policies try to steer scientists to conduct societally relevant research. This societal relevance is often expressed in large societal goals, such as addressing sustainability or helping with the problems that an ageing society might bring. Emerging technologies, like nanotechnology, are

  12. Nanotechnology for forest products. Part 1

    Theodore Wegner; Phil Jones

    2005-01-01

    Nano-sized particles may be small, but for our industry they offer huge potential. Nanotechnology represents a major opportunity for the forest products industry to develop new products, substantially reduce processing costs, and open new markets in the coming decades.

  13. Nanotechnology in cosmetics: Opportunities and challenges

    Silpa Raj

    2012-01-01

    Full Text Available Nanotechnology is the science of manipulating atoms and molecules in the nanoscale - 80,000 times smaller than the width of a human hair. The world market for products that contain nanomaterials is expected to reach $2.6 trillion by 2015. The use of nanotechnology has stretched across various streams of science, from electronics to medicine and has now found applications in the field of cosmetics by taking the name of nanocosmetics. This widespread influence of nanotechnology in the cosmetic industries is due to the enhanced properties attained by the particles at the nano level including color, transparency, solubility etc. The different types of nanomaterials employed in cosmetics include nanosomes, liposomes, fullerenes, solid lipid nanoparticles etc. Recently, concerns over the safety of such nanocosmetics are raised and have forced the cosmetic industries to limit the use of nanotechnology in cosmetics and for enforcing laws to undergo a full-fledged safety assessment before they enter into the market. In this review, emphasis is made on the types of nanomaterials used in cosmetics by the various cosmetic brands, the potential risks caused by them both to human life and also to the environment and what all regulations have been undertaken or can be taken to overcome them.

  14. Nanotechnology for sustainable development: retrospective and outlook

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-11-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth's global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  15. Surfaces in Precision Engineering, Microengineering and Nanotechnology

    De Chiffre, Leonardo; Kunzmann, H.; Peggs, G. N.

    2003-01-01

    with precision engineering, microengineering and nanotechnology are presented, encompassing surfaces in computers, MEMS, biomedical systems, light and X-ray optics, as well as in chemical systems. Surface properties at micro and nanoscale are considered, including geometry as well as physical and chemical...

  16. Nanotechnology in the management of cervical cancer.

    Chen, Jiezhong; Gu, Wenyi; Yang, Lei; Chen, Chen; Shao, Renfu; Xu, Kewei; Xu, Zhi Ping

    2015-03-01

    Cervical cancer is a major disease with high mortality. All cervical cancers are caused by infection with human papillomaviruses (HPV). Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. In this review, we summarize the recent application of nanotechnology to the diagnosis and treatment of cervical cancer as well as the development of HPV vaccines. Early detection of cervical cancer enables tumours to be efficiently removed by surgical procedures, leading to increased survival rate. The current method of detecting cervical cancer by Pap smear can only achieve 50% sensitivity, whereas nanotechnology has been used to detect HPVs with greatly improved sensitivity. In cervical cancer treatment, nanotechnology has been used for the delivery of anticancer drugs to increase treatment efficacy and decrease side effects. Nanodelivery of HPV preventive and therapeutic vaccines has also been investigated to increase vaccine efficacy. Overall, these developments suggest that nanoparticle-based vaccine may become the most effective way to prevent and treat cervical cancer, assisted or combined with some other nanotechnology-based therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Nanoscience and Nanotechnology for the Middle Years

    Ng, Wan

    2009-01-01

    Capturing students' interest in science at the junior levels is crucial to not only improving the uptake of science at senior levels but to promoting science literacy in all students in order to prepare them for a society that is very science and technologically driven. This paper presents nanotechnology as an emerging science that is both factual…

  18. Concrete Nanoscience and Nanotechnology: Definitions and Applications

    Garboczi, E. J.

    There are many improvements needed in concrete, especially for use in renewal and expansion of the world’s infrastructure. Nanomodification can help solve many of these problems. However, concrete has been slow to catch on to the nanotechnology revolution. There are several reasons for this lag in the nanoscience and nanotechnology of concrete (NNC). First is the lack of a complete basic understanding of chemical and physical mechanisms and structure at the nanometer length scale. Another reason is the lack of a broad understanding of what nanomodification means to concrete, which is a liquid-solid composite. NNC ideas need to profit from, but not be bound by, experience with other materials. As an illustration of these ideas, a specific application will be given of using nano-size molecules in solution to affect the viscosity of the concrete pore solution so that ionic diffusion is slowed. A molecular-based understanding would help move this project towards true nanotechnology. A final section of this paper lists some possibly fruitful focus areas for the nanoscience and nanotechnology of concrete.

  19. Nanotechnology for sustainable development: retrospective and outlook

    Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Fromer, Neil A. [California Institute of Technology, Resnick Sustainability Institute (United States); Jhon, Myung S. [Carnegie Mellon University, Department of Chemical Engineering (United States)

    2013-11-15

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  20. Nanotechnology for sustainable development: retrospective and outlook

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-01-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development

  1. Nanotechnological solutions for Nigeria's electricity supply problem ...

    ... for every roof. The energy generated from the sun would be stored in inverters or other energy storage facilities like supercapacitors and superconductors during the day and would be useable during the night. Keywords: Nanotechnology, nano photovoltaic cells, Electricity Generation and Supply, Hybrid Energy Building ...

  2. Plasma nanotechnology: past, present and future

    Meyyappan, M

    2011-01-01

    Low-temperature plasmas find numerous applications in growth and processing of nanomaterials such as carbon nanotubes, inorganic nanowires and others. This paper provides an overview of the history, current status of the literature, challenges ahead in some of the technical areas and the potential for plasma-grown nanomaterials in various nanotechnology applications.

  3. Nanotechnology applications in hematological malignancies (Review)

    SAMIR, AHMED; ELGAMAL, BASMA M; GABR, HALA; SABAAWY, HATEM E

    2015-01-01

    A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up. PMID:26134389

  4. Nanotechnology applications in the forest products industry

    Robert J. Moon; Charles R. Frihart; Theodore Wegner

    2006-01-01

    Nanotechnology is the study and engineering of matter at the dimensions of 1 to 100 nanometers, where the physical, chemical, or biological properties are fundamentally different from those of the bulk material. By expanding our understanding and control of matter at such levels, new avenues in product development can be opened. Nanoscale-based science has...

  5. JRCAT - A Nanotechnology Center in Tsukuba

    Tanaka, Kazunobu

    2000-01-01

    Joint Research Center for Atom Technology (JRCAT) and its Atom Technology Project are described. The project covers a wide range of research subjects; manipulation of atoms and molecules, formation of nanostructures of semiconductors, spin electronics and first-principles calculation of dynamic processes of atoms and molecules on solid-state surfaces. Several recent achievements on nanotechnology and nanoscience are roughly sketched

  6. Innovations in nanotechnology for water treatment

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  7. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects.

    Padovani, Gislaine C; Feitosa, Victor P; Sauro, Salvatore; Tay, Franklin R; Durán, Gabriela; Paula, Amauri J; Durán, Nelson

    2015-11-01

    Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Strategies on Technology Transfer and Patents Commercialization for Nanotechnology at the Spanish National Research Council.

    Maira, Javier; Etxabe, Javier; Serena, Pedro A

    2018-02-14

    Nanoscience and nanotechnology made their appearance in the scientific scene at a time when both the economy of Spain and the Spanish Research and Innovation System were experiencing strong growth. This circumstance resulted in a remarkable development of nanoscience and nanotechnology especially in universities and public research institutions such as the Spanish National Research Council (Consejo Superior de Investigaciones Científicas-CSIC). However, this development in academia has not been reflected in a similar increment in the transfer of knowledge to the productive sector despite several efforts and initiatives were launched. The CSIC, the main generator of scientific knowledge in Spain, has designed and implemented a series of actions in order to take advantage of the knowledge generated in nanotechnology by its research groups by mean of an appropriate transfer to both the Spanish and the international industry. Internal methodologies used in CSIC in order to protect and commercialize nanotechnology based intellectual property as well as their effects are reviewed. The evolution of CSIC nanotechnology patents portfolio is also analyzed. There has been a clear increase in the patent license agreements of CSIC in the period 2002- 2015 in the field of nanotechnology. This increase is correlated to these facts: (i) Highly qualified team managing Intellectual Property issues, (ii) The presence of CSIC in international fairs, and (iii) Proactive search of companies and investors. Successful results can be achieved in technology transfer when the appropriate resources are available and properly organized with an adequate combination of efforts in knowledge protection, promotion and commercialization of technologies and support to the scientific entrepreneurs of the institution. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. X-ray lithography for micro and nanotechnology at RRCAT

    Shukla, Rahul; Dhamgaye, V.P.; Jain, V.K.; Lodha, G.S.

    2013-01-01

    At Indus-2 Soft and Deep X-ray Lithography beamline (BL-07) is functional and is capable of developing various high aspect ratio and high resolution structures at micro and nano scale. These micro and nano structures can be made to work as a mechanism, sensor, actuator and transducer for varieties of applications and serve as basic building blocks for the development of X-ray and IR optics, LASERs, lab-on-a-chip, micromanipulators and nanotechnology. To achieve these goals we have started developing high aspect ratio comb-drives, electrostatic micromotors, micro fluidic channels, X-ray optics and novel transducers for RF applications by Deep X-ray Lithography (DXRL). Comb-drive is one of most studied electrostatic device in MEMS (Micro Electro-Mechanical Systems). It can be used as a sensor, actuator, resonator, energy harvester and filter. Analysis and simulation shows that the comb actuator of aspect ratio 16 (air gap 50 μm) will produce nearly 1.25 μm displacement when DC voltage of 100 V is applied. For fabrication, first time in India, Polyimide X-ray mask is realized and exposure and development is done at BL-7 at RRCAT. The displacement increases as gap between comb finger decreases. Further refinement is in progress to get higher output from high aspect ratio (∼ 80) comb actuators (i.e. 1 μm at 5V). The other important design parameters like resonance frequency, capacitance will also be discussed. (author)

  10. Impaired Driving

    ... Get the Facts What Works: Strategies to Increase Car Seat and Booster Seat ... narcotics. 3 That’s one percent of the 111 million self-reported episodes of alcohol-impaired driving among U.S. ...

  11. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    Wiek, Arnim, E-mail: arnim.wiek@asu.edu; Foley, Rider W. [Arizona State University, School of Sustainability (United States); Guston, David H. [Arizona State University, Center for Nanotechnology in Society, Consortium for Science, Policy and Outcomes (United States)

    2012-09-15

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  12. Nanotechnology in dentistry: prevention, diagnosis, and therapy

    Abou Neel EA

    2015-10-01

    Full Text Available Ensanya Ali Abou Neel,1–3 Laurent Bozec,3 Roman A Perez,4,5 Hae-Won Kim,4–6 Jonathan C Knowles3,5 1Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; 3UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK; 4Institute of Tissue Regenerative Engineering (ITREN, 5Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea Abstract: Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. Keywords: nanotechnology, nanointerfaces, biofilm-related oral diseases, tissue engineering, drug delivery, toxicity

  13. The structure and infrastructure of the global nanotechnology literature

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G.Y.; Tolles, William M.

    2006-01-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office

  14. The structure and infrastructure of the global nanotechnology literature

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Stump, Jesse A. [Office of Naval Research (United States); Johnson, Dustin [Northrop Grumman TASC (United States); Murday, James S. [Naval Research Laboratory, Chemistry Division, Code 6100 (United States); Lau, Clifford G.Y. [Institute for Defense Analyses (United States); Tolles, William M

    2006-08-15

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office.

  15. Managing risk in nanotechnology topics in governance, assurance and transfer

    McAlea, Eamonn; Mullins, Martin

    2016-01-01

    This book aims to address how nanotechnology risks are being addressed by scientists, particularly in the areas of human health and the environment and how these risks can be measured in financial terms for insurers and regulators. It provides a comprehensive overview of nanotechnology risk measurement and risk transfer methods, including a chapter outlining how Bayesian methods can be used. It also examines nanotechnology from a legal perspective, both current and potential future outcomes. The global market for nanotechnology products was valued at $22.9 billion in 2013 and increased to about $26 billion in 2014. This market is expected to reach about $64.2 billion by 2019, a compound annual growth rate (CAGR) of 19.8% from 2014 to 2019. Despite the increasing value of nanotechnologies and their widespread use, there is a significant gap between the enthusiasm of scientists and nanotechnology entrepreneurs working in the nanotechnology space and the insurance/regulatory sector. Scientists are scarcely aware...

  16. Control Banding and Nanotechnology Synergist

    Zalk, D; Paik, S

    2009-12-15

    uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new

  17. African civil society initiatives to drive a biobanking, biosecurity and infrastructure development agenda in the wake of the West African Ebola outbreak.

    Abayomi, Akin; Gevao, Sahr; Conton, Brian; Deblasio, Pasquale; Katz, Rebecca

    2016-01-01

    This paper describes the formation of a civil society consortium, spurred to action by frustration over the Ebola crises, to facilitate the development of infrastructure and frameworks including policy development to support a harmonized, African approach to health crises on the continent. The Global Emerging Pathogens Treatment Consortium, or GET, is an important example of how African academics, scientists, clinicians and civil society have come together to initiate policy research, multilevel advocacy and implementation of initiatives aimed at building African capacity for timely and effective mitigations strategies against emerging infectious and neglected pathogens, with a focus on biobanking and biosecurity. The consortium has been able to establish it self as a leading voice, drawing attention to scientific infrastructure gaps, the importance of cultural sensitivities, and the power of community engagement. The GET consortium demonstrates how civil society can work together, encourage government engagement and strengthen national and regional efforts to build capacity.

  18. Driving things

    Nevile, Maurice Richard

    2015-01-01

    I explore how participants organise involvement with objects brought into the car, relative to the demands of driving and social activity. Objects in cars commonly include phones or other technologies, food, body care products, texts, clothing, bags and carry items, toys, and even animals...... 2004, Haddington et al. 2012). I focus here especially on how the practical and interactional work of locating, seeing, placing, handling, hearing, and relinquishing, is ordered and accomplished relative to the emerging and contingent demands of both driving and social participation......, such that involvement with objects is constituted as secondary to driving in a multiactivity setting (e.g. Haddington et al. 2014). We see how events with, for, of, and even by objects can occur as predictable, planned and even designed for (e.g. changing glasses, applying body lotion), or might be unexpected...

  19. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    Kazaryan, Konstantin

    2011-03-01

    The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov

  20. Gazelles, unicorns, and dragons battle cancer through the Nanotechnology Startup Challenge.

    Truman, Rosemarie; Locke, Cody J

    On March 4th, 2016, Springer's C ancer Nanotechnology office promoted the launch of the Nanotechnology Startup Challenge in Cancer ( NSC 2 ). This innovation-development model is a partnership among our company, the Center for Advancing Innovation (CAI), MedImmune, the global biologics arm of AstraZeneca, and multiple institutes at the National Institutes of Health (NIH). NSC 2 "crowdsources" talent from around the world to launch startups with near-term, commercially viable cancer nanotechnology inventions, which were developed by the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Crowdsourcing is a process in which one uses the internet to engage a large group of people in an activity, such as NSC 2 . For this initiative, CAI engaged universities, industry professionals, foundations, investors, relevant media outlets, seasoned entrepreneurs, and life sciences membership organizations to request that they participate in the challenge. From this outreach, fifty-six key thought leaders have enrolled in NSC 2 as judges, mentors, and/or advisors to challenge teams (http://www.nscsquared.org/judges.html). Along with crowdsourcing talent to bolt startups around NIH inventions, NSC 2 will also catalyze the launch of companies around "third-party" cancer nanotechnology inventions, which were conceived and developed outside of the NIH. Twenty-eight robust teams were accepted to the challenge on March 14th, 2016.

  1. Nanotechnology Research Directions for Societal Needs in 2020 Retrospective and Outlook

    Roco, Mihail C; Mirkin, Chad A

    2011-01-01

    This volume presents a comprehensive perspective on the global scientific, technological, and societal impact of nanotechnology since 2000, and explores the opportunities and research directions in the next decade to 2020.  The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in a series of high-level workshops organized by Mike Roco of the National Science Foundation (NSF), along with a team of American co-hosts that includes Chad Mirkin, Mark Hersam, Evelyn Hu, and several other eminent U.S. scientists.  The study performed in support of the U.S. National Nanotechnology Initiative (NNI) aims to redefine the R&D goals for nanoscale science and engineering integration and to establish nanotechnology as a general-purpose technology in the next decade. It intends to provide decision makers in academia, industry, and government with a n...

  2. Developing a registry of workers involved in nanotechnology: BASF experiences.

    David, Raymond M; Nasterlack, Michael; Engel, Stefan; Conner, Patrick R

    2011-06-01

    To assist BASF in the establishment of a registry of workers involved in nanotechnology. The initial step was a complete inventory of nanomaterials and sites of use. Guidance was developed to clarify which particulate nanomaterials were to be included in the survey. Site management was then contacted by the medical department to obtain a list of workers. The time line for collecting data ranged from several months to a year, depending on the information needed, and presented challenges based on the lack of global definition and labeling of nanomaterials. Less than 50 nanomaterials are used as raw materials in less than 10% of the sites globally. In North America, less than 5% of sites and 5% workers use nanomaterials. Further work is required to integrate the inventory, registry, and exposure assessments.

  3. International conference on advanced nanomaterials and nanotechnology

    2009-01-01

    Nanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy, the environment and with specific emphasis on the multidisciplinary nature of the subject. Indian Institute of Technology Guwahati has taken a proactive role in promoting Nanotechnology by establishing and nurturing a centre for nanotechnology with the aim of generation of knowledge in the field and development of human resources for meeting demands in academics and industry. ICANN-2009 aims to promote sharing of new knowledge and exchange of the latest ideas in the field, through deliberations in the conference. Papers relevant to INIS are indexed separately

  4. Nanotechnology for water treatment and purification

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  5. Nanotechnology: “Revolutionary Developments in Future”

    CERN. Geneva

    2014-01-01

    Introductory notes will be made on the definition, structures, phenomena, functions, synthesis, properties, and characterization at the nanoscale. Some indications on nanoMaterials research and markets in Europe will be given. The spectrum of structural and functional/smart nanomaterials: metallic and ceramic materials, coating, composites ….will be reviewed Key challenges for nanomaterials design and engineering will be highlighted. The range of applications for nanotechnologies will be sumarized: for nano-electronics (information and communication), health care, energy and transport, nuclear and accelerator technologies, security and safety etc NanoMaterials and Technologies are key in future accelerator engineering: construction, operation and experimentation. Nanotechnology in next generation industries is a must. Nanometrology and standardisation (materials and equipment) are also an important items. Environmental and health implications of nanomaterials science and technology: Some guidance and safe...

  6. 4th International Conference Nanotechnology and Nanomaterials

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  7. 3rd International Conference Nanotechnology and Nanomaterials

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  8. Introductory quantum mechanics for applied nanotechnology

    Kim, Dae Mann

    2015-01-01

    This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

  9. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  10. Recent Advances in Nanotechnology for Diabetes Treatment

    DiSanto, Rocco Michael; Subramanian, Vinayak; Gu, Zhen

    2015-01-01

    Nanotechnology in diabetes research has facilitated the development of novel glucose measurement and insulin delivery modalities which hold the potential to dramatically improve quality of life for diabetics. Recent progress in the field of diabetes research at its interface with nanotechnology is our focus. In particular, we examine glucose sensors with nanoscale components including metal nanoparticles and carbon nanostructures. The addition of nanoscale components commonly increases glucose sensor sensitivity, temporal response, and can lead to sensors which facilitate continuous in vivo glucose monitoring. Additionally, we survey nanoscale approaches to “closed-loop” insulin delivery strategies which automatically release insulin in response to fluctuating blood glucose levels. “Closing the loop” between blood glucose level (BGL) measurements and insulin administration by removing the requirement of patient action holds the potential to dramatically improve the health and quality of life of diabetics. Advantages and limitations of current strategies, as well as future opportunities and challenges are also discussed. PMID:25641955

  11. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-01-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology’s contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  12. Targeting Ovarian Cancer with Porphysome Nanotechnology

    2014-10-01

    Gross, S. M.; Miles, D. T.; Murray, R. W. Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(Ethylene Glycol) Polymer ... Polymeric Micelles in Poorly Permeable Tumours Depends on Size. Nature nanotechnology 2011, 6, 815-823. 13. Pluen, A.; Boucher, Y.; Ramanujan, S...developed for improving their stability, delivery effi ciency, and preferen- tial accumulation at target-tissue, such as polymers loaded with

  13. Nanotechnology: Societal Implications - II. Individual Perspectives

    Roco, Mihail C.; Bainbridge, William S.

    Advances in nanoscience and nanotechnology promise to have major impacts on human health, wealth, and peace in the coming decades. Among the expected breakthroughs are `designer' materials created from directed assembly of atoms and molecules, and the emergence of entirely new phenomena in chemistry and physics. This book includes a collection of essays by leading scientists, engineers, and social scientists reviewing the possible uses of these impending developments in various applications, and the corresponding issues that they raise.

  14. COMPETITIVE ADVANTAGES IN A NANOTECHNOLOGY VALUE CHAIN

    Adriana Radan UNGUREANU

    2015-01-01

    The value chain analysis is one of the most important methods for understanding the industrial world. The main task of the value chain that links producers and buyers consists in understanding where or how exactly the value added is generated. In the case of products incorporating nanotechnology, most of them are still in the trial phase into laboratories, but there are some examples of good practices where nanoproducts discovered their way to the market. This paper tries to present two cases...

  15. Nanoparticles and nanotechnologies today and beyond

    Abaeva, L.; Shumsky, V.; Petritskaya, E.; Rogatkin, D.; Lubchenko, P.

    2010-01-01

    Investigation of nanoparticles is a priority direction of the modern science. Application of nanoparticles is widely incorporated into many spheres of human activity. The ability of nanoparticles to penetrate deeply into tissues, cells and nuclei can be used in medicine. The possibilities of molecular diagnosis and identification of biomarkers, unique for every patient, create preconditions for improving therapy by addressed delivery of medicines. However, the benefits of nanotechnology may h...

  16. Nanotechnology for Cancer Therapy Based on Chemotherapy

    Chen-Yang Zhao; Rui Cheng; Zhe Yang; Zhong-Min Tian

    2018-01-01

    Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover,...

  17. Ultimate Atomic Bling: Nanotechnology of Diamonds

    Dahl, Jeremy

    2010-01-01

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  18. New applications of nanotechnology for neuroimaging.

    Suffredini, G; East, J E; Levy, L M

    2014-07-01

    Advances in nanotechnology have the potential to dramatically enhance the detection of neurologic diseases with targeted contrast agents and to facilitate the delivery of focused therapies to the central nervous system. We present the physicochemical rationale for their use, applications in animal models, and ongoing clinical trials using these approaches. We highlight advances in the use of nanoparticles applied to brain tumor imaging, tumor angiogenesis, neurodegeneration, grafted stem cells, and neuroprogenitor cells. © 2014 by American Journal of Neuroradiology.

  19. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  20. Nanotechnology and Innovation, Recent status and the strategic implication for the formation of high tech clusters in Greece, in between a global economic crisis

    Evangelos I. Gkanas; Vasso MagkouKriticou; Sofoklis S. Makridis; Athanasios K. Stubos; Ioannis Bakouros

    2013-01-01

    Nanotechnology is the first major worldwide research initiative of the 21st century and probably is the solution vector in the economic environment. Also, innovation is widely recognized as a key factor in the economic development of nations, and is essential for the competitiveness of the industrial firms as well. Policy and management of innovation are necessary in order to develop innovation and it involves processes. It is essential to develop new methods for nanotechnology development fo...

  1. Empowering citizens in international governance of nanotechnologies

    Malsch, Ineke; Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio; Mullins, Martin; Hester, Karena; McAlea, Eamonn; Murphy, Finbarr; Tofail, Syed A. M.

    2015-05-01

    The international dialogue on responsible governance of nanotechnologies engages a wide range of actors with conflicting as well as common interests. It is also characterised by a lack of evidence-based data on uncertain risks of in particular engineered nanomaterials. The present paper aims at deepening understanding of the collective decision making context at international level using the grounded theory approach as proposed by Glaser and Strauss in "The Discovery of Grounded Theory" (1967). This starts by discussing relevant concepts from different fields including sociological and political studies of international relations as well as political philosophy and ethics. This analysis of current trends in international law making is taken as starting point for exploring the role that a software decision support tool could play in multi-stakeholder global governance of nanotechnologies. These theoretical ideas are then compared with the current design of the SUN Decision Support System (SUNDS) under development in the European project on Sustainable Nanotechnologies (SUN, www.sun-fp7.eu). Through constant comparison, the ideas are also compared with requirements of different stakeholders as expressed during a user workshop. This allows for highlighting discussion points for further consideration.

  2. How helpful is nanotechnology in agriculture?

    Ditta, Allah

    2012-01-01

    Nanotechnology has great potential, as it can enhance the quality of life through its applications in various fields like agriculture and the food system. Around the world it has become the future of any nation. But we must be very careful with any new technology to be introduced regarding its possible unforeseen related risks that may come through its positive potential. However, it is also critical for the future of a nation to produce a trained future workforce in nanotechnology. In this process, to inform the public at large about its advantages is the first step; it will result in a tremendous increase in interest and new applications in all the domains will be discovered. With this idea, the present review has been written. There is great potential in nanoscience and technology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society today and in the future. Climate change, urbanization, sustainable use of natural resources and environmental issues like runoff and accumulation of pesticides and fertilizers are the hot issues for today's agriculture. This paper reviews some of the potential applications of nanotechnology in the field of agriculture and recommends many strategies for the advancement of scientific and technological knowledge currently being examined. (review)

  3. Safety of Nanotechnology in Food Industries

    Amini, Seyed Mohammad; Gilaki, Marzieh; Karchani, Mohsen

    2014-01-01

    The arrival of nanotechnology in various industries has been so rapid and widespread because of its wide-ranging applications in our daily lives. Nutrition and food service is one of the biggest industries to be affected by nanotechnology in all areas, changing even the nature of food itself. Whether it’s farming, food packaging, or the prevention of microbial contamination the major food industries have seen dramatic changes because of nanotechnology. Different nanomaterials such as nanopowders, nanotubes, nano-fibers, quantum dots, and metal and metal-oxide nanoparticles are globally produced in large quantities due to their broad applicability in food-related industries. Because of the unique properties of nanostructures and nanomaterials – such as a large surface area, high activity, and small size, there is some concern about the potential for harmful adverse effects of used nanomaterials on health or the environment. However, because of tremendous advances in different industries, this concern may be unnecessary. This paper presents some uses of nanomaterials in food and related industries and their possible side-effects. This review covers the various aspects of nanomaterials and their impact on human exposure, safety, and environmental concerns. PMID:25763176

  4. Nanotechnological Strategies for Biofabrication of Human Organs

    Rodrigo A. Rezende

    2012-01-01

    Full Text Available Nanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100 nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.

  5. Empowering citizens in international governance of nanotechnologies

    Malsch, Ineke, E-mail: malschtechnovaluation@xs4all.nl, E-mail: postbus@malsch.demon.nl [Malsch TechnoValuation (Netherlands); Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio [Ca’Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy); Mullins, Martin; Hester, Karena; McAlea, Eamonn; Murphy, Finbarr [University of Limerick, Department of Accounting and Finance, Kemmy Business School (Ireland); Tofail, Syed A. M. [University of Limerick, Department of Physics and Energy, and Materials and Surface Sciences Institute (MSSI) (Ireland)

    2015-05-15

    The international dialogue on responsible governance of nanotechnologies engages a wide range of actors with conflicting as well as common interests. It is also characterised by a lack of evidence-based data on uncertain risks of in particular engineered nanomaterials. The present paper aims at deepening understanding of the collective decision making context at international level using the grounded theory approach as proposed by Glaser and Strauss in “The Discovery of Grounded Theory” (1967). This starts by discussing relevant concepts from different fields including sociological and political studies of international relations as well as political philosophy and ethics. This analysis of current trends in international law making is taken as starting point for exploring the role that a software decision support tool could play in multi-stakeholder global governance of nanotechnologies. These theoretical ideas are then compared with the current design of the SUN Decision Support System (SUNDS) under development in the European project on Sustainable Nanotechnologies (SUN, www.sun-fp7.eu http://www.sun-fp7.eu ). Through constant comparison, the ideas are also compared with requirements of different stakeholders as expressed during a user workshop. This allows for highlighting discussion points for further consideration.

  6. A review of water treatment membrane nanotechnologies

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  7. Empowering citizens in international governance of nanotechnologies

    Malsch, Ineke; Subramanian, Vrishali; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio; Mullins, Martin; Hester, Karena; McAlea, Eamonn; Murphy, Finbarr; Tofail, Syed A. M.

    2015-01-01

    The international dialogue on responsible governance of nanotechnologies engages a wide range of actors with conflicting as well as common interests. It is also characterised by a lack of evidence-based data on uncertain risks of in particular engineered nanomaterials. The present paper aims at deepening understanding of the collective decision making context at international level using the grounded theory approach as proposed by Glaser and Strauss in “The Discovery of Grounded Theory” (1967). This starts by discussing relevant concepts from different fields including sociological and political studies of international relations as well as political philosophy and ethics. This analysis of current trends in international law making is taken as starting point for exploring the role that a software decision support tool could play in multi-stakeholder global governance of nanotechnologies. These theoretical ideas are then compared with the current design of the SUN Decision Support System (SUNDS) under development in the European project on Sustainable Nanotechnologies (SUN, www.sun-fp7.eu http://www.sun-fp7.eu ). Through constant comparison, the ideas are also compared with requirements of different stakeholders as expressed during a user workshop. This allows for highlighting discussion points for further consideration

  8. Nanotechnology R and D Policy of Japan and Nanotechnology Support Project

    Kishi, Teruo

    2004-01-01

    In the 2nd Science and Technology Basic Plan (2001-2005), the area of nanotechnology and materials is designated one of the four prioritized areas in funding. Following this plan, Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Ministry of Economy, Trade and Industries (METI), the main funding ministries, and their organizations, Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), National Institute for Materials Science (NIMS), RIKEN, New Energy and Industrial Technology Organization (NEDO), and National Institute of Advanced Industrial Science and Technology (AIST) promotes their research programs. Besides, in order to promote interdisciplinary, interorganizational, and international collaboration of researchers, Nanotechnology Support Project (NSP) was started by MEXT in 2002. The project has two missions: informational support and common use facility support. Nanotechnology Researchers Network Center of Japan is responsible for informational support, and 14 universities and national research institutes are responsible for common use facility support

  9. Development of a platform for roadmapping nanotechnology for energy

    Sarwqar, Mohammad Sohail

    2004-02-01

    This report includes the vision for global energy sector to develop a highly reliable, economically viable, and environmentally benign power generation and delivery systems with the help of nanotechnology. This scenario will provide indispensable public services and sustain the economic growth. The need to take advantage of the science of ultra-small scales such as nanotechnology is emphasized. The application of nanotechnology in future energy systems, specially the advanced renewables (photovoltaics, fuel cells, etc) are explained in a systematic and organized manner. The role of nanotechnology for the ubiquitous digital society and minimal carbon emissions (clean environment) with the help of nanotechnology is also envisioned. This report attempts to roadmap nanotechnology for energy through to 2030

  10. Nanotechnology in food science: Functionality, applicability, and safety assessment

    Xiaojia He

    2016-10-01

    Full Text Available Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted.

  11. Nanotechnology in food science: Functionality, applicability, and safety assessment.

    He, Xiaojia; Hwang, Huey-Min

    2016-10-01

    Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted. Copyright © 2016. Published by Elsevier B.V.

  12. Recent progress in the therapeutic applications of nanotechnology.

    Solomon, Melani; D'Souza, Gerard G M

    2011-04-01

    The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.

  13. Radiation Shielding Systems Using Nanotechnology

    Chen, Bin (Inventor); McKay, Christoper P. (Inventor)

    2011-01-01

    A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.

  14. Nanotechnology in agriculture: prospects and constraints

    Mukhopadhyay SS

    2014-08-01

    Full Text Available Siddhartha S Mukhopadhyay Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana, India Abstract: Attempts to apply nanotechnology in agriculture began with the growing realization that conventional farming technologies would neither be able to increase productivity any further nor restore ecosystems damaged by existing technologies back to their pristine state; in particular because the long-term effects of farming with “miracle seeds”, in conjunction with irrigation, fertilizers, and pesticides, have been questioned both at the scientific and policy levels, and must be gradually phased out. Nanotechnology in agriculture has gained momentum in the last decade with an abundance of public funding, but the pace of development is modest, even though many disciplines come under the umbrella of agriculture. This could be attributed to: a unique nature of farm production, which functions as an open system whereby energy and matter are exchanged freely; the scale of demand of input materials always being gigantic in contrast with industrial nanoproducts; an absence of control over the input nanomaterials in contrast with industrial nanoproducts (eg, the cell phone and because their fate has to be conceived on the geosphere (pedosphere-biosphere-hydrosphere-atmosphere continuum; the time lag of emerging technologies reaching the farmers' field, especially given that many emerging economies are unwilling to spend on innovation; and the lack of foresight resulting from agricultural education not having attracted a sufficient number of brilliant minds the world over, while personnel from kindred disciplines might lack an understanding of agricultural production systems. If these issues are taken care of, nanotechnologic intervention in farming has bright prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, breaking yield barriers through bionanotechnology, surveillance and

  15. Not Another GMO - Explaining Europe’s Approach to Nanotechnologies

    Nico Jaspers

    2012-01-01

    Despite early warnings about “knowledge-enabled mass destruction” and the ongoing battle over agricultural biotechnology, the development of nanotechnology in Europe has been remarkably quiet over the past decade: non-governmental organization (NGO) campaigns against “nano” were all but inexistent and the wider public appears largely uninterested in nanotechnology. Why has Europe’s experience with nanotechnologies been so fundamentally different from that with genetically modified organisms (...

  16. Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter?

    Satalkar Priya; Elger Bernice Simone; Shaw David M

    2016-01-01

    Nanotechnology which involves manipulation of matter on a 'nano' scale is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However there is no consensus on the definition of nanotechnology or nanomedicine and this stems from the underlying debate on defining 'nano'. This paper aims to present the diver...

  17. Factors influencing societal response of nanotechnology : an expert stakeholder analysis

    Gupta, N.; Fischer, A.R.H.; Lans, van der, I.A.; Frewer, L.J.

    2012-01-01

    Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured i...

  18. Factors influencing societal response of nanotechnology: an expert stakeholder analysis

    Gupta, Nidhi; Fischer, Arnout R. H.; van der Lans, Ivo A.; Frewer, Lynn J.

    2012-01-01

    Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured i...

  19. Military Applications of Nanotechnology: Implications for Strategic Security I

    Kosal, Margaret E.

    2014-01-01

    PASCC Final Report Nanotechnology has emerged as a major science and technology focus of the 21st century. Proponents assert that military applications of nanotechnology have even greater potential than nuclear weapons to radically change the balance of power internationally. The suggestion that nanotechnology will enable a new class of weapons that will alter the geopolitical landscape remains to be realized. A number of unresolved security puzzles underlying the emergence of nanotechn...

  20. FACTORS OF NANOTECHNOLOGY AND BIODIVERSITY: ENVIRONMENTAL AND EDUCATIONAL ASPECTS

    A. V. Kozachek

    2015-01-01

    The aim is to consider the features of impact of nanotechnology on biodiversity in the future.Methods. We suggest an approach, according to which nanotechnologies are viewed as key technologies of the sixth technological order. It is assumed that nanotechnology may be a potential source of environmental problems of the future, and the basis for the creation of new advanced types of environmental engineering and technology. Since all of the above is important both within the actual environment...