WorldWideScience

Sample records for nanostructured tio2 electrode

  1. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries

    OpenAIRE

    Moitzheim, Sébastien; Nimisha, C S; Deng, Shaoren; Cott, Daire J; Detavernier, Christophe; Vereecken, Philippe

    2014-01-01

    Heterogeneous nanostructured electrodes using carbon nanosheets (CNS) and TiO2 exhibit high electronic and ionic conductivity. In order to realize the chip level power sources, it is necessary to employ microelectronic compatible techniques for the fabrication and characterization of TiO2-CNS thin-film electrodes. To achieve this, vertically standing CNS grown through a catalytic free approach on a TiN/SiO2/Si substrate by plasma enhanced chemical vapour deposition (PECVD) was ...

  2. Hydrogen-bonding effects on film structure and photoelectrochemical properties of porphyrin and fullerene composites on nanostructured TiO 2 electrodes

    NARCIS (Netherlands)

    Kira, Aiko; Tanaka, Masanobu; Umeyama, Tomokazu; Matano, Yoshihiro; Yoshimoto, Naoki; Zhang, Yi; Ye, Shen; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2007-01-01

    Hydrogen-bonding effects on film structures and photophysical, photoelectrochemical, and photovoltaic properties have been examined in mixed films of porphyrin and fullerene composites with and without hydrogen bonding on nanostructured TiO2 electrodes. The nanostructured TiO2 electrodes modified

  3. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2018-02-01

    Full Text Available The lithium ion battery (LIB has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.

  4. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  5. Characterization and Performance Evaluation of Dye Sensitized Solar Cell Using Nanostructured TiO2 Electrode

    Directory of Open Access Journals (Sweden)

    Sule Erten-Ela

    2014-01-01

    Full Text Available Metal-free organic sensitizer consisting of donor, electron conducting, and anchoring anhydride groups was engineered at molecular level and synthesized. Dye sensitized solar cells based on conjugated naphthalene dye were fabricated using nanoporous electrode. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. DSSCs were fabricated in a FTO/nc-TiO2/organic dye/I-/I3-/Pt/FTO device geometry. Dye sensitized solar cell was characterized by current density-voltage (J-V measurement. All current-voltage (I-V measurements were done under 100 mW/cm2 light intensity and AM 1.5 conditions. The photovoltaic data revealed a short circuit photocurrent density of 1.86 mA/cm2, an open circuit voltage of 430 mV, and a fill factor of 0.63, corresponding to an overall conversion efficiency of 0.53%.

  6. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 ) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E g ) around 3.27eV, which is higher than that of pure component of titania (E g =3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO 2 . The cell fabricated by 5μm thick mixed TiO 2 -ZrO 2 electrode gave the short-circuit photocurrent about 13mA/cm 2 , open-circuit voltage about 600 mV and the conversion efficiency 5.4%

  7. Optimized nanostructured TiO2 photocatalysts

    Science.gov (United States)

    Topcu, Selda; Jodhani, Gagan; Gouma, Pelagia

    2016-07-01

    Titania is the most widely studied photocatalyst. In it’s mixed-phase configuration (anatase-rutile form) -as manifested in the commercially available P25 Degussa material- titania was previously found to exhibit the best photocatalytic properties reported for the pure system. A great deal of published research by various workers in the field have not fully explained the underlying mechanism for the observed behavior of mixed-phase titania photocatalysts. One of the prevalent hypothesis in the literature that is tested in this work involves the presence of small, active clusters of interwoven anatase and rutile crystallites or “catalytic “hot-spots””. Therefore, non-woven nanofibrous mats of titania were produced and upon calcination the mats consisted of nanostructured fibers with different anatase-rutile ratios. By assessing the photocatalytic and photoelectrochemical properties of these samples the optimized photocatalyst was determined. This consisted of TiO2 nanostructures annealed at 500˚C with an anatase /rutile content of 90/10. Since the performance of this material exceeded that of P25 complete structural characterization was employed to understand the catalytic mechanism involved. It was determined that the dominant factors controlling the photocatalytic behavior of the titania system are the relative particle size of the different phases of titania and the growth of rutile laths on anatase grains which allow for rapid electron transfer between the two phases. This explains how to optimize the response of the pure system.

  8. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon

    2013-03-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well as TEM micrographs. The regions on the wall of TiO2 nanotubes where the streptavidins were attached were elucidated by electron tomogram analysis. The coverage of TiO2 nanotubes by streptavidin was also investigated. The TiO2 nanostructures in hybrid polymer solar cells made by sol-gel and atomic layer deposition (ALD) methods and the morphologies of pores between TiO2 particles in DSSCs were also observed by reconstructed three-dimensional images made by electron tomography. © 2012 Elsevier Ltd.

  9. Three-dimensional observation of TiO2 nanostructures by electron tomography.

    Science.gov (United States)

    Suh, Young Joon; Lu, Ning; Park, Seong Yong; Lee, Tae Hun; Lee, Sang Hoon; Cha, Dong Kyu; Lee, Min Gun; Huang, Jie; Kim, Sung-Soo; Sohn, Byeong-Hyeok; Kim, Geung-Ho; Ko, Min Jae; Kim, Jiyoung; Kim, Moon J

    2013-03-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well as TEM micrographs. The regions on the wall of TiO2 nanotubes where the streptavidins were attached were elucidated by electron tomogram analysis. The coverage of TiO2 nanotubes by streptavidin was also investigated. The TiO2 nanostructures in hybrid polymer solar cells made by sol-gel and atomic layer deposition (ALD) methods and the morphologies of pores between TiO2 particles in DSSCs were also observed by reconstructed three-dimensional images made by electron tomography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Versatile preparation method for mesoporous TiO2 electrodes ...

    Indian Academy of Sciences (India)

    Unknown

    Physical properties of these electrodes were compared with the electrodes prepared by ... semiconductor paste used in DB method, it is difficult to get thick enough ... DB technique. TiO2 paste was prepared following a com- monly used method described in the literature (Barbé et al 1997). 2.2 Characterization of TiO2 films.

  11. Lithium insertion in nanostructured TiO(2)(B) architectures.

    Science.gov (United States)

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li

  12. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.

    Science.gov (United States)

    Shao, Wei; Gu, Feng; Li, Chunzhong; Lu, Mengkai

    2010-06-21

    Uniform mesoporous TiO(2) nanospheres were successfully developed via an interfacial confined formation process for application in dye-sensitized solar cells. The mesoporous spherical structures greatly promote the dye-loading capacity, electron transfer, and light scattering, resulting in remarkable enhancement of the cell performance. The designed interfacial platform caused a reaction-limited aggregation of the TiO(2) nanocrystals, resulting in the formation of mesoporous spherical nanostructures with sphere diameter of 216 nm and pore size of 8 nm. The oriented attachment of adjacent TiO(2) nanocrystals facilitated the electron transfer process when the mesoporous TiO(2) nanospheres were used as electrode films. The dye coverage was enhanced remarkably in the mesoporous spherical TiO(2) samples. Owing to the enhanced light-harvesting efficiency, solar conversion efficiency was enhanced about 30% for the dye-sensitized solar cell (DSSC) based on mesoporous spherical TiO(2) in comparison with that made by commercial TiO(2) nanoparticles.

  13. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  14. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  15. Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications.

    Science.gov (United States)

    Hyder, Md Nasim; Gallant, Betar M; Shah, Nisarg J; Shao-Horn, Yang; Hammond, Paula T

    2013-10-09

    Next-generation electrochemical energy storage for integrated microsystems and consumer electronic devices requires novel electrode materials with engineered architectures to meet the requirements of high performance, low cost, and robustness. However, conventional electrode fabrication processes such as doctor blading afford limited control over the electrode thickness and structure at the nanoscale and require the incorporation of insulating binder and other additives, which can promote agglomeration and reduce active surface area, limiting the inherent advantages attainable from nanoscale materials. We have engineered a route for the synthesis of highly stable, sub-8 nm TiO2 nanoparticles and their subsequent incorporation with acid-functionalized multiwalled carbon nanotubes (MWNTs) into nanostructured electrodes using aqueous-based layer-by-layer electrostatic self-assembly. Using this approach, binder-free thin film electrodes with highly controllable thicknesses up to the micrometer scale were developed with well-dispersed, nonagglomerated TiO2 nanoparticles on MWNTs. Upon testing in an Li electrochemical half-cell, these electrodes demonstrate high capacity (>150 mAh/gel(ectrode) at 0.1 A/gel(ectrode)), good rate capability (>100 mAh/gel(ectrode) up to 1 A/g(electrode)) and nearly no capacity loss up to 200 cycles for electrodes with thicknesses up to 1480 nm, indicating their promise as thin-film negative electrodes for future Li storage applications.

  16. Phycocyanin assemblies onto nanostructured TiO2 for photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Paula Enciso

    2013-01-01

    Full Text Available The use of renewable energies is of increasing importance due to depletion of fossil fuel sources and environmental damages caused by their utilization. The energy available from the sun is clean and widely distributed. Solar cells are devices used to convert solar energy into electricity. Among them, dye sensitized solar cells are an interesting alternative to conventional silicon ones, because of their low cost and simple assembly process. They are made of a semiconductor with colored dyes adsorbed onto the surface that work as antennas to catch energy in the visible range of the spectra. In this work, nanostructured TiO2 was synthesized and the protein phycocyanin was used as dye. TiO2 was characterized by electron microscopy, X ray diffraction and infrared spectroscopy (FTIR. Phycocyanin was extracted from commercial Spirulina spp. capsules. The assembly process of the electrode covered with TiO2 and phycocyanin was controlled by cyclic voltammetry and FTIR. Results were in accordance with the assembling of an electrode sensitized with phycocyanin.

  17. Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Yang, Jih-Sheng; Liao, Wen-Pin; Wu, Jih-Jen

    2013-08-14

    In this work, a three-dimensional (3D) hierarchical TiO2 nanostructured array is constructed on the basis of the considerations of morphology and interfacial energetics for photoelectrochemical water splitting. The photoelectrode is composed of a core-shell structure where the core portion is a rutile TiO2 nanodendrite (ND) array and the shell portion is rutile and anatase TiO2 nanoparticles (NPs) sequentially located on the surface. The TiO2 ND array provides a fast electron transport pathway due to its quasi-single-crystalline structure. The 3D configuration with NPs in the shell portion provides a larger surface area for more efficient photocharge separation without significantly sacrificing the electron collection efficiency. Moreover, anatase TiO2 NPs constructed on the surface of the ND/rutile TiO2 NP nanostructured array enhance charge separation and suppress charge recombination at the interfacial region due to the higher conduction band edge of anatase TiO2 compared to that of rutile TiO2. A photocurrent density and photoconversion efficiency of 2.08 mA cm(-2) at 1.23 V vs reversible hydrogen electrode (RHE) and 1.13% at 0.51 V vs RHE are, respectively, attained using the hierarchical TiO2 nanostructured array photoelectrochemical cell under illumination of AM 1.5G (100 mW cm(-2)).

  18. Formation of rod-like nanostructure by aggregation of TiO2 ...

    Indian Academy of Sciences (India)

    as antibiosis3,4 to renewable energy development as photo- voltaic cells.5,6 The nanostructured TiO2 has been proven to be a kind of excellent photocatalysis materials to break down most organic compounds with highly efficient degra- dation and no secondary pollution. TiO2 nanomaterials, one of the most studied ...

  19. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Directory of Open Access Journals (Sweden)

    Arghya Narayan Banerjee

    2011-02-01

    Full Text Available Arghya Narayan BanerjeeSchool of Mechanical Engineering, Yeungnam University, Gyeongsan, South KoreaAbstract: Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via

  20. Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

    International Nuclear Information System (INIS)

    Boroomandnia, A.; Kasaeian, A.B.; Nikfarjam, A. et al.

    2015-01-01

    A comparative study has been made of hybrid solar cells based on poly(3-hexyl thiophene) (P3HT) and different nano-structures of TiO 2 . Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO 2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO 2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO 2 nanostructure. It was found that higher densities of TiO 2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to 0.13. TiO 2 nanoparticles with power conversion efficiency of 0.15 showed better performance than TiO 2 nanofibers because of greater interface area. Also the crystallinity effect of the TiO 2 nanostructure on solar cell performance was investigated. Moreover, an improved photovoltaic performance was achieved after the interface modification, and the highest conversion efficiency was obtained from the N719 modified device at 241 nm, short-circuit photocurrent (J sc ) of 3.88 mA cm -2 , open-circuit voltage (V oc ) of 0.09 V and fill factor of 0.16; so that an overall conversion efficiency (η) of 0.35% was obtained. (author)

  1. Pt–Ru decorated self-assembled TiO2–carbon hybrid nanostructure ...

    Indian Academy of Sciences (India)

    Porous titanium oxide–carbon hybrid nanostructure (TiO2–C) with a specific surface area of 350 m2/g and an average pore-radius of 21.8 Å is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2–C supported Pt–Ru electro-catalyst (Pt–Ru/TiO2–C) is obtained and ...

  2. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  3. Facile Synthesis and Tensile Behavior of TiO2 One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Shu-you

    2009-01-01

    Full Text Available Abstract High-yield synthesis of TiO2 one-dimensional (1D nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 °C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO2 with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time. Nanoscale tensile testing performed on individual 1D nanostructures showed that the nanostructures appeared to fracture in a brittle manner. The measured Young’s modulus and fracture strength are ~56.3 and 1.4 GPa, respectively.

  4. Antimicrobial activity of TiO2 nanostructures synthesized by hydrothermal method

    Science.gov (United States)

    Surah, Shivani Singh; Sirohi, Siddharth; Nain, Ratyakshi; Kumar, Gulshan

    2018-02-01

    Titania nanostructures were synthesized by hydrothermal method. Titanium tetrachloride was used as a precursor, sodium hydroxide was used as a solvent. Effect on their morphology by variation of parameters like temperature (110°C, 160°C and 180°C), time (15h,18h, 20h, 22h, 24h) and concentration of the solvent NaOH (5M, 8M, 10 M, 12M) were studied. The obtained TiO2 nanostructures were washed with deionized water. The structure, size, morphology of the prepared nanostructures were analyzed by SEM (scanning electron microscope), DLS (dynamic light scattering), TEM (transmission electron microscope). SEM and TEM revealed the shape, size of the nanostructures. DLS reported the particle size of prepared TiO2 nanoparticles. Polymeric films based on polyvinyl alcohol (PVA) doped with titanium dioxide nanostructures at different weight percentage (0.5, 0.75, 1,2 TiO2/PVA) were prepared using the ultra sonication and solution casting techniques. The appropriate weight of PVA was dissolved in deionized water. The mixture was magnetically stirred continuously and heated (80°C) for 4 hours, until the solution mixture becomes homogenous. Different weight percentage of TiO2 nanostructures were added to deionized water and sonicated for 3 hours to prevent the nanostructures agglomeration. The mixture was mixed with the PVA solution and magnetically stirred for 1 hour to get good dispersion without agglomeration. The final PVA /TiO2 mixture were casted in glass Petridish, were left until dry. Ultrasonication was used as a major factor for preparation in order to get better dispersion. Nanocomposite films were characterized using SEM and were found to exhibit antimicrobial properties when treated with E.coli and pseudomonas.

  5. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO 2 ) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO 2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO 2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO 2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO 2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  6. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    Science.gov (United States)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  7. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity

    Science.gov (United States)

    Fan, Zhenghua; Meng, Fanming; Zhang, Miao; Wu, Zhenyu; Sun, Zhaoqi; Li, Aixia

    2016-01-01

    This paper presents controllable growth and photocatalytic activity of TiO2 hierarchical nanostructures by solvothermal method at different temperatures. It is revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the morphology of TiO2 can be effectively controlled as rose-like, chrysanthemum-like and sea-urchin-like only changing solvothermal temperature. BET surface area analysis confirms the presence of a mesoporous network in all the nanostructures, and shows high surface area at relatively high temperature. The photocatalytic activities of the photocatalysts are evaluated by the photodegradation of RhB under UV light irradiation. The TiO2 samples exhibit high activity on the photodegradation of RhB, which is higher than that of the commercial P25. The enhancement in photocatalytic performance can be attributed to the synergetic effect of the surface area, crystallinity, band gap and crystalline size.

  8. TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Asagoe, K; Suzuki, Y; Ngamsinlapasathian, S; Yoshikawa, S

    2007-01-01

    TiO 2 anatase nanowires have been prepared by a hydrothermal process followed by post-heat treatment in air. TiO 2 nanoparticle/TiO 2 nanowire composite electrodes were prepared for dye-sensitized solar cells (DSC) in order to improve light-to-electricity conversion efficiency. The TiO 2 NP/TiO 2 NW composite cells showed higher DSC performance than ordinary nanoparticle cells and fully nanowire cells: efficiency (η = 6.53 % for DSC with 10% nanowire, whereas 5.59% for 0% nanowire, and 2.42% for 100% nanowire

  9. Fabrication of Nanostructured TiO2 Using a Solvothermal Reaction for Lithium-ion Batteries

    Directory of Open Access Journals (Sweden)

    Jicai Liang

    2016-03-01

    Full Text Available Nanostructured TiO2 was successfully synthesized via a facile one-pot solvothermal reaction followed by calcina‐ tion. Hydrolysis and polycondensation of titanium butox‐ ide (Ti(OR4 were performed in the presence of sodium dodecylbenzenesulfonate (SDBS. The morphologies, crystallinity and compositions of obtained samples were identified by the methods of X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET and transmission electron microscopy (TEM. It was found that the nanostructured TiO2 with an average diameter of 10±5 nm had the crystal type of anatase. A good specific surface was also obtained by the standard multipoint BET method (119.2 m2/g. As the anode materials for the lithium-ion batteries (LIBs, the anatase phase TiO2 demonstrated a relatively high gravi‐ metric specific capacity of 264.8 mAh g-1. The reversible capacity of TiO2 remained 196.4 mAh g-1 at a rate of 0.2 ̊C after 100 cycles. It indicated that this kind of TiO2 possessed a good electrochemical performance.

  10. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    Science.gov (United States)

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance. Copyright © 2013 Wiley Periodicals, Inc.

  11. Patterned TiO2 nanostructures fabricated with a novel inorganic resist

    International Nuclear Information System (INIS)

    Perotto, Giovanni; Antonello, Alessandro; Ferraro, Davide; Mattei, Giovanni; Martucci, Alessandro

    2013-01-01

    The fabrication of nanostructures is a very intense field of research in material science over the last decades. Overcoming the limit imposed by the diffraction limit in lithography was addressed in several ways: shifting to smaller wavelength, changing radiation and using electrons or ions instead of photons or using non-conventional bottom up techniques like self-assembly. There are few studies on fabrication of ordered TiO 2 nanostructures, mostly confined to non-scalable technologies, while nanostructured TiO 2 is a material used in many different fields of applications. In our work we present a hybrid nanofabrication technique based on self-assembly coupled with standard UV lithography. With this method we were able to fabricate in a single step and with the use of inexpensive equipment a 2D Nano Bowl Array of TiO 2 with sub wavelength features and easily scalable pattern features. - Highlights: • Titanate nanosheet were proven to be useful as an inorganic negative photo resist. • A Nano Bowl Array structure with features smaller than the diffraction limit of light was obtained. • 2D plasmonic gratings have been obtained by coating the Nano Bowl Array with Ag. • TiO 2 Nano Bowl Array have been used as superhydrophilic/hydrophobic surfaces

  12. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  13. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures

    Science.gov (United States)

    Umar, Akrajas Ali; Md Saad, Siti Khatijah; Ali Umar, Marjoni Imamora; Rahman, Mohd Yusri Abd; Oyama, Munetaka

    2018-01-01

    In this review, we present a summary of research to date on the anatase polymorph of TiO2 nanostructures containing high-energy facet, particularly (001) plane, with porous structure, covering their synthesis and their application in photocatalysis as well as a review of any attempts to modify their electrical, optical and photocatalytic properties via doping. After giving a brief introduction on the role of crystalline facet on the physico-chemical properties of the anatase TiO2, we discuss the electrical and optical properties of pristine anatase TiO2 and after being doped with both metal and non-metals dopants. We then continue to the discussion of the electrical properties of (001) faceted anatase TiO2 and their modification upon being prepared in the form of porous morphology. Before coming to the review of the photocatalytic properties of the (001) faceted anatase and (001) with porous morphology in selected photocatalysis application, such as photodegradation of organic pollutant, hydrogenation reaction, water splitting, etc., we discuss the synthetic strategy for the preparation of them. We then end our discussion by giving an outlook on future strategy for development of research related to high-energy faceted and porous anatase TiO2.

  14. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    Science.gov (United States)

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-05

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Nanostructured TiO2 Doped with Nb as a Novel Support for PEMFC

    Directory of Open Access Journals (Sweden)

    Edgar Valenzuela

    2013-01-01

    Full Text Available Nowadays, one of the major issues of the PEMFC concerns the durability. Historically, carbon has been used as a catalyst support in PEMFC; nevertheless, under the environmental conditions of the cell, the carbon is oxidized, leaving the catalyst unsupported. In order to increase the stability and durability of the catalyst in the PEMFC, a novel nanostructured metallic oxide support is proposed. In this work, TiO2 was doped with Nb to obtain a material that combines chemical stability, high surface area, and an adequate electronic conductivity in order to be a successful catalyst support candidate for long-term PEMFC applications. The TiO2-Nb nanostructured catalyst support was physically and electrochemically characterized. According to the results, the TiO2-Nb offers high surface area and good particle dispersion; also, the electrochemical activity and stability of the support were evaluated under high potential conditions, where the TiO2-Nb proved to be much more stable than carbon.

  16. Versatile preparation method for mesoporous TiO2 electrodes ...

    Indian Academy of Sciences (India)

    Unknown

    screen printing techniques (Zhang et al 2001) have been used widely in the preparation of nano-structured elec- trodes suitable for LEDSCs. However, the nano- structured ..... Organization (NEDO) under Ministry of Economy, Trade and Industry of Japan. (GKRS) acknowledges the Post- doctoral Research Fellowship from ...

  17. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; García Lastra, Juan Maria

    2009-01-01

    We address one of the main challenges to TiO2 photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2’s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using differe...

  18. Formation of nanostructured TiO2 by femtosecond laser irradiation of titanium in O2

    International Nuclear Information System (INIS)

    Landis, Elizabeth C.; Phillips, Katherine C.; Mazur, Eric; Friend, Cynthia M.

    2012-01-01

    We used femtosecond laser irradiation of titanium metal in an oxidizing environment to form a highly stable surface layer of nanostructured amorphous titanium dioxide (TiO 2 ). We studied the influence of atmospheric composition on these surface structures and found that gas composition and pressure affect the chemical composition of the surface layer but not the surface morphology. Incorporation of nitrogen is only possible when no oxygen is present in the surrounding atmosphere.

  19. Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application

    Science.gov (United States)

    Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.

  20. Versatile preparation method for mesoporous TiO2 electrodes ...

    Indian Academy of Sciences (India)

    The effects of additives, either to the spray solution or to the hole conductor on the photoresponses of the above devices were also studied. The cells fabricated with SPT electrodes containing Al(BuiO)3 showed ∼ 2.4% efficiency and addition of 1-ethyl-3-methyl imidazolium thiocyanate into CuI layer further enhanced the ...

  1. Visible light degradation of textile effluent using nanostructured TiO2/Ag/CuO photocatalysts

    OpenAIRE

    KARTHIKEYAN N.; NARAYANAN V.; STEPHEN A.

    2016-01-01

    TiO2, Ag and CuO nanomaterials, and nanostructured TiO2/Ag/CuO photocatalytic materials coupled in different weight percentages were synthesized. The prepared materials were characterized by XRD, SEM, EDX and UV-Vis diffuse reflectance spectroscopy. Photocatalytic degrading capabilities of the pure, as well as the nanostructured TiO2/Ag/CuO photocatalytic materials were tested on the dye effluent collected from the textile industries. The samples collected during the photocatalytic degradatio...

  2. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  3. 1D TiO2 Nanostructures Prepared from Seeds Presenting Tailored TiO2 Crystalline Phases and Their Photocatalytic Activity for Escherichia coli in Water

    Directory of Open Access Journals (Sweden)

    Julieta Cabrera

    2018-01-01

    Full Text Available TiO2 nanotubes were synthesized by alkaline hydrothermal treatment of TiO2 nanoparticles with a controlled proportion of anatase and rutile. Tailoring of TiO2 phases was achieved by adjusting the pH and type of acid used in the hydrolysis of titanium isopropoxide (first step in the sol-gel synthesis. The anatase proportion in the precursor nanoparticles was in the 3–100% range. Tube-like nanostructures were obtained with an anatase percentage of 18 or higher while flake-like shapes were obtained when rutile was dominant in the seed. After annealing at 400°C for 2 h, a fraction of nanotubes was conserved in all the samples but, depending on the anatase/rutile ratio in the starting material, spherical and rod-shaped structures were also observed. The photocatalytic activity of 1D nanostructures was evaluated by measuring the deactivation of E. coli in stirred water in the dark and under UV-A/B irradiation. Results show that in addition to the bactericidal activity of TiO2 under UV-A illumination, under dark conditions, the decrease in bacteria viability is ascribed to mechanical stress due to stirring.

  4. NANOSTRUCTURED TiO2 SENSITIZED WITH PORPHYRINS FOR SOLAR WATER-SPLITTING

    Directory of Open Access Journals (Sweden)

    MARCELA-CORINA ROŞU

    2011-03-01

    Full Text Available Nanostructured TiO2 sensitized with porphyrins for Solar water-splitting.The production of hydrogen from water using solar light is very promising for generations of an ecologically pure carrier contributing to a clean, sustainable and renewable energy system. The selection of specific photocatalyst material for hydrogen production in photoelectrochemical cells (PECs is based on some important characteristics of semiconductor, such as photo-corrosion and chemical corrosion stability, photocatalytic potential, high sensitivity for UV-visible light. In the present paper, different nanocrystalline TiO2 photoanodes have been prepared via wet-chemical techniques followed by annealing treatment and sensitized with porphyrins and supramolecular complexes of porphyrins. The so obtained photocatalysts were characterized with UV-VIS absorption spectroscopy and spectrofluorimetry. The purpose of these experiments is to show if the prepared materials possess the necessary photocatalytic characteristics and if they can be used with success in H2 production from water decomposition in PECs.

  5. Obtaining, characterization and fibre use of nanostructured TiO2 doped with tungsten as photocatalysts

    International Nuclear Information System (INIS)

    Soares, L.G.; Bergmann, C.P.; Alves, A.K.

    2016-01-01

    The use and applicability of nanomaterials are increasingly common in our day to day, due to propitiate more effective end products, lightweight and low cost. The nanomaterials used preferably in various applications is due to properties such as reduced particle size, diversified and high surface area. In this work nanostructured fibers of TiO 2 and TiO 2 /WO 3 were obtained by electrospinning, annealed at temperatures between 650 deg C and 800 deg C, and its photocatalytic activity was evaluated. The technique of X-ray diffraction (XRD) was used to determine the crystalline structure and crystallite size. The morphology of nanomaterials was observed by scanning electron microscopy (SEM). Preliminary results indicate that the nano-doped tungsten presented more efficient in bleaching methyl orange dye, indicating a higher catalytic activity of this material compared to a standard catalyst. This phenomenon can be explained through the phases present and morphological characteristics of the fibers. (author)

  6. Growth of TiO2-ZrO2 Binary Oxide Electrode for Dye Sensitized Solar Cell Application

    International Nuclear Information System (INIS)

    Than Than Win; Aye Myint Myat Kywe; Shwe Yee Win; Honey Thaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    TiO2-ZrO2 fine binary oxide was prepared by mechanochemical milling process to be homogeneous binary oxide powder. TiO2-ZrO2 paste was deposited on microscopic glass slide by rolling. It was immersed in the henna solution and annealed at 100C for 2h. It was deposited onto another glass slide and used as counter electrode (second electrode). Two glass slides were offset and two binder clips were used to hold the electrodes together. Photovoltaic properties of TiO2-ZrO2 cell were measured and it was expected to utilize the dye sensitized solar cells application.

  7. 3D Nanostructured materials: TiO2 nanoparticles incorporated gellan gum scaffold for photocatalyst and biomedical Applications

    Science.gov (United States)

    Hasmizam Razali, Mohd; Arifah Ismail, Nur; Zulkafli, Mohd Farhan Azly Mohd; Anuar Mat Amin, Khairul

    2018-03-01

    A unique three-dimensional (3D) nanostructured gellan gum (GG) is fabricated by incorporating TiO2 nanoparticles (GG + TiO2NPs) scaffold by freeze-drying. The fabricated GG + TiO2NPs were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) to study their physiochemical properties. FTIR was used to investigate the intermolecular interactions in the scaffolds. The crystal structure was determined by bulk analysis using XRD and SEM for microstructure observation of scaffold surfaces. The performance of synthesized GG + TiO2NPs scaffold 3D nanostructured materials was evaluated as a photocatalyst for methyl orange (MO) degradation and for biomedical applications. The results showed that the scaffold possessed good photocatalytic activity for removal of methyl orange with 88.24% degradation after 3 h of UV irradiation. The scaffold also induces the cell growth, thus offering a good candidate for biomedical applications.

  8. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  9. Synthesis of nanostructured TiO2 (anatase) and TiO2(B) in ionic liquids

    Czech Academy of Sciences Publication Activity Database

    Mansfeldová, Věra; Lásková, Barbora; Krýsová, Hana; Zukalová, Markéta; Kavan, Ladislav

    2014-01-01

    Roč. 230, JUL 2014 (2014), s. 85-90 ISSN 0920-5861 R&D Projects: GA ČR GA13-07724S; GA MŠk 7E09117 Grant - others:European Commission(XE) NMP-229036 Institutional support: RVO:61388955 Keywords : TiO2(B) * ionic liquid * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 3.893, year: 2014

  10. TiO2/Pt/TiO2 Sandwich Nanostructures: Towards Alcohol Sensing and UV Irradiation-Assisted Recovery

    Directory of Open Access Journals (Sweden)

    Rungroj Maolanon

    2017-01-01

    Full Text Available The TiO2/Pt/TiO2 sandwich nanostructures were synthesized by RF magnetron sputtering and demonstrated as an alcohol sensor at room-temperature operation with a fast recovery by UV irradiation. The TiO2/Pt/TiO2 layers on SiO2/Si substrate were confirmed by Auger electron spectroscopy with the interdiffusion of each layer. The TiO2/Pt/TiO2 layers on printed circuit board show the superior sensor response to alcohol in terms of the sensitivity and stability compared to the nonsandwich structure, that is, the only Pt layer or the TiO2/Pt structures. Moreover, the recovery time of the TiO2/Pt/TiO2 was improved by UV irradiation-assisted recovery. The optimum TiO2/Pt/TiO2 with thicknesses of the undermost TiO2 layer, a Pt layer, and the topmost TiO2 layer being 50 nm, 6 nm, and 5 nm, respectively, showed the highest response to ethanol down to 10 ppm. Additionally, TiO2/Pt/TiO2 shows an excellent sensing stability and exhibits different sensing selectivity among ethanol, methanol, and 2-propanol. The sensing mechanism could be attributed to the change of Pt work function during vapor adsorption. The TiO2 layer plays an important role in UV-assisted recovery by photocatalytic activity and the topmost TiO2 acts as protective layer for Pt.

  11. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  12. Detection of nicotine based on molecularly imprinted TiO2-modified electrodes

    International Nuclear Information System (INIS)

    Wu, C.-T.; Chen, P.-Y.; Chen, J.-G.; Suryanarayanan, Vembu; Ho, K.-C.

    2009-01-01

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO 2 )/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO 2 electrode (ITO/TiO 2 [NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO 2 [NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 μA mM -1 cm -2 and 4.9 μM, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO 2 [NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO 2 [NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN) 6 3- /Fe(CN) 6 4- as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)

  13. Obtainment of TiO2 powders solar cells photo electrodes dye sensitized

    International Nuclear Information System (INIS)

    Forbeck, Guilherme; Folgueras, Marilena V.; Chinelatto, Adilson L.

    2012-01-01

    Titanium dioxide in its polymorphic anatase phase, presents interesting properties for solar cells photo electrodes dye sensitized such as the forbidden energy band, high refractive index and high constant dielectric. In this study, powders of nanometric titanium dioxide were produced with predominantly the anatase phase and high surface area. We used the sol-gel method, and titanium tetraisopropoxide as a precursor, which was hydrolyzed in nitric acid solution. The obtained powder was heated to 450 ° C, varying the time for each lot (0, 20 or 120 minutes). The powders were characterized by X-ray diffraction, atomic force microscopy and surface area analysis. For all lots nanosized crystallites predominated. It was observed that in the batch with 120min heating an increase rutile content. The TiO 2 with 20min heating showed high surface area, greater than that of TiO 2 as taken reference

  14. Directly assembled quantum dots on one dimension ordered TiO2 nanostructure in aqueous solution for improving photocatalytic activity

    Science.gov (United States)

    Huang, Jin-zhao; Kuang, Lei; Liu, Song; Zhao, Yong-dan; Jiang, Tao; Liu, Shi-you; Wei, Ming-zhi

    2013-07-01

    One dimension (1D) ordered titanium dioxide (TiO2) nanostructured photocatalysts sensitized by quantum dots (QDs) are fabricated. Their morphologies, crystal structures and photocatalytic properties are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectroscopy, respectively. Compared with the original TiO2 nanostructure, the nanostructured TiO2 sensitized by QDs exhibits a good photocatalytic activity for the degradation of methyl orange (MO). The QDs with core-shell structure can reduce the photocatalytic ability due to the higher potential barrier of carrier transport in ZnS shell layer. The results indicate that the proposed photocatalyst shows promising potential for the application in organic dye degradation.

  15. Laser synthesis of hierarchically organized nanostructured TiO2 films on microfibrous carbon paper substrate: Characterization and electrocatalyst supporting properties

    Science.gov (United States)

    Wang, Youling; Tabet-Aoul, Amel; Mohamedi, Mohamed

    2015-12-01

    Titanium dioxide is cheap, non-toxic, exhibits a high mechanical resistance, very stable in acidic and oxidative environments is being studied as alternative to carbon as catalyst support in low-temperature fuel cells. Herein, via pulsed laser deposition, various morphologies of TiO2 thin films are synthesized at room temperature onto conductive microfibrous carbon paper substrate, which is the type of substrate, employed in energy storage and conversion devices. TiO2 films deposited under vacuum and in the presence of mild pressure of oxygen are very smooth and dense. Instead, TiO2 films deposited in the presence of helium atmosphere are of porous structures and vertically aligned. An increase in the helium pressure leads to the formation of forest-like vertically aligned nanostructures. Micro-Raman spectroscopy reveals that the films are amorphous and of rutile phase. X-ray photoelectron spectroscopy shows that Ti is in fully oxidized state of Ti4+. The electrocatalytic supporting properties to Pt are investigated in H2SO4 and O2-saturated H2SO4 solution. It is found that regardless of the film morphology, all the synthesized TiO2 films dramatically increase the electroactive surface area of Pt and enhance its electroactivity towards oxygen reduction reaction as compared with bare Pt electrode.

  16. Fabrication and characterization of a nanostructured TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber (eta) solar cell

    Science.gov (United States)

    Huerta-Flores, Alí M.; García-Gómez, Nora A.; de la Parra-Arciniega, Salomé M.; Sánchez, Eduardo M.

    2016-08-01

    In this work we report the successful assembly and characterization of a TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber solar cell. Nanostructured TiO2 deposited by screen printing on an ITO substrate was used as an n-type electrode. An ∼80 nm extremely thin layer of the system In2S3-Sb2S3 deposited by successive ionic layer adsorption and a reaction (silar) method was used as an absorber. The voids were filled with p-type CuSCN and the entire assembly was completed with a gold contact. The solar cell fabricated with this heterostructure showed an energy conversion efficiency of 4.9%, which is a promising result in the development of low cost and simple fabrication of solar cells.

  17. Recent improvements on TiO2 and ZnO nanostructure photoanode for dye sensitized solar cells: A brief review

    Directory of Open Access Journals (Sweden)

    Jamalullail Nurnaeimah

    2017-01-01

    Full Text Available Dye sensitized solar cell (DSSC is a promising candidate for a low cost solar harvesting technology as it promised a low manufacturing cost, ease of fabrication and reasonable conversion efficiency. Basic structure of DSSC consists of photoanode, dye, electrolyte and counter electrode. Photoanode plays an important role for a DSSC as it supports the dye molecules and helps in the electron transfer that will determine the energy conversion efficiency. This paper emphasizes the various improvements that had been done on the TiO2 and ZnO photoanode nanostructures synthesized through thermal method. For overall comparisons, ZnO nanoflowers photoanode had achieved the highest energy conversion efficiency of 4.7% due to its ability of internal light scattering that had increased the electron transportation rate. This has made ZnO as a potential candidate to replace TiO2 as a photoanode material in DSSC.

  18. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  19. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study

    International Nuclear Information System (INIS)

    Petrella, Andrea; Cosma, Pinalysa; Lucia Curri, M.; Rochira, Sergio; Agostiano, Angela

    2011-01-01

    Heterostructures formed of films of organic-capped ZnO and TiO 2 nanocrystals (both with the size of ca. 6 nm) and photosynthetic pigments were prepared and characterized. The surface of optically transparent electrodes (Indium Tin Oxide) was modified with nanocrystals and prepared by colloidal synthetic routes. The nanostructured electrodes were sensitized by a mixture of chlorophyll a and carotenoids. The characterization of the hybrid structures, carried out by means of steady-state optical measurements, demonstrated such class of dyes able to extend the photoresponse of the large band-gap semiconductors. The charge-transfer processes between the components of the heterojunction were investigated, and photoelectrochemical measurements taken on the sensitized ZnO and TiO 2 nanocrystals electrodes elucidated the photoactivity of the heterojunctions as a function of the dyes and of the red–ox mediator used in solution. The effect of methyl viologen as different red–ox mediator was also evaluated in order to show its effect on the heterojunction photoactivity. The overall results contributed to describe the photoelectrochemical potential of the investigated heterojunctions, highlighting a higher response of the dye-sensitized ZnO nanocrystals, and then provided the TiO 2 -modified counterparts.

  20. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre for Nano...

  1. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  2. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  3. High-efficient dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    Directory of Open Access Journals (Sweden)

    Hoda Hafez

    2010-08-01

    Full Text Available Hoda Hafez1,2, Zhang Lan2, Qinghua Li2, Jihuai Wu21Environmental Studies and Research Institute, Minoufiya University, Sadat City, Egypt, 2Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, ChinaAbstract: High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC, the open-circuit voltage (VOC, the fill factor (FF, and the overall efficiency (η were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs.Keywords: dye-sensitized solar cell, TiO2 nanorod, bilayer electrode

  4. PHOTOCATALYTIC PROPERTIES OF Cr DOPED TiO2–SiO2 NANOSTRUCTURE THIN FILM

    Directory of Open Access Journals (Sweden)

    Akbar Eshaghi

    2012-07-01

    Full Text Available Cr doped TiO2–SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating method. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and UV-vis spectrophotometer were used to characterize the structural, chemical and optical properties of the thin film. The XRD showed that thin films contain only anatase phase. FE-SEM images illustrated that anatase average crystallite size in the pure TiO2 and Cr doped TiO2–SiO2 thin films are 15 nm and 10 nm, respectively. XPS spectra confirmed the presence of Cr3+ in the thin film. UV-vis absorption spectra indicated that absorption edge in Cr doped TiO2–SiO2 thin film shifted to the visible light region. The photocatalytic results pointed that Cr doping in TiO2–SiO2 improved decoloring rate of methyl orange in comparison to pure TiO2 thin film.

  5. TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Wang, Hongqiang; Li, Sha; Li, Dan; Chen, Zhixin; Liu, Hua Kun; Guo, Zaiping

    2014-01-01

    A three-dimensional (3D) hierarchically ordered mesoporous carbon–sulfur composite slice coated with a thin TiO 2 layer has been synthesized by a low-cost process and investigated as a cathode for the lithium–sulfur batteries. The TiO 2 coated carbon sulfur composite thin slice works as a binder-free cathode without any current collectors for lithium–sulfur batteries. The hierarchical architecture provides a 3D conductive network for electron transfer, open channels for ion diffusion and strong confinement of soluble polysulfides. Meanwhile, TiO 2 (titanium dioxide) coating layer could further effectively prevent the dissolution of polysulfides and also improve the strength of the entire electrode, thereby enhancing the electrochemical performance. As a result, after TiO 2 coating, the electrode demonstrates excellent cycling performance, with a discharge capacity of 608 mAh/g at 0.2 C current rate and 500 mAh/g at 1 C current rate after 120 cycles, respectively. - Highlights: • 3D hierarchically porous carbon–sulfur composite thin slices were mass produced. • The TiO 2 coated as-prepared thin slice works as a binder-free cathode. • TiO 2 coating layer enhances the cycling stability and rate performance

  6. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    nano-tube structures; ZnO structures. PACS Nos 61.46.+w; 87.83.+a; 81.07.-b; 65.80.+n; 68.37.Lp; 68.37.Hk. 1. Introduction. Nanostructure materials show lots of promise due ... The as-deposited film has been used as the electrode dipped ... We have synthesized self-organized structures of CNT (conventional and bamboo-.

  7. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films

    International Nuclear Information System (INIS)

    Nordin, N.; Azizah, N.; Hashim, U.

    2016-01-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO 2 ) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  8. Preparation and characterisation of visible light responsive iodine doped TiO2 electrodes

    International Nuclear Information System (INIS)

    Lisowska-Oleksiak, Anna; Szybowska, Katarzyna; Jasulaitiene, Vitalija

    2010-01-01

    Characteristics are presented of new iodine doped TiO 2 (I-TiO 2 ) prepared via the hydrothermal method, where titania (IV) complexes with a ligand containing an iodine atom have been used as a precursor. The structure of samples has been examined by XPS, XRD, UV-vis and FT-IR-ATR techniques. These studies confirm that the obtained powder exhibits a decrease in the bandgap energy value (E g = 2.8 eV). The report presents electrochemical studies of I-TiO 2 films on a Pt electrode, which allow determination of the flatband potential E fb = -0.437 V vs. SCE (in 0.5 M Na 2 SO 4 ). Cyclic voltammetry measurements show anodic and cathodic activities under Vis and UV-vis radiation. The photocurrent enhancement due to visible light radiation reached 30% of the whole photoacitivity exhibited under UV-vis illumination.

  9. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes

    Science.gov (United States)

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-01

    TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30–100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.

  10. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  11. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.

    Science.gov (United States)

    Oliveira, Haroldo G; Ferreira, Leticia H; Bertazzoli, Rodnei; Longo, Claudia

    2015-04-01

    TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2...

  13. Electrospun polystyrene fibres on TiO2 nanostructured film to ...

    Indian Academy of Sciences (India)

    layer on SS substrates. This protective bilayer is fabricated from a dip-coated TiO2 layer and an electrospun polystyrene (PS) microfibres. Contact angle (CA) measurements indicate that the produced bilayer has superhydrophobic properties (CA ∼ 148. ◦). 2. Experimental details. 2.1 Synthesis and coating of TiO2 colloidal ...

  14. Formation of rod-like nanostructure by aggregation of TiO2 ...

    Indian Academy of Sciences (India)

    The photoelectrochemical property of this film as the photoanode in assemble dye-sensitized solar cell was also tested. Compared with randomly distributed nanoparticle-based TiO2 film, the hierarchical TiO2 film exhibited improved performance of photocatalysis, antibacterial activity and photoelectric conversion.

  15. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Science.gov (United States)

    Rongbo Zheng; Mandla A. Tshabalala; Qingyu Li; Hongyan Wang

    2015-01-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution.The morphology and the crystal structure of TiO2 coated on the wood surface were characterized...

  16. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis

    International Nuclear Information System (INIS)

    Zhang Yan; He Pingli; Hu Naifei

    2004-01-01

    Horseradish peroxidase (HRP)-TiO 2 film electrodes were fabricated by casting the mixture of HRP solution and aqueous titania nanoparticle dispersion onto pyrolytic graphite (PG) electrodes and letting the solvent evaporate. The HRP incorporated in TiO 2 films exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about -0.35 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of HRP-Fe(III)/Fe(II) redox couple. The electron exchange between the enzyme and PG electrodes was greatly enhanced in the TiO 2 nanoparticle film microenvironment. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k s ) and formal potential (E deg. ') were estimated by fitting the data of square wave voltammetry with nonlinear regression analysis. The HRP-TiO 2 film electrodes were quite stable and amenable to long-time voltammetric experiments. The UV-Vis spectroscopy showed that the position and shape of Soret absorption band of HRP in TiO 2 films kept nearly unchanged and were different from those of hemin or hemin-TiO 2 films, suggesting that HRP retains its native-like tertiary structure in TiO 2 films. The electrocatalytic activity of HRP embedded in TiO 2 films toward O 2 and H 2 O 2 was studied. Possible mechanism of catalytic reduction of H 2 O 2 with HRP-TiO 2 films was discussed. The HRP-TiO 2 films may have a potential perspective in fabricating the third-generation biosensors based on direct electrochemistry of enzymes

  17. One-Dimensional TiO2 Nanostructures as Photoanodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2013-01-01

    Full Text Available Titanium dioxide (TiO2 is star materials due to its remarkable optical and electronic properties, resulting in various applications, especially in the fields of dye-sensitized solar cells (DSSCs. Photoanode is the most important part of the DSSCs, which help to adsorb dye molecules and transport the injected electrons. The size, structure, and morphology of TiO2 photoanode have been found to show significant influence on the photovoltaic performance of DSSCs. In this paper, we briefly summarize the synthesis and properties of one-dimensional (1D TiO2 nanomaterials (bare 1D TiO2 nanomaterial and 1D hierarchical TiO2 and their photovoltaic performance in DSSCs.

  18. Daylight photocatalytic activity of TiO2/SnO2 core/shell nanostructures: An experimental and density functional study

    Science.gov (United States)

    Chetri, Pawan; Basyach, Priyanka; Choudhury, Amarjyoti

    2014-04-01

    TiO2/SnO2 core/shell nanostructures is prepared via a simple sol-gel process and compared with bare TiO2 nanoparticles. We carried out XRD, TEM and UV-Visible characterization for evaluating structural and optical properties. A better and promising day light photocatalytic activity is observed for TiO2/SnO2 in comparison to TiO2 in the degradation of methyl orange (MO). We have also done DFT calculation based VASP 5.2 to calculate Density of States of both the system. Finally, a correlation is established between theory and experiment.

  19. A new coral structure TiO2/Ti film electrode applied to photoelectrocatalytic degradation of Reactive Brilliant Red

    International Nuclear Information System (INIS)

    Hua Xiaoshe; Zhang Yijie; Ma Naiheng; Li Xianfeng; Wang Haowei

    2009-01-01

    A novel structure TiO 2 /Ti film was prepared on a titanium matrix using anodic oxidation technique and applied to degrade Reactive Brilliant Red (RBR) dye in simulative textile effluents. The film was characterized by Field-Emission Scanning Electron Microscope (FE-SEM), Laser Micro-Raman Spectrometer (LMRS), UV-vis spectrophotometer (UVS) and Photoelectrocatalytic (PEC) experiment. The results show that the surface morphology of the film is coral structure, and the crystal structure of the film is anatase. The absorbency of the coral structure TiO 2 /Ti film is 87-93% in the UV light region, and 77-87% in the visible light region. PEC experiment indicates that the photocurrent density of the coral structure TiO 2 /Ti film electrode achieves 160 μA/cm 2 . The color and Chemical Oxygen Demand (COD) removal efficiencies of RBR achieve 73% and 60% in 1 h, respectively. These are 16% and 58% higher than those of nanotube TiO 2 /Ti film electrode. These were attributed to that these electrodes with different surface morphologies exhibit distinct surface areas and light absorption rate.

  20. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  1. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film

    Science.gov (United States)

    Rasoulnezhad, Hossein; Kavei, Ghassem; Ahmadi, Kamran; Rahimipour, Mohammad Reza

    2017-06-01

    The present work reports the successful synthesis of the nanostructured carbon-doped TiO2 thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO2 sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO2 thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO2 to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  2. Integrated titanium dioxide (TiO2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO 2 ) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO 2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO 2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO 2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO 2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  3. Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2nanoparticles

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Taleat, Zahra; Beitollahi, Hadi; Naeimi, Hossein

    2011-04-01

    In the present paper, the use of a carbon paste electrode modified by quinizarine (QZ) and TiO2nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron-transfer properties of quinizarine coupled to TiO2nanoparticles at a carbon paste electrode was investigated using cyclic voltammetry and chronoamperometry in aqueous buffer solutions. The modified electrode showed excellent character for the electrocatalytic oxidization of hydrazine (HZ). Differential pulse voltammetric peak currents of HZ increased linearly with their concentrations at the range of 0.5 µM to 1900.0 µM and the detection limit (2σ) was determined to be 77 nM. Finally, this method was used for the determination of HZ in water samples, using a standard addition method.

  4. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  5. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes

    International Nuclear Information System (INIS)

    Ramasamy, Parthiban; Kang, Moon-Sung; Cha, Hyeon-Jung; Kim, Jinkwon

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► HfO 2 has been used to modify TiO 2 electrodes in dye sensitized solar cells. ► HfO 2 layer increases the dye adsorption. ► Diffusion coefficient (D e ) and lifetime (τ e ) of the photoelectrons were increased. ► Solar cell efficiency (η) was greatly improved from 5.67 to 9.59%. -- Abstract: In this article, we describe the use of hafnium oxide (HfO 2 ) as a new and efficient blocking layer material to modify TiO 2 electrodes in dye sensitized solar cells. Different thicknesses of HfO 2 over-layers were prepared by simple dip coating from two different precursors and their effects on the performance of DSSCs were studied. The HfO 2 modification remarkably increases dye adsorption, resulting from the fact that the surface of HfO 2 is more basic than that of TiO 2 . Furthermore, the HfO 2 coating demonstrated increased diffusion coefficient (D e ) and lifetime (τ e ) of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases short-circuit current (J sc ) and open-circuit voltage (V oc ). Thereby, the photo conversion efficiency (η) of the solar cell was greatly improved from 5.67 to 9.59% (an improvement of 69.02%) as the HfO 2 layer was coated over TiO 2 films.

  6. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route

    Science.gov (United States)

    Zhou, Yi; Wu, Hongyan; Zhong, Xian; Liu, Ce

    2014-07-01

    Three-dimensional (3D) hierarchical rutile TiO2 microspheres composed of nanorods with diameter of several-tens of nanometers, with different morphologies and with average size ranging from 1.3 to 1.8 μm, were successfully synthesized through a surfactant-free solvothermal route. The effects of the solvents n-hexane, chloroform, and cyclohexane on the microstructures of 3D hierarchical TiO2 nanostructures were investigated. Results of scanning electron microscopy showed that 3D sea-urchin like hierarchical TiO2 composed of nanorods with a diameter of 10 nm can only be prepared in the cyclohexane-water system. The growth mechanism of 3D sea-urchin like hierarchical TiO2 composed of numerous nanorods was further examined and found to differ from the well-known "growth → assembly" mode. The effects of surface tension and polarity of solvents on the morphology and crystal strength of 3D hierarchical TiO2 nanostructure were also investigated. In addition, the prepared 3D sea-urchin like hierarchical TiO2 showed highest photocatalytic activity compared with other 3D hierarchical TiO2 nanostructures in this study and Degussa P25 for the degradation of Rhodamine B solution under UV light irradiation, which could be attributed to its special hierarchical superstructure, the increase of surface catalytic sites and its special composition units.

  7. Fe doped TiO2–graphene nanostructures: synthesis, DFT modeling and photocatalysis

    International Nuclear Information System (INIS)

    Farhangi, Nasrin; Ayissi, Serge; Charpentier, Paul A

    2014-01-01

    In this work, Fe-doped TiO 2 nanoparticles ranging from a 0.2 to 1 weight % were grown from the surface of graphene sheet templates containing –COOH functionalities using sol–gel chemistry in a green solvent, a mixture of water/ethanol. The assemblies were characterized by a variety of analytical techniques, with the coordination mechanism examined theoretically using the density functional theory (DFT). Scanning electron microscopy and transmission electron microscopy images showed excellent decoration of the Fe-doped TiO 2 nanoparticles on the surface of the graphene sheets >5 nm in diameter. The surface area and optical properties of the Fe-doped photocatalysts were measured by BET, UV and PL spectrometry and compared to non-graphene and pure TiO 2 analogs, showing a plateau at 0.6% Fe. Interactions between graphene and Fe-doped anatase TiO 2 were also studied theoretically using the Vienna ab initio Simulation Package based on DFT. Our first-principles theoretical investigations validated the experimental findings, showing the strength in the physical and chemical adsorption between the graphene and Fe-doped TiO 2 . The resulting assemblies were tested for photodegradation under visible light using 17β-estradiol (E2) as a model compound, with all investigated catalysts showing significant enhancements in photocatalytic activity in the degradation of E2. (paper)

  8. Fe doped TiO2-graphene nanostructures: synthesis, DFT modeling and photocatalysis.

    Science.gov (United States)

    Farhangi, Nasrin; Ayissi, Serge; Charpentier, Paul A

    2014-08-01

    In this work, Fe-doped TiO(2) nanoparticles ranging from a 0.2 to 1 weight % were grown from the surface of graphene sheet templates containing -COOH functionalities using sol-gel chemistry in a green solvent, a mixture of water/ethanol. The assemblies were characterized by a variety of analytical techniques, with the coordination mechanism examined theoretically using the density functional theory (DFT). Scanning electron microscopy and transmission electron microscopy images showed excellent decoration of the Fe-doped TiO(2) nanoparticles on the surface of the graphene sheets >5 nm in diameter. The surface area and optical properties of the Fe-doped photocatalysts were measured by BET, UV and PL spectrometry and compared to non-graphene and pure TiO(2) analogs, showing a plateau at 0.6% Fe. Interactions between graphene and Fe-doped anatase TiO(2) were also studied theoretically using the Vienna ab initio Simulation Package based on DFT. Our first-principles theoretical investigations validated the experimental findings, showing the strength in the physical and chemical adsorption between the graphene and Fe-doped TiO(2). The resulting assemblies were tested for photodegradation under visible light using 17β-estradiol (E2) as a model compound, with all investigated catalysts showing significant enhancements in photocatalytic activity in the degradation of E2.

  9. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor

    Directory of Open Access Journals (Sweden)

    Shaymaa Riyadh Tahhan

    2017-01-01

    Full Text Available To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG coated with a suitable nanostructured metal oxide (NMO is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2 nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline.

  10. Examination of the sintering process dependent micro- and nanostructure of TiO2 on textile substrates

    Science.gov (United States)

    Herrmann, Andreas; Fiedler, Johannes; Ehrmann, Andrea; Grethe, Thomas; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz

    2016-04-01

    Eco-friendly and sustainable power generation is one of the important aims of our time. Harvesting renewable energy can, e.g., be done by solar cells. For the integration in textiles, developing solar cells with typical textile haptics and pliability would be ideal. Additionally, textile solar cells should be created from low-purity materials in low-cost processes to be compatible with the textile industry. Thus, dye sensitized solar cells are ideal candidates for the integration of solar cell technology into textiles. In a recent project, we systematically test different material systems applied on textiles in which all functional layers are varied. One of the most crucial points is the sintering process of TiO2 which is only possible on a few textile materials. Additionally, the TiO2 coating itself contains the risk of being not completely isolating, allowing for dye and electrolyte or textile fibers penetrating through this layer and reaching the front electrode. This can result in short circuits or undesired counteracting voltages and currents. The article shows how different coating and sintering technologies of TiO2 on glass and textile fabrics influence the structures of the respective layers on different scales. It illustrates the differences between glass and textile fabrics in terms of the coating process and the resulting layer properties. Time-dependent measurements of open-circuit voltages and efficiencies show the physical implications of variations of the TiO2 layer structure and the resulting inner surfaces. In this way, we depict the different effects arising from undesired modifications of the TiO2 layer structure.

  11. Preparation and Characterization of TiO2 Nanostructure by TiCl4 Hydrolysis with Additive NaOH

    Directory of Open Access Journals (Sweden)

    Rashed Taleb Rasheed

    2018-04-01

    Full Text Available Titanium dioxide (TiO2 nanostructures were synthesized via the hydrolysis of TiCl4 in alcohol / water solution/with sodium hydroxide solution in the ice-bath (0-5 ◦C. The particles were char-acterized by using X-ray diffraction technique (XRD, spectroscopy of Ultra Violet-Visible (UV / Visible and infrared (FT-IR, atomic force microscope (AFM and scanning electron micro-scope (SEM analysis were used in order to gain information about the material, morphology, size and the shape of the particles

  12. Fabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC

    Directory of Open Access Journals (Sweden)

    A. Ehteram

    2015-10-01

    Full Text Available In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2 nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs. It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers by the metal dopants and the retarding charge recombination during electron migration from TiO2 to the electrode surface. Spectroscopic and microscopic findings showed that all the prepared samples consist of only anatse phase with average size of 10-15nm. In addition, relative to the bare TiO2, Cr@TiO2 absorption in visible light region was considerably improved due to the surface Plasmon phenomenon. Current-voltage (I-V curves exhibited that the solar cells made of Cr@TiO2 nanoparticles results in higher photocurrent density than the cells made of bare TiO2. The large improvement of photovoltaic performance of the Cr-doped TiO2 cell stems from negative shift of TiO2 conduction band and retarding charge recombination. Finally, it is concluded that the proposed route in the current study is an effective way to enhance the energy conversion efficiency and overall performance of DSSC.

  13. Synthesis and nanostructural investigation of TiO2 nanorods doped ...

    Indian Academy of Sciences (India)

    photo-splitting of water [1], photocatalysis, [2] photovoltaic devices, [3] etc. It is known to have three natural polymorphs, i.e. rutile, anatase and brookite. Only anatase is gener- ally accepted to have significant photocatalytic activity. The photocatalytic performance of this compound depends on the characteristics of the TiO2 ...

  14. Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2.

    Science.gov (United States)

    Ansari, S G; Bhayana, Laitka; Umar, Ahmad; Al-Hajry, A; Al-Deyab, Salem S; Ansari, Z A

    2012-10-01

    Here we report an easy method to improve the optoelectronic properties of commercially available TiO2 nanopowder using extracts of various flowers viz. Calendula Orange (CO), Calendula Yellow (CY), Dahlia Violet (DV), Dahlia Yellow (DY), Rabbit flower (RF), Sweet Poppy (SP), Sweet Williams (SW) and their Mixed Extracts (ME). Various analysis techniques such as UV-Vis, FTIR, FESEM, XRD, and Raman spectroscopy were used to characterize for elemental, structural and morphological properties of the unmixed/mixed TiO2 nanopowder. TiO2 nanopowder was also calcined at 550 degrees C. Thick films of the these unmixed/mixed powder were printed, using conventional screen printing method, on fluorine doped tin oxide (FTO) substrate with organic binders and dried at 45 degrees C. The photoconducting properties are investigated as a function of wavelength from ultra-violet (UV) to infra-red (IR) region at a constant illumination intensity. Photocurrent gradually decreases when irradiated from UV to IR region. In case of unmixed and uncalcined TiO2, conductance decreased continuously whereas when extracts are added, a flat region of conductance is observed. The overall effect of extracts (colour pigments) is seen as an increase in the photoconductance. Highest photoconductance is observed in case of DY flower extract. Anthocyanins, present in flowers are known to have antioxidative properties and hence can contribute in photoconduction by reducing the surface adsorbed oxygen. This investigation indicates the potential use of flower extracts for dye sensitized solar cell (DSSC).

  15. Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass

    Directory of Open Access Journals (Sweden)

    Mojtaba Nasr-Esfahani

    2008-01-01

    Full Text Available New composite films (P25SGF-MC-Ag, MPC500SGF-MC-Ag, and ANPSGF-MC-Ag have been synthesized by a modified sol-gel method using different particle sizes of TiO2 powder and silver addition. Nanostructure TiO2/Ag composite thin films were prepared by a sol-gel spin and dip coating technique. while, by introducing methyl cellulose (MC porous, TiO2/Ag films were obtained after calcining at a temperature of 500°C. The as-prepared TiO2 and TiO2/Ag films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methyl orange (MO under UV irradiation. After 500°C calcination, the microstructure of MC-TiO2 film without Ag addition exhibited a microstructure, while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Nanostructure anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 deposited with 5×10−4 mol Ag exhibited the best photocatalytic efficiency, where 69% methyl orange can be decomposed after UV exposure for 1 hour.

  16. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu

    2010-01-01

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO 2 electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO 2 films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO 2 . Electron microscopy analysis and impedance measurements showed that a thin continuous TiO 2 layer is formed at the interface as a result of the local melting of TiO 2 nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO 2 paste revealed an efficiency improvement from η = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO 2 electrodes made from a commercial paste.

  17. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode.

    Science.gov (United States)

    Chen, Yong; Li, Hongyi; Liu, Weijing; Tu, Yong; Zhang, Yaohui; Han, Weiqing; Wang, Lianjun

    2014-10-01

    The interlayer of Sb-doped SnO2 (SnO2-Sb) and TiO2 nanotubes (TiO2-NTs) on Ti has been introduced into the PbO2 electrode system with the aim to reveal the mechanism of enhanced electrochemical performance of TiO2-NTs/SnO2-Sb/PbO2 electrode. In contrast with the traditional Ti/SnO2-Sb/PbO2 electrode, the constructed PbO2 electrode has a more regular and compact morphology with better oriented crystals of lower size. The TiO2-NTs/SnO2-Sb interlayer prepared by electrodeposition process improves PbO2 coating structure effectively, and enhances the electrochemical performance of PbO2 electrode. Kinetic analyses indicated that the electrochemical oxidation of nitrobenzene on the PbO2 electrodes followed pseudo-first-order reaction, and mass transport was enhanced at the constructed electrode. The accumulation of nitrocompounds of degradation intermediates on constructed electrode was lower, and almost all of the nitro groups were eliminated from aromatic rings after 6h of electrolysis. Higher combustion efficiency was obtained on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. The intermediates of nitrobenzene oxidation were confirmed by IC and GC/MS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Convenient Method for Manufacturing TiO2 Electrodes on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Wei Qin

    2011-01-01

    solution with the micro-plasma oxidation method. The thin TiO2 films were sensitized with a cis-RuL2(SCN2⋅2H2O (L = cis-2, 2′-bipyridine-4, 4′-dicarboxlic acid ruthenium complex, and implemented into a dye sensitized solar cell configuration. The influence of current density on the surface structure and photoelectric performance of the TiO2 films was investigated. The results show that the thin TiO2 films are porous, and the dye-sensitized solar cell based on the film prepared at 14 A/dm2 has exhibited higher overall light-to-electricity conversion efficiencies of 0.095% under the illumination at 40 mW/cm2.

  19. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    Science.gov (United States)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  20. Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.

    Science.gov (United States)

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2013-10-01

    This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.

  1. Synthesis and Characterization of Nanostructure Tio2/Anthraquenone (AQ Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Fadhela M. Hussein

    2017-11-01

    Full Text Available sol–gel technique conducted to synthesize nano titanium dioxide with anthraquenone (AQ relatively in acidic pH. Nanoparticles were characterized using techniques like, Scanning Electrion Microscope (SEM, Atomic Force Microscope (AFM, UV-Visible Spectrioscopy, X-ray diffraction (XRD, Fourier transform infrared (FT-IR, SEM picture display that the TiO2/AQ is spherical in style, the band gap of TiO2/AQ nanoparticle is (3.05eV, BET and BJH analysis provides Pore volume and specific Surface area and the kinetic studie Suggest that the reaction is pseudo first order and the rate of reaction was reduce with rising initial concentration for p-Nitrotolune.

  2. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Science.gov (United States)

    Zheng, Rongbo; Tshabalala, Mandla A.; Li, Qingyu; Wang, Hongyan

    2015-02-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution. The morphology and the crystal structure of TiO2 coated on the wood surface were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The TiO2 morphology on the wood surface could be tuned by simply changing either the reaction time or pH value of the reaction mixture. After modification with perfluorodecyltriethoxysilane (PFDTS), the water contact angle (WCA) of the TiO2-treated wood (T1) surface increased to 140.0 ± 4.2°, which indicated a highly hydrophobic wood surface. In addition, compared with untreated control wood, PFDTS-TiO2 treatment (PFDTS-T1-treated) not only reduced liquid water uptake, but also delayed the onset of water saturation point of the wood substrate. The weight change of PFDTS-T1-treated wood after 24 h of water immersion was 19.3%, compared to 81.3% for the untreated control wood. After 867 h of water immersion, the weight change for the treated and untreated wood specimens was 117.1%, and 155.1%, respectively. The untreated control wood reached the steady state after 187 h, while the PFDTS-T1-treated wood did not reach the steady state until after 600 h of immersion.

  3. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c

    Science.gov (United States)

    Katsiaounis, Stavros; Tiflidis, Christina; Tsekoura, Christina; Topoglidis, Emmanuel

    2018-01-01

    In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all films but that the adsorbed protein remained electroactive.

  4. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c

    Science.gov (United States)

    Katsiaounis, Stavros; Tiflidis, Christina; Tsekoura, Christina; Topoglidis, Emmanuel

    2018-03-01

    In this work three different mesoporous TiO2 film electrodes were prepared and used for the immobilization of Cytochrome c (Cyt-c). Films prepared via a standard sol-gel route (SG-films) were compared with commercially available benchmark nanotitania materials, namely P25 Degussa (P25-films) and Dyesol nanopaste (Dyesol films). Their properties, film deposition characteristics and their abilities to adsorb protein molecules in a stable and functional way were examined. We investigated whether it is possible, rather than preparing TiO2 films using multistep, lengthy and not always reproducible sol-gel procedures, to use commercially available nanotitania materials and produce reproducible films faster that exhibit all the properties that make TiO2 films ideal for protein immobilization. Although these materials are formulated primarily for dye-sensitized solar cell applications, in this study we found out that protein immobilization is facile and remarkably stable on all of them. We also investigated their electrochemical properties by using cyclic voltammetry and spectroelectrochemistry and found out that not only direct reduction of Fe(III)-heme to Fe(II)-heme of immobilized Cyt-c was possible on all films but that the adsorbed protein remained electroactive.

  5. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  6. Fabrication and Photocatalytic Property of One-Dimensional SrTiO3/TiO2-xNx Nanostructures

    Directory of Open Access Journals (Sweden)

    Huarong Zhang

    2013-01-01

    Full Text Available One-dimensional SrTiO3/TiO2−xNx nanostructures were prepared by the hydrothermal method and investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS measurements. The photocatalytic activities of the prepared samples were evaluated by photodegrading the methylene blue (MB solution. According to the characterizations, the intermediate product of SrTiO3/titanate nanotubes was presented after hydrothermal processing of the TiO2−xNx nanoparticles with the mixed solution of NaOH and Sr(NO32. The final product of SrTiO3/TiO2−xNx nanorods was obtained after calcining the intermediate. As compared to the TiO2−xNx nanoparticles, the absorption performance of SrTiO3/titanate nanotubes or SrTiO3/TiO2−xNx nanorods was depressed, instead of improving it. The mechanisms of the absorption property changes were discussed. The SrTiO3/TiO2−xNx nanorods presented better photocatalytic activity than the TiO2−xNx nanoparticles or nanorods. However, due to overmuch adsorption, the SrTiO3/titanate nanotubes gave ordinary photocatalytic performances.

  7. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    International Nuclear Information System (INIS)

    Morgado, Edisson Jr; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; Abreu, Marco A S de; Zotin, Jose L; Araujo, Antonio S

    2007-01-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO 2 followed by proton exchange were compared to their bulk H 2 Ti 3 O 7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H 2 Ti 3 O 7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H 2 Ti 3 O 7 converts into TiO 2 (B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 deg. C through topotactic mechanisms with the intermediate formation of nanostructured H 2 Ti 6 O 13 and H 2 Ti 12 O 25 , which are more condensed layered titanates eventually rearranging to TiO 2 (B). Our results suggest that the intermediate tunnel structure H 2 Ti 12 O 25 is the final layered intermediate phase, on which TiO 2 (B) nucleates and grows. The conversion of nanostructured TiO 2 (B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology

  8. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.

    Science.gov (United States)

    Morgado, Edisson; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; de Abreu, Marco A S; Zotin, José L; Araújo, Antonio S

    2007-12-12

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO(2) followed by proton exchange were compared to their bulk H(2)Ti(3)O(7) counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H(2)Ti(3)O(7) nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H(2)Ti(3)O(7) converts into TiO(2)(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 degrees C through topotactic mechanisms with the intermediate formation of nanostructured H(2)Ti(6)O(13) and H(2)Ti(12)O(25), which are more condensed layered titanates eventually rearranging to TiO(2)(B). Our results suggest that the intermediate tunnel structure H(2)Ti(12)O(25) is the final layered intermediate phase, on which TiO(2)(B) nucleates and grows. The conversion of nanostructured TiO(2)(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  9. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    Science.gov (United States)

    Morgado, Edisson, Jr.; Jardim, P. M.; Marinkovic, Bojan A.; Rizzo, Fernando C.; de Abreu, Marco A. S.; Zotin, José L.; Araújo, Antonio S.

    2007-12-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO2 followed by proton exchange were compared to their bulk H2Ti3O7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H2Ti3O7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H2Ti3O7 converts into TiO2(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 °C through topotactic mechanisms with the intermediate formation of nanostructured H2Ti6O13 and H2Ti12O25, which are more condensed layered titanates eventually rearranging to TiO2(B). Our results suggest that the intermediate tunnel structure H2Ti12O25 is the final layered intermediate phase, on which TiO2(B) nucleates and grows. The conversion of nanostructured TiO2(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  10. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  11. Hierarchical top-porous/bottom-tubular TiO 2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants

    KAUST Repository

    Zhang, Zhonghai

    2012-02-22

    In this paper, top-porous and bottom-tubular TiO 2 nanotubes (TiO 2 NTs) loaded with palladium nanoparticles (Pd/TiO 2 NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO 2 NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO 2 NTs via a photoreduction process. The PEC activity of Pd/TiO 2 NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO 2 and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO 2 NT electrode showed significantly higher PEC activities than TiO 2 NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. © 2012 American Chemical Society.

  12. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  13. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Giménez, Sixto; Boix, Pablo P.; Shen, Qing; Calvo, Mauricio E.; Taghavinia, Nima; Azam Iraji zad; Toyoda, Taro; Míguez, Hernán

    2012-01-01

    Highlights: ► Electrode nanostructure and quantum dot growth method have a clear influence in the final quantum dot solar cell performance. ► Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area. ► Higher V oc values are systematically obtained for cells using CBD growth method in comparison with SILAR method. - Abstract: Here we analyze the effect of two relevant aspects related to cell preparation on quantum dot sensitized solar cells (QDSCs) performance: the architecture of the TiO 2 nanostructured electrode and the growth method of quantum dots (QD). Particular attention is given to the effect on the photovoltage, V oc , since this parameter conveys the main current limitation of QDSCs. We have analyzed electrodes directly sensitized with CdSe QDs grown by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR). We have carried out a systematic study comprising structural, optical, photophysical and photoelectrochemical characterization in order to correlate the material properties of the photoanodes with the functional performance of the manufactured QDSCs. The results show that the correspondence between photovoltaic conversion efficiency and the surface area of TiO 2 depends on the QDs deposition method. Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area and for cells using CBD growth method. This is systematically correlated to a higher recombination resistance of CBD sensitized electrodes. Electron injection kinetics from QDs into TiO 2 also depends on both the TiO 2 structure and the QDs deposition method, being systematically faster for CBD. Only for electrodes prepared with small TiO 2 nanoparticles SILAR method presents better performance than CBD, indicating that the small pore size disturb the CBD growth method. These results have important implications for the optimization of QDSCs.

  14. Transparent Conducting Nb-Doped TiO2 Electrodes Activated by Laser Annealing for Inexpensive Flexible Organic Solar Cells

    Science.gov (United States)

    Lee, Jung-Hsiang; Lin, Chia-Chi; Lin, Yi-Chang

    2012-01-01

    A KrF excimer laser (λ= 248 nm) has been adopted for annealing cost-effective Nb-doped TiO2 (NTO) films. Sputtered NTO layers were annealed on SiO2-coated flexible poly(ethylene terephthalate) (PET) substrates. This local laser annealing technique is very useful for the formation of anatase NTO electrodes used in flexible organic solar cells (OSCs). An amorphous NTO film with a high resistivity and a low transparency was transformed significantly into a conductive and transparent anatase NTO electrode by laser irradiation. The 210 nm anatase NTO film shows a sheet resistance of 50 Ω and an average optical transmittance of 83.5% in the wavelength range from 450 to 600 nm after annealing at 0.25 J/cm2. The activation of Nb dopants and the formation of the anatase phase contribute to the high conductivity of the laser-annealed NTO electrode. Nb activation causes an increase in the optical band gap due to the Burstein-Moss effect. The electrical properties are in agreement with the material characteristics determined by X-ray diffraction (XRD) analysis and secondary ion mass spectrometry (SIMS). The irradiation energy for the NTO electrode also affects the performance of the organic solar cell. The laser annealing technique provides good properties of the anatase NTO film used as a transparent electrode for flexible organic solar cells (OSCs) without damage to the PET substrate or layer delamination from the substrate.

  15. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    shaped. CNT cylinder have been done and results will be forthcoming. 2.4 ZnO nanostructures. For growing ZnO nanoforms, we have used a two-zone furnace at temperatures. 850◦C and 350◦C. The quartz tube of 3 cm diameter and 115 cm length ...

  16. Formation of TiO2 nanostructure by plasma electrolytic oxidation for Cr(VI) reduction

    Science.gov (United States)

    Torres, D. A.; Gordillo-Delgado, F.; Plazas-Saldaña, J.

    2017-01-01

    Plasma electrolytic oxidation (PEO) is an environmentally friendly technique that allows the growth of ceramic coatings without organic solvents and non-toxic residues. This method was applied to ASME SB-265 titanium (Ti) plates (2×2×0.1cm) using voltage pulses from a switching power supply (340V) for 10 minutes at frequency of 1000Hz changing duty cycle at 10, 60 and 90% and the electrolytes were Na3PO4 and NaOH. The treated sheets surfaces were analysed by X-ray diffraction and scanning electron microscopy. According to the diffractograms, the duty cycle increase produces amorphous TiO2 coating on Ti sheets and the thickness increases. After sintering at 900°C during 1 hour, the 10% duty cycle generated a combination of anatase and rutile phases at the sample surface with weight percentages of 13.3 and 86.6% and particle sizes of 32.461±0.009nm and 141.14±0.03 nm, respectively. With this sample, the total reduction of hexavalent chromium was reached at 50 minutes for 1ppm solution. This photocatalytic activity was measured following the colorimetric method ASTM-3500-Cr B.

  17. Synthesis of hierarchical anatase TiO 2 nanostructures with tunable morphology and enhanced photocatalytic activity

    KAUST Repository

    Rahal, Raed

    2012-01-01

    A facile one-pot method to prepare three-dimensional hierarchical nanostructures of titania with good control over their morphologies without the use of hydrofluoric acid is developed. The reaction is performed under microwave irradiation conditions in pure water, and enables enhanced photocatalytic activity. This study indicates that photocatalytic activity depends not only on the surface area but also on the morphology of the titania. © 2012 The Royal Society of Chemistry.

  18. Highly ordered and vertically oriented TiO2/Al2O3 nanotube electrodes for application in dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jae-Yup; Lee, Kyeong-Hwan; Shin, Junyoung; Park, Sun Ha; Kang, Jin Soo; Han, Kyu Seok; Sung, Myung Mo; Pinna, Nicola; Sung, Yung-Eun

    2014-12-01

    The surface of long TiO2 nanotube (NT) electrodes in dye-sensitized solar cells (DSSCs) was modified without post-annealing by using atomic layer deposition (ALD) for the enhancement of photovoltage. Vertically oriented TiO2 NT electrodes with highly ordered and crack-free surface structures over large areas were prepared by a two-step anodization method. The prepared TiO2 NTs had a pore size of 80 nm, and a length of 23 μm. Onto these TiO2 NTs, an Al2O3 shell of a precisely controlled thickness was deposited by ALD. The conformally coated shell layer was confirmed by high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The open-circuit voltage (Voc) of the DSSCs was gradually enhanced as the thickness of the Al2O3 shell of the TiO2/Al2O3 NT electrodes was increased, which resulted from the enhanced electron lifetime. The enhanced electron lifetime caused by the energy barrier effect of the shell layer was measured quantitatively by the open-circuit voltage decay technique. As a result, 1- and 2-cycle-coated samples showed enhanced conversion efficiencies compared to the bare sample.

  19. On the relationship between rutile/anatase ratio and the nature of defect states in sub-100 nm TiO2 nanostructures: experimental insights

    KAUST Repository

    Soliman, Moamen M.

    2018-02-02

    Black TiO2 is being widely investigated due to its superior optical activity and potential applications in photocatalytic hydrogen generation. Herein, the limitations of the hydrogenation process of TiO2 nanostructures are unraveled by exploiting the fundamental tradeoffs affecting the overall efficiency of the water splitting process. To control the nature and concentration of defect states, different reduction rates are applied to sub-100 nm TiO2 nanotubes, chosen primarily for their superiority over their long counterparts. X-Ray Photoelectron Spectroscopy disclosed changes in the stoichiometry of TiO2 with the reduction rate. UV-vis and Raman spectra showed that high reduction rates promote the formation of the rutile phase in TiO2, which is inactive towards water splitting. Furthermore, electrochemical analysis revealed that such high rates induce a higher concentration of localized electronic defect states that hinder the water splitting performance. Finally, incident photon-to-current conversion efficiency (IPCE) highlighted the optimum reduction rate that attains a relatively lower defect concentration as well as lower rutile content, thereby achieving the highest conversion efficiency.

  20. On the thermal growth and properties of doped TiO2 and In2O3 elongated nanostructures and nanoplates

    International Nuclear Information System (INIS)

    Cremades, A.; Herrera, M.; Bartolomé, J.; Vásquez, G.C.; Maestre, D.; Piqueras, J.

    2014-01-01

    In this work, the driving forces behind the growth mechanisms of In 2 O 3 and TiO 2 micro- and nano-structures grown by an evaporation–solidification method are discussed. Effective or limited doping incorporation and its influence on the growth and morphology of the low dimensional structures are also assessed. A dislocation driven growth mechanism is proposed for indium oxide, indium tin oxide (ITO) and zinc doped indium oxide (IZO) nanowires. This growth mechanism is extended to the growth of IZO nano-plates. On the other hand, different low dimensional TiO 2 morphologies, mainly nanowires, needles, and bidimensional leaf-like nanostructures, have been obtained by an anisotropic induced growth. By introducing Cr in the precursor mixture, needles are formed showing stepped lateral faces related to oxygen defect stoichiometry areas as observed by EDS mapping

  1. Application of Turkevich Method for Gold Nanoparticles Synthesis to Fabrication of SiO2@Au and TiO2@Au Core-Shell Nanostructures

    Science.gov (United States)

    Dobrowolska, Paulina; Krajewska, Aleksandra; Gajda-Rączka, Magdalena; Bartosewicz, Bartosz; Nyga, Piotr; Jankiewicz, Bartłomiej J.

    2015-01-01

    The Turkevich synthesis method of Au nanoparticles (AuNPs) was adopted for direct fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. In this method, chloroauric acid was reduced with trisodium citrate in the presence of amine-functionalized silica or titania submicroparticles. Core-shells obtained in this way were compared to structures fabricated by mixing of Turkevich AuNPs with amine-functionalized silica or titania submicroparticles. It was found that by modification of reaction conditions of the first method, such as temperature and concentration of reagents, control over gold coverage on silicon dioxide particles has been achieved. Described method under certain conditions allows fabrication of semicontinuous gold films on the surface of silicon dioxide particles. To the best of our knowledge, this is the first report describing use of Turkevich method to direct fabrication of TiO2@Au core-shell nanostructures.

  2. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    Science.gov (United States)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  3. Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells

    Science.gov (United States)

    Wang, Xiu-Yu; Zhang, Jing-Chang; Cao, Xu-Dong; Jiang, Yuan-Sheng; Zhu, Hong

    2011-10-01

    To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.

  4. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  5. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  6. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Hao; Guo, Zhiguang; Wang, Shimin; Liu, Weimin

    2014-01-01

    One-dimensional (1D) titania (TiO 2 ) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO 2 nanostructures and the applications of 1D TiO 2 nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO 2 nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO 2 nanostructures in DSCs into four parts, that is, 1D TiO 2 nanostructures only, 1D TiO 2 nanostructure/nanoparticle composites, branched 1D TiO 2 nanostructures, and 1D TiO 2 nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO 2 nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO 2 nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO 2 nanostructures in DSCs are summarized in this review article.

  7. Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes.

    Science.gov (United States)

    Rong, Yaoguang; Ku, Zhiliang; Mei, Anyi; Liu, Tongfa; Xu, Mi; Ko, Songguk; Li, Xiong; Han, Hongwei

    2014-06-19

    A hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell was developed with TiO2 nanosheets containing high levels of exposed (001) facets. The solar cell embodiment employed a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated by perovskite as a light harvester. No hole conductor or Au reflector was employed. Instead, the back contact was simply a printable carbon layer. The perovskite was infiltrated from solution through the porous carbon layer. The high reactivity of (001) facets in TiO2 nanosheets improved the interfacial properties between the perovskite and the electron collector. As a result, photoelectric conversion efficiency of up to 10.64% was obtained with the hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell. The advantages of fully printable technology and the use of low-cost carbon-materials-based counter electrode and hole-conductor-free structure provide this design a promising prospect to approach low-cost photovoltaic devices.

  8. Sol-gel TiO2 colloidal suspensions and nanostructured thin films: structural and biological assessments

    Science.gov (United States)

    Quartapelle Procopio, Elsa; Colombo, Valentina; Santo, Nadia; Sironi, Angelo; Lenardi, Cristina; Maggioni, Daniela

    2018-02-01

    The role of substrate topography in phenotype expression of in vitro cultured cells has been widely assessed. However, the production of the nanostructured interface via the deposition of sol-gel synthesized nanoparticles (NPs) has not yet been fully exploited. This is also evidenced by the limited number of studies correlating the morphological, structural and chemical properties of the grown thin films with those of the sol-gel ‘brick’ within the framework of the bottom-up approach. Our work intends to go beyond this drawback presenting an accurate investigation of sol-gel TiO2 NPs shaped as spheres and rods. They have been fully characterized by complementary analytical techniques both suspended in apolar solvents, by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) and after deposition on substrates (solid state configuration) by transmission electron microscopy (TEM) and powder x-ray diffraction (PXRD). In the case of suspended anisotropic rods, the experimental DLS data, analyzed by the Tirado-Garcia de la Torre model, present the following ranges of dimensions: 4-5 nm diameter (∅) and 11-15 nm length (L). These results are in good agreement with that obtained by the two solid state techniques, namely 3.8(9) nm ∅ and 13.8(2.5) nm L from TEM and 5.6(1) ∅ and 13.3(1) nm L from PXRD data. To prove the suitability of the supported sol-gel NPs for biological issues, spheres and rods have been separately deposited on coverslips. The cell response has been ascertained by evaluating the adhesion of the epithelial cell line Madin-Darby canine kidney. The cellular analysis showed that titania films promote cell adhesion as well clustering organization, which is a distinguishing feature of this type of cell line. Thus, the use of nanostructured substrates via sol-gel could be considered a good candidate for cell culture with the further advantages of likely scalability and interfaceability with many different materials usable as supports.

  9. Sol-gel TiO2 colloidal suspensions and nanostructured thin films: structural and biological assessments.

    Science.gov (United States)

    Procopio, Elsa Quartapelle; Colombo, Valentina; Santo, Nadia; Sironi, Angelo; Lenardi, Cristina; Maggioni, Daniela

    2018-02-02

    The role of substrate topography in phenotype expression of in vitro cultured cells has been widely assessed. However, the production of the nanostructured interface via the deposition of sol-gel synthesized nanoparticles (NPs) has not yet been fully exploited. This is also evidenced by the limited number of studies correlating the morphological, structural and chemical properties of the grown thin films with those of the sol-gel 'brick' within the framework of the bottom-up approach. Our work intends to go beyond this drawback presenting an accurate investigation of sol-gel TiO 2 NPs shaped as spheres and rods. They have been fully characterized by complementary analytical techniques both suspended in apolar solvents, by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) and after deposition on substrates (solid state configuration) by transmission electron microscopy (TEM) and powder x-ray diffraction (PXRD). In the case of suspended anisotropic rods, the experimental DLS data, analyzed by the Tirado-Garcia de la Torre model, present the following ranges of dimensions: 4-5 nm diameter (∅) and 11-15 nm length (L). These results are in good agreement with that obtained by the two solid state techniques, namely 3.8(9) nm ∅ and 13.8(2.5) nm L from TEM and 5.6(1) ∅ and 13.3(1) nm L from PXRD data. To prove the suitability of the supported sol-gel NPs for biological issues, spheres and rods have been separately deposited on coverslips. The cell response has been ascertained by evaluating the adhesion of the epithelial cell line Madin-Darby canine kidney. The cellular analysis showed that titania films promote cell adhesion as well clustering organization, which is a distinguishing feature of this type of cell line. Thus, the use of nanostructured substrates via sol-gel could be considered a good candidate for cell culture with the further advantages of likely scalability and interfaceability with many different materials usable as supports.

  10. Enhancement of electrochemical properties of micro/nano electrodes based on TiO2 nanotube arrays

    Science.gov (United States)

    Khudhair, D.; Gaburro, J.; Shafei, S.; Barlow, A.; Nahavandi, S.; Bhatti, A.

    2017-04-01

    Titanium oxide nanotube (TiO2 nanotube) arrays were produced by anodizing titanium foils in two different electrolytes. The first electrolyte consisted of ethylene glycol containing 0.5 wt% NH4F and 4 vol% of distilled water to produce pure TiO2 nanotube arrays and the second consisted of HF aqueous solution (0.5 wt%) containing 0.5% polyvinylalcohol to produce carbon doped TiO2 nanotube arrays. The fabricated TiO2 nanotube arrays were subsequently annealed in the atmosphere of nitrogen. The morphology and crystal structure of fabricated arrays were characterized by means of scanning electron microscopy and X-ray diffraction. The electrical conductivity and capacitance of TiO2 nanotube arrays were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Water contact angle and biocompatibility of fabricated nanotube arrays were investigated. The results showed that carbon doped TiO2 nanotube arrays annealed in the atmosphere of nitrogen have higher conductivity and capacitance than those of pure arrays annealed in the same atmosphere. Doping with carbon enhances the biocompatibility and wettability of TiO2 nanotube arrays. It has also noted that electrical conductivity and capacitance of TiO2 nanotube arrays were directly proportional to the tube wall thickness.

  11. Heat-Resistant SiO2-Al2O3-TiO2 Ceramics with Nanostructured Alumina Filler and Their Properties

    Science.gov (United States)

    Ulyanova, T. M.; Krutko, N. P.; Vitiaz, P. A.; Ovseenko, L. V.; Titova, L. V.

    This chapter deals with preparation processes of SiO2-Al2O3-TiO2 composite materials doped by nanostructured fibrous powders γ- and α-Al 2O3. Physical and chemical interaction of active nanostructured fillers γ-and α-Al2O3 with a ceramic matrix of SiO2-Al2O3-TiO2 was investigated. Introduction of nanostructured fibrous powders γ- and α-alumina initiated solid-phase reactions—formation of mullite and tialite when heating in the field of temperatures in the range of 1350-1500 °C. The formed acicular crystals of mullite served as the centers of energy dissipation and strengthened a composite. The compounds of alumina titanate reduced the value of linear expansion thermal coefficient of composite material and increased its thermal stability. It has been shown that alumina nanostructured fillers changed structure and improved the properties of silica-alumina-titania composite materials.

  12. TiO2 Nanostructure Synthesized by Sol-Gel for Dye Sensitized Solar Cells as Renewable Energy Source

    Science.gov (United States)

    Ramelan, A. H.; Wahyuningsih, S.; Saputro, S.; Supriyanto, E.; Hanif, Q. A.

    2017-02-01

    The use of renewable materials as a constituent of a smart alternative energy such as the use of natural dyes for light harvesting needs to be developed. Synthesis of anatase titanium dioxide (TiO2) and fabrication Dye-Sensitized Solar Cell (DSSC) using dye-based of anthocyanin from purple sweet potato (Ipomoea batatas L.) as a photosensitizer had been done. Synthesis TiO2 through sol-gel process with the addition of triblock copolymer Pluronic F127 template was controlled at pH 3 whereas calcination was carried out at a temperature of 500 °C, 550 °C and 600 °C. The obtained TiO2 were analyzed by XRD, SAA, and SEM. The conclusion is anatase TiO2 obtained until annealing up to 600 °C. Self-assembly Pluronic F127 triblock copolymer capable of restraining the growth of TiO2 crystals. Retention growth of TiO2 mesoporous produces material character that can be used as builders photoanode DSSC with natural sensitizer anthocyanin from purple sweet potatoes. Based on the analysis of X-ray diffraction patterns and surface area analyser, the higher the calcination temperature the greater the size of the anatase crystals is obtained, however, the smaller its surface area. Purple sweet potato anthocyanin’s dyed on to TiO2 was obtained a good enough performance for DSSC’s and gain the optimum performance from DSSC’s system built with mesoporous TiO2 annealed 550 °C using flavylium form anthocyanin.

  13. The electrochemical behavior of Co(TPTZ)2 complex on different carbon based electrodes modified with TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2015-01-01

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO 2 modified glassy carbon (T/GCE), carbon paste (CPE) and TiO 2 modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO 2 had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ) 2 complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully

  14. Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B

    International Nuclear Information System (INIS)

    Mourão, Henrique A.J.L.; Junior, Waldir Avansi; Ribeiro, Caue

    2012-01-01

    The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO 2 nanoparticles (NPs), TiO 2 :SnO 2 heterostructures and potassium titanate nanotubes (TNTs) obtained by the alkaline hydrothermal method. The materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, surface area estimated from the N 2 physisorption isotherm (BET), X-ray absorption near-edge structure (XANES) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and Fourier transform near-infrared (FT-NIR) spectroscopy, among other methods. Photocatalytic potential was assessed by rhodamine B dye photodegradation under UVC radiation. The properties of the materials were shown to depend on the KOH concentration. Potassium TNTs with high surface area were obtained only in 5 mol L −1 KOH. The material composed of TiO 2 anatase phase, which was obtained in KOH solution ranging from 10 −4 to 1 mol L −1 , showed higher photocatalytic activity than the TNTs, despite the lower surface area and lower density of hydroxyl groups on the anatase. In the heterostructure syntheses, SnO 2 NPs were identified attached to TiO 2 when 10 −4 and 10 −2 mol L −1 KOH were used, whereas at [KOH] = 1 and 5 mol L −1 , Sn remained in solution during the synthetic process and only the respective TiO 2 phase was identified. The TiO 2 :SnO 2 heterostructures were more active than the material without SnO 2 prepared at the same KOH concentrations. Highlights: ► The formation of the materials depends on the [KOH] used during syntheses. ► The heterostructures were obtained with the lower [KOH]. ► Photoactivity of the heterostructures was higher than the respective TiO 2 nanostructures. ► Titanate nanotubes showed high concentration of OH groups but low photoactivity.

  15. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  16. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  17. Nanostructured Modified Electrode for Electrocatalytic Determination of Epinephrine in the Presence of Acetaminophen

    Directory of Open Access Journals (Sweden)

    M. Mazloum-Ardakani

    2011-04-01

    Full Text Available In this paper, a nanostructured modified electrode was fabricated by incorporating of 2,2′-[1,9-nonanediylbis(nitriloethylidyne]-bis-hydroquinone (NNH as a newly synthesized modifier and TiO2 nanoparticles to the carbon paste (MTCPE and then was used for the electroanalysis of epinephrine (EP. The electrochemical studies were carried out by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry (DPV techniques. It has been found that the oxidation of EP at the surface of this electrode occurs at a potential about 235 mV less positive than that of an unmodified carbon paste electrode. A dynamic range of 1.0–2000.0 μM, with a detection limit of 0.37 μM for EP, was obtained using DPV. Also, this modified electrode exhibits well separated oxidation peaks for EP and acetaminophen (AC using DPV.

  18. Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens.

    Science.gov (United States)

    Morra, Simone; Valetti, Francesca; Sarasso, Veronica; Castrignanò, Silvia; Sadeghi, Sheila J; Gilardi, Gianfranco

    2015-12-01

    The [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2 mA cm(-1). The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%. The high turnover frequency of H2 production and the tight coupling of electron transfer, resulting in a Faradaic efficiency close to 100%, support the exploitation of the novel TiO2/CpHydA stationary electrode as a powerful device for H2 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Hwang, Insung; Baek, Minki; Yong, Kijung

    2015-12-23

    In this work, enhanced light stability of perovskite solar cell (PSC) achieved by the introduction of a core/shell-structured CdS/TiO2 electrode and the related mechanism are reported. By a simple solution-based process (SILAR), a uniform CdS shell was coated onto the surface of a TiO2 layer, suppressing the activation of intrinsic trap sites originating from the oxygen vacancies of the TiO2 layer. As a result, the proposed CdS-PSC exhibited highly improved light stability, maintaining nearly 80% of the initial efficiency after 12 h of full sunlight illumination. From the X-ray diffraction analyses, it is suggested that the degradation of the efficiency of PSC during illumination occurs regardless of the decomposition of the perovskite absorber. Considering the light-soaking profiles of the encapsulated cells and the OCVD characteristics, it is likely that the CdS shell had efficiently suppressed the undesirable electron kinetics, such as trapping at the surface defects of the TiO2 and preventing the resultant charge losses by recombination. This study suggests that further complementary research on various effective methods for passivation of the TiO2 layer would be highly meaningful, leading to insight into the fabrication of PSCs stable to UV-light for a long time.

  20. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    International Nuclear Information System (INIS)

    Hu, Xinyue; Yang, Juan; Zhang, Jingdong

    2011-01-01

    Highlights: ► Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ► Magnetically attached TSF electrode shows high photoelectrochemical activity. ► Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ► Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO 2 /SiO 2 /Fe 3 O 4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  1. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications.

    Science.gov (United States)

    Uhm, Soo-Hyuk; Lee, Sang-Bae; Song, Doo-Hoon; Kwon, Jae-Sung; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-10-01

    We investigated whether a silver coating on an anodic oxidized titania (TiO2) nanotube surface would be useful for preventing infections in dental implants. We used a magnetron sputtering process to deposit Ag nanoparticles onto a TiO2 surface. We studied different sputtering input power densities and maintained other parameters constant. We used scanning electron microscopy, X-ray diffraction, and contact angle measurements to characterize the coated surfaces. Staphylococcus aureus was used to evaluate antibacterial activity. The X-ray diffraction analysis showed peaks that corresponded to metallic Ag, Ti, O, and biocompatible anatase phase TiO2 on the examined surfaces. The contact angles of the Ag nanoparticle-loaded surfaces were significantly lower at 2.5 W/cm2 input power under pulsed direct current mode compared to commercial, untreated Ti surfaces. In vitro antibacterial analysis indicated that a significantly reduced number of S. aureus were detected on an Ag nanoparticle-loaded TiO2 nanotube surface compared to control untreated surfaces. No cytotoxicity was noted, except in the group treated with 5 W/cm2 input power density, which was the highest input of power density we tested for the magnetron sputtering process. Overall, we concluded that it was feasible to create antibacterial Ag nanoparticle-loaded titanium nanotube surfaces with magnetron sputtering.

  2. Synthesis and electron transfer studies of Ru-terpyridine based dyads attached to nanostructures TiO2

    Czech Academy of Sciences Publication Activity Database

    Wolpher, H.; Sinha, S.; Pan, J.X.; Johansson, A.; Lundqvist, M.J.; Persson, P.; Lomoth, R.; Bergquist, J.; Sun, L.C.; Sundström, V.; Akermark, B.; Polívka, Tomáš

    2007-01-01

    Roč. 46, č. 3 (2007), s. 638-651 ISSN 0020-1669 Institutional research plan: CEZ:AV0Z50510513 Keywords : TiO2 * electron transfer Subject RIV: CA - Inorganic Chemistry Impact factor: 4.123, year: 2007

  3. Nanostructured nitrogen and carbon codoped TiO2 thin films: Synthesis, structural characterization and optoelectronic properties

    Science.gov (United States)

    Ruzybayev, Inci

    TiO2 is widely used in applications like photocatalysis, sensors, solar cells, and memory devices because it is inexpensive, abundant, nontoxic and stable in aqueous solution. Another exciting application where TiO 2 has the potential to be a very useful catalyst is the clean hydrogen generation using solar radiation. Energy consumption is increasing every year and, as a result, renewable and sustainable alternative energy sources are becoming increasingly important. Therefore, clean hydrogen generation research is becoming more and more important. This study aims at the preparation and characterization of nitrogen and carbon (N-C) codoped TiO2 photoanode material that could potentially be used in photoelectrochemical cells for hydrogen generation. The solar spectrum peaks around 500 nm (2.48 eV) which is in the visible part of the spectrum. The photoanode material to be used for solar hydrogen generation should absorb visible light photons to yield high efficiency. The challenge with TiO2 is that the wide band gap (3.00--3.20 eV) absorbs only ultra-violet (UV) photons and only a small percentage of the solar spectrum is in the UV range. There are various ways to overcome the challenge of sensitizing the material to visible light absorption and this study focuses on one of the most promising ways: band modification of TiO2 by N-C codoping. The role of pure oxygen pressure on pulsed laser deposited N-C codoped TiO2 films were investigated. At low pressures rutile phase of TiO2 was dominant and a microstructure with densely packed grains was obtained. However, at high pressures anatase phase became dominant and columnar structure was favored. Therefore, the anatase-rutile phase ratio as well as the microstructure of the films can be controlled by adjusting oxygen pressure and introducing N and C into the TiO2 matrix. Optimized oxygen pressure and higher doping concentrations yielded films with more effective absorption in the visible region. The preparation and characterization of pulsed laser deposited N-C codoped TiO2 thin films were investigated for dopant incorporation using N2 and CH4 gases. Polycrystalline anatase structured films were obtained. A 2 theta shift of the anatase (101) X-ray diffraction main peak towards lower values indicated carbon incorporation into the lattice. N incorporation was confirmed with observed Ti-N bonds using X-ray photoelectron spectroscopy. Optical data showed significant reduction, approximately 1.00 eV, of the band gap. The reduction of the band gap allowed the photons in the visible part of the solar spectrum to be absorbed. Through a collaborative work with scientists at Brookhaven National Laboratory and Yonsei University, precise modeling of the electronic structure of N-C codoped TiO2 films were carried out to reveal the underlying physics of band gap reduction. Experimental results were compared with first-principle density functional theory calculations. Hard X-ray photoelectron spectroscopy showed that O, N and C 2p states overlapped effectively and shifts in the valence band maximum towards the Fermi level were observed. Optical band gap results showed that N-C codoping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band structure with theoretical photoemission density of states further revealed C substitution on the Ti site and N substitution on the O site. Finally, films grown using radio frequency (rf) magnetron sputtering were compared with the pulsed laser deposited films. Sputtered N-C codoped TiO2 films showed phase transformation from anatase to rutile at constant argon pressure with increasing doping concentration. Moreover, with slow-rate N-C codoping of TiO2, a texturing effect was observed in X-ray diffraction scans such that anatase (004) Bragg reflection plane became more favored over anatase (101). Optical band gap was reduced but the reduction was not as significant as in the films prepared with the pulsed laser deposition method. Electrochemical methods were applied in the photoelectrochemical cell and the sample prepared by using TiO2 target with 8% N and C atomic concentrations found to have slightly better photoactivity relative to the other N-C codoped samples. However, due to preferential anatase (004) plane, overall efficiency of N-C codoped films was low. In conclusion, pulsed laser deposition is preferred over rf magnetron deposition for the purpose of band gap reduction of TiO2 by N and C codoping. Pulsed laser deposited films showed continuum in C and N 2 p dopant states within the forbidden region and these states overlapped well with O 2p states. For this reason, optical band gap measurements showed significant reduction. Therefore, pulsed laser deposition of N-C codoped TiO2 films is a possible way of photoanode fabrication for solar hydrogen generation. (Abstract shortened by UMI.).

  4. Weathering Performance of Wood Coated with a Combination of Alkoxysilanes and Rutile TiO2 Heirarchical Nanostructures

    Science.gov (United States)

    Rongbo Zheng; Mandla A. Tshabalala; Qingyu Li; Hongyan Wang

    2015-01-01

    The weathering performance of wood coated with a combination of rutile TiO2 hierarchicalnanostructures and a sol-gel deposit of alkoxysilanes was determined by exposing three sets of specimens to UV light and water spray. The first set consisted of specimens coated with a mixture of methyltrimethoxysilane (MTMOS) and hexadecyltrimethoxysilane (...

  5. Nanostructural evolution of one-dimensional BaTiO3 structures by hydrothermal conversion of vertically aligned TiO2 nanotubes

    Science.gov (United States)

    Muñoz-Tabares, J. A.; Bejtka, K.; Lamberti, A.; Garino, N.; Bianco, S.; Quaglio, M.; Pirri, C. F.; Chiodoni, A.

    2016-03-01

    The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the growth of dendritic structures by aggregation and oriented attachment mechanisms. Instead, at the bottom, the low liquid/solid ratio, due to the limited amount of Ba solution that infiltrates the NTs, leads to the rapid crystallization of such a solution into BaTiO3, thus allowing the NTs to act as a template for the formation of highly oriented one-dimensional nanostructures. The in-depth analysis of the structural transformations that take place during the formation of the rod-like arrays of BaTiO3 could help elucidate the conversion mechanism, thus paving the way for the optimization of the synthesis process in view of new applications in energy harvesting devices, where easy and low temperature processing, controlled composition, morphology and functional properties are required.The use of TiO2 nanotube (NT) arrays as templates for hydrothermal conversion of one-dimensional barium titanate (BaTiO3) structures is considered a promising synthesis approach, even though the formation mechanisms are not yet fully understood. Herein we report a nanostructural study by means of XRD and (HR)TEM of high aspect ratio TiO2-NTs hydrothermally converted into BaTiO3. The nanostructure shows two different and well-defined regions: at the top the conversion involves complete dissolution of NTs and subsequent precipitation of BaTiO3 crystals by homogeneous nucleation, followed by the

  6. A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air

    Science.gov (United States)

    Procek, Marcin; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Maciak, Erwin

    2015-01-01

    The paper deals with investigations concerning the construction of sensors based on a quartz crystal microbalance (QCM) containing a TiO2 nanostructures sensor layer. A chemical method of synthesizing these nanostructures is presented. The prepared prototype of the QCM sensing system, as well as the results of tests for detecting low NO2 concentrations in an atmosphere of synthetic air have been described. The constructed NO2 sensors operate at room temperature, which is a great advantage, because resistance sensors based on wide gap semiconductors often require much higher operation temperatures, sometimes as high as 500 °C. The sensors constructed by the authors can be used, among other applications, in medical and chemical diagnostics, and also for the purpose of detecting explosive vapours. Reactions of the sensor to nitroglycerine vapours are presented as an example of its application. The influence of humidity on the operation of the sensor was studied. PMID:25912352

  7. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    OpenAIRE

    Hojin Choi; Hyeonseok Yoon

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, t...

  8. Nanostructured electrodes for high-performance pseudocapacitors.

    Science.gov (United States)

    Lu, Qi; Chen, Jingguang G; Xiao, John Q

    2013-02-11

    The depletion of traditional energy resources as well as the desire to reduce high CO(2) emissions associated with energy production means that energy storage is now becoming more important than ever. New functional electrode materials are urgently needed for next-generation energy storage systems, such as supercapacitors or batteries, to meet the ever increasing demand for higher energy and power densities. Advances in nanotechnology are essential to meet those future challenges. It is critical to develop ways of synthesizing new nanomaterials with enhanced properties or combinations of properties to meet future challenges. In this Minireview we discuss several important recent studies in developing nanostructured pseudocapacitor electrodes, and summarize three major parameters that are the most important in determining the performance of electrode materials. A technique to optimize these parameters simultaneously and to achieve both high energy and power densities is also introduced. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterizations of sol-gel synthesized TiO2 and Ce/TiO2 nanostructures

    International Nuclear Information System (INIS)

    Niltharach, A.; Kityakarn, S.; Worayingyong, A.; Thienprasert, J.T-; Klysubun, W.; Songsiriritthigul, P.; Limpijumnong, S.

    2012-01-01

    Mixed phase TiO 2 and Ce/TiO 2 samples were synthesized by a sol-gel method using different hydrolysis conditions. In pure TiO 2 samples, traditional X-ray diffraction (XRD) and Ti K-edge synchrotron X-ray absorption near edge structures (XANES) independently revealed their anatase/rutile phase ratios. XANES results further revealed a substantial amount of Ti atoms existed in other forms beside anatase and rutile TiO 2 in the sample synthesized by the low hydrolysis condition. An increase in the extent of the hydrolysis during the synthesis leads to an increased rutile ratio and a reduction in other forms. In Ce/TiO 2 samples, the crystal sizes were too small for XRD characterization. Only XANES could be used to characterize their phase ratios. It is found that adding Ce impedes rutile formation; leading to increased anatase ratio. The difference in the fundamental aspects of XRD and XANES techniques in providing the phase ratios is discussed.

  10. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    Science.gov (United States)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  11. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material

    KAUST Repository

    Mahmood, Khalid

    2015-01-01

    Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells. This journal is © The Royal Society of Chemistry 2015.

  12. Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode

    Directory of Open Access Journals (Sweden)

    Guo-Yang Chen

    2010-01-01

    Full Text Available A novel Dye-Sensitized Solar Cell (DSSC scheme for better solar conversion efficiency is proposed. The distinctive characteristic of this novel scheme is that the conventional thin film electrode is replaced by a 3D nanostructured indium tin oxide (ITO electrode, which was fabricated using RF magnetron sputtering with an anodic aluminum oxide (AAO template. The template was prepared by immersing the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution to produce a contrasting surface. RF magnetron sputtering was then used to deposit a 3D nanostructured ITO thin film on the template. The crystallinity and conductivity of the 3D ITO films were further enhanced by annealing. Titanium dioxide nanoparticles were electrophoretically deposited on the 3D ITO film after which the proposed DSSC was formed by filling vacant spaces in the 3D nanostructured ITO electrode with dye. The measured solar conversion efficiency of the device was 0.125%. It presents a 5-fold improvement over that of conventional spin-coated TiO2 film electrode DSSCs.

  13. Synthesis and Characterization of Stable and Binder-Free Electrodes of TiO2 Nanofibers for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Phontip Tammawat

    2013-01-01

    Full Text Available An electrospinning technique was used to fabricate TiO2 nanofibers for use as binder-free electrodes for lithium-ion batteries. The as-electrospun nanofibers were calcined at 400–1,000°C and characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. SEM and TEM images showed that the fibers have an average diameter of ~100 nm and are composed of nanocrystallites and grains, which grow in size as the calcination temperature increases. The electrochemical properties of the nanofibers were evaluated using galvanostatic cycling and electrochemical impedance spectroscopy. The TiO2 nanofibers calcined at 400°C showed higher electronic conductivity, higher discharge capacity, and better cycling performance than the nanofibers calcined at 600, 800, and 1,000°C. The TiO2 nanofibers calcined at 400°C delivered an initial reversible capacity of 325 mAh·g−1 approaching their theoretical value at 0.1 C rate and over 175 mAh·g−1 at 0.3 C rate with limited capacity fading and Coulombic efficiency between 96 and 100%.

  14. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  15. Synthesis, characterization and electrochemical study of Mn-doped TiO2 decorated polypyrrole nanotubes

    Science.gov (United States)

    Saidur, M. R.; Aziz, A. R. Abdul; Basirun, W. J.

    2017-06-01

    Nanostructured conductive polymers are the growing interest in the field of electrochemistry due to their superior conductivity and environmental friendliness. The existence of transition metal oxides could improve their nanostructure as well as conductive properties. In this study, polypyrrole nanotubes are synthesized in the presence of TiO2 and manganese (Mn)-doped TiO2 nanoparticles (NPs) to investigate their electrochemical properties. Details characterization of the synthesized composites were done by X-Ray diffraction (XRD) and TEM. The TEM analysis shows that doping of TiO2 with Mn decrease the grain size of the TiO2 nanoparticles and successively its effects on the synthesis of the PPy nanotubes (PPyNTs). TEM confirmed that PPyNTs synthesized in the presence of Mn-doped TiO2 are thinner in size compare to the PPyNTs synthesized in presence of pure TiO2. The electrochemical effectiveness of the synthesized PPy nanocomposite was investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV and EIS both on a modified glassy carbon electrode reveal the better electron transportability for the Mn-doped TiO2 PPyNTs due to the synergistic effect of doping and decreased the size of PPyNTs as well as increased surface area.

  16. Expanding the applications of the ilmenite mineral to the preparation of nanostructures: TiO2 nanorods and their photocatalytic properties in the degradation of oxalic acid.

    Science.gov (United States)

    Tao, Tao; Chen, Ying; Zhou, Dan; Zhang, Hongzhou; Liu, Sanly; Amal, Rose; Sharma, Neeraj; Glushenkov, Alexey M

    2013-01-14

    The mineral ilmenite is one of the most abundant ores in the Earth's crust and it is the main source for the industrial production of bulk titanium oxide. At the same time, methods to convert ilmenite into nanostructures of TiO(2) (which are required for new advanced applications, such as solar cells, batteries, and photocatalysts) have not been explored to any significant extent. Herein, we describe a simple and effective method for the preparation of rutile TiO(2) nanorods from ball-milled ilmenite. These nanorods have small dimensions (width: 5-20 nm, length: 50-100 nm, thickness: 2-5 nm) and possess large specific surface areas (up to 97 m(2)  g(-1)). Dissolution/hydrolysis/precipitation is proposed as a growth mechanism. The nanorods were found to have attractive photocatalytic properties in the degradation of oxalic acid. Their photocatalytic activity is close to that of the benchmark Degussa P25 material and better than that of a commercial high-surface-area rutile powder. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  18. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.

    Science.gov (United States)

    Jayasinghe, R C; Perera, A G U; Zhu, H; Zhao, Y

    2012-10-15

    Oblique-angle deposited titanium dioxide (TiO(2)) nanorods have attracted much attention as good antireflection (AR) coating material due to their low n profile. Therefore, it is necessary to better understand the optical properties of these nanorods. TiO(2) nanorods grown on glass and Si substrates were characterized in the visible (0.4-0.8 μm) and infrared (2-12 μm) regions to extract their complex n profiles empirically. Application of these nanorods in multilayer AR coatings on infrared detectors is also discussed. Optimization of graded index profile of these AR coatings in the broad infrared region (2-12 μm) even at oblique angles of incidence is discussed. The effective coupling between the incoming light and multiple nanorod layers for reducing the reflection is obtained by optimizing the effect from Fabry-Perot oscillations. An optimized five-layer AR coating on GaN shows the reflectance less than 3.3% for normal incidence and 10.5% at 60° across the whole 2-8 μm spectral range.

  19. Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights

    International Nuclear Information System (INIS)

    Arpac, E.; Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, Nadir; Sayilkan, H.

    2007-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without solvent at 200 deg. C in 1 h. Nanostructure-TiO 2 based thin films have been prepared on glass substrate by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, SEM, BET and UV-vis-NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that (a) hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, (b) the coated surfaces have nearly super-hydrophilic properties and (c) the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film

  20. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    Science.gov (United States)

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-02-02

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  1. Preliminary Study of Natural Pigments Photochemical Properties of Curcuma longa L. and Lawsonia inermis L. as TiO2 Photo electrode Sensitizer

    International Nuclear Information System (INIS)

    Nur Ezyanie Safie; Norasikin Ahmad Ludin; Mohd Sukor Suait; Norul Hisham Hamid; Suhaila Sepeai; Mohd Adib Ibrahim; Mohd Asri Mat Teridi

    2015-01-01

    Curcumin and lawsone dyes extracted from turmeric (Curcuma longa L.) and henna (Lawsonia inermis L.) are used to investigate their possibility as photosensitizers on a TiO 2 photo electrode, respectively. The natural dyes undergo simple cold extraction techniques without further purification. The photochemical properties are studied by FT-IR spectroscopy and UV-Vis spectrophotometer. The FTIR spectra revealed that the presence of hydroxyl and carbonyl functional groups in both dyes indicated the presence of important characteristics in a sensitizer to graft on to TiO 2 photo electrode. The broad range of absorption peak wavelength obtained in this work shows that curcumin and lawsone are promising candidates for efficient sensitizers in dye-sensitized solar cells (DSSC). The maximum absorption peak attributed for curcumin and lawsone are 425 nm and 673 nm. The optical band gaps calculated are 2.48 eV and 1.77 eV, respectively. The findings indicated the potential of naturally obtained dyes to act as photosensitizers in DSSC. (author)

  2. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Explaining key properties of lithiation in TiO2-anatase Li-ion battery electrodes using phase-field modeling

    Science.gov (United States)

    de Klerk, Niek J. J.; Vasileiadis, Alexandros; Smith, Raymond B.; Bazant, Martin Z.; Wagemaker, Marnix

    2017-07-01

    The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. Phase-field modeling has recently been shown to have this ability, providing new opportunities to gain understanding of these complex systems. In this paper, a novel electrochemical phase-field model is presented that captures the thermodynamic and kinetic properties of lithium insertion in Ti O2 -anatase, a well-known and intensively studied Li-ion battery electrode material. Using a linear combination of two regular solution models, the two phase transitions during lithiation are described as lithiation of two separate lattices with different physical properties. Previous elaborate experimental work on lithiated anatase Ti O2 provides all parameters necessary for the phase-field simulations, giving the opportunity to gain fundamental insight in the lithiation of anatase and validate this phase-field model. The phase-field model captures the essential experimentally observed phenomena, rationalizing the impact of C rate, particle size, surface area, and the memory effect on the performance of anatase as a Li-ion battery electrode. Thereby a comprehensive physical picture of the lithiation of anatase Ti O2 is provided. The results of the simulations demonstrate that the performance of anatase is limited by the formation of the poor Li-ion diffusion in the Li1TiO2 phase at the surface of the particles. Unlike other electrode materials, the kinetic limitations of individual anatase particles limit the performance of full electrodes. Hence, rather than improving the ionic and electronic network in electrodes, improving the performance of anatase Ti O2 electrodes requires preventing the formation of a blocking Li1TiO2 phase at the surface of particles. Additionally, the qualitative agreement of the phase-field model, containing only parameters from literature, with a broad spectrum of experiments

  4. Adsorption Equilibrium and Kinetics of Gardenia Blue on TiO2 Photoelectrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Tae-Young Kim

    2014-01-01

    Full Text Available Nanostructured porous TiO2 paste was deposited on the FTO conductive glass using squeeze printing technique in order to obtain a TiO2 thin film with a thickness of 10 μm and an area of 4 cm2. Gardenia blue (GB extracted from Gardenia jasminode Ellis was employed as the natural dye for a dye-sensitized solar cell (DSSC. Adsorption studies indicated that the maximum adsorption capacity of GB on the surface of TiO2 thin film was approximately 417 mg GB/g TiO2 photoelectrode. The commercial and natural dyes, N-719 and GB, respectively, were employed to measure the adsorption kinetic data, which were analyzed by pseudo-first-order and pseudo-second-order models. The energy conversion efficiency of the TiO2 electrode with successive adsorptions of GB dye was about 0.2%.

  5. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting

    Science.gov (United States)

    Murugadoss, Govindhasamy; Mizuta, Gai; Tanaka, Soichiro; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ito, Seigo

    2014-08-01

    In order to analyze the crystal transformation from hexagonal PbI2 to CH3NH3PbI3 by the sequential (two-step) deposition process, perovskite CH3NH3PbI3 layers were deposited on flat and/or porous TiO2 layers. Although the narrower pores using small nanoparticles prohibited the effective transformation, the porous-TiO2 matrix was able to help the crystal transformation of PbI2 to CH3NH3PbI3 by sequential two-step deposition. The resulting PbI2 crystals in porous TiO2 electrodes did not deteriorate the photovoltaic effects. Moreover, it is confirmed that the porous TiO2 electrode had served the function of prohibiting short circuits between working and counter electrodes in perovskite solar cells.

  6. Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting

    Directory of Open Access Journals (Sweden)

    Govindhasamy Murugadoss

    2014-08-01

    Full Text Available In order to analyze the crystal transformation from hexagonal PbI2 to CH3NH3PbI3 by the sequential (two-step deposition process, perovskite CH3NH3PbI3 layers were deposited on flat and/or porous TiO2 layers. Although the narrower pores using small nanoparticles prohibited the effective transformation, the porous-TiO2 matrix was able to help the crystal transformation of PbI2 to CH3NH3PbI3 by sequential two-step deposition. The resulting PbI2 crystals in porous TiO2 electrodes did not deteriorate the photovoltaic effects. Moreover, it is confirmed that the porous TiO2 electrode had served the function of prohibiting short circuits between working and counter electrodes in perovskite solar cells.

  7. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  8. A Novel of Buton Asphalt and Methylene Blue as Dye-Sensitized Solar Cell using TiO2/Ti Nanotubes Electrode

    Science.gov (United States)

    Nurhidayani; Muzakkar, M. Z.; Maulidiyah; Wibowo, D.; Nurdin, M.

    2017-11-01

    A study of TiO2/Ti nanotubes arrays (NTAs) based on Dye-Sensitized Solar Cell (DSSC) used Asphalt Buton (Asbuton) extract and methylene blue (MB) as a photosensitizer dye has been conducted. The aim of this research is that the Asbuton extract and Methylene Blue (MB) performance as a dye on DSSC solar cells is able to obtain the voltage-currents produced by visible light irradiation. Electrode TiO2/Ti NTAs have been successfully synthesized by anodizing methods, then characterized by using XRD showed that the anatase crystals formed. Subsequently, the morphology showed that the nanotubes formed which has coated by Asbuton extract. The DSSC system was formed by a sandwich structure and tested by using Multimeter Digital with Potentiostat instrument. The characteristics of current (I) and potential (V) versus time indicated that the Asbuton was obtained in a high-performance in 30s of 14,000µV 0.844µA, meanwhile MB dyes were 8,000µV0.573µA. Based on this research, the Asbuton extract from Buton Island-Southeast Sulawesi-Indonesia was potential for natural dyes in DSSC system.

  9. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiO pn heterojunction and Ni/Au composite electrode

    Science.gov (United States)

    Zhang, Dezhong; Liu, Chunyu; Xu, Ruiliang; Yin, Bo; Chen, Yu; Zhang, Xindong; Gao, Fengli; Ruan, Shengping

    2017-09-01

    A novel dark self-depleting ultraviolet (UV) photodetector based on a TiO2/NiO pn heterojunction was demonstrated and exhibited lower dark current (I dark) and noise. Both the NiO layer and Ni/Au composite electrode were fabricated by a smart, one-step oxidation method which was first employed in the fabrication of the UV photodetector. In dark, the depleted pn heterojunction structure effectively reduced the majority carrier density in TiO2/NiO films, demonstrating a high resistance state and contributing to a lower I dark of 0.033 nA, two orders of magnitude lower than that of the single-material devices. Under UV illumination, the interface self-depleting effect arising from the dissociation and accumulation of photogenerated carriers was eliminated, ensuring loss-free responsivity (R) and a remarkable specific detectivity (D*) of 1.56 × 1014 cm Hz1/2 W-1 for the optimal device. The device with the structure of ITO/TiO2/NiO/Au was measured to prove the mechanisms of interface self-depleting in dark and elimination of the depletion layer under UV illumination. Meanwhile, shortened decay time was achieved in the pn heterojunction UV photodetector. This suggests that the self-depleting devices possess the potential to further enhance photodetection performance.

  10. Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning

    Science.gov (United States)

    Lai, Yue-Kun; Tang, Yu-Xin; Huang, Jian-Ying; Pan, Fei; Chen, Zhong; Zhang, Ke-Qin; Fuchs, Harald; Chi, Li-Feng

    2013-10-01

    Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and chemical component, we described a facile one-step approach to construct large scale pinecone-like anatase TiO2 particles (ATP) film. The as-prepared ATP film exhibits excellent superamphiphilic property in air, changes to underwater superoleophobicity with good dynamical stability. In addition, erasable and rewritable patterned superamphiphobic ATP films or three-dimensional (3D) Janus surfaces were constructed for a versatile platform for microfluidic management and biomedical applications. In a proof-of-concept study, robust super-antiwetting feet for artificial anti-oil strider at the oil/water interface, novel superamphiphobic surface for repeatable oil/water separation, and multifunctional patterned superamphiphobic ATP template for cell, fluorecent probe and inorganic nanoparticles site-selective immobilization were demonstrated.

  11. Bactericidal effect of photocatalytically-active nanostructured TiO2surfaces on biofilms of the early oral colonizer, Streptococcus oralis.

    Science.gov (United States)

    Westas, Emma; Hayashi, Mariko; Cecchinato, Francesca; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R

    2017-08-01

    This study evaluated the photocatalytic bactericidal effect of nanostructured anatase-rich titanium dioxide (TiO 2 ) on microbial biofilms. Commercially pure titanium discs were spin-coated with photocatalytic TiO 2 nanoparticles (P25). Uncoated discs were used as control (CTRL). Half of the CTRL and half of the P25-coated surfaces were coated with purified saliva (SAL) to give four different groups (CTRL, CTRL + SAL, P25 and P25 + SAL). Streptococcus oralis were allowed to form biofilms on the discs for 18 h and non-adherent cells were rinsed off. Bacterial viability was assessed at time 0 with Live/Dead BacLight staining and epifluorescence microscopy. The remaining discs were divided into a non-UV group and UVA-irradiated (+UV) group (irradiation time, 6 or 24 h). Thereafter, viability was assessed as above. Viability at time 0 was high and no dead cells were seen on any of the surfaces, even after 24 h, in the absence of UVA. However, after 24 h of exposure, the proportion of viable cells was reduced by 40% on the P25 discs compared to 0 and 6 h, and this effect was enhanced with a salivary pellicle. Members of mixed species biofilms differ in their susceptibility to the bactericidal effect of the surfaces tested and further investigations are needed to optimize the conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2321-2328, 2017. © 2017 Wiley Periodicals, Inc.

  12. Experimental and Theoretical Studies of Nanostructured Electrodes for Use in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Gong, Jiawei

    Among various photovoltaic technologies available in the emerging market, dye-sensitized solar cells (DSSCs) are deemed as an effective, competitive solution to the increasing demand for high-efficiency PV devices. To move towards full commercialization, challenges remain in further improvement of device stability as well as reduction of material and manufacturing costs. This study aims at rational synthesis and photovoltaic characterization of two nanostructured electrode materials (i.e. SnO2 nanofibers and activated graphene nanoplatelets) for use as photoanode and counter electrode in dye-sensitized solar cells. The main objective is to explore the favorable charge transport features of SnO2 nanofiber network and simultaneously replace the high-priced conventional electrocatalytic nanomaterials (e.g. Pt nanoparticles) used in existing counter electrode of DSSCs. To achieve this objective, a multiphysics model of electrode kinetics was developed to optimize various design parameters and cell configurations. The porous hollow SnO2 nanofibers were successfully synthesized via a facile route consisting of electrospinning precursor polymer nanofibers, followed by controlled carbonization. The novel SnO2/TiO2 composite photoanode materials carry advantages of SnO2 nanofiber network (e.g. nanostructural continuity, high electron mobility) and TiO2 nanoparticles (e.g. high specific area), and therefore show excellent photovoltaic properties including improved short-circuit current and fill factors. In addition, hydrothermally activated graphene nanoplatelets (aGNP) were used as a catalytic counter electrode material to substitute for conventionally used platinum nanoparticles. Improved catalytic performance of aGNP electrode was achieved through increased surface area and better control of morphology. Dye-sensitized solar cells using these aGNP electrodes had power conversion efficiencies comparable to those using platinum nanoparticles with I-/I3- redox mediators

  13. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    Wintec

    A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI). BENZHI ... The method was applied to determine levels of chromium(VI) in tap water and sewage water. Keywords. Nanostructured gold modified ... analytical reagent-grade and double distilled water was used throughout.

  14. Obtenção de filmes finos de TiO2 nanoestruturado pelo método dos precursores poliméricos Nanostructured TiO2 thin films by polymeric precursor method

    Directory of Open Access Journals (Sweden)

    Daniel Grando Stroppa

    2008-01-01

    Full Text Available This work focuses in optimizing setup for obtaining TiO2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and RMN were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m²/g and monolayers thickness within 20 and 128 nm.

  15. DC sputtering assisted nano-branched core–shell TiO2/ZnO electrodes for application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zengming; Hu, Yong; Qin, Fuyu; Ding, Yutian

    2016-01-01

    Highlights: • An effective method of combining chemical growth and physical decoration to investigate the effect of the energy barrier layer on the efficiency of DSSCs were presented. • High surface area photo-anodes can be achieved through fine-tuning material growth processes. • The branched composite structure shows a set of advantages in electronic transportation, dye adsorption and energy barrier. - Graphical abstract: Schematic diagram of nano-branched core–shell TiO 2 /ZnO electrodes and SEM images of the photoanodes at each step. - Abstract: TiO 2 /ZnO core–shell photo-anodes with a large surface area were synthesised by a combination of chemical growth and direct current (DC) magnetron sputtering (MS). The use of these combined methods for the advancement of dye-sensitized solar cells (DSSCs) was discussed. An understanding of the morphology and structure of this core–shell material was obtained from the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the thickness of the ZnO nanoshells (as assessed by using TEM), prepared by MS, has a significant effect on improvements in the conversion efficiency. The conversion efficiency can be greatly improved from 0.06% to 0.72% by optimising different experimental conditions, such as ZnO nanoshell MS time and chemical bath deposition time. The enhanced efficiency may be attributed to the emergence of a ZnO energy barrier and the improvement of the photo-anode surface area.

  16. Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application

    Science.gov (United States)

    Shoaib, Anwer; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-02-01

    In view of the growing concern about energy management issues, sodium ion batteries (SIBs) as cheap and environmentally friendly devices have increasingly received wide research attentions. The high current rate and long cycle-life of SIBs are considered as two key parameters determining its potential for practical applications. In this work, the rigid single-crystalline anatase TiO2 nanosheets (NSs) with a thickness of ∼4 nm has been firstly prepared, based on which a stable nanostructured network consisting of ultrathin anatase TiO2 NSs homogeneously anchored on graphene through chemical bonding (TiO2 NSs-G) has fabricated by hydrothermal process and subsequent calcination treatment. The morphology, crystallization, chemical compositions and the intimate maximum contact between TiO2 NSs and graphene are confirmed by TEM, SEM, XRD, XPS and Raman characterizations. The results of electrochemical performance tests indicated that the TiO2 NSs-G hybrid network could be consider as a promising anode material for SIBs, in assessment of its remarkably high current rate and long cycle-life aside from the improved specific capacity, rate capability and cycle stability.

  17. [Electrochemical oxidation of ammonia nitrogen wastewater using Ti/RuO2-TiO2-IrO2-SnO2 electrode].

    Science.gov (United States)

    Xu, Li-li; Shi, Han-chang; Chen, Jin-luan

    2007-09-01

    Electrochemical oxidation ammonia is a new method of ammonia nitrogen wastewater treatment. A study was undertaken of electrochemical oxidation ammonia wastewater in cycle mobil-electrobath. The anode was Ti/RuO2-TiO2-IrO2-SnO2 expanded metal sheet electrode. The cathode was expanded metal sheet electrode. The parameters investigated were the optimal available time for the measurement of ammonia nitrogen, flowrate and current density. The energy consumption, anode efficiency and current efficiency were analysed in different current densities. Experimental results show that when the concentration of the chlorine ion was 400 mg/L and the initial ammoniac nitrogen concentration was 40 mg/L, the flowrate had little impact on ammonia nitrogen removal, but current density had greater impact. Under the condition with flowrate 600 mL/min, current density 20 mA/cm2, electrolytic time 90 min, ammonia nitrogen removal ratio was 99.37%. The energy consumption was 500 kW x h and the anode efficiency was 2.68 h x m2 x A per kg NH4+ -N removed, and instantaneous current efficiency (ICE) was 0.28. Research has shown that electrochemical oxidation ammonia wastewater has better prospects.

  18. NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction.

    Science.gov (United States)

    Shan, Zhichao; Archana, Panikar Sathyaseelan; Shen, Gang; Gupta, Arunava; Bakker, Martin G; Pan, Shanlin

    2015-09-23

    Developing high-efficiency, durable, and low-cost catalysts based on earth-abundant elements for the oxygen evolution reaction (OER) is essential for renewable energy conversion and energy storage devices. In this study, we report a highly active nanostructured electrode, NanoCOT, which contains carbon, oxygen, and titanium, for efficient OER in alkaline solution. The NanoCOT electrode is synthesized from carbon transformation of TiO2 in an atmosphere of methane, hydrogen, and nitrogen at a high temperature. The NanoCOT exhibits enhanced OER catalytic activity in alkaline solution, providing a current density of 1.33 mA/cm(2) at an overpotential of 0.42 V. This OER current density of a NanoCOT electrode is about 4 times higher than an oxidized Ir electrode and 15 times higher than a Pt electrode because of its nanostructured high surface area and favorable OER kinetics. The enhanced catalytic activity of NanoCOT is attributed to the presence of a continuous energy band of the titanium oxide electrode with predominantly reduced defect states of Ti (e.g., Ti(1+), Ti(2+), and Ti(3+)) formed by chemical reduction with hydrogen and carbon. The OER performance of NanoCOT can also be further enhanced by decreasing its overpotential by 150 mV at a current density of 1.0 mA/cm(2) after coating its surface electrophoretically with 2.0 nm IrOx nanoparticles.

  19. A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode

    Science.gov (United States)

    Tang, Gang; Cao, Liujun; Xiao, Peng; Zhang, Yunhuai; Liu, Hao

    2017-07-01

    Lithium ion capacitors (LICs) are considered to be high-performance energy storage devices that have stimulated intense attention to bridge the gap between lithium ion battery and supercapacitor. Currently, the major challenge for LICs has been to improve the energy density without sacrificing the high rate of power output performance. Herein, we designed a three-dimensional (3D) hierarchical porous nanostructure of hydrogen-treated TiO2 nanoparticles wrapped conducting polymer polypyrrole (PPy) framework with single-walled carbon nanotubes (SWCNTs) hybrid (denoted as, H-TiO2/PPy/SWCNTs) anode material for LICs through a conventional and green approach. Such a unique network can offer continuous electron transport and reduce the diffusion length of lithium ions. A greatly lithium storage specific capacity is achieved with reversible discharge capacity ∼213 mA h g-1 (based on the mass of TiO2) over 50 cycles (@ 0.1 A g-1), which is almostly three times compared with raw TiO2 (a commercial TiO2 nanoparticles powder). In addition, coupled with commercial activated carbon (AC) cathode, the fully assembled H-TiO2/PPy/SWCNTs//AC LICs delivers a maximum energy and power densities of 31.3 Wh kg-1 and 4 kW kg-1, a reasonably good cycling stability (∼77.8% retention after 3000 cycles) within the voltage range of 1.0-3.0 V.

  20. Rational Design and Construction of Well-Organized Macro-Mesoporous SiO2/TiO2Nanostructure toward Robust High-Performance Self-Cleaning Antireflective Thin Films.

    Science.gov (United States)

    Jin, Binbin; He, Junhui; Yao, Lin; Zhang, Yue; Li, Jing

    2017-05-24

    Antireflection (AR) thin films on optical substrates are of great significance in high-performance optoelectronic devices. Here, we present a rational design and construction of well-organized macro-mesoporous nanostructure toward robust high-performance self-cleaning antireflective thin films on the basis of effective medium theory and finite difference time domain (FDTD) simulations that combine the optical design principle. A hierarchical macro-mesoporous SiO 2 thin film with very high porosity and gradient refractive indexes works as a λ/4-wavelength AR layer and significantly suppresses the reflection in the range from 350 to 1200 nm. Even after dip-coating a layer of high refractive index TiO 2 nanocrystals, the nanostructured thin film still exhibits broadband AR properties which are much superior to conventional flat SiO 2 /TiO 2 thin films, especially in the range of 350-500 nm. In addition, the obtained thin film exhibits photocatalytic self-cleaning and durable superhydrophilicity. The advantages brought by the well-organized macro-mesoporous structure are also testified through comparing to the solely mesoporous SiO 2 /TiO 2 film counterpart. Moreover, the pencil hardness test and sandpaper abrasion test show favorable robustness and functional durability of the thin film, which make it extremely attractive for practical applications in optical devices, display devices, and photovoltaic cells.

  1. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  2. Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

    Directory of Open Access Journals (Sweden)

    Marcin Opallo

    2011-01-01

    Full Text Available The recent development of nanostructured electrodes for bioelectrocatalytic dioxygen reduction catalysed by two copper oxidoreductases, laccase and bilirubin oxidase, is reviewed. Carbon-based nanomaterials as carbon nanotubes or carbon nanoparticles are frequently used for electrode modification, whereas there are only few examples of biocathodes modified with metal or metal oxide nanoparticles. These nanomaterials are adsorbed on the electrode surface or embedded in multicomponent film. The nano-objects deposited act as electron shuttles between the enzyme and the electrode substrate providing favourable conditions for mediatorless bioelectrocatalysis.

  3. Nanostructured micro-electrode arrays for electrophysiological measurements

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal Dominik

    -dimensional electrode arrays with features able to penetrate cell membrane are currently investigated by various groups. While a number of experimental setups have been recently developed, the question remains whether the nanostructure is in fact penetrating the cellular membrane, and if the measurements are indeed......, and cost-effectiveness of the fabrication. Secondly, I worked on a reliable imaging method that would be able to directly envision nanostructure-cell membrane interface. As a result, a novel maskless patterning method of CNT forests was invented, devices with multichannel arrays of electrodes with silicon...

  4. Synthesis, characterizations and applications of some nanomaterials (TiO2 and SiC nanostructured films, organized CNT structures, ZnO structures and CNT-blood platelet clusters)

    Science.gov (United States)

    Srivastava, O. N.; Srivastava, A.; Dash, D.; Singh, D. P.; Yadav, R. M.; Mishra, P. R.; Singh, J.

    2005-10-01

    TiO_{2} nanostructured films have been synthesized by the hydrolysis of Ti[OCH(CH_{3})_{2}]_{4} as the precursor. These films have been utilized for the dissociation of phenol contaminant in water. Free-standing nanostructured film of silicon carbide (SiC) has been synthesized, employing a simple and new route of spray pyrolysis technique utilizing a slurry of Si in hexane. Another study is done on organized carbon nanotube (CNT) structures. These are made in the form of hollow cylinders (50 mm length, 4 mm diameter and 1.5 mm wall thickness). These CNT-based cylinders are made of conventional CNT and bamboo-shaped CNT. The filtrations of heavy hydrocarbons and E. coli bacteria from water have been carried out. In addition to this, ZnO nanostructures have also been studied. Another study concerns CNT-blood platelet clusters.

  5. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  6. Nanostructured metal particle-modified electrodes for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Nanostructured ... Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal ...

  7. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

    Science.gov (United States)

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-10-01

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications. Electronic supplementary information (ESI) available: UV-Vis spectra of desorbed N719 dyes from

  8. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries

    Science.gov (United States)

    Yuan, Wei; Wang, Boya; Wu, Hao; Xiang, Mingwu; Wang, Qiong; Liu, Heng; Zhang, Yun; Liu, Huakun; Dou, Shixue

    2018-03-01

    Free-standing electrodes have stood out from the electrode pack, owing to their advantage of abandoning the conventional polymeric binder and conductive agent, thus increasing the specific capacity of lithium-ion batteries. Nevertheless, their practical application is hampered by inferior electrical conductivity and complex manufacturing process. To this end, we report here a facile approach to fabricate a flexible 3D N-doped carbon foam/carbon nanotubes (NCF@CNTs) hybrid to act as the current collector and host scaffold for TiO2 particles, which are integrated into a lightweight free-standing electrode (NCF@CNTs-TiO2). In the resulting architecture, ultra-fine TiO2 nanoparticles are homogeneously anchored in situ into the N-doped NCF@CNTs framework with macro- and meso-porous structure, wrapped by a dense CNT layer, cooperatively enhances the electrode flexibility and forms an interconnected conductive network for electron/ion transport. As a result, the as-prepared NCF@CNTs-TiO2 electrode exhibits excellent lithium storage performance with high specific capacity of 241 mAh g-1 at 1 C, superb rate capability of 145 mAh g-1 at 20 C, ultra-long cycling stability with an ultra-low capacity decay of 0.0037% per cycle over 2500 cycles, and excellent thermal stability with ∼94% capacity retention over 100 cycles at 55 °C.

  9. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers

    DEFF Research Database (Denmark)

    Barakata, Nasser A.M.; Kanjwal, Muzafar Ahmed; Chronakis, Ioannis S.

    2013-01-01

    -doped TiO2 nanofibers for all formulations. The nanoparticles were prepared from the same sol–gels, however, instead of spinning the gels were dried, grinded and sintered at 700 °C. Photodegradation under UV irradiation for the rhodamine B at 5, 15, 25, 45 and 55 °C were performed. For the nanoparticles...

  10. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  11. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2

    International Nuclear Information System (INIS)

    Triantis, T.M.; Fotiou, T.; Kaloudis, T.; Kontos, A.G.; Falaras, P.; Dionysiou, D.D.; Pelaez, M.; Hiskia, A.

    2012-01-01

    Highlights: ► N-TiO 2 exhibited effective degradation of MC-LR under UV-A, solar and visible light. ► Complete photocatalytic mineralization of MC-LR was achieved under UV-A and solar light. ► The organic nitrogen is mainly released as ammonium and nitrate ions. - Abstract: In an attempt to face serious environmental hazards, the degradation of microcystin-LR (MC-LR), one of the most common and more toxic water soluble cyanotoxin compounds released by cyanobacteria blooms, was investigated using nitrogen doped TiO 2 (N-TiO 2 ) photocatalyst, under UV-A, solar and visible light. Commercial Degussa P25 TiO 2 , Kronos and reference TiO 2 nanopowders were used for comparison. It was found that under UV-A irradiation, all photocatalysts were effective in toxin elimination. The higher MC-LR degradation (99%) was observed with Degussa P25 TiO 2 followed by N-TiO 2 with 96% toxin destruction after 20 min of illumination. Under solar light illumination, N-TiO 2 nanocatalyst exhibits similar photocatalytic activity with that of commercially available materials such as Degussa P25 and Kronos TiO 2 for the destruction of MC-LR. Upon irradiation with visible light Degussa P25 practically did not show any response, while the N-TiO 2 displayed remarkable photocatalytic efficiency. In addition, it has been shown that photodegradation products did not present any significant protein phosphatase inhibition activity, proving that toxicity is proportional only to the remaining MC-LR in solution. Finally, total organic carbon (TOC) and inorganic ions (NO 2 − , NO 3 − and NH 4 + ) determinations confirmed that complete photocatalytic mineralization of MC-LR was achieved under both UV-A and solar light.

  12. One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance

    Science.gov (United States)

    Yu, Cuiping; Wang, Yan; Zhang, Jianfang; Yang, Wanfen; Shu, Xia; Qin, Yongqiang; Cui, Jiewu; Zheng, Hongmei; Zhang, Yong; Ajayan, Pulickel M.; Wu, Yucheng

    2017-10-01

    High-performance battery-type electrodes based on TiO2 nanotube arrays decorated with Co0·12Ni1·88S2@Co8S9 (CNCS) nanoparticles have been successfully prepared in this paper. The highly conductive TiO2 nanotube arrays modified with carbon and oxygen vacancies (Ti3+ defects) (m-TNAs) are selected as the three-dimensional backbones to support electroactive materials and offer direct pathways for electron and ions transport. Then CNCS nanoparticles are electrodeposited on each nanotube uniformly, and the loading mass of nanoparticles can be controlled through adjusting electrodeposition cycles. After optimization, a remarkable specific capacity of 680.1 C g-1 is achieved at 2 A g -1 as a result of the intrinsic synergetic contributions from structural/compositional/componental merits. This specific capacity is much higher than most of the TNAs-based energy storage electrodes. In addition, an asymmetric supercapacitor device is assembled by applying the optimized CNCS/m-TNAs and commercial active carbon as positive and negative electrode, respectively. It displays a high energy density of 45.5 Wh kg-1 at a power density of 400.5 W kg-1, after cycling for 3000 cycles at a high current density of 4 A g-1, the specific capacitance could still remain 85.7%. This self-supported and binder-free CNCS/m-TNAs electrode will be a competitive and promising candidate for the application in energy storage.

  13. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    Science.gov (United States)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  14. Thin-film dye sensitization and impurity effects on TiO2 and SrTiO3 electrodes for the photoelectrolysis of water

    NARCIS (Netherlands)

    Mackor, A.; Schoonman, J.

    1980-01-01

    Single crystals of TiO2 and SrTiO3 are sensitized by thin films of a ruthenium surfactant dye, which is able to sustain catalytic oxidation of water upon irradiation with visible light. Calculated turnover numbers exceed 2000. Doping of the crystals with niobium does not improve the suitability of

  15. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  16. Electrochemical-assisted photodegradation of Allura Red and textile effluent using a half-exposed rotating TiO(2)/Ti disc electrode.

    Science.gov (United States)

    Xu, Yun L; Zhong, Deng J; Jia, Jin P

    2008-04-01

    In this work, a rotating photoelectrocatalytic (RPEC) reactor, using a half-exposed and half-immersed TiO(2)/Ti disc as photoanode was developed for the first time to degrade Allura Red (AR) and textile effluent. The TiO(2) film was characterised by X-ray reflection diffraction (XRD) spectra and field emission scanning electron microscope (FESEM). When AR solutions with concentrations ranging from 10 mg L(- 1) to 50 mg L(- 1)AR were treated by half-exposed disc PEC (EPEC) process for 1 hour, solution color and TOC were reduced by 36-54% and 19-33%, respectively, higher than reduction of 9-46% and 4-27% observed for the conventional PEC (CPEC) process with half TiO(2)/Ti disc immersed in solution. Similarly, solution color and TOC for textile effluent was reduced by 46% and 10% for EPEC process, respectively, higher than reduction of 26% and 2% for CPEC process. Effectiveness of the RPEC process was further demonstrated in the treatment of textile effluent and textile effluent containing 30 mgL(- 1) AR by determining change of solution color, total organic carbon (TOC), biochemical oxygen demand (BOD(5)), and chemical oxygen demand (COD). Furthermore, a long run experiment was carried out for the TiO(2)/Ti disc and almost stable photoactivity was found after 10 runs of RPEC oxidation of both AR and textile effluent. Our results indicate the proposed RPEC is effective in degrading textile wastewater, probably because the light can directly irradiate the exposed disc in air instead of through solution in the CPEC reactor.

  17. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode.

    Science.gov (United States)

    Molaeirad, Ahmad; Janfaza, Sajad; Karimi-Fard, Abbas; Mahyad, Baharak

    2015-01-01

    Dye-sensitized solar cells (DSSCs), which are proposed as a substitute for silicon crystalline solar cells, have received considerable attention in the recent decade. They could be produced from inexpensive materials through low-cost processes. In the current work, a bio-sensitized solar cell is designed using abundant, cheap, and nontoxic materials. Bacteriorhodopsin and bacterioruberin are two natural biomolecules found in the cytoplasmic membrane of Halobacterium salinarum. These two pigments were immobilized on nanoporous titanium dioxide films successfully and employed as molecular sensitizers in DSSC with efficient photocurrent generation. The photovoltaic performance of DSSCs based on bacteriorhodopsin and bacterioruberin sensitizers was investigated. Under AM1.5 irradiation a short-circuit current of 0.45 mA cm(-2) , open circuit voltages of 0.57 V, fill factor of 0.62, and an overall energy conversion efficiency of 0.16% are achieved by employing a mixture of biomolecules as a sensitizer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  18. Heterogeneous nanostructured electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2011-02-07

    In order to fulfil the future requirements of electrochemical energy storage, such as high energy density at high power demands, heterogeneous nanostructured materials are currently studied as promising electrode materials due to their synergic properties, which arise from integrating multi-nanocomponents, each tailored to address a different demand (e.g., high energy density, high conductivity, and excellent mechanical stability). In this article, we discuss these heterogeneous nanomaterials based on their structural complexity: zero-dimensional (0-D) (e.g. core-shell nanoparticles), one-dimensional (1-D) (e.g. coaxial nanowires), two-dimensional (2-D) (e.g. graphene based composites), three-dimensional (3-D) (e.g. mesoporous carbon based composites) and the even more complex hierarchical 3-D nanostructured networks. This review tends to focus more on ordered arrays of 1-D heterogeneous nanomaterials due to their unique merits. Examples of different types of structures are listed and their advantages and disadvantages are compared. Finally a future 3-D heterogeneous nanostructure is proposed, which may set a goal toward developing ideal nano-architectured electrodes for future electrochemical energy storage devices.

  19. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    Science.gov (United States)

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanostructured metal oxides as electrode materials for electrochemical capacitors.

    Science.gov (United States)

    Konstantinov, Konstantin; Wang, Guoxiu; Lao, Zhuo Jin; Liu, Hua Kun; Devers, T

    2009-02-01

    In this study, nanostructured transition metal oxides, such as Co3O4, NiO and MnO2 were comprehensively studied and reported as promising electrode materials for electrochemical capacitors. The materials have been obtained by solution or spray solution techniques, which are cost-effective and promising for industry application. All materials feature a large specific surface area, which can reach up to 270 m2/g. The high surface area is a compulsory condition for high capacitance. The best MnO2 materials yielded up to 406 F/g.

  1. Ordered Single-Crystalline Anatase TiO2Nanorod Clusters Planted on Graphene for Fast Charge Transfer in Photoelectrochemical Solar Cells.

    Science.gov (United States)

    Wang, Yang; Liu, Xueqin; Li, Zhen; Cao, Ya; Li, Yinchang; Liu, Xupo; Jia, Songru; Zhao, Yanli

    2017-07-01

    Achieving efficient charge transport is a great challenge in nanostructured TiO 2 -electrode-based photoelectrochemical cells. Inspired by excellent directional charge transport and the well-known electroconductibility of 1D anatase TiO 2 nanostructured materials and graphene, respectively, planting ordered, single-crystalline anatase TiO 2 nanorod clusters on graphene sheets (rGO/ATRCs) via a facial one-pot solvothermal method is reported. The hierarchical rGO/ATRCs nanostructure can serve as an efficient light-harvesting electrode for dye-sensitized solar cells. In addition, the obtained high-crystallinity anatase TiO 2 nanorods in rGO/ATRCs possess a lower density of trap states, thus facilitating diffusion-driven charge transport and suppressing electron recombination. Moreover, the novel architecture significantly enhances the trap-free charge diffusion coefficient, which contributes to superior electron mobility properties. By virtue of more efficient charge transport and higher energy conversion efficiency, the rGO/ATRCs developed in this work show significant advantages over conventional rGO-TiO 2 nanoparticle counterparts in photoelectrochemical cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2'-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO(2) nanoparticles.

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Beitollahi, Hadi; Mohseni, Mohammad Ali Sheikh; Benvidi, Ali; Naeimi, Hossein; Nejati-Barzoki, Maryam; Taghavinia, Nima

    2010-03-01

    A carbon paste electrode (CPE) modified with 2,2'-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone (BBNBH) and TiO(2) nanoparticles was used for the sensitive voltammetric determination of epinephrine (EP). The electrochemical response characteristics of the modified electrode toward EP and acetaminophen (AC) were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic activity of the electrode for the electrooxidation of EP, which leads to a reduction in its overpotential by more than 270mV. The effects of pH and potential sweep rate on the mechanism of the electrode process were investigated. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for EP and AC. At the optimum pH of 8.0 in a 0.1M phosphate buffer solution, the DPV anodic peak currents showed a linear relationship versus EP concentrations in the range of 1.0-600.0microM and a detection limit of 0.2microM.

  3. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes.

    Science.gov (United States)

    Leprince, Lucas; Dogimont, Audrey; Magnin, Delphine; Demoustier-Champagne, Sophie

    2010-03-01

    One of the key challenges to engineering neural interfaces is to reduce their immune response toward implanted electrodes. One potential approach to minimize or eliminate this undesired early inflammatory tissue reaction and to maintain signal transmission quality over time is the delivery of anti-inflammatory biomolecules in the vicinity of the implant. Here, we report on a facile and reproducible method for the fabrication of high surface area nanostructured electrodes coated with an electroactive polymer, polypyrrole (PPy) that can be used to precisely release drug by applying an electrical stimuli. The method consists of the electropolymerization of PPy incorporated with drug, dexamethasone (DEX), onto a brush of metallic nanopillars, obtained by electrodeposition of the metal within the nanopores of gold-coated polycarbonate template. The study of the release of DEX triggered by electrochemical stimuli indicates that the system is a true electrically controlled release system. Moreover, it appears that the presence of metallic nanowires onto the electrode surface improves the adherence between the polymer and the electrode and increases the electroactivity of the PPy coating.

  4. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays

    Science.gov (United States)

    Li, Yan; Liu, Fang-Ting; Chang, Yin; Wang, Jian; Wang, Cheng-Wei

    2017-12-01

    Structuring the materials in the form of photonic crystals is a new strategy for photocatalytic applications. Herein, a new concept of photonic crystal-induced p-n coaxial heterojunction film photocatalyst of Cu3SnS4/TiO2 (CTS/PhC-TNAs) was well-designed and successfully fabricated by combining periodic pulse anodic oxidation and in-situ self-assembling methods Such nanostructured CTS/PhC-TNAs exhibited significantly improved photocatalytic degradation activity under simulated sunlight irradiation with methyl orange (MO) as the target pollutants. Within 120 min, 82% of the MO (10 mg/L) was photodegraded and its kinetic constant per specific surface area reached 0.05332 μmol/m2h, which is 1.6 and 12.8 times more quickly than that of PhC-TNAs and CTS, respectively. Its significantly enhanced photocatalytic activity could be mainly attributed to a joint effect of the unique photonic crystal property of PhC-TNAs and the nanostructured hollow p-n coaxial hetero-junction, which result in an increased efficiency of charge separation and transfer and also an improved spectral response capability. This photonic crystal film photocatalyst has the potential for enhancing the photocatalytic activity via further optimizing the photonic stop band of PhC-TNAs. The study presents a new means to design the kind of photonic crystal structural-induced novel photocatalysts with high photocatalytic activities in pollution treatment.

  5. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material

    KAUST Repository

    Noh, Jun Hong

    2013-01-01

    For using 2,2′,7,7′-tetrakis(N,N′-di-p- methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as a hole conductor in solar cells, it is necessary to improve its charge-transport properties through electrochemical doping. With the aim of fabricating efficient mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells, we used tris[2-(1H-pyrazol-1-yl)-4-tert- butylpyridine)cobalt(iii) tris(bis(trifluoromethylsulfonyl) imide)] (FK209) as a p-dopant for spiro-OMeTAD. The mixture of spiro-OMeTAD, FK209, lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI), and 4-tert-butylpyridine (TBP) exhibited significantly higher performance than mixtures of pristine spiro-OMeTAD, spiro-OMeTAD, and FK209, and spiro-OMeTAD, Li-TFSI, and TBP. Such a synergistic effect between the Co-complex and Li-TFSI in conjunction with spiro-OMeTAD effectively improved the power conversion efficiency (PCE) of the fabricated solar cells. As a result, we achieved PCE of 10.4%, measured under standard solar conditions (AM 1.5G, 100 mW cm-2). © 2013 The Royal Society of Chemistry.

  6. Improving reversible capacities of high surface lithium insertion materials – the case of amorphous TiO2

    Directory of Open Access Journals (Sweden)

    Swapna eGanapathy

    2014-11-01

    Full Text Available Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nanostructured electrodes remains a contributing factor towards capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here we report a marked improvement in the capacity retention of amorphous TiO2 by the choice of preparation solvent, control of annealing temperature and the presence of surface functional groups. Careful heating of the amorphous TiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From FTIR Spectroscopy and Electron Energy Loss Spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface (SEI. The present research provides a facile strategy to improve the capacity retention of nanostructured electrode materials.

  7. Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage.

    Science.gov (United States)

    Xia, Xinhui; Zeng, Zhiyuan; Li, Xianglin; Zhang, Yongqi; Tu, Jiangping; Fan, Ng Chin; Zhang, Hua; Fan, Hong Jin

    2013-07-07

    Due to the chemical stability and easy fabrication by atomic layer deposition (ALD), TiO2 nanotubes are regarded highly useful in constructing branched nanostructured electrodes for solar conversion and electrochemical energy storage devices. Here we present a facile and scalable fabrication of metal oxide nanobranches on ALD pre-formed TiO2 nanotubes. The metal oxide branches can be a wide range (nearly any) of desirable materials, including NiO and Co3O4 demonstrated herein. As an example, the TiO2/NiO nanoarray battery cathode exhibits a relatively high gravimetric capacity value of ~153 mA h g(-1) and a fairly good stability up to 12,000 cycles with a capacitance of 132 mA h g(-1) at 2 A g(-1).

  8. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kang, Soon Hyung; Kim, Hyun Sik; Kim, Jae-Yup; Sung, Yung-Eun

    2009-01-01

    Anodically grown TiO 2 nanotubes (TONTs), approximately 13 μm thick, were prepared on an ethylene glycol-based electrolyte containing 0.25 wt% NH 4 F with extremely small amounts of water. A Ti substrate was pretreated electrochemically, which affected the TONT surface morphology. The TONT (abbreviated as two-step TONT) grown on the pretreated substrate showed a uniform surface morphology with an interconnected nanotubular structure, while the surface morphology of the TONT (abbreviated as one-step TONT) formed on the bare substrate was quite rough. The photocurrent (8.4 mA cm -2 ) of the two-step TONT-based dye-sensitized solar cell (DSSC) was improved by 14% compared to that (7.2 mA cm -2 ) of the one-step TONT-based DSSC. This improvement was attributed mainly to the increased light capturing efficiency, that is, light absorbance by a dye-sensitized TONT film. The discrepancy between the increasing light capturing yield (21%) and overall photocurrent (14%) was attributed to the slower electron transport rate as a result of the large surface area and lateral movement along the three-dimensional network. Therefore, the improved photocurrent of the two-step TONT-based DSSC led to an enhancement (12.5%) of the overall power conversion efficiency.

  9. Explaining key properties of lithiation in TiO2-anatase Li-ion battery electrodes using phase-field modeling

    NARCIS (Netherlands)

    de Klerk, N.J.J.; Vasileiadis, A.; Smith, Raymond B.; Bazant, Martin Z.; Wagemaker, M.

    2017-01-01

    The improvement of Li-ion battery performance requires development of models that capture the essential physics and chemistry in Li-ion battery electrode materials. Phase-field modeling has recently been shown to have this ability, providing new opportunities to gain understanding of these complex

  10. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization.

    Science.gov (United States)

    Zhang, Wenli; Patel, Kush; Schexnider, Andrew; Banu, Shirin; Radadia, Adarsh D

    2014-02-25

    While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 ± 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 10(6) cfu/mL E. coli O157:H7, the resistance to charge transfer at the IDEs decreased by ∼ 38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 10(8) cfu/mL E. coli O157:H7, the charge transfer resistance changed by ∼ 46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity.

  11. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  12. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  13. Nanostructured polyamic acid membranes as novel electrode materials.

    Science.gov (United States)

    Andreescu, Daniel; Wanekaya, Adam K; Sadik, Omowunmi A; Wang, Joseph

    2005-07-19

    This paper describes a new approach for the preparation of polyamic acid (PAA) composites containing Ag and Au nanoparticles. The composite film of PAA and metal particles were obtained upon electrodeposition of a PAA solution containing gold or silver salts with subsequent thermal treatment, while imidization to polyimide is prevented. The structural characterization of the films is provided by 1H NMR and Fourier transform infrared spectroscopy (FTIR), while the presence of metallic nanoparticles within the polymeric matrix was confirmed by scanning electron microscopy (SEM), cyclic voltammetry (CV), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This approach utilizes the unique reactivity of PAA by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperature to design polymer-assisted nanostructured materials. The ability to prevent the cyclization process should enable the design of a new class of electrode materials by use of thermal reduction and/or electrodeposition.

  14. Nanocrystalline TiO2 by three different synthetic approaches: A ...

    Indian Academy of Sciences (India)

    TECS

    templating, mechanochemical synthesis and combustion synthesis for the production of nanostructured TiO2, is reported. In the sol–gel method, nanocrystalline TiO2 is produced when titanium tetraisopropoxide is tem- plated onto dodecylamine which forms the liquid crystalline hexagonal structure and the template is then.

  15. Photoinduced properties of nanocrystalline TiO2 sol–gel derived ...

    Indian Academy of Sciences (India)

    Administrator

    powder samples confirmed the presence of polycrystalline anatase phase with a crystal size of 17 nm. The results indicated that UV light ... Titanium dioxide (TiO2) thin films have attracted a great deal of attention. They have many ... The production of nanostructure films is nowadays an established method and TiO2 ...

  16. Nanocrystalline TiO2 by three different synthetic approaches: A ...

    Indian Academy of Sciences (India)

    A comparison of the efficiency of three different synthetic routes viz. sol–gel method involving templating, mechanochemical synthesis and combustion synthesis for the production of nanostructured TiO2, is reported. In the sol–gel method, nanocrystalline TiO2 is produced when titanium tetraisopropoxide is templated onto ...

  17. Spectral Sensitization of TiO2 Substrates by Monolayers of Porphyrin Heterodimers

    NARCIS (Netherlands)

    Koehorst, R.B.M.; Boschloo, G.K.; Savenije, T.J.; Goossens, A.; Schaafsma, T.J.

    2000-01-01

    Photoelectrochemical cells have been constructed by depositing monolayers of oriented covalently linked zinc/free base porphyrin heterodimers onto ~30 nm nonporous layers of TiO2 on ITO, deposited by metal-organic chemical vapor deposition (MO-CVD), and onto ~100 nm porous, nanostructured TiO2

  18. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    Science.gov (United States)

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  19. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  20. TiO2-B@VS2 heterogeneous nanowire arrays as superior anodes for lithium-ion batteries

    Science.gov (United States)

    Cao, Minglei; Gao, Lin; Lv, Xiaowei; Shen, Yan

    2017-05-01

    Heterogeneous nanostructured materials are currently studied as promising electrode materials for lithium-ion batteries (LIBs) due to effective synergy. Herein, we report on TiO2-B@VS2 heterogeneous nanowire arrays (TVNAs) as additives-free anodes for LIBs. The VS2 is a two-dimensional (2D) material with intrinsically metallic nature. Importantly, this layered 2D material offers a large interlayer spacing for facile intercalation of lithium-ions and possesses a high theoretical capacity. The TVNAs electrode shows a reversible capacity of 365.4 mA h g-1 after 500 cycles at a current density of 1 C (335 mA g-1), being significantly superior than the pure TiO2-B nanowire arrays (TNAs) electrode (192.7 mA h g-1). Impressively, the TVNAs electrode delivers a high rate capacity of 171.2 mA h g-1 at 10 C rate. The merits of the TVNAs electrode could be ascribed to the outstanding structural stability of the TNAs and the high capacity and conductivity of VS2.

  1. Oxygen and chlorine evolution on RuO2 + TiO2 + CeO2 + Nb2O5 mixed oxide electrodes

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Faria, Luiz A. de

    2006-01-01

    A systematic investigation was conducted on the mechanism and electrocatalytic properties of O 2 and Cl 2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru (0.3) Ti (0.6) Ce (0.1-x) ]O 2 [Nb 2 O 5 ] (x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO 2 , while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb 2 O 5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO 2 content compositions are fragile, due mainly to the porosity caused by CeO 2 presence. On the other hand, Nb 2 O 5 addition decreases considerably this instability

  2. TiO2 micro-devices fabricated by laser direct writing

    Science.gov (United States)

    Wang, Yongsheng; Miao, Junjie; Tian, Ye; Guo, Chuanfei; Zhang, Jianming; Ren, Tianling; Liu, Qian

    2011-08-01

    Constructing micro/nanostructures based on TiO2 has attracted increasing attention due to the excellent properties of TiO2. In this study, we report a simple method to directly fabricate TiO2 micro-devices, including Fresnel lens, gear structures and suspended beams only by laser direct writing and selective-etching processing. This route shows great potential in fabricating TiO2 structures for micro-electro-mechanical systems, diffractive optical elements and bio-applications, owing to its maskless process, low cost, and flexible dry/wet alternative etching treatment.

  3. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes.

    Science.gov (United States)

    Koklu, Anil; Sabuncu, Ahmet C; Beskok, Ali

    2017-06-01

    Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern-leaf type self-similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high-conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  5. Nanostructured platinum as an electrochemically and mechanically stable electrode coating.

    Science.gov (United States)

    Boehler, C; Oberueber, F; Stieglitz, T; Asplund, M

    2017-07-01

    Nanostructured materials exhibit large electrochemical surface areas and are thus of high interest for neural interfaces where low impedance and high charge transfer characteristics are desired. While progress in nanotechnology successively enabled smaller feature sizes and thus improved electrochemical properties, concerns were raised with respect to the mechanical stability of such nano structures for use in neural applications. In our study we address these concerns by investigating the mechanical and electrochemical stability of nanostructured platinum. Neural probes with nano-Pt were exposed to exaggerated stress tests resembling insertion into neural tissue over 60 mm distance or long-term stimulation over 240 M biphasic current pulses. Thereby only insignificant changes in electrochemical properties and morphological appearance could be observed in response to the test, proving that nanostructured platinum exhibits outstanding stability. With this finding, a major concern in using nanostructured materials for interfacing neural tissue could be eliminated, demonstrating the high potential of nanostructured platinum for neuroprosthetic devices.

  6. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application

    Directory of Open Access Journals (Sweden)

    Arshid Numan

    2017-08-01

    Full Text Available A facile and fast approach for the synthesis of a nanostructured nickel hydroxide (Ni(OH2 via sonochemical technique is reported in the present study. The X-ray diffraction results confirmed that the synthesized Ni(OH2 was oriented in β-phase of hexagonal brucite structure. The nanostructured Ni(OH2 electrode exhibited the maximum specific capacitance of 1256 F/g at a current density of 200 mA/g in 1 M KOH(aq. Ni(OH2 electrodes exhibited the pseudocapacitive behavior due to the presence of redox reaction. It also exhibited long-term cyclic stability of 85% after 2000 cycles, suggesting that the nanostructured Ni(OH2 electrode will play a promising role for high performance supercapacitor application.

  7. Hydrogenated TiO2 nanotube arrays for supercapacitors.

    Science.gov (United States)

    Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat

    2012-03-14

    We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society

  8. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  9. Synthesis and characterization of polythiophene-modified TiO2 ...

    Indian Academy of Sciences (India)

    The highly ordered and uniform TiO2 nanotube arrays were fabricated by anodic oxidation method and PTh(polythiophene)/TiO2 nanotube arrays electrode were obtained by electrochemical polymerization. X-ray powder diffraction (XRD) analysis confirmed the formation of TiO2 phase. The morphologies and optical ...

  10. Ion beam induced single phase nanocrystalline TiO2 formation

    Science.gov (United States)

    Rukade, Deepti A.; Tribedi, L. C.; Bhattacharyya, Varsha

    2014-06-01

    Single phase TiO2 nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×1016 ions/cm2 to 1×1017 ions/cm2 in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO2. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV-vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO2 rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  11. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    Science.gov (United States)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., vs. Ag/AgCl) and charge transfer efficiency. In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite

  12. Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO2 coated MWCNTs hybrid structure for lithium-sulfur batteries

    Science.gov (United States)

    He, Xiulin; Hou, Huijie; Yuan, Xiqing; Huang, Long; Hu, Jingping; Liu, Bingchuan; Xu, Jingyi; Xie, Jia; Yang, Jiakuan; Liang, Sha; Wu, Xu

    2017-01-01

    Lithium-sulfur batteries have attracted great attention because of their high energy density, environmental friendliness, natural abundance and intrinsically low cost of sulfur. However, their commercial applications are greatly hindered by rapid capacity decay due to poor conductivity of electrode, fast dissolution of the intermediate polysulfides into the electrolyte, and the volume expansion of sulfur. Herein, we report a novel composite MWCNTs@TiO2-S nanostructure by grafting TiO2 onto the surface of MWCNTs, followed by incorporating sulfur into the composite. The inner MWCNTs improved the mechanical strength and conductivity of the electrode and the outer TiO2 provided the adsorption sites to immobilize polysulfides due to bonding interaction between TiO2 and polysulfides. The MWCNTs@TiO2-S composite with a mass ratio of 50% (MWCNTs in MWCNTs@TiO2) exhibited the highest electrochemistry performance among all compositing ratios of MWCNTs/TiO2. The performance improvement might be attributed to the downward shift of the apparent Fermi level to a more positive potential and electron rich space region at the interface of MWCNTs-TiO2 that facilitates the reduction of lithium polysulfide at a higher potential. Such a novel hybrid structure can be applicable for electrode design in other energy storage applications. PMID:28098167

  13. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  14. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    Science.gov (United States)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  15. Broadband solar absorption enhancement via periodic nanostructuring of electrodes.

    KAUST Repository

    Adachi, Michael M

    2013-10-14

    Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1,100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.

  16. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries.

    Science.gov (United States)

    Shi, Ye; Zhang, Jun; Bruck, Andrea M; Zhang, Yiman; Li, Jing; Stach, Eric A; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S; Yu, Guihua

    2017-06-01

    This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe 3 O 4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total electrode mass, compared to current literature. This 3D nanostructured gel-based framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  18. Biomimetic Approach to Solar Cells Based on TiO2 Nanotubes

    National Research Council Canada - National Science Library

    Allen, Jan L; Lee, Ivan C; Wolfenstine, Jeff

    2008-01-01

    The goal of this research was to explore the use of nanotube titanium dioxide (TiO2) as an electrode material in dye-sensitized solar cells in order to further the development of solar cell technology...

  19. Development of inorganic composite material based TiO2 for environmental application

    Science.gov (United States)

    Wahyuningsih, Sayekti; Handono Ramelan, Ari; Pramono, Edi; Purnawan, Candra; Anjani, Velina; Estianingsih, Puji; Rinawati, Ludfiaastu; Fadli, Khusnan

    2016-02-01

    Syntheses of various materials, for green energy nanotechnology applications have special attention to develop emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, nickel oxide, lead oxide and their composites, was introduced. The use of nanomaterials as photocatalysts water detoxification by visible light photocatalyst of an inorganic composite as well as dye-sensitized photoreduction was also discussed. The enhancement of selective photocatalyst system was gain by the use of photocatalyst composite materials and applied potential bias on the system. The photoelectrocatalytic degradation of rhodamine B (RB) and Remazol Yellow FG (RY) as water contaminant using the thin film of modified TiO2 as the electrode was investigated via a series of potentials, and various pH. The result showed that the anodic potential bias influenced the degradation rate of water contaminant and exhibited better performance by the positive anodic bias was applied. The pH conditions influence the active dye structure whereas it will interact with inorganic semiconductor photocatalyst. Using dye- sensitized TiO2 system (DSTs), we have applied this system to build water decolorization as a novelty environmental remediation system.

  20. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    International Nuclear Information System (INIS)

    Manivannan, Shanmugam; Ramaraj, Ramasamy

    2013-01-01

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV–Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications

  1. Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O

    Directory of Open Access Journals (Sweden)

    Feleke Zewge

    2008-04-01

    Full Text Available This work describes, photoelectrocatalytic degradation of organic pollutants by using methyl orange (an azo dye as a model compound. The TiO2 thin film and TiO2/Cu2O composite electrodes were used as semiconductor photo electrodes. Photo catalysis by UV light corresponding to the light intensity range of the solar light was employed with the aim of using renewable and pollution-free energy. Result showed that the rate of removal of color was enhanced when potential bias of 1.5 V was applied. The degradation rate was also increased either in acidic (pH 2 or alkaline (pH 10 conditions. The application of a positive potential higher than the flat-band potential on the TiO2 electrode decreases the rapid charge recombination process, and enhanced the degradation of organic compound. When the TiO2/Cu2O thin film electrode was used, more efficient electron and hole separation was observed in the composite system under very low potential. It is considered that the photo-generated holes migrate towards the interface while the electrons migrate towards TiO2 and then to the back contact transparent fluorine doped tin-oxide-coated glass (TCO, making the behavior of the composite film analogous to that of an n-type semiconductor. In all cases, the kinetics of the photo catalytic oxidation of methyl orange followed a pseudo first order model and the apparent rate constant may depend on several factors such as, the nature and concentration of the organic compound, radiant flux, the solution pH and the presence of other organic substances.

  2. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    Science.gov (United States)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  3. Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering.

    Science.gov (United States)

    Jang, Segeun; Kang, Seong Min; Choi, Mansoo

    2017-12-20

    This work reports a facile fabrication method for constructing multifunctional moth-eye TiO 2 /polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer. Mesoporous TiO 2 nanoparticles act as an effective UV filter, completely blocking high-energy UVB light and partially blocking UVA light and forming a robust TiO 2 /PDMS composite pad by allowing the PDMS solution to easily fill the porous TiO 2 network. The paraboloid-shaped moth-eye nanostructures provided high transparency in the visible spectrum and also have self-cleaning effects because of nanoroughness on the surface. Furthermore, we successfully achieved a desired multiscale-patterned surface by partially curing select regions using TiO 2 /PDMS pads with partial UVA ray blockers. The ability to fabricate multifunctional polymeric pads is advantageous for satisfying increasing demands for flexible and wearable electronics, displays, and solar cells.

  4. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning.

    Science.gov (United States)

    Zhu, Peining; Peining, Zhu; Nair, A Sreekumaran; Shengjie, Peng; Shengyuan, Yang; Ramakrishna, Seeram

    2012-02-01

    We report the fabrication of one-dimensional TiO(2)-graphene nanocomposite by a facile and one-step method of electrospinning. The unique nanostructured composite showed a significant enhancement in the photovoltaic and photocatalytic properties in comparison to TiO(2) as demonstrated in dye-sensitized solar cells and photodegradation of methyl orange.

  5. Nanostructured ternary electrodes for energy-storage applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-02-13

    A three-component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ-MnO 2 nanoflowers anchored onto carbon nanotubes (γ-MnO 2/CNT) as spacers for graphene nanosheets (GNs). The three-component, composite electrode doubles the specific capacitance with respect to GN-only electrodes, giving the highest-reported specific capacitance (308 F g -1) for symmetric supercapacitors containing MnO 2 and GNs using a two-electrode configuration, at a scan rate of 20 mV s -1. A maximum energy density of 43 W h kg -1 is obtained for our symmetric supercapacitors at a constant discharge-current density of 2.5 A g -1 using GN-(γ-MnO 2/CNT)-nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solid electrolyte interphase (SEI) at TiO2 electrodes in li-ion batteries : Defining apparent and effective SEI based on evidence from X-ay photoemission spectroscopy and scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ventosa, Edgar; Madej, Edyta; Zampardi, Giorgia; Mei, Bastian; Weide, Philipp; Antoni, Hendrik; La Mantia, Fabio; Muhler, Martin; Schuhmann, Wolfgang

    2017-01-01

    The high (de)lithiation potential of TiO2 (ca. 1.7 V vs Li/ Li+ in 1 M Li+) decreases the voltage and, thus, the energy density of a corresponding Li-ion battery. On the other hand, it offers several advantages such as the (de)lithiation potential far from lithium deposition or absence of a solid

  7. Crab shells as sustainable templates from nature for nanostructured battery electrodes.

    Science.gov (United States)

    Yao, Hongbin; Zheng, Guangyuan; Li, Weiyang; McDowell, Matthew T; Seh, Zhiwei; Liu, Nian; Lu, Zhenda; Cui, Yi

    2013-07-10

    Rational nanostructure design has been a promising route to address critical materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics, vehicle electrification, and grid-scale storage. However, synthesis of functional nanostructures often involves expensive starting materials and elaborate processing, both of which present a challenge for successful implementation in low-cost applications. In seeking a sustainable and cost-effective route to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials. Here, we show that crab shells with the unique Bouligand structure consisting of highly mineralized chitin-protein fibers can be used as biotemplates to fabricate hollow carbon nanofibers; these fibers can then be used to encapsulate sulfur and silicon to form cathodes and anodes for Li-ion batteries. The resulting nanostructured electrodes show high specific capacities (1230 mAh/g for sulfur and 3060 mAh/g for silicon) and excellent cycling performance (up to 200 cycles with 60% and 95% capacity retention, respectively). Since crab shells are readily available due to the 0.5 million tons produced annually as a byproduct of crab consumption, their use as a sustainable and low-cost nanotemplate represents an exciting direction for nanostructured battery materials.

  8. Design rules of nanostructured transparent conductive electrodes for light trapping in hematite photoanodes

    Science.gov (United States)

    Eftekharinia, Behrooz; Moshaii, Ahmad; Dabirian, Ali

    2017-07-01

    Hematite is an appealing material for photoelectrochemical water splitting due to nearly ideal bandgap and Earth abundance. However, its short-distance hole transport has so far hindered exploiting its full potential. Two nanostructured transparent electrodes coated with a thin hematite layer are studied using full-field electromagnetic modeling. One structure comprises an ordered array of stripes of a transparent conductive oxide (TCO) and the other is composed of a square-lattice array of TCO nanorods. We find that height and filling ratio (FR) of the nanostructured elements constitutes the most crucial design parameter where the tall nanostructures with small FR constitute the ideal design for a nanostructured electrode with resonant-size elements. The simulations show that current densities up to 10.4 mA cm-2 can be obtained in a 20-nm thick hematite layer uniformly coated onto a properly designed nanostructured transparent conductive scaffold. Practical permittivity data are used in the simulation and the results show that these structures are quite robust against irregularities that might occur during the fabrications process.

  9. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    Science.gov (United States)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  10. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2014-09-01

    Full Text Available An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor’s output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  11. Hierarchical TiO2 nanospheres with dominant {001} facets: facile synthesis, growth mechanism, and photocatalytic activity.

    Science.gov (United States)

    Li, Hongmei; Zeng, Yangsu; Huang, Tongcheng; Piao, Lingyu; Yan, Zijie; Liu, Min

    2012-06-11

    Hierarchical TiO(2) nanospheres with controlled surface morphologies and dominant {001} facets were directly synthesized from Ti powder by a facile, one-pot, hydrothermal method. The obtained hierarchical TiO(2) nanospheres have a uniform size of 400-500 nm and remarkable 78 % fraction of {001} facets. The influence of the reaction temperature, amount of HF, and reaction time on the morphology and the exposed facets was systematically studied. A possible growth mechanism speculates that Ti powder first dissolves in HF solution, and then flowerlike TiO(2) nanostructures are formed by assembly of TiO(2) nanocrystals. Because of the high concentration of HF in the early stage, these TiO(2) nanostructures were etched, and hollow structures formed on the surface. After the F(-) ions were effectively absorbed on the crystal surfaces, {001} facets appear and grow steadily. At the same time, the {101} facets also grow and meet the {101} facets from adjacent truncated tetragonal pyramids, causing coalescence of these facets and formation of nanospheres with dominant {001} facets. With further extension of the reaction time, single-crystal {001} facets of hierarchical TiO(2) nanospheres are dissolved and TiO(2) nanospheres with dominant {101} facets are obtained. The photocatalytic activities of the hierarchical TiO(2) nanospheres were evaluated and found to be closely related to the exposed {001} facets. Owing to the special hierarchical architecture and high percentage of exposed {001} facets, the TiO(2) nanospheres exhibit much enhanced photocatalytic efficiency (almost fourfold) compared to P25 TiO(2) as a benchmark material. This study provides new insight into crystal-facet engineering of anatase TiO(2) nanostructures with high percentage of {001} facets as well as opportunities for controllable synthesis of 3D hierarchical nanostructures. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The influence of concentration on the morphology of TiO2 thin films prepared by spray pyrolysis for electrochemical study

    Science.gov (United States)

    Fugare, B. Y.; Lokhande, B. J.

    2017-06-01

    In the nanoscale architecture, expected morphology plays an important role in the fabrication of supercapacitive devices due to their highly porous properties. Herein, a well-defined rutile TiO2 architecture was successfully prepared by spray pyrolysis technique (SPT), by changing the concentration of the spraying solution from 0.01 to 0.1 M at 723 K deposition temperature onto stainless steel substrates. The thermal decomposition behavior of the precursor is analyzed using thermogravimetric analyzer. As-deposited thin film electrodes exhibits rutile tetragonal crystalline structure confirmed using XRD. FT-IR study indicate the presence of Ti=O stretching vibration in the range 400-1000 cm-1. The obtained nanostructures merely changes by changing the concentration of spraying solution and process parameters as strongly evidenced using SEM. TEM image and SAED pattern confirms the formation of nanorods and rutile tetragonal structure of TiO2. EDAX confirms formation of pristine TiO2. Wettability of samples shows angle of contact changes by changing the sample thickness and surface roughness of the samples. Optimized electrode shows maximum specific capacitance 273.84 F/g at 2 mV/s in 1 M KOH. Maximum values of specific energy (SE), specific power (SP) and efficiency as observed using galvanostatic charge-discharge are 04.32 Wh/Kg, 70.27 KW/Kg and 90.37%, respectively.

  13. Fabrication and characterization dye sensitized solar cell (DSSC) based on TiO2/SnO2 composite

    Science.gov (United States)

    Musyaro'ah, Huda, Ichsanul; Indayani, Wahyu; Gunawan, Bodi; Yudhoyono, G.; Endarko

    2017-01-01

    Dye-sensitized solar cell (DSSC) based on TiO2/SnO2 composite electrode has been fabricated. In this research, modifications TiO2 electrode in the form of composite TiO2/SnO2 which aims to optimize the process of transfer and charge separation that reduces premature recombination in the cells, so as to increase the conversion efficiency and stability of dye-sensitized solar cell performance. In this study, DSSC is composed of several components, among others, a semiconductor oxide, a layer of dye, a counter electrode, and an electrolyte. This study used three types of semiconductors at the working electrode is pure TiO2, composite TiO2/SnO2 and pure SnO2, electrolyte gel based polymer PEG with BM 1000, plate carbon as the counter electrode (cathode), and the use of dye from synthetic materials N-749 as dye sensitizer. This study tested with xenon lamp light source intensity of 100mW/cm2. Results of research and calculations showed that the DSSC based composite electrode TiO2/SnO2 better than the DSSC based pure TiO2 electrodes and based pure SnO2 electrodes, this is indicated by the value efficient as follows: 0.041%, 0.019%, and 0.0114%.

  14. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    Science.gov (United States)

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically.

  16. A TiO2nanotube network electron transport layer for high efficiency perovskite solar cells.

    Science.gov (United States)

    Gao, Xianfeng; Li, Jianyang; Gollon, Sam; Qiu, Ming; Guan, Dongsheng; Guo, Xiaoru; Chen, Junhong; Yuan, Chris

    2017-02-15

    The electron transport layer (ETL) plays a critical role in high efficiency perovskite solar cells. In this study, an anodic TiO 2 nanotube film was transformed into a TiO 2 nanotube network film, which maintained its advantage as an efficient ETL for perovskite solar cells. Compared with the mesoporous TiO 2 nanoparticle ETL, the TiO 2 nanotube network ETL can increase the efficiency of perovskite solar cells by 26.6%, which is attributed to its superior charge collection property and light trapping ability. The results confirm the importance of optimizing the electron collecting layer and suggest another way to design and fabricate novel perovskite solid state solar cells, potentially by using a TiO 2 nanotube network film as an alternative high efficiency electrode.

  17. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    OpenAIRE

    Ronghua Wang; Meng Han; Qiannan Zhao; Zonglin Ren; Xiaolong Guo; Chaohe Xu; Ning Hu; Li Lu

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10?20?nm are uniformly composited with GNS by a two-step hydrothermal-a...

  18. The Photocatalytic Activity and Compact Layer Characteristics of TiO2 Films Prepared Using Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    H. C. Chang

    2014-01-01

    Full Text Available TiO2 compact layers are used in dye-sensitized solar cells (DSSCs to prevent charge recombination between the electrolyte and the transparent conductive substrate (indium tin oxide, ITO; fluorine-doped tin oxide, FTO. Thin TiO2 compact layers are deposited onto ITO/glass by means of radio frequency (rf magnetron sputtering, using deposition parameters that ensure greater photocatalytic activity and increased DSSC conversion efficiency. The photoinduced decomposition of methylene blue (MB and the photoinduced hydrophilicity of the TiO2 thin films are also investigated. The photocatalytic performance characteristics for the deposition of TiO2 films are improved by using the Grey-Taguchi method. The average transmittance in the visible region exceeds 85% for all samples. The XRD patterns of the TiO2 films, for sol-gel with spin coating of porous TiO2/TiO2 compact/ITO/glass, show a good crystalline structure. In contrast, without the TiO2 compact layer (only porous TiO2, the peak intensity of the anatase (101 plane in the XRD patterns for the TiO2 film has a lower value, which demonstrates inferior crystalline quality. With a TiO2 compact layer to prevent charge recombination, a higher short-circuit current density is obtained. The DSSC with the FTO/glass and Pt counter electrode demonstrates the energy conversion efficiency increased.

  19. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  20. Nanostructured MnO₂ as Electrode Materials for Energy Storage.

    Science.gov (United States)

    Julien, Christian M; Mauger, Alain

    2017-11-17

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO₂ nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO₂ particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  1. First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage

    Science.gov (United States)

    Li, S. N.; Liu, J. B.; Liu, B. X.

    2016-07-01

    The development of competitive Na- and Mg-ion batteries (NIBs and MIBs) with performance comparable to Li-ion batteries is hindered by the major challenge of finding advanced electrode materials. In this work, nanostructured TiS2 electrodes including nanosheets, nanoribbons and nanotubes are shown by first principles calculations to achieve improved Na and Mg ion diffusion as compared with the bulk phase. Comparative studies between Li, Na, and Mg reveal that the diffusion kinetics of Na ions would especially benefit from the nanostructure design of TiS2. More specifically, the Na ion diffusivity turns out to be considerably higher than Li ion diffusivity, which is opposite to that observed in bulk TiS2. However, in the case of Mg ions, fast diffusion is still beyond attainment since a relatively high degree of interaction is expected between Mg and the S atoms. Edge-induced modifications of diffusion properties appear in both Na and Mg ions, while the mobility of Li ions along the ribbon edges may not be as appealing. Effects of the curvature of nanotubes on the adsorption strength and ion conductivity are also explored. Our results highlight the nanostructure design as a rich playground for exploring electrodes in NIBs and MIBs.

  2. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  3. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  4. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Science.gov (United States)

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  5. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  6. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  7. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  8. Enhancing the Supercapacitor Performance of Graphene/MnO 2 Nanostructured Electrodes by Conductive Wrapping

    KAUST Repository

    Yu, Guihua

    2011-10-12

    MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ∼20% and ∼45%, respectively, with values as high as ∼380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices. © 2011 American Chemical Society.

  9. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.

    Science.gov (United States)

    Yu, Guihua; Hu, Liangbing; Liu, Nian; Wang, Huiliang; Vosgueritchian, Michael; Yang, Yuan; Cui, Yi; Bao, Zhenan

    2011-10-12

    MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ∼20% and ∼45%, respectively, with values as high as ∼380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices.

  10. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2014-01-01

    Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is

  11. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, David S.; Pedersen, Thomas

    2013-01-01

    The semiconducting materials used for photoelectrochemical (PEC) water splitting must withstand the corrosive nature of the aqueous electrolyte over long time scales in order to be a viable option for large scale solar energy conversion. Here we demonstrate that atomic layer deposited titanium...... dioxide (TiO2) overlayers on silicon-based photocathodes generate extremely stable electrodes. These electrodes can produce an onset potential of +0.510 V vs. RHE and a hydrogen evolution saturation current of 22 mA cm−2 using the red part of the AM1.5 solar spectrum (λ > 635 nm, 38.6 mW cm−2). A PEC...

  12. Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators

    Energy Technology Data Exchange (ETDEWEB)

    Stolarczyk, Krzysztof; Nazaruk, Ewa [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rogalski, Jerzy [Department of Biochemistry, Maria Curie Sklodowska University, Sklodowskiej Sq 3, Lublin 20-031 (Poland); Bilewicz, Renata [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)], E-mail: bilewicz@chem.uw.edu.pl

    2008-04-20

    Reduction of dioxygen catalyzed by laccase was studied at carbon electrodes without any added mediators. On bare glassy carbon electrode (GCE) the catalytic reduction did not take place. However, when the same substrate was decorated with carbon nanotubes or carbon microcrystals the dioxygen reduction started at 0.6 V versus Ag/AgCl, which is close to the formal potential of the laccase used. Four different matrices: lecithin, hydrophobin, Nafion and lipid liquid-crystalline cubic phase were employed for hosting fungal laccase from Cerrena unicolor. The carbon nanotubes and nanoparticles present on the electrode provided electrical connectivity between the electrode and the enzyme active sites. Direct electrochemistry of the enzyme itself was observed in deoxygenated solutions and its catalytic activity towards dioxygen reduction was demonstrated. The stabilities of the hosted enzymes, the reduction potentials and ratios of catalytic to background currents were compared. The boron-doped diamond (BDD) electrodes prepolarized to high anodic potentials exhibited behavior similar to that of nanotube covered GCE pointing to the formation of nanostructures during the anodic pretreatment. BDD is a promising substrate in terms of potential of dioxygen reduction, however the catalytic current densities are not large enough for practical applications, therefore as shown in this paper, it should be additionally decorated with carbon particles being in direct contact with the electrode surface.

  13. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    Science.gov (United States)

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  14. High-Efficiency Photochemical Water Splitting of CdZnS/CdZnSe Nanostructures

    Directory of Open Access Journals (Sweden)

    Chen-I Wang

    2013-01-01

    Full Text Available We have prepared and employed TiO2/CdZnS/CdZnSe electrodes for photochemical water splitting. The TiO2/CdZnS/CdZnSe electrodes consisting of sheet-like CdZnS/CdZnSe nanostructures (8–10 μm in length and 5–8 nm in width were prepared through chemical bath deposition on TiO2 substrates. The TiO2/CdZnS/CdZnSe electrodes have light absorption over the wavelength 400–700 nm and a band gap of 1.87 eV. Upon one sun illumination of 100 mW cm−2, the TiO2/CdZnS/CdZnSe electrodes provide a significant photocurrent density of 9.7 mA cm−2 at −0.9 V versus a saturated calomel electrode (SCE. Incident photon-to-current conversion efficiency (IPCE spectrum of the electrodes displays a maximum IPCE value of 80% at 500 nm. Moreover, the TiO2/CdZnS/CdZnSe electrodes prepared from three different batches provide a remarkable photon-to-hydrogen efficiency of 7.3 ± 0.1% (the rate of the photocatalytically produced H2 by water splitting is about 172.8 mmol·h−1·g−1, which is the most efficient quantum-dots-based photocatalysts used in solar water splitting.

  15. Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad, E-mail: saleem.malikape@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Fang, L. [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044 (China); Shaukat, Saleem F.; Ahmad, M. Ashfaq [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Akhtar, Majid Niaz; Jamil, Ayesha; Aslam, Samia [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-04-15

    Highlights: • Hierarchically ZnO nanostructures electrodes were grown using hot plate magnetic stirring at different growth reaction temperature. • We have investigated the effect of working temperature of 160°, 170°, 180°, and 190° on the growth mechanism of nanospheres and on the power conversion efficiency of DSSCs. • ZnO nanospheres with perfect aggregation show superior power conversion efficiency of 1.24% which is about 83% higher than nanoparticles DSSC. • An obvious vogue is that the overall power conversion efficiency decreases as the degree of the spherical aggregation is gradually destroyed. - Abstract: Structural and photovoltaic characteristics of hierarchical ZnO nanostructures solar cell have been studied in relation to growth reaction temperature. It is found that the hierarchical ZnO nanostructures network to act not only as large surface area substrates but also as a transport medium for electrons injected from the dye molecules. The incident photon-to-current conversion efficiency is decreased by increasing the growth reaction temperature of ZnO electrodes. The best conversion efficiency of a 0.25 cm{sup 2} cell is measured to be 1.24% under 100 mW cm{sup −2} irradiation.

  16. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    Science.gov (United States)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  17. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses

    Science.gov (United States)

    Wang, Ning; Pan, Ye; Wu, Shikai; Zhang, Enming; Dai, Weiji

    2018-01-01

    The 3D nanostructure rutile TiO2 photocatalyst was rapidly synthesized by dealloying method using Cu60Ti30Y10 amorphous ribbons as precursors. The preparation period was kept down to just 3 h, which is much shorter than those of the samples by dealloying Cu60Ti30Al10, Cu70Ti30 and Cu60Ti30Sn10. The synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and XPS reveal the successful synthesis of rutile TiO2. The SEM and TEM images show that the synthesized rutile TiO2 nano-material presents homogeneous distributed 3D nanoflowers structure, which is composed of large quantities of fine rice-like nanorods (40-150 nm in diameter and 100-250 nm in length). BET specific surface areas of the samples were investigated by N2 adsorption-desorption isotherms, the fabricated rutile TiO2 exhibits very high specific surface area (194.08 m2/g). The photocatalytic activities of the samples were evaluated by degrading rhodamine B (RhB) dye (10 mg/L) under the irradiation of both simulated visible light (λ > 420 nm) and ultraviolet (UV) light (λ = 365 nm). The results show that the photocatalytic activity of rutile TiO2 prepared by dealloying Cu60Ti30Y10 amorphous ribbons is higher than those of commercial rutile and the sample synthesized by dealloying Cu70Ti30 precursors. The advantages of both short preparation period and superior photocatalytic activity suggest that Cu60Ti30Y10 metallic glasses are really a kind of perfect titanium source for rapidly fabricating high efficient TiO2 nano-materials. In addition, the influence of chemical composition of the amorphous precursors on preparation period of the rutile TiO2 nano-material was investigated from the point of view of standard electrode potentials.

  18. Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes.

    Science.gov (United States)

    Xia, Xinhui; Xiong, Qinqin; Zhang, Yongqi; Tu, Jiangping; Ng, Chin Fan; Fan, Hong Jin

    2014-06-25

    High-performance electrochemical energy storage (EES) devices require the ability to modify and assemble electrode materials with superior reactivity and structural stability. The fabrication of different oxide/metal core-branch nanoarrays with adjustable components and morphologies (e.g., nanowire and nanoflake) is reported on different conductive substrates. Hollow metal branches (or shells) wrapped around oxide cores are realized by electrodeposition using ZnO nanorods as a sacrificial template. In battery electrode application, the thin hollow metal branches can provide a mechanical protection of the oxide core and a highly conductive path for charges. As a demonstration, arrays of Co3O4/Ni core-branch nanowires are evaluated as the anode for lithium ion batteries. The thin metal branches evidently improve the electrochemical performance with higher specific capacity, rate capability, and capacity retention than the unmodified Co3O4 counterparts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  20. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  1. A Double Layer Sensing Electrode “BaTi(1-XRhxO3/Al-Doped TiO2” for NO2 Detection above 600 °C

    Directory of Open Access Journals (Sweden)

    Bilge Saruhan

    2016-04-01

    Full Text Available NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO2/NO ≥ 500 °C lies on the NO side. High temperature stability of TiO2 makes it a promising material for elevated temperature towards CO, H2, and NO2. The doping of TiO2 with Al3+ (Al:TiO2 increases the sensitivity and selectivity of sensors to NO2 and results in a relatively low cross-sensitivity towards CO. The results indicate that NO2 exposure results in a resistance decrease of the sensors with the single Al:TiO2 layers at 600 °C, with a resistance increase at 800 °C. This alteration in the sensor response in the temperature range of 600 °C and 800 °C may be due to the mentioned thermodynamic equilibrium changes between NO and NO2. This work investigates the NO2-sensing behavior of duplex layers consisting of Al:TiO2 and BaTi(1-xRhxO3 catalysts in the temperature range of 600 °C and 900 °C. Al:TiO2 layers were deposited by reactive magnetron sputtering on interdigitated sensor platforms, while a catalytic layer, which was synthesized by wet chemistry in the form of BaTi(1-xRhxO3 powders, were screen-printed as thick layers on the Al:TiO2-layers. The use of Rh-incorporated BaTiO3 perovskite (BaTi(1-xRhxO3 as a catalytic filter stabilizes the sensor response of Al-doped TiO2 layers yielding more reliable sensor signal throughout the temperature range.

  2. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode

    Science.gov (United States)

    Yu, Yanhao; Zhang, Zheng; Yin, Xin; Kvit, Alexander; Liao, Qingliang; Kang, Zhuo; Yan, Xiaoqin; Zhang, Yue; Wang, Xudong

    2017-06-01

    Black silicon (b-Si) is a surface-nanostructured Si with extremely efficient light absorption capability and is therefore of interest for solar energy conversion. However, intense charge recombination and low electrochemical stability limit the use of b-Si in photoelectrochemical solar-fuel production. Here we report that a conformal, ultrathin, amorphous TiO2 film deposited by low-temperature atomic layer deposition (ALD) on top of b-Si can simultaneously address both of these issues. Combined with a Co(OH)2 thin film as the oxygen evolution catalyst, this b-Si/TiO2/Co(OH)2 heterostructured photoanode was able to produce a saturated photocurrent density of 32.3 mA cm-2 at an external potential of 1.48 V versus reversible reference electrode (RHE) in 1 M NaOH electrolyte. The enhanced photocurrent relative to planar Si and unprotected b-Si photoelectrodes was attributed to the enhanced charge separation efficiency as a result of the effective passivation of defective sites on the b-Si surface. The 8-nm ALD TiO2 layer extends the operational lifetime of b-Si from less than half an hour to four hours.

  3. Effect of oxygen vacancies on Li-storage of anatase TiO2 (001 ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... High adsorption energy of 5.91 eV for Li atoms indicates that oxygen vacancies have a positive effect on the Li storage of nanostructured anatase TiO2. ... anatase, as evidenced by a higher charge transfer rate and chemical diffusion coefficient ... electron exchange correlation energy. The calculated value.

  4. TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jirátová, Květa

    2013-01-01

    Roč. 265, JAN 15 (2013), s. 309-313 ISSN 0169-4332 Institutional support: RVO:67985858 Keywords : nano-structured TiO2 * NiW catalysts * XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.538, year: 2013

  5. Iron oxide nanostructured electrodes for detection of copper(II) ions.

    Science.gov (United States)

    Santos, J G M; Souza, J R; Letti, C J; Soler, M A G; Morais, P C; Pereira-da-Silva, M A; Paterno, L G

    2014-09-01

    Iron oxide nanostructured (ION) electrodes were assembled layer-by-layer onto ITO-coated glass substrates and their structure, morphology, and electrochemical properties were investigated, the latter aiming at the development of a chemical sensor for Cu2+. The electrodes were built by immersing the substrate alternately into an aqueous colloidal suspension of positively charged magnetite nanoparticles (np-Fe3O4, 8 nm) and an aqueous solution of anionic sodium sulfonated polystyrene (PSS). The adsorbed amount of both materials was monitored ex-situ by UV-vis spectroscopy and it was found to increase linearly with the number of deposition cycles. The resulting films feature a densely-packed structure of magnetite nanoparticles, as suggested by AFM and Raman spectroscopy, respectively. Cyclic voltammograms of electrodes immersed in acetate buffer (pH 4.6) displayed three electrochemical events that were tentatively ascribed to the reduction of Fe(III) oxy-hydroxide to magnetite, reduction of maghemite to magnetite, and finally oxidation of magnetite to maghemite. The effect of np-Fe3O4/PSS bilayers on the ION electrode performance was to increase the anodic and cathodic currents produced during electrochemical oxidation-reduction of the Fe(CN)(3-/4-) redox couple. With more bilayers, the ION electrode provided higher anodic/cathodic currents. Moreover, the redox couple exhibited a quasi-reversible behavior at the ION electrode as already observed with other working electrode systems. Fitting of voltammetry data provided the apparent electron transfer constants, which were found to be higher in ION electrodes for both redox couples (Fe(CN)(3-/4-) and Cu(2+/0)). By means of differential pulsed anodic stripping voltammetry, the ION electrodes were found to respond linearly to the presence of Cu2+ in aqueous samples in the range between 1.0 and 8.0 x 10(-6) mol x L(-1) and displayed a limit of detection of 0.3 x 10(-8) mol x L(-1). The sensitivity was - 0.6μA/μmol x L

  6. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    Science.gov (United States)

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-02-12

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  7. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    Science.gov (United States)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  8. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  9. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.

    Science.gov (United States)

    Han, Hyungkyu; Song, Taeseup; Lee, Eung-Kwan; Devadoss, Anitha; Jeon, Yeryung; Ha, Jaehwan; Chung, Yong-Chae; Choi, Young-Min; Jung, Yeon-Gil; Paik, Ungyu

    2012-09-25

    Titanium dioxide (TiO(2)) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO(2)-based electrode. The vertically aligned TiO(2) nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO(2) nanotubes electrodes were prepared for this study. The vertically aligned TiO(2) nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO(2) nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.

  10. Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells.

    Science.gov (United States)

    Ajuria, Jon; Etxebarria, Ikerne; Azaceta, Eneko; Tena-Zaera, Ramón; Fernández-Montcada, Nuria; Palomares, Emilio; Pacios, Roberto

    2011-12-14

    1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting for their application in solar cells. Herein, we present a novel procedure to control the ZnO nanowire optoelectronic properties by means of surface modification. The nanowire surface is functionalized with ZnO nanoparticles in order to provide an improved contact to the photoactive P3HT:PCBM film that enhances the overall power conversion efficiency of the resulting solar cell. Charge extraction and transient photovoltage measurements have been used to successfully demonstrate that the surface modified nanostructured electrode contributes in enhancing the exciton dissociating ratio and in enlarging the charge lifetime as a consequence of a reduced charge recombination. Under AM1.5G illumination, all these factors contribute to a considerably large increase in photocurrent yielding unusually high conversion efficiencies over 4% and external quantum efficiencies of 87% at 550 nm for commercially available P3HT:PCBM based solar cells. The same approach might be equally used for polymeric materials under development to overcome the record reported efficiencies.

  11. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.

    Science.gov (United States)

    Tepavcevic, Sanja; Xiong, Hui; Stamenkovic, Vojislav R; Zuo, Xiaobing; Balasubramanian, Mahalingam; Prakapenka, Vitali B; Johnson, Christopher S; Rajh, Tijana

    2012-01-24

    Tailoring nanoarchitecture of materials offers unprecedented opportunities in utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na(+) ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na(2)V(2)O(5) stochiometry of 250 mAh/g. The stability evaluation during charge-discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of ~760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures. © 2011 American Chemical Society

  12. Solvothermal Synthesis of TiO2 Photocatalysts in Ketone Solvents with Low Boiling Points

    Directory of Open Access Journals (Sweden)

    Chau Thanh Nam

    2013-01-01

    Full Text Available The titanium dioxide (TiO2 photocatalysts were synthesized by a solvothermal process in highly alkaline 70 : 30 water : ketone solutions with a TiO2-P25 precursor and calcined at different temperatures. The ketone solvents, such as acetone and methyl ethyl ketone (MEK, had low boiling points (<100°C. The as-prepared samples were characterized by XRD, TEM, FTIR, UV-vis and Raman spectroscopy. The effects of the different solvents on the nanostructure, the morphology, and the photocatalytic performance of the TiO2 products were investigated. Nanotubes formed in water and water-MEK, while nanoparticle/nanowires formed in water-acetone and water-acetone-MEK. The ketone solvents played an important role in the improving nanostructure properties of these products, which affected their photocatalytic reactions. The results indicated that samples synthesized in solvents such as water and MEK had high adsorption and photocatalytic behaviors. The photocatalytic reactivity was the greatest for the TiO2 prepared in MEK and calcined at 100°C, which was even more reactive than the sample prepared in water and TiO2-P25 powder.

  13. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    Science.gov (United States)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  14. Lithiation Thermodynamics and Kinetics of the TiO2(B) Nanoparticles.

    Science.gov (United States)

    Hua, Xiao; Liu, Zheng; Fischer, Michael G; Borkiewicz, Olaf; Chupas, Peter J; Chapman, Karena W; Steiner, Ullrich; Bruce, Peter G; Grey, Clare P

    2017-09-27

    TiO 2 (B) has attracted considerable attention in recent years because it exhibits the largest capacity among all studied titania polymorphs, with high rate performance for Li intercalation being achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li structure in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO 2 (B) nanoparticles is therefore presented using a combination of in situ/operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins with surface reactions in parallel with Li insertion into the subsurface of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b-channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li 0.25 TiO 2 until Li 0.5 TiO 2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves the C' site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li 0.75 TiO 2 . Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. This study not only explores the lithiation reaction thermodynamics and mechanisms of nanoparticulate TiO 2 (B) but also serves as a strong reference for future studies of the bulk phase, and for future calculations to study the Li transport properties of TiO 2 (B).

  15. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    Science.gov (United States)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  16. Characterization of TiO2 films obtained by a wet chemical process

    Science.gov (United States)

    Sedik, Asma; Ferraria, Ana M.; Carapeto, Ana P.; Bellal, Bouzid; Trari, Mohamed; Outemzabet, Ratiba

    2017-12-01

    TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm-1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.

  17. Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping

    International Nuclear Information System (INIS)

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-01-01

    Graphical abstract: - Highlights: • W 6+ -doped TiO 2 nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO 2 nanocrystal colloids can be tuned by tungsten doping. • W 6+ -doped TiO 2 nanocrystal colloids show higher stability and dispersity. • W 6+ -doped TiO 2 nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO 2 nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO 2 samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO 2 nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO 2 colloid combines the characters of high dispersity and high photocatalytic activity

  18. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    Science.gov (United States)

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  19. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma

    International Nuclear Information System (INIS)

    Junkar, Ita; Recek, Nina; Kovač, Janez; Mozetič, Miran; Kulkarni, Mukta; Iglič, Aleš; Drašler, Barbara; Rugelj, Neža; Drobne, Damjana; Humpolicek, Petr

    2016-01-01

    In the present study the biological response to various nanotopographic features after gaseous plasma treatment were studied. The usefulness of nanostructured surfaces for implantable materials has already been acknowledged, while less is known on the combined effect of nanostructured plasma modified surfaces. In the present work the influence of oxygen plasma treatment on nanostructured titanium oxide (TiO 2 ) surfaces was studied. Characterization of the TiO 2 surface chemical composition and morphological features was analyzed after plasma modification by x-ray photoelectron spectroscopy and by scanning electron microscopy while surface wettability was studied with measuring the water contact angle. Cell adhesion and morphology was assessed from images taken with scanning electron microscopy, whereas cell viability was measured with a calorimetric assay. The obtained results showed that oxygen plasma treatment of TiO 2 nanotube surfaces significantly influences the adhesion and morphology of osteoblast-like cells in comparison to untreated nanostructured surfaces. Marked changes in surface composition of plasma treated surfaces were observed, as plasma treatment removed hydrocarbon contamination and removed fluorine impurities, which were present due to the electrochemical anodization process. However no differences in wettability of untreated and plasma treated surfaces were noticed. Treatment with oxygen plasma stimulated osteoblast-like cell adhesion and spreading on the nanostructured surface, suggesting the possible use of oxygen plasma surface treatment to enhance osteoblast-like cell response. (paper)

  1. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications.

    Science.gov (United States)

    Zhao, Huaping; Wang, Chengliang; Vellacheri, Ranjith; Zhou, Min; Xu, Yang; Fu, Qun; Wu, Minghong; Grote, Fabian; Lei, Yong

    2014-12-03

    Self-supported metallic nanopore arrays with highly oriented nanoporous structures are fabricated and applied as ideally nanostructured electrodes for supercapacitor applications. Their large specific surface area can ensure a high capacitance, and their highly oriented and stable nanoporous structure can facilitate ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  3. Modification of TiO2 Surface by Disilanylene Polymers and Application to Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yohei Adachi

    2017-12-01

    Full Text Available The surface modification of inorganic materials with organic units is an important process in device preparation. For the modification of TiO2, organocarboxylic acids (RCO2H are usually used. Carboxylic acids form ester linkages (RCO2Ti with hydroxyl groups on the TiO2 surface to attach the organic groups on the surface. However, the esterification liberates water as a byproduct, which may contaminate the surface by affecting TiO2 electronic states. In addition, the ester linkages are usually unstable towards hydrolysis, which causes dye detachment and shortens device lifetime. In this review, we summarize our recent studies of the use of polymers composed of disilanylene and π-conjugated units as new modifiers of the TiO2 surface. The TiO2 electrodes modified by those polymers were applied to dye-sensitized solar cells.

  4. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    Science.gov (United States)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  5. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Enhanced bolometric properties of TiO2-x thin films by thermal annealing

    Science.gov (United States)

    Ashok Kumar Reddy, Y.; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul; Sreedhara Reddy, P.

    2015-07-01

    The effect of thermal annealing on the bolometric properties of TiO2-x films was investigated. The test-patterned TiO2-x samples were annealed at 300 °C temperature in order to enhance their structural and electrical properties for effective infrared image sensor device applications. The crystallinity was changed from amorphous to rutile/anatase in annealed TiO2-x films. Compared to the as-deposited samples, a decrement of the band gap and a decrease of the electrical resistivity were perceived in annealed samples. We found that the annealed samples show linear current-voltage (I-V) characteristic performance, which implies that ohmic contact was well formed at the interface between the TiO2-x and the Ti electrode. Moreover, the annealed TiO2-x sample had a significantly low 1/f noise parameter (1.21 × 10-13) with a high bolometric parameter (β) value compared to those of the as-deposited samples. As a result, the thermal annealing process can be used to prepare TiO2-x film for a high-performance bolometric device.

  7. TiO2 AND TiO2/ ACTIVE CARBON PHOTOCATALYSTS IMMOBILIZED ON TITANIUM PLATES

    Directory of Open Access Journals (Sweden)

    Winarti Andayani

    2010-06-01

    Full Text Available Study of TiO2 and TiO2 active carbon photocatalyst was done. Immobilization was carried out by sol-gel process using titanium diisopropokside bis-acetylacetonato as titanium precursor. The catalyst was characterized using XRD and SEM. The activity of catalyst was tested using 10 ppm of pentachlorophenol (PCP as a model of organic waste. The test was done by irradiating PCP solution using UV lamp and varying the catalysts of TiO2, and TiO2/C of 8/2 and 5/5. About 5 mL of sample was taken out at interval time of 1, 2, 4, 6, 8 and 10 h iradiation followed by the measurement of PCP residue and chloride ions. From the characterization results it is known that calcined TiO2 andTiO2/C of 8/2 and 5/5 have anatase structure and active as a catalyst. The activity results using PCP as an organic waste showed that combination of TiO2 and active carbon would increase the activity of the catalyst, but at high percentage of active carbon the performance of the photocatalyst decreased.   Keywords: catayist TiO2,  catayist TiO2/active carbon, photocatalysis

  8. Electrospray deposition of titanium dioxide (TiO2) nanoparticles

    International Nuclear Information System (INIS)

    Halimi, Siti Umairah; Bakar, Noor Fitrah Abu; Ismail, Siti Norazian; Hashib, Syafiza Abd; Naim, M. Nazli

    2014-01-01

    Deposition of titanium dioxide (TiO 2 ) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO 2 droplet size decrease from 247–116 nm to show droplet fission occur during the experiment

  9. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min

    2015-01-01

    Graphical abstract: TiO 2 nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO 2 NWAs. • The formation mechanism of the TiO 2 nanostructures was discussed. • The density, average diameter, and morphology of TiO 2 NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO 2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO 2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO 2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO 2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO 2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm −2 , an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved

  10. Preparation and characterization of TiO2/silicate hierarchical coating on titanium surface for biomedical applications.

    Science.gov (United States)

    Huang, Qianli; Liu, Xujie; Elkhooly, Tarek A; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-03-01

    In the current work, TiO2/silicate hierarchical coatings with various nanostructure morphologies were successfully prepared on titanium substrates through micro-arc oxidation (MAO) and subsequent hydrothermal treatment (HT). Moreover, the nucleation mechanism and growth behavior of the nanostructures, hydrophilicity, protein adsorption and apatite-inducing ability of various coatings were also explored. The novel TiO2/silicate hierarchical coatings comprised calcium silicate hydrate (CSH) as an outer-layer and TiO2 matrix as an inner-layer. According to the morphological features, the nanostructures were classified as nanorod, nanoplate and nanoleaf. The morphology, degree of crystallinity and crystalline phases of CSH nanostructures could be controlled by optimizing the HT conditions. The nucleation of CSH nanostructures is caused by release and re-precipitation mechanism. The TiO2/CSH hierarchical coatings exhibited some enhanced physical and biological performances compared to MAO-fabricated coating. The improvement of the hydrophilicity, fibronectin adsorption and apatite-inducing ability was found to be morphological dependent according to the following trend: nanoleaf coating>nanoplate coating>nanorod coating>MAO coating. The results indicate that the tuning of physical and morphological properties of nanostructures coated on biomaterial surface could significantly influence the hydrophilicity, protein adsorption and in vitro bioactivity of biomaterial. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structural properties of TiO2 nanomaterials

    Science.gov (United States)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in

  12. Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode

    Directory of Open Access Journals (Sweden)

    Zhong G

    2015-03-01

    Full Text Available Guangxian Zhong,1,2,* Ruilong Lan,3,* Wenxin Zhang,1,4 Feihuan Fu,5 Yiming Sun,1,4 Huaping Peng,1,4 Tianbin Chen,3 Yishan Cai,6 Ailin Liu,1,4 Jianhua Lin,2 Xinhua Lin1,4 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, 2Department of Orthopaedics, 3The Centralab, First Affiliated Hospital of Fujian Medical University, 4Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, 5Department of Endocrinology, The County Hospital of Anxi, Anxi, 6Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP based on a three-dimensional nanostructure gold electrode using a facile, rapid, “green” square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A “sandwich-type” detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10–50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5. The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis. Keywords: electrochemical immunosensors, three-dimensional nanostructure gold electrode, square-wave oxidation-reduction cycle, alpha-fetoprotein 

  13. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    International Nuclear Information System (INIS)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose

    2017-01-01

    Highlights: • Novel iron anodization process under controlled dynamic conditions was evaluated. • Iron oxide nanostructures composed mainly by hematite were synthesized. • Different morphologies were obtained depending on the electrode rotation speed. • A suitable photocatalyst was obtained by stirring the electrode at 1000 rpm.. - Abstract: Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe 2 O 3 ) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm −2 at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  14. Flame-Made Pt-Loaded TiO2 Thin Films and Their Application as H2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Weerasak Chomkitichai

    2013-01-01

    Full Text Available The hydrogen gas sensors were developed successfully using flame-made platinum-loaded titanium dioxide (Pt-loaded TiO2 nanoparticles as the sensing materials. Pt-loaded TiO2 thin films were prepared by spin-coating technique onto Al2O3 substrates interdigitated with Au electrodes. Structural and gas-sensing characteristics were examined by using scanning electron microscopy (SEM and showed surface morphology of the deposited film. X-ray diffraction (XRD patterns can be confirmed to be the anatase and rutile phases of TiO2. High-resolution transmission electron microscopy (HRTEM showed that Pt nanoparticles deposited on larger TiO2 nanoparticles. TiO2 films loaded with Pt nanoparticles were used as conductometric sensors for the detection of H2. The gas sensing of H2 was studied at the operating temperatures of 300, 350, and 400°C in dry air. It was found that 2.00 mol% Pt-loaded TiO2 sensing films showed higher response towards H2 gas than the unloaded film. In addition, the responses of Pt-loaded TiO2 films at all operating temperatures were higher than that of unloaded TiO2 film. The response increased and the response time decreased with increasing of H2 concentrations.

  15. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Lv, Kangle

    2010-10-01

    Dye-sensitized solar cells (DSSCs) are fabricated based on anatase TiO(2) nanosheets (TiO(2)-NSs) with exposed {001} facets, which were obtained by a simple one-pot hydrothermal route using HF as a morphology controlling agent and Ti(OC(4)H(9))(4) as precursor. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and N(2) adsorption-desorption isotherms. The photoelectric conversion performances of TiO(2)-NSs solar cells are also compared with TiO(2) nanoparticles (TiO(2)-NPs) and commercial-grade Degussa P25 TiO(2) nanoparticle (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are 4.56, 4.24 and 3.64%, respectively. The enhanced performance of the TiO(2)-NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO(2) nanosheet film electrode should also find wide-ranging potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.

  16. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    Science.gov (United States)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  17. Effect of TiO2–graphene nanocomposite photoanode on dye ...

    Indian Academy of Sciences (India)

    Administrator

    A DSSC contains a semiconductor photoanode, a layer of dye attached to the photoanode, a counter electrode and an electrolyte. Titanium dioxide (TiO2) is one of the most promising nanocrystalline semiconductor materials used as a photoanode in the DSSCs due to its low cost, chemical stability and optical properties.6,7 ...

  18. Fast and Large-Scale Anodizing Synthesis of Pine-Cone TiO2 for Solar-Driven Photocatalysis

    OpenAIRE

    Yan Liu; Yanzong Zhang; Lilin Wang; Gang Yang; Fei Shen; Shihuai Deng; Xiaohong Zhang; Yan He; Yaodong Hu; Xiaobo Chen

    2017-01-01

    Anodization has been widely used to synthesize nanostructured TiO2 films with promising photocatalytic performance for solar hydrogen production and pollution removal. However, it usually takes a few hours to obtain the right nanostructures even on a small scale (e.g., 10 mm × 20 mm). In order to attract interest for industrial applications, fast and large-scale fabrication is highly desirable. Herein, we demonstrate a fast and large-scale (e.g., 300 mm × 360 mm) synthesis of pine-cone TiO2 n...

  19. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning

    Science.gov (United States)

    Ramos, Pierre G.; Flores, Edson; Sánchez, Luis A.; Candal, Roberto J.; Hojamberdiev, Mirabbos; Estrada, Walter; Rodriguez, Juan

    2017-12-01

    In this work, ZnO/TiO2 nanostructures were fabricated by an electrostatically modified electrospinning technique using zinc acetate and commercially available TiO2-P25, polyvinyl alcohol, and a solvent. The ZnO/TiO2 nanostructures were fabricated on fluorine-doped tin oxide (FTO) glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The TiO2-P25 nanoparticles were immobilized within zinc acetate/PVA nanofibers. The precursor nanofibers obtained were converted into polycrystalline ZnO and ZnO/TiO2 by calcination at 600 °C. The structure and morphology of the obtained nanostructures were characterized by X-ray diffraction and field emission scanning electron microscopy, respectively. It was found that the TiO2-P25 nanoparticles were attached to the ZnO nanostructures, and the mean diameter of the nanoparticles forming the nanostructures ranged from 31 to 52 nm with increasing the amount of zinc acetate. The incident photon-to-current efficiency (IPCE) spectra of the fabricated nanostructures were measured in a three-electrode cell. The photocatalytic activities of ZnO and ZnO/TiO2 nanostructures were evaluated toward the decomposition of methyl orange. The obtained results evidenced that the coupling of TiO2 with ZnO enhanced the IPCE and improved the photocatalytic activity of ZnO. Particularly, the ZnO/TiO2 nanostructures fabricated with a zinc acetate-to-PVA ratio of 2:3 exhibited the highest IPCE and photocatalytic activity.

  20. Transparent nanostructured electrodes: Electrospun NiO nanofibers/NiO films

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Nanni, F. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Menchini, F. [ENEA, CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Nunziante, P. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy); Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy)

    2016-02-29

    Polyvinylpyrrolidone (PVP)/nickel(II) acetate precursor fibers were deposited by electrospinning directly on radio frequency sputtered thin Ni and NiO films grown on quartz substrate, starting from Ni(II) acetate and PVP solution in ethanol. The samples were calcined in air in the temperature range 400–500 °C to obtain transparent and conductive p-type NiO nanofibers on NiO films. A higher density of nanofibers was obtained on Ni/quartz substrates, as compared to NiO/quartz ones, demonstrating the feasibility of fiber adhesion directly to an insulating substrate previously coated by a thin Ni layer. Samples were characterized by field emission-scanning electron microscopy, X-ray diffraction, spectrophotometric and resistance measurements. - Highlights: • Nanostructured electrodes: electrospun NiO nanofibers/NiO films were fabricated. • NiO fibers were directly grown on insulating substrate coated by thin Ni or NiO films. • Good quality crystalline fibers were obtained at low calcination temperatures. • Transparent and conductive p-type electrodes were fabricated.

  1. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  2. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Po-I; Chung, Li-Ching; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Ma, Chen-Chi M.; Chang, Min-Chao

    2013-01-01

    The nanostructured anatase titanium dioxide/activated carbon composite material for capacitive deionization electrode was prepared in a short time by a lower temperature two-step microwave-assisted ionothermal (sol–gel method in the presence of ionic liquid) synthesis method. This method includes a reaction and a crystallization step. In the crystallization step, the ionic liquid plays a hydrothermal analogy role in driving the surface anatase crystallization of amorphous titanium dioxide nanoparticles formed in the reaction step. The energy dispersive spectroscopic study of the composite indicates that the anatase titanium dioxide nanoparticles are evenly deposited in the matrix of activated carbon. The electrochemical property of the composite electrode was investigated. In comparison to the pristine activated carbon electrode, higher specific capacitance was observed for the nanostructured anatase titanium dioxide/activated carbon composite electrode, especially when the composite was prepared with a molar ratio of titanium tetraisopropoxide/H 2 O equal to 1:15. Its X-ray photoelectron spectroscopic result indicates that it has the highest amount of Ti-OH. The Ti-OH group can enhance the wetting ability and the specific capacitance of the composite electrode. The accompanying capacitive deionization result indicates that the decay of electrosorption capacity of this composite electrode is insignificant after five cycle tests. It means that the ion electrosorption–desorption becomes a reversible process

  3. Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological features

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Jancelewicz, Mariusz; Nowaczyk, Grzegorz; Kempiński, Mateusz; Peplińska, Barbara; Jarek, Marcin; Załęski, Karol; Jurga, Stefan; Smyntyna, Valentyn

    2015-01-01

    TiO 2 thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl 4 and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO 2 crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO 2 are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO 2 and porous Si were established. • The approximate size of TiO 2 nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented

  4. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    Science.gov (United States)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2–4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  5. Interconnected TiO2 Nanowire Networks for PbS Quantum Dot Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Fan Xu

    2012-01-01

    Full Text Available We present a simple method for the fabrication of an interconnected porous TiO2 nanostructured film via dip coating in a colloidal suspension of ultrathin TiO2 nanowires followed by high-temperature annealing. The spheroidization of the nanowires and the fusing of the loosely packed nanowire films at the contact points lead to the formation of nanopores. Using this interconnected TiO2 nanowire network for electron transport, a PbS/TiO2 heterojunction solar cell with a large short-circuit current of 2.5 mA/cm2, a Voc of 0.6 V, and a power conversion efficiency of 5.4% is achieved under 8.5 mW/cm2 white light illumination. Compared to conventional planar TiO2 film structures, these results suggest superior electron transport properties while still providing the large interfacial area between PbS quantum dots and TiO2 required for efficient exciton dissociation.

  6. Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells

    Science.gov (United States)

    Çelikbilek, Ӧzden; Jauffrès, David; Siebert, Elisabeth; Dessemond, Laurent; Burriel, Mónica; Martin, Christophe L.; Djurado, Elisabeth

    2016-11-01

    Understanding, controlling and optimizing the mechanisms of electrode reactions need to be addressed for high performance energy and storage conversion devices. Hierarchically structured porous films of mixed ionic electronic conductors (MIECs) and their composites with ionic conductors offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. Here, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ: Ce0.9Gd0.1O2-δ (LSCF:CGO) composite cathodes with hierarchical porosity from nano to micro range are fabricated. The LSCF film exhibits exceptional electrode performance with area specific resistance values of 0.021 and 0.065 Ω cm2 at 650 and 600 °C respectively, whereas LSCF:CGO composite is only slightly superior than pure LSCF below 450 °C. We report for the first time a numerical 3D Finite Element Model (FEM) comprising real micro/nanostructural parameters from 3D reconstructions into a simple geometry similar to experimentally observed columnar features. The model demonstrates that heterogeneities in porosity within the film thickness and percolation of the ionically conducting phase significantly impact bulk transport at low temperatures. Design guidelines relating performance to microstructure and bulk material properties in relation to experimental results are proposed. Our model has potential to be extended for rational design of larger, regular and heterogeneous microstructures.

  7. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution

    DEFF Research Database (Denmark)

    Seger, Brian; Pedersen, Thomas; Laursen, Anders Bo

    2013-01-01

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO2 layer on top of a thin Ti metal layer may be used to protect an n+p Si photocathode...... photocurrent (H2 evolution) was also significantly enhanced by the antireflective properties of the TiO2 layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe2+/Fe3+ redox couple was used to help elucidate details of the band diagram....

  9. TiO2 Nanotubes Membrane Flexible Sensor for Low-Temperature H2S Detection

    Directory of Open Access Journals (Sweden)

    Patricia María Perillo

    2016-08-01

    Full Text Available This paper presents the fabrication and characterization of a flexible gas sensor based on TiO2 nanotubes membrane, onto which array interdigitated gold electrodes in one side and a common heater in the backside were obtained using conventional microfabrication techniques. This was used to detect hydrogen sulphide within a concentration range of 6–38 ppm. The response to low concentrations of H2S at low temperature and good stability make the sensor a promising candidate for practical applications. These results support the proposal that the TiO2 nanotubes membrane flexible sensors are promising in portable on-site detection based on low cost nanomaterials.

  10. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  11. Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO(2)-PEDOT Nanocables.

    Science.gov (United States)

    Wang, Ying; Jia, Wenzhao; Strout, Timothy; Ding, Yu; Lei, Yu

    2009-01-01

    Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display a fast and reversible response to gaseous NO(2) and NH(3) with a limit of detection as low as 7 ppb and 675 ppb (S/N=3), respectively. This study provides a route for the synthesis of conductive nanostructures which show excellent performance for sensing applications.

  12. Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables

    Science.gov (United States)

    Wang, Ying; Jia, Wenzhao; Strout, Timothy; Ding, Yu; Lei, Yu

    2009-01-01

    Conductive core-sheath TiO2-PEDOT nanocables were prepared using electrospun TiO2 nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO2 core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO2-PEDOT nanocables display a fast and reversible response to gaseous NO2 and NH3 with a limit of detection as low as 7 ppb and 675 ppb (S/N=3), respectively. This study provides a route for the synthesis of conductive nanostructures which show excellent performance for sensing applications. PMID:22423197

  13. Synthesis and Characterization of Structure-Controlled Micro-/Nanocomposite TiO2 Fibers with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2014-01-01

    Full Text Available A series of structure-controlled composite TiO2 fibers combining micro- and nanostructures (hereafter, micro-/nanocomposite were fabricated using a combination of electrospinning and calcination methods, and their photocatalytic activities were investigated. Smooth microscale fibers were obtained by electrospinning a precursor solution containing tetrabutyl titanate and TiF4. TiO2 nanocrystals formed on the microfibers with the help of HF which was produced from the decomposition of TiF4 in calcination. The size and quantity of TiO2 nanocrystals can be controlled by tuning the mass ratio of TiF4 in the sol-gel precursor solutions and the calcination time. The obtained micro-/nanocomposite TiO2 fibers were found to exhibit enhanced photocatalytic properties when compared with the bare microfibers. These micro-/nanocomposite structures exhibit the advantages of both the nanocrystals and microfibers, which will lead to new developments in photocatalysis.

  14. Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2009-08-01

    Full Text Available Conductive core-sheath TiO2-PEDOT nanocables were prepared using electrospun TiO2 nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO2 core has an average diameter of ~78 nm while the PEDOT sheath has a uniform thickness of ~6 nm. The as-prepared TiO2-PEDOT nanocables display a fast and reversible response to gaseous NO2 and NH3 with a limit of detection as low as 7 ppb and 675 ppb (S/N=3, respectively. This study provides a route for the synthesis of conductive nanostructures which show excellent performance for sensing applications.

  15. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications

    Science.gov (United States)

    Nithiyanantham, U.; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-06-01

    A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are

  16. High piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-03-27

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications of energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO3 Nanorod Bundle Arrays (NBA) for high piezoelectric property were successfully synthesized on Fluorine-doped Tin Oxide (FTO) substrate via two-step process, consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures were formed vertically-aligned NBA with bundle diameter of 80 nm and aspect ratio of 6. In particular, chemical etching of TiO2 NBA was conducted to enlarge surface area for effective Ba2+ ion diffusion during perovskite conversion process from TiO2 to BaTiO3. Final structure of perovskite BaTiO3 NBA was found to exhibit feasible piezoelectric response of 3.56 nm with clear phase change of 180o from single BaTiO3 bundle by point Piezoelectric Forced Microscopy (PFM) analysis. Consequently, high piezoelectric NBA can be a promising nanostructure for various nano-scale electronic devices. © 2018 IOP Publishing Ltd.

  17. Fast and Large-Scale Anodizing Synthesis of Pine-Cone TiO2 for Solar-Driven Photocatalysis

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-08-01

    Full Text Available Anodization has been widely used to synthesize nanostructured TiO2 films with promising photocatalytic performance for solar hydrogen production and pollution removal. However, it usually takes a few hours to obtain the right nanostructures even on a small scale (e.g., 10 mm × 20 mm. In order to attract interest for industrial applications, fast and large-scale fabrication is highly desirable. Herein, we demonstrate a fast and large-scale (e.g., 300 mm × 360 mm synthesis of pine-cone TiO2 nanostructures within two min. The formation mechanism of pine-cone TiO2 is proposed. The pine-cone TiO2 possesses a strong solar absorption, and exhibits high photocatalytic activities in photo-oxidizing organic pollutants in wastewater and producing hydrogen from water under natural sunlight. Thus, this study demonstrates a promising method for fabricating TiO2 films towards practical photocatalytic applications.

  18. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  19. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    Science.gov (United States)

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1. Copyright © 2016. Published by Elsevier B.V.

  20. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    Science.gov (United States)

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  1. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  2. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Masao Kaneko

    2011-02-01

    Full Text Available The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN6]4−. That is, the TiO2 nanosurface responds to [Fe(CN6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (Efb lies near the redox potential of the iron complex.

  3. Magnetic induction heating as a new tool for the synthesis of Fe3O4-TiO2 nanoparticle systems

    Science.gov (United States)

    Gómez-Polo, C.; Larumbe, S.; Barquín, L. Fernández; Fernández, L. Rodríguez

    2016-05-01

    A novel method for the synthesis of Fe3O4-TiO2 nanoparticles is described, where the magnetic induction heating of Fe3O4 nanoparticles is employed to calcine a metal oxide precursor gel. Magnetite Fe3O4 nanoparticles were mechanically dispersed in the as-prepared TiO2 gel and subsequently submitted to the action of an ac magnetic field (frequency 313 kHz, amplitude 340 Oe, induction times, t = 10, 20, and 30 min). The magnetic heating of the magnetic nanoparticles is able to calcine the precursor gel and thus to produce the TiO2 crystallization in the anatase phase, as supported by TGA analysis. The calcined structure, magnetically filtered to select the Fe3O4-TiO2 nanostructure, was analyzed by X-ray diffraction and transmission electron microscopy. The results show that the Fe3O4-TiO2 nanostructure basically consists of an ensemble of Fe3O4 cores surrounded by tiny TiO2 aggregates (crystallite size magnetite nanoparticles. Thus, magnetic induction heating of magnetic nanoparticles appears as a new tool to reach a versatile calcination process to obtain Fe3O4-TiO2 nanostructures.

  4. Unconventional cells of TiO2 doped with erbium

    International Nuclear Information System (INIS)

    Ribeiro, P.C.; Campos, R.D.; Oliveira, A.S.; Wellen, R.; Diniz, V.C.S.; Costa, A.C.F.M. da

    2016-01-01

    The technology used in TiO 2 solar cells is in constant improvement, new configurations have been developed, aiming practicality and leading to efficiency increase of photovoltaic devices. This paper proposes a new technology for the production of solar cells in order to investigate a better utilization of solar spectrum of TiO2 doped with erbium (Er 3+ ), proven by energetic conversion. The Ti 0,9 Er 0,1 O2 system was obtained by Pechini method. Nanoparticles have a crystallite size 65.30 nm and surface area 118.48 m 2 /g. These characteristics are essential for the formation of the film to be deposited on the conductive glass substrate constituting the cell's photoelectrode. The other side of the cell is the platinum counter electrode. The cell will have the faces sealed by a thermoplastic and, finally the electrolyte will be inserted, then they will be electrically evaluated through energy efficiency and confronted with the literature data base. (author)

  5. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  6. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Ge, Yeqian; Jiang, Han; Zhu, Jiadeng; Lu, Yao; Chen, Chen; Hu, Yi; Qiu, Yiping; Zhang, Xiangwu

    2015-01-01

    Highlights: • Titanium oxide nanopaticles were modified by carbon coating from pyrolyzing of PVP. • Carbon coating gave rise to excellent cycling ability of TiO 2 for sodium-ion batteries. • The reversible capacity of carbon-coated TiO 2 reached 242.3 mAh g −1 at 30 mA g −1 . • Good rate performance of carbon-coated TiO 2 was presented up to 800 mA g −1 . - Abstract: Owing to the merits of good chemical stability, elemental abundance and nontoxicity, titanium dioxide (TiO 2 ) has drawn increasing attraction for use as anode material in sodium-ion batteries. Nanostructured TiO 2 was able to achieve high energy density. However, nanosized TiO 2 is typically electrochemical instable, which leads to poor cycling performance. In order to improve the cycling stability, carbon from thermolysis of poly(vinyl pyrrolidone) was coated onto TiO 2 nanoparticles. Electronic conductivity and electrochemical stability were enhanced by coating carbon onto TiO 2 nanoparticles. The resultant carbon-coated TiO 2 nanoparticles exhibited high reversible capacity (242.3 mAh g −1 ), high coulombic efficiency (97.8%), and good capacity retention (87.0%) at 30 mA g −1 over 100 cycles. By comparison, untreated TiO 2 nanoparticles showed comparable reversible capacity (237.3 mAh g −1 ) and coulombic efficiency (96.2%), but poor capacity retention (53.2%) under the same condition. The rate performance of carbon-coated TiO 2 nanoparticles was also displayed as high as 127.6 mAh g −1 at a current density of 800 mA g −1 . The improved cycling performance and rate capability were mostly attributed to protective carbon layer helping stablize solid electrolyte interface formation of TiO 2 nanoparticles and improving the electronic conductivity. Therefore, it is demonstrated that carbon-coated TiO 2 nanoparticles are promising anode candidate for sodium-ion batteries

  7. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna

    Science.gov (United States)

    Liu, Lingling; Fan, Wenhong; Lu, Huiting; Xiao, Wei

    2015-08-01

    Anatase TiO2 nanosheets (NSs) with exposed {001} facets have been widely used because of their high activity and particular surface atomic configuration. However, investigations on their biotoxicity are rare. In this study, bioaccumulation of five different TiO2 (with 10%, 61%, 71%, 74% and 78% exposed {001} facets), as well as copper and enzyme activities in Daphnia magna, are systematically investigated and rationalized. The results indicated that the addition of Cu2+ enhanced agglomeration-sedimentation of TiO2, resulting in the reduction of TiO2 bioaccumulation by 10% to 26%. TiO2 nanoparticles (NPs) increased copper bioaccumulation by 9.8%, whereas the other four TiO2 nanosheets (NSs) decreased it by 43% to 53%, which depended on TiO2 variant adsorption and free Cu2+ concentrations in the supernatant. The levels of superoxide dismutase (SOD) enzyme and Na+/K+-ATPase activities suggested that oxidative stress, instead of membrane damage, was the main toxicity in D. magna. Meanwhile, the SOD enzyme activities increased with decreasing Cu accumulation and increasing Ti accumulation because of the different functions of Cu and Ti in organisms. This research highlighted the important role of the percentage of exposed {001} facets in nanostructured TiO2 on bioaccumulation and biotoxicity of TiO2 and Cu2+ in Daphnia magna.

  8. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li + diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg 2+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO 2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g −1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  9. Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell

    Science.gov (United States)

    Tozlu, Cem; Mutlu, Adem; Can, Mustafa; Havare, Ali Kemal; Demic, Serafettin; Icli, Sıddık

    2017-11-01

    The effects of surface modification of titanium dioxide (TiO2) on the performance of inverted type organic solar cells (i-OSCs) was investigated in this study. A series of benzoic acid derivatized self-assembled monolayer (SAM) molecules of 4‧-[(hexyloxy)phenyl]amino-3,5-biphenyl dicarboxylic acid (CT17) and 4‧-[1-naphthyl (phenyl)amino]biphenyl-4-carboxylic acid (CT19) were utilized to modify the interface between TiO2 buffer layer and poly-3 hexylthiophene (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PC61BM) active layer having the device structure of ITO/TiO2/SAM/P3HT:PC61BM/MoO3/Ag. The work function and surface wetting properties of TiO2 buffer layer served as electron transporting layer between ITO and PC61BM active layer were tuned by SAM method. The solar cell of the SAM modified devices exhibited better performance. The power conversion efficiency (PCE) of i-OSCs devices with bare TiO2 electrodes enhanced from 2.00% to 2.21% and 2.43% with CT17 and CT19 treated TiO2 electrodes, respectively. The open circuit voltage (Voc) of the SAM treated TiO2 devices reached to 0.60 V and 0.61 V, respectively, while the Voc of untreated TiO2 was 0.57 V. The water contact angle of i-OSCs with CT17 and CT19 SAMs was also higher than the value of the unmodified TiO2 electrode. These results show that inserting a monolayer at the interface between organic and inorganic layers is an useful alternative method to improve the performance of i-OSCs.

  10. Multifunctional Roles of TiO 2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO 2 −TiO 2 −Polyaniline System

    KAUST Repository

    Wang, Dan Ping

    2009-10-27

    Nanoparticles are often used as seeds to grow one-dimensional nanomaterials or as core materials to prepare core-shell nanostructures. On the other hand, the presynthesized inorganic nanoparticles can also be used as starting building blocks to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2, and polyaniline (PAN). In particular, multifunctional roles of oleate-surfactant-protected TiO2 nanoparticles have been revealed in this study: they provide starting sites for polymerization of aniline on the surface of SiO2 mesospheres; they land on the inner surface of polyaniline shell to form a secondary material phase; they work as initial crystalline seeds for homogeneous growth of interior TiO2 shell; and they serve as primary nanobuilding blocks to form exterior TiO2 shell on the polyaniline via self-assembly. With the assistance of the TiO2 nanoparticles, a total of six complex core-shell and hollow sphere nanocomposites (SiO 2/TiO2, SiO2/TiO2/PAN, SiO 2/TiO2/PAN/TiO2, TiO2/PAN, TiO 2/PAN/TiO2, and TiO2/TiO2) have been made in this work through controlled self-assembly, templating growth, polymerization, and homogeneous seeded growth. Applicability of these nanostructures in photocatalytic applications has also been demonstrated by our preliminary investigations. The easy separation of used catalysts after reaction seems to be advantageous because of relatively large external diameters of the lightweight nanocomposites. © 2009 American Chemical Society.

  11. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    Science.gov (United States)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  12. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2014-01-08

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO 2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti3+ can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands. © 2013 American Chemical Society.

  13. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  14. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  15. Cellulose nanofiber-templated three-dimension TiO 2 hierarchical nanowire network for photoelectrochemical photoanode

    Science.gov (United States)

    Zhaodong Li; Chunhua Yao; Fei Wang; Zhiyong Cai; Xudong Wang

    2014-01-01

    Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a...

  16. Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes.

    Science.gov (United States)

    Henning, Alex; Günzburger, Gino; Jöhr, Res; Rosenwaks, Yossi; Bozic-Weber, Biljana; Housecroft, Catherine E; Constable, Edwin C; Meyer, Ernst; Glatzel, Thilo

    2013-01-01

    Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I) bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719 photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV, determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far.

  17. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  18. TiO2-B Nanoribbons Anchored with NiO Nanosheets as Hybrid Anode Materials for Rechargeable Lithium ion Batteries

    DEFF Research Database (Denmark)

    Zhang, J. Y.; Shen, J.X.; Wang, T.L.

    2015-01-01

    A new type of TiO2-B nanoribbon anchored with NiO nanosheets (TiO2@NiO) is synthesized via a hydrothermal process and a subsequent homogeneous precipitation method. XRD analysis indicates that TiO2-B and cubic NiO phases exist in the composites. According to SEM images, the morphology of the TiO2......@NiO hybrid material is unique, similar to that of leaf mosaic in biological systems. According to electrochemical investigations, the nanostructured hybrid material as an anode exhibits superior initial charge/discharge capacity and capacity retentions. The initial discharge capacity of the TiO2@Ni...

  19. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  20. Sol-gel TiO2 films as NO2 gas sensors

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Grechnikov, A; Donkov, N; Sendova-Vassileva, M; Kirilov, R; Stefanov, P

    2014-01-01

    TiO 2 films were prepared by a sol-gel technique with commercial TiO 2 powder as a source material (P25 Degussa AG). After a special treatment, printing paste was prepared. The TiO 2 layers were formed by means of drop-coating on Si-control wafers and on the Au-electrodes of quartz resonators. The surface morphology of the films was examined by scanning electron microscopy (SEM). Their structure was studied by Raman spectroscopy and the surface composition was determined by X-ray photoelectron spectroscopy (XPS). The layers had a grain-like surface morphology and consisted mainly of anatase TiO 2 phase. The sensitivity of the TiO 2 films to NO 2 was assessed by the quartz crystal microbalance (QCM) technique. To this end, the films were deposited on both sides of a 16-MHz QCM. The sensing characteristic of the TiO 2 -QCM structure was investigated by measuring the resonant frequency shift (ΔF) of the QCM due to the mass loading caused by NO 2 adsorption. The Sauerbrey equation was applied to establish the correlation between the QCM frequency changes measured after exposure to different NO 2 concentrations and the mass-loading of the QCM. The experiments were carried out in a dynamic mode on a special laboratory setup with complete control of the process parameters. The TiO 2 films were tested in the NO 2 concentration interval from 10 ppm to 5000 ppm. It was found that a TiO 2 loading of the QCM by 5.76 kHz corresponded to a system sensitive to NO 2 concentrations above 250 ppm. On the basis of the frequency-time characteristics (FTCs) measured, AF at different NO 2 concentrations was defined, the adsorption/desorption cycles were studied and the response and recovery times were estimated. The results obtained show that the process is reversible in the NO 2 interval investigated. The results further suggested that TiO 2 films prepared by a sol-gel method on a QCM can be used as a sensor element for NO 2 detection.

  1. Investigation on the influences of layer structure and nanoporosity of light scattering TiO2 layer in DSSC

    Science.gov (United States)

    Apriani, T.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2016-08-01

    Dye-sensitized solar cell (DSSC) is one of promising photovoltaic materials due to its simplicity in fabrication process and rich variety of possible sensitizer molecules. DSSC cell is commonly constructed of TiO2 layer as photoelectrode, dye as photosensitizer, electrolyte as redox mediator, and platinum layer as counter electrode. TiO2 layer is often constructed from different types of layers, such as blocking layer, transparent layer, microchannel or light scattering layer, which is made usually by successive layer-by-layer process. In this work, different TiO2 layers with different thickness and heat treatment were prepared and then used to build a complete sandwich-type DSSC. The characterization results show that the power conversion efficiency (PCE) is slightly reduced when using TiO2 layer with multiple scattering layers. This reduction is caused by an increase in the resistance from charge transport and charge transfer inside the mesoporous TiO2 layer, as revealed from the electrochemical impedance spectroscopy measurement results. Additional heat treatment introduced at the final step in the TiO2 layer preparation process, however, slightly improve the cell performance. Although this heat treatment does not produce significant change in porosity or pore size distribution of the TiO2 layer, it might be able to improve the contact between the TiO2 nanoparticles. The best PCE achieved in this work is about 5.3%, which was observed in the cell using TiO2 layer with one scattering layer and additional heat treatment.

  2. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    International Nuclear Information System (INIS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-01-01

    The fabrication method and characterization results of a TiO 2 -TiO 2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO 2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO 2 crystallites embedded in a matrix of nanometric TiO 2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant. (paper)

  3. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Karczewski, Jakub [Solid State Physics Department, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2015-12-01

    Graphical abstract: - Highlights: • ITO electrodes modified by NP arrays prepared by laser dewetting of thin Au films. • Enhanced activity, linear response and high sensitivity towards glucose. • Promising biosensor material AuNP-modified ITO of improved performance. - Abstract: The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40–120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  4. Extruded expanded polystyrene sheets coated by TiO2 as new photocatalytic materials for foodstuffs packaging

    International Nuclear Information System (INIS)

    Loddo, V.; Marcì, G.; Palmisano, G.; Yurdakal, S.; Brazzoli, M.; Garavaglia, L.; Palmisano, L.

    2012-01-01

    Highlights: ► An extruded polystyrene has been functionalised by TiO 2 . ► A photocatalytic polymer has been developed via a sol–gel method. ► Thermoformed packagings for foodstuffs application have been prepared. - Abstract: Nanostructured, photoactive anatase TiO 2 sol prepared under very mild conditions using titanium tetraisopropoxide as the precursor is used to functionalise extruded expanded polystyrene (XPS) sheets by spray-coating resulting in stable and active materials functionalised by TiO 2 nanoparticles. Photocatalytic tests of these sheets performed in a batch reactor in gas–solid system under UV irradiation show their successful activity in degrading probe molecules (2-propanol, trimethylamine and ethene). Raman spectra ensure the deposition of TiO 2 as crystalline anatase phase on the polymer surface. The presence of TiO 2 with respect to polymer surface can be observed in SEM images coupled to EDAX mapping allowing to monitor the surface morphology and the distribution of TiO 2 particles. Finally thermoforming of these sheets in industrial standard equipment leads to useful containers for foodstuffs.

  5. TiO2/Gold nanocomposite as an extremely sensitive molecule sensor for NO2 detection: A DFT study

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2016-07-01

    Full Text Available First-principles calculations within density functional theory (DFT have been performed to investigate the interactions of NO2 molecules with TiO2/Gold nanocomposites in order to completely exploit the adsorption properties of these nanostructures. Given the need to further comprehend the behavior of the NO2 molecules positioned between the TiO2 nanoparticle and Au monolayer, we have geometrically optimized the complex systems consisting of the NO2 molecule oriented at appropriate positions between the nanoparticle and Au monolayer. The structural properties such as bond lengths, bond angles, adsorption energies and Mulliken population analysis and the electronic properties including the density of states and molecular orbitals have been also analyzed in detail. The results indicate that the interaction between NO2 and undoped TiO2-N/Gold nanocomposites is stronger than that between gas molecules and N-doped TiO2/Gold nanocomposites, which reveals that the pristine nanocomposite can react with NO2 molecule more efficiently. Therefore, the obtained results also suggest a theoretical basis for the potential applications of TiO2/Gold nanocomposites in gas sensing, which could help in the developing of novel TiO2 based advanced sensor devices.

  6. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    Science.gov (United States)

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption. PMID:26190140

  7. One-Dimensional Self-Standing TiO2Nanotube Array Layers Designed for Perovskite Solar Cell Applications.

    Science.gov (United States)

    Zhang, Jie; Pauporté, Thierry

    2015-08-03

    Nanotube (NT) layers of TiO 2 are important one-dimensional nanostructures for advanced applications. ZnO nanowire arrays prepared through electrochemical deposition with tuned morphological properties are converted into anatase TiO 2 NTs by using a titanate solution adjusted to an ad hoc pH. The tubes are polycrystalline and their diameter and length can be tuned to obtain nanostructures of tailored dimensions. The layers are integrated in CH 3 NH 3 PbI 3 perovskite solar cells (PSCs). Their morphology is optimized for maximum performance and is compared to mesoscopic TiO 2 PSCs. As compared to the latter, the use of NTs improved the perovskite absorbance in the green-to-near-infrared solar spectral region. Moreover, it is shown that the surface treatment of the TiO 2 NTs with TiCl 4 optimizes the interface between the oxide and CH 3 NH 3 PbI 3 , which leads to better charge injection between the perovskite layer and the TiO 2 NTs. The current density-voltage curve hysteresis index is low for the best NT morphology and significantly increases with tube length and diameter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient photodegradation of organic dye using anatase TiO2 plants as catalyst

    Science.gov (United States)

    Bahadur, Jitendra; Pal, Kaushik

    2017-11-01

    Anatase TiO2 hierarchical nanostructures with higher photocatalytic activity are of special importance in various applications. We have reported the synthesis of TiO2 as water chestnut plants like morphology via facile hydrothermal method, by using Titanium (IV) butoxide (TBOT) as a precursor solution. It is found that TiO2 nanoparticles work as seed and completely convert into water chestnut plants like structure or morphology, which are composed of crystallized anatase nanocrystals. X-ray diffraction spectra confirmed the presence of anatase phase of crystallized TiO2 plants (TPs). The average life time delay for generated charge carriers in TPs was calculated to be around 2.45 ns, which reflects slow recombination of charge carriers. The prepared TPs show excellent photocatalytic performance when applied in photo degradation of Rhodamine B organic dye. The unique features exhibited by TPs make them a promising candidate for vast potential applications in field such as solar cells, photocatalysis, supercapacitor, lithium ion batteries and some related fields.[Figure not available: see fulltext.

  9. Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis

    International Nuclear Information System (INIS)

    Contreras-García, M.E.; García-Benjume, M. Lorena; Macías-Andrés, Víctor I.; Barajas-Ledesma, E.; Medina-Flores, A.; Espitia-Cabrera, M.I.

    2014-01-01

    Graphical abstract: - Highlights: • Nanostructured TiO 2 -CeO 2 films are successfully synthesized by combining of sputtering and electrophoresis methods. • Synergic effect of CeO 2 on TiO 2 band gap was demonstrated, CeO 2 diminishes it from 3.125 to 2.74. • Morphologic characterization of the nanoconjugate TiO 2 -CeO 2 films by different microscopy techniques. - Abstract: The TiO 2 -CeO 2 photocatalytic system in films is proposed here, in order to obtain photocatalytic systems that can be excited by solar light. The films were obtained through the electrophoretic deposition (EPD) of TiO 2 -CeO 2 gel on sputtered Ti Corning glass substrates. The synergic effect of CeO 2 in TiO 2 films was analyzed as a function of the optical band gap reduction at different concentrations (1, 5, 10, and 15 mol%). The effect of two thermal treatments was also evaluated. The lowest band gap value was obtained for the sample with 5 mol% ceria that was thermally treated at 700 °C. The nanostructured films were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF), high resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The nanocomposites were formed by TiO 2 and CeO 2 nanoparticles in the anatase and fluorite type phases, respectively

  10. Nafion® modified-screen printed gold electrodes and their carbon nanostructuration for electrochemical sensors applications.

    Science.gov (United States)

    García-González, Raquel; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2013-03-30

    Screen printed electrodes are frequently used in electroanalytical applications because of their properties such as small size, low detection limit, fast response time, high reproducibility and disposable nature. On the other hand, since the discovery of carbon nanotubes there has been enormous interest in exploring and exploiting their properties, especially for their use in chemical (bio)sensors and nanoscale electronic devices. This paper reports the characterization of gold screen printed electrodes, modified with Nafion(®) and nanostructured with carbon nanotubes and carbon nanofibers dispersed on Nafion(®). The dispersing agent and the nanostructure have a marked effect on the analytical signal that, in turn depends on the intrinsic characteristics of the analyte. Several model analytes have been employed in this study. Anionic, cationic and neutral species such as methylene blue, dopamine, iron (III) sulfate, potassium ferrycianide and urea were considered. The importance for the development of nanostructured sensors relies on the fact that depending on these factors the situation may vary from a notorious enhancement of the signal to a blocking or even decrease. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    Science.gov (United States)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  12. Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell

    Science.gov (United States)

    Sofyan, N.; Ridhova, A.; Yuwono, A. H.; Udhiarto, A.

    2018-03-01

    One device being developed as an alternative source of renewable energy by utilizing solar energy source is dye-sensitized solar cells (DSSC). This device works using simple photosynthetic-electrochemical principle in the molecular level. In this device, the inorganic oxide semiconductor of titanium dioxide (TiO2) has a great potential for the absorption of the photon energy from the solar energy source, especially in the form of TiO2 nanoparticle structure. This nanoparticle structure is expected to improve the performance of DSSC because the surface area to weight ratio of this nanostructures is very large. In this study, the synthesis of TiO2 nanoparticle from its precursors has been performed along with the fabrication of the DSSC device. Effort to improve the size of nanocrystalline anatase TiO2 was accomplished by low hydrothermal treatment at various temperatures whereas the crystallinity of the anatase phase in the structure was performed by calcination process. Characterization of the materials was performed using X-ray Diffraction (XRD) and scanning electron microscope (SEM), while the DSSC performance was examined through a high precision current versus voltage (I-V) curve analyzer. The results showed that pure anatase TiO2 nanoparticles could be obtained at low hydrothermal of 100, 125, and 150 °C followed by calcination at 450 °C. The best performance of photocurrent-voltage characteristic was given by TiO2 hydrothermally synthesized at 150 °C with power conversion efficiency (PCE) of 4.40 %, whereas the standard TiO2 nanoparticles has PCE only 4.02 %. This result is very promising in terms low temperature and thus low cost of anatase TiO2 semiconductor preparation for DSSC application.

  13. Integration of High-Performance Nanocrystalline TiO2 Photoelectrodes for N719-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ke-Jian Jiang

    2013-01-01

    Full Text Available We report on enhanced performance of N719-sensitized TiO2 solar cells (DSCs incorporating size and photoelectron diffusion-controlled TiO2 as sensitizer-matched light-scatter layers on conventional nanocrystalline TiO2 electrodes. The double-layered N719/TiO2 composite electrode with a high dye-loading capacity exhibits the diffused reflectance of more than 50% in the range of λ = 650–800 nm, even when the films are coupled with the titania nanocrystalline underlayer in the device. As a result, the increased near-infrared light-harvesting produces a high light-to-electricity conversion efficiency of over 9% mainly due to the significant increase of Jsc. Such an optical effect of the NIR-light scattering TiO2 electrodes will be beneficial when the sensitizers with low molar extinction coefficients, such as N719, are introduced in the device.

  14. Water Adsorption on TiO2

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Wendt, Stefan; Besenbacher, Flemming

    2010-01-01

    Scanning Tunneling Microscopy (STM) studies and Density Functional Theory (DFT) investigations of the interaction of water with the rutile TiO2 (110) surface are summarized. From high-resolution STM the following reactions have been revealed: water adsorption and diffusion in the Ti troughs, water...... dissociation in bridging oxygen vacancies, assembly of adsorbed water monomers into rapidly diffusing water dimers, and formation of water dimers by reduction of oxygen molecules. The STM results are rationalized based on DFT calculations, revealing the bonding geometries and reaction pathways of the water...

  15. Transparent TiO2 nanowire networks via wet corrosion of Ti thin films for dye-sensitized solar cells

    Science.gov (United States)

    Shin, Eunhye; Jin, Saera; Hong, Jongin

    2017-09-01

    Transparent TiO2 nanowire networks were prepared by corrosion of Ti thin films on F-doped SnO2 glass substrates in an alkaline (potassium hydroxide: KOH) solution. The formation of the porous TiO2 nanostructures from the Ti thin films was thoroughly investigated. Dye-sensitized solar cells with a photoanode of 1.2-μm-thick nanowire networks exhibit an average optical transmittance of 40% in the visible light region and a power conversion efficiency of 1.0% under one sun illumination.

  16. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Science.gov (United States)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  17. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass......-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.002 mW/m2, while an electrode with nanograss of titanium and gold deposited on one side gave a maximum power density of 2.5 mW/m2. Deposition of titanium and gold on both sides...

  18. Influence of TiO2 Nanoparticles on Enhancement of Optoelectronic Properties of PFO-Based Light Emitting Diode

    Directory of Open Access Journals (Sweden)

    Bandar Ali Al-Asbahi

    2013-01-01

    Full Text Available Improvement on optoelectronic properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl- (PFO- based light emitting diode upon incorporation of TiO2 nanoparticles (NPs is demonstrated. The PFO/TiO2 nanocomposites with different weight ratios between 5 and 35 wt.% were prepared using solution blending method before they were spin coated onto Indium Tin Oxide substrate. Then a thin Al layer was deposited onto the nanocomposite layer to act as top electrode. The nanocomposites were tested as emissive layer in organic light emitting diodes (OLEDs. The TiO2 NPs played the most crucial role in facilitating charge transport and electrical injection and thus improved device performance in terms of turn-on voltage, electroluminescence spectra (EL, luminance, and luminance efficiency. The best composition was OLED with 5 wt.% TiO2 NPs content having moderate surface roughness and well distribution of NPs. The device performance was reduced at higher TiO2 NPs content due to higher surface roughness and agglomeration of TiO2 NPs. This work demonstrated the importance of optimum TiO2 NPs content with uniform distribution and controlled surface roughness of the emissive layer for better device performance.

  19. Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Fargol Hasani Bijarbooneh

    2013-09-01

    Full Text Available One-dimensional (1D TiO2 nanostructures are very desirable for providing fascinating properties and features, such as high electron mobility, quantum confinement effects, and high specific surface area. Herein, 1D mesoporous TiO2 nanofibres were prepared using the electrospinning method to verify their potential for use as the photoelectrode of dye-sensitized solar cells (DSSCs. The 1D mesoporous nanofibres, 300 nm in diameter and 10-20 μm in length, were aggregated from anatase nanoparticles 20-30 nm in size. The employment of these novel 1D mesoporous nanofibres significantly improved dye loading and light scattering of the DSSC photoanode, and resulted in conversion cell efficiency of 8.14%, corresponding to an ∼35% enhancement over the Degussa P25 reference photoanode.

  20. Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core-shell nanocomposites: An experimental and DFT investigation

    Science.gov (United States)

    Chetri, Pawan; Basyach, Priyanka; Choudhury, Amarjyoti

    2014-04-01

    We employed an efficient and cost effective method to synthesize core-shell TiO2/SnO2 and inverted core-shell SnO2/TiO2 nanocomposites and investigated their visible light photo catalytic activity for degradation of dye methyl orange. We carried out techniques such as XRD and TEM for the structural verification while UV-Visible and photoluminescence spectra for the optical characterization. BET is done to reveal pore diameter and surface area of prepared nanosystems. We have also performed DFT based calculation using VASP 5.2 to calculate density of states. The analyses of density of states indicate a higher photocatalytic efficiency of core-shell TiO2/SnO2 nanostructures and which we indeed observe through experiment as well.

  1. EPR Investigations of G-C3N4/TiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dana Dvoranová

    2018-01-01

    Full Text Available The g-C3N4/TiO2 nanopowders prepared by the annealing of melamine and TiO2 P25 at 550 °C were investigated under dark and upon UV or visible-light photoactivation using X- and Q-band electron paramagnetic resonance (EPR spectroscopy. The EPR spectra of powders monitored at room temperature and 100 K showed the impact of the initial loading ratio of melamine/TiO2 on the character of paramagnetic centers observed. For the photocatalysts synthesized using a lower titania content, the paramagnetic signals characteristic for the g-C3N4/TiO2 nanocomposites were already found before exposure. The samples annealed using the higher TiO2 loading revealed the photoinduced generation of paramagnetic nitrogen bulk centers (g-tensor components g1 = 2.005, g2 = 2.004, g3 = 2.003 and hyperfine couplings from the nitrogen A1 = 0.23 mT, A2 = 0.44 mT, A3 = 3.23 mT typical for N-doped TiO2. The ability of photocatalysts to generate reactive oxygen species (ROS upon in situ UV or visible-light photoexcitation was tested in water or dimethyl sulfoxide by EPR spin trapping using 5,5-dimethyl 1-pyrroline N-oxide. The results obtained reflect the differences in photocatalyst nanostructures caused by the differing initial ratio of melamine/TiO2; the photocatalyst prepared by the high-temperature treatment of melamine/TiO2 wt. ratio of 1:3 revealed an adequate photoactivity in both spectral regions.

  2. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    Science.gov (United States)

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  3. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries

    Science.gov (United States)

    Huang, Hai-Bo; Yang, Yue; Chen, Li-Hua; Wang, Yun; Huang, Shao-Zhuan; Tao, Jia-Wei; Ma, Xiao-Ting; Hasan, Tawfique; Li, Yu; Xu, Yan; Su, Bao-Lian

    2016-05-01

    Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500

  5. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers

    Science.gov (United States)

    Hu, Lin; Yan, Xue-Wu; Zhang, Xue-Ji; Shan, Dan

    2018-01-01

    The integration of adsorption and reduction for uranium uptake via photoelectrochemical method was conducted based on hetero-structure SrTiO3/TiO2 electrospun nanofibers. The SrTiO3/TiO2 was fabricated by two steps. First, TiO2 nanofibers were prepared via electrospinning, and then the SrTiO3 cubes grew on the surface of TiO2 nanofibers to form heterostructure by in situ hydrothermal treatment. For the uranium uptake based on photoelectrochemical method, the FTO electrodes modified by SrTiO3/TiO2 electrospun nanofibers removed uranium concentration by 81 ppm, higher than TiO2 nanoparticles, SrTiO3 nanoparticles and TiO2 electrospun nanofibers (59 ppm, 40 ppm and 70 ppm respectively). Besides, the photocurrent of these materials was also measured through photoelectrochemical measurements. Meanwhile, surface analyses using various techniques (Scanning electron microscopic, Transmission electron microscope and X-ray photoelectron spectroscopy) was also performed. Finally, the mechanism of electron transfer between SrTiO3/TiO2 and uranium was proposed.

  6. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  7. One-Step Pyro-Synthesis of a Nanostructured Mn3O4/C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries.

    Science.gov (United States)

    Alfaruqi, Muhammad Hilmy; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Duong, Pham Tung; Jo, Jeonggeun; Baboo, Joseph Paul; Xiu, Zhiliang; Mathew, Vinod; Kim, Jaekook

    2016-02-01

    A nanostructured Mn 3 O 4 /C electrode was prepared by a one-step polyol-assisted pyro-synthesis without any post-heat treatments. The as-prepared Mn 3 O 4 /C revealed nanostructured morphology comprised of secondary aggregates formed from carbon-coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N 2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn 3 O 4 /C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g -1 at a current density of 33 mA g -1 , good capacity retentions (1141 mAh g -1 with 100 % Coulombic efficiencies at the 100 th cycle), and rate capabilities (307 and 202 mAh g -1 at 528 and 1056 mA g -1 , respectively) when tested as an anode for lithium-ion battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan

    2012-02-22

    Low-cost controllable solution-based processes for preparation of titanium oxide (TiO 2) thin films are highly desirable, because of many important applications of this oxide in catalytic decomposition of volatile organic compounds, advanced oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices, and general heterogeneous photocatalysis for fine chemicals etc. In this work, we develop a solution-based adsorptive self-assembly approach to fabricate anatase TiO 2 thin films on different glass substrates such as simple plane glass and patterned glass at variable compositions (normal soda lime glass or solar-grade borofloat glass). By tuning the number of process cycles (i.e., adsorption-then-heating) of TiO 2 colloidal suspension, we could facilely prepare large-area TiO 2 films at a desired thickness and with uniform crystallite morphology. Moreover, our as-prepared nanostructured TiO 2 thin films on glass substrates do not cause deterioration in optical transmission of glass; instead, they improve optical performance of commercial solar cells over a wide range of incident angles of light. Our as-prepared anatase TiO 2 thin films also display superhydrophilicity and excellent photocatalytic activity for self-cleaning application. For example, our investigation of photocatalytic degradation of methyl orange indicates that these thin films are indeed highly effective, in comparison to other commercial TiO 2 thin films under identical testing conditions. © 2012 American Chemical Society.

  9. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  10. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode

    International Nuclear Information System (INIS)

    Li, Zhaodong; Yao, Chunhua; Wang, Fei; Wang, Xudong; Cai, Zhiyong

    2014-01-01

    Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting and storage devices. In this paper, we developed a high-density 3D TiO 2 fiber-nanorod (NR) heterostructure for efficient photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a ZnO-coated cellulose nanofiber (CNF) template using atomic layer deposition (ALD)-based thin film and NR growth procedures. The tubular structure evolution was in good agreement with the recently discovered vapor-phase Kirkendall effect in high-temperature ALD processes. The NR morphology was formed via the surface-reaction-limited pulsed chemical vapor deposition (SPCVD) mechanism. Under Xenon lamp illumination without and with an AM 1.5G filter or a UV cut off filter, the PEC efficiencies of a 3D TiO 2 fiber-NR heterostructure were found to be 22–249% higher than those of the TiO 2 -ZnO bilayer tubular nanofibers and TiO 2 nanotube networks that were synthesized as reference samples. Such a 3D TiO 2 fiber-NR heterostructure offers a new route for a cellulose-based nanomanufacturing technique, which can be used for large-area, low-cost, and green fabrication of nanomaterials as well as their utilizations for efficient solar energy harvesting and conversion. (paper)

  11. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.

    2014-10-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  12. Synthesis of TiO2 by electrochemical method from TiCl4 solution as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; Sari, Sifa Dian Permata; Hanifah, Ita Nur

    2016-01-01

    Metal oxide combined with graphite becomes interesting composition. TiO 2 is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO 2 gravimetric capacity varied within a fairly wide range. TiO 2 crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO 2 powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO 2 have been investigated. The combination of graphite and TiO 2 particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO 2 powders was TiCl 4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO 2 particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase

  13. Self-organized nanocrack networks: a pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO2

    Science.gov (United States)

    Henkel, B.; Vahl, A.; Aktas, O. C.; Strunskus, T.; Faupel, F.

    2018-01-01

    Sputter deposited photocatalytic thin films offer high adherence and mechanical stability, but typically are outperformed in their photocatalytic properties by colloidal TiO2 nanostructures, which in turn typically suffer from problematic removal. Here we report on thermally controlled nanocrack formation as a feasible and batch applicable approach to enhance the photocatalytic performance of well adhering, reactively sputtered TiO2 thin films. Networks of nanoscopic cracks were induced into tailored columnar TiO2 thin films by thermal annealing. These deep trenches are separating small bundles of TiO2 columns, adding their flanks to the overall catalytically active surface area. The variation of thin film thickness reveals a critical layer thickness for initial nanocrack network formation, which was found to be about 400 nm in case of TiO2. The columnar morphology of the as deposited TiO2 layer with weak bonds between respective columns and with strong bonds to the substrate is of crucial importance for the formation of nanocrack networks. A beneficial effect of nanocracking on the photocatalytic performance was experimentally observed. It was correlated by a simple geometric model for explaining the positive impact of the crack induced enlargement of active surface area on photocatalytic efficiency. The presented method of nanocrack network formation is principally not limited to TiO2 and is therefore seen as a promising candidate for utilizing increased surface area by controlled crack formation in ceramic thin films in general.

  14. Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method

    Science.gov (United States)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.

    2016-05-01

    Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.

  15. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    Science.gov (United States)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  16. Novel flame synthesis of nanostructured α-Fe2O3 electrode as high-performance anode for lithium ion batteries

    Science.gov (United States)

    Wang, Yang; Roller, Justin; Maric, Radenka

    2018-02-01

    Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.

  17. ETHANOL OXIDATION OVER AU/TIO2 CATALYSTS

    African Journals Online (AJOL)

    DR. AMINU

    Simultaneously, ethanol oxidation on Au/TiO2 catalyst was followed by dehydration to ethene at 300oC. (characteristic of TiO2) and dehydrogenation to ethanal at high temperature. The pathway which gives ethene as seen on TiO2 remains, but a ...

  18. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, S. David; Pedersen, Thomas

    2013-01-01

    The present work demonstrates that tuning the donor density of protective TiO2 layers on a photocathode has dramatic consequences for electronic conduction through TiO2 with implications for the stabilization of oxidation-sensitive catalysts on the surface. Vacuum annealing at 400 °C for 1 hour o...

  19. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting s...

  20. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  1. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

    Energy Technology Data Exchange (ETDEWEB)

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; Body, Monique; Legein, Christophe; Dachraoui, Walid; Giannini, Mattia; Demortière, Arnaud; Salanne, Mathieu; Dardoize, François; Groult, Henri; Borkiewicz, Olaf J.; Chapman, Karena W.; Strasser, Peter; Dambournet, Damien

    2017-09-18

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.

  2. Microcantilever equipped with nanowire template electrodes for multiprobe measurement on fragile nanostructures

    DEFF Research Database (Denmark)

    Lin, Rong; Bøggild, Peter; Hansen, Ole

    2004-01-01

    can be done by reducing the dimensions of the electrodes to nanoscale dimensions. Here we report a fabrication method of a nanoscale four-point probe utilizing silicon nanowires as templates for metal electrodes. Using nanomanipulation, we attach 200–300 nm wide silicon nanowires to microfabricated...

  3. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  4. Ultrafast Flame Annealing of TiO2Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

    Science.gov (United States)

    Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin

    2017-11-01

    Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan

    2015-06-11

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high conductivity have been investigated as new class of electrode materials for pseudocapacitor applications. Herein, we report a novel self-templating strategy to fabricate well-defined single and double-shell NiCo2S4 hollow spheres, as a promising electrode material for pseudocapacitors. The surfaces of the NiCo2S4 hollow spheres consist of self-assembled 2D mesoporous nanosheets. This unique morphology results in a high specific capacitance (1257 F g-1 at 2 A g-1), remarkable rate performance (76.4% retention of initial capacitance from 2 A g-1 to 60 A g-1) and exceptional reversibility with a cycling efficiency of 93.8% and 87% after 10,000 and 20,000 cycles, respectively, at a high current density of 10 A g-1. The cycling stability of our ternary chalcogenides is comparable to carbonaceous electrode materials, but with much higher specific capacitance (higher than any previously reported ternary chalcogenide), suggesting that these unique chalcogenide structures have potential application in next-generation commercial pseudocapacitors.

  6. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells

    Science.gov (United States)

    Durga, Ikkurthi Kanaka; Rao, S. Srinivasa; Reddy, Araveeti Eswar; Gopi, Chandu V. V. M.; Kim, Hee-Je

    2018-03-01

    Copper sulfide is an important multifunctional semiconductor that has attracted considerable attention owing to its outstanding properties and multiple applications, such as energy storage and electrochemical energy conversion. This paper describes a cost-effective and simple low-temperature solution approach to the preparation of copper sulfide for supercapacitors (SCs) and quantum-dot sensitized solar cells (QDSSCs). X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirmed that the nickel foam with a coriander leaf like nanostructure had been coated successfully with copper sulfide. As an electrode material for SCs, the CC-3 h showed excellent specific capacitance (5029.28 at 4 A g-1), energy density (169.73 W h kg-1), and superior cycling durability with 107% retention after 2000 cycles. Interestingly, the QDSSCs equipped with CC-2 h and CC-3 h counter electrodes (CEs) exhibited a maximum power conversion efficiency of 2.52% and 3.48%, respectively. The improved performance of the CC-3 h electrode was attributed mainly to the large surface area (which could contribute sufficient electroactive species), good conductivity, and high electrocatalytic activity. Overall, this work delivers novel insights into the use of copper sulfide and offers an important guidelines for the fabrication of next level energy storage and conversion devices.

  7. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications

    Science.gov (United States)

    Sakthivel, T.; Ashok Kumar, K.; Ramanathan, Rajajeyaganthan; Senthilselvan, J.; Jagannathan, K.

    2017-12-01

    This communication deals with the synthesis of Ag doped TiO2 nanoparticles with different doping concentrations prepared by reduction method for the possible usage of photo anode material in DSSC. The prepared nanoparticles are characterized by x-ray diffraction to study their structural properties which confirms the formation of mixed anatase-rutile crystalline phases. The particulate size, shape and surface morphology are examined using FESEM which indicates agglomerated nanostructures with the average particle size of 20–25 nm. The UV–visible absorption spectra showed enhanced absorption in the visible range in accordance with the doping concentration of Ag with a red shift in their absorption edge. The interfacial charge transport phenomena of the DSSCs are determined by electrochemical impedance spectroscopy (EIS) and the corresponding efficiencies are calculated using J–V curve. In the present work, the UV active TiO2 and Ag doped TiO2 nanoparticles are employed as photoanode for the fabrication of DSSCs based on N3 dye and maximum power conversion efficiency of 1.544% is realized.

  9. Electromechanical TiO2 Nanogenerators

    Directory of Open Access Journals (Sweden)

    Valerio DALLACASA

    2010-11-01

    Full Text Available We have developed a nanogenerator that is driven by mechanical forces to produce continuous direct-current output. The nanogenerator was fabricated with titanium dioxide nanoparticle arrays that were placed beneath a conducting electrode with a small gap. The force drives the electrode up and down to bend and/or vibrate the nanoparticles. A piezoelectric process converts mechanical energy into electricity. The electrode collects the output electricity from all of the nanoparticles. The approach presents an adaptable, mobile, and cost-effective technology for powering nanodevices by harvesting mechanical energy from the environment.

  10. TiO2 Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saera Jin

    2017-10-01

    Full Text Available TiO2 nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs, which exhibited a power conversion efficiency of 1.11% under back illumination.

  11. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode

    International Nuclear Information System (INIS)

    Du, Pingfan; Song, Lixin; Xiong, Jie; Li, Ni; Wang, Lijun; Xi, Zhenqiang; Wang, Naiyan; Gao, Linhui; Zhu, Hongliang

    2013-01-01

    Highlights: ► TiO 2 /multi-walled carbon nanotubes (MWCNTs) hybrid nanofibers are prepared via electrospinning. ► Dye-sensitized solar cells (DSSCs) are assembled using TiO 2 /MWCNTs nanofibers film as photoanode. ► Energy conversion efficiency of DSSCs is greatly dependent on the content of MWCNTs. ► Moderate MWCNTs incorporation can substantially enhance the performance of DSSCs. - Abstract: Anatase TiO 2 /multi-walled carbon nanotubes (TiO 2 /MWCNTs) hybrid nanofibers (NFs) film was prepared via a facile electrospinning method. Dye-sensitized solar cells (DSSCs) based on TiO 2 /MWCNTs composite NFs photoanodes with different contents of MWCNTs (0, 0.1, 0.3, 0.5, 1 wt.%) were assembled using N719 dye as sensitizer. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Raman spectrometer were used to characterize the TiO 2 /MWCNTs electrode films. The photocurrent–voltage (I–V) characteristic, incident photo-to-current conversion efficiency (IPCE) spectrum, and electrochemical impedance spectroscopy (EIS) measurements were carried out to evaluate the photoelectric properties of the DSSCs. The results reveal that the energy conversion efficiency is greatly dependent on the content of MWCNTs in the composite NFs film, and a moderate incorporation of MWCNTs can substantially enhance the performance of DSSCs. When the electrode contains 0.3 wt.% MWCNTs, the corresponding solar cell yield the highest efficiency of 5.63%. This efficiency value is approximately 26% larger than that of the unmodified counterpart.

  12. Enhancing efficiency of dye-sensitized solar cells by combining use of TiO2 nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Li, X.D.; Zhang, D.W.; Chen, S.; Wang, Z.A.; Sun, Z.; Yin, X.J.; Huang, S.M.

    2010-01-01

    Titanium dioxide nanotubes (TiNTs) were fabricated from commercial P25 TiO 2 powders via alkali hydrothermal transformation. Dye-sensitized solar cells (DSCs) were constructed by application of TiNTs and P25 nanoparticles with various weight percentages. The influence of the TiNT concentration on the performance of DSCs was investigated systematically. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the recombination resistance, electron lifetime and time constant in DSCs both under illumination and in the dark. The DSC based on TiNT/P25 hybrids showed a better photovoltaic performance than the cell purely made of TiO 2 nanoparticles. The open-voltage (V oc ), fill factor (FF) and efficiency (η) continuously increased with the TiO 2 nanotube concentration from 0 to 50 wt%, which was correlated with the suppression of the electron recombination as found out from EIS studies. Respectable photovoltaic performance of ca. 7.41% under the light intensity of 100 mW cm -2 (AM 1.5G) was achieved for DSCs using 90 wt% TiO 2 nanotubes incorporated in TiO 2 electrodes.

  13. Three-Dimensional Finite Element Analysis of Phase Change Memory Cell with Thin TiO2 Film

    International Nuclear Information System (INIS)

    Yan, Liu; Zhi-Tang, Song; Yun, Ling; Song-Lin, Feng

    2010-01-01

    A thin TiO 2 layer inserted in a phase change memory (PCM) cell to form a deep sub-micro bottom electrode (DBE) is proposed and its electro-thermal characteristics are investigated with the three-dimensional finite element analysis. Compared with the conventional PCM cell with a SiN stop layer, the reset threshold current of the PCM cell with the TiO 2 layer is reduced from 1.8 mA to 1.2 mA and the ratio of the amorphous resistance and crystalline resistive increases from 65 to 100. The optimum thickness of the TiO 2 layer and the optimum height of DBE are 10 nm and 200 nm, respectively. Therefore, the PCM cell with the TiO 2 layer can decrease the programming power consumption and increase heating efficiency. The TiO 2 film is a better candidate for the SiN film in the PCM cell structure to prepare DBE and to reduce programming power in the reset operation. (cross-disciplinary physics and related areas of science and technology)

  14. Effect of concentration on the growth of rutile TiO2 nanocrystals.

    Science.gov (United States)

    Danish, Rehan; Ahmed, Faheem; Koo, Bon Heun

    2014-11-01

    In the following study we present an easy and scalable method for the synthesis of Rutile Titanium Dioxide (TiO2) nano-rods by using bulk TiO2 powder, Sodium Hydroxide (NaOH), distilled water and ethanol. We demonstrated the effects of concentration on the size, morphology and band gap of the finally obtained nanostructures. X-ray diffraction pattern (XRD) studies indicated that the samples were crystalline and were free from any impurities with a little hint of anatase at the lower concentrations and the average crystal size ranges between 20 nm to 41 nm, FESEM studies revealed that nano structures are rod like. Further UV-Visible Spectroscopy and Raman studies were conducted of the prepared samples and the band gap of the samples was found to be ranging from 3.5 eV to 3.8 eV. The photo-catalytic degradation of methyl orange was done by the sample prepared in the presence of UV source and was compared with the degrading capacity of bulk TiO2 and was inferred that the Methyl orange is degraded much efficiently with the use of the synthesized sample. The central feature of the presented approach being the use of simple technique and instruments like hot plate, economical and easily accessible chemical like NaOH as a reactant, and a facilitator for the growth of nano-rods and with the reaction being carried out at very low temperatures and less reaction times makes this technique highly feasible for being used in mass production of Rutile TiO2 nano-rods and the fact that the morphology and size can be tuned by varying the concentration of the NaOH.

  15. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

    Directory of Open Access Journals (Sweden)

    Xiaoying Peng

    2016-08-01

    Full Text Available An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature.

  16. Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition

    Science.gov (United States)

    Teng, Wei; Wang, Youmei; Huang, HuiHui; Li, Xinyong; Tang, Yubin

    2017-12-01

    Novel MoS2 sensitized TiO2 nanotube arrays with high photoelectrocatalytic activity under visible light irradiation were successfully synthesized via photo-assisted electrodeposition procedure. The photoelectrocatalytic (PEC) performance of the composite electrode was examined by the photoelectrocatalytic oxidation of methylene blue (MB) and sulfadiazinmu (SD) under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 410 nm). The MoS2/TiO2 heterostructure photoelectrode presented a significantly enhanced PEC activity than the pure TiO2 NTs owing to its stronger light-harvesting ability and improved separation of photogenerated electrons and holes in comparison with TiO2 nanotubes. The obviously reduced electron-hole recombination rates of MoS2/TiO2 were demonstrated from PL spectroscopy measurements and the photoelectrochemical evaluation. The degradation rate of MoS2/TiO2 NTs photoelectrode for PEC degradation of MB and SD was 3 times that of TiO2 NTs photoelectrode. It was found that holes and single oxygen act as the main oxidative species.

  17. Electrokinetic Properties of TiO2 Nanotubular Surfaces

    Science.gov (United States)

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-08-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10-3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

  18. Anatase TiO2 nanocomposites for antimicrobial coatings.

    Science.gov (United States)

    Fu, Guifen; Vary, Patricia S; Lin, Chhiu-Tsu

    2005-05-12

    A sol-gel chemistry approach was used to fabricate nanoparticles of TiO(2) in its anatase form. The particle size is shown to be sensitive to the use of HClO(4) or HNO(3) as acid catalyst. The gold-capped TiO(2) nanocomposites were processed by the reduction of gold on the surface of the TiO(2) nanoparticles via a chemical reduction or a photoreduction method. Different percentages of vanadium-doped TiO(2) nanoparticles, which extended the TiO(2) absorption wavelength from the ultraviolet to the visible region, were successfully prepared. The synthesized nanocomposites have a size of about 12-18 nm and an anatase phase as characterized by XRD, TEM, AFM, and UV-vis spectroscopy. The TiO(2) nanocomposite coatings have been applied on glass slide substrates. The antibacterial activity of TiO(2) nanocomposites was investigated qualitatively and quantitatively. Two types of bacteria, Escherichia coli (DH 5alpha) and Bacillus megaterium (QM B1551), were used during the experiments. Good inhibition results were observed and demonstrated visually. The quantitative examination of bacterial activity for E. coli was estimated by the survival ratio as calculated from the number of viable cells, which form colonies on the nutrient agar plates. The antimicrobial efficiency and inhibition mechanisms are illustrated and discussed.

  19. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  20. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad B., E-mail: mbgholivand@razi.ac.ir [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Abdolmaleki, Abbas [Department of Chemistry, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS–MWCNTs composite sensor (CuNS–MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800 μM with a low detection limit of 70 nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50–800 μM with the detection limit of 4.3 μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. - Highlights: • The Copper nanostructures (CuNS) were prepared by cyclic voltammetry deposition. • The CuNS-MWCNT/PGE sensor shows high activity toward hydrazine (N{sub 2}H{sub 4}). • The proposed sensor exhibits a wide linear range (0.1 to 800 μM), low detection limit (70 nM), high sensitivity and stability for hydrazine.

  1. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  2. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  3. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  4. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  5. TiO2/polymer nanocomposite based inks

    Science.gov (United States)

    Loffredo, F.; Grimaldi, I. A.; De Girolamo Del Mauro, A.; Villani, F.; D'Amato, R.; Minarini, C.

    2010-06-01

    We report the development and characterization of dielectric inks based on dispersions of TiO2 in poly(ethylenimine)/ethanol solutions having physicochemical properties suitable to ink-jet printing process. In order to study the effect of polymer dispersant on the printability and stability of inks, we carried out dynamic light scattering analysis of different inks made with and without polymer. Moreover, we compare the curve of distribution of TiO2 particles size at different aging times. For TiO2polymerwe optimize the inkjet parameters (amplitude and duration of jetting impulse, jetting frequency, substrate velocity) to obtain thin lines based on TiO2/ poly(ethylenimine) nanocomposite on silicon substrate. Finally, the morphology of films was also investigated.

  6. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    Science.gov (United States)

    Ding, Jianning; Li, Yan; Hu, Hongwei; Bai, Li; Zhang, Shuai; Yuan, Ningyi

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm-2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.

  7. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    Science.gov (United States)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-01

    We investigated CdSe-sensitized TiO2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO2-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm-2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (Voc = 485 mV, Jsc = 4.26 mA cm -2, ff=0.37).

  8. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    Directory of Open Access Journals (Sweden)

    T. Pfadler

    2015-06-01

    Full Text Available Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  9. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; Wan Salleh, Wan Norharyati; Jaafar, Juhana; Rosmi, Mohamad Saufi; Mohd. Hir, Zul Adlan; Abd Mutalib, Muhazri; Ismail, Ahmad Fauzi; Tanemura, Masaki

    2017-01-01

    Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO2 mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO2 are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO2, crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV-vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO2 to form Osbnd Tisbnd C or Tisbnd Osbnd C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO2 via Tisbnd Osbnd C and Tisbnd OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO2 prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO2.

  10. Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes

    Czech Academy of Sciences Publication Activity Database

    Macounová, Kateřina; Makarova, Marina; Jirkovský, Jakub; Franc, Jiří; Krtil, Petr

    2008-01-01

    Roč. 53, č. 5 (2008), s. 6126-6134 ISSN 0013-4686 R&D Projects: GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : OER * CER * DEMS * ruthenium electrode Subject RIV: CG - Electrochemistry Impact factor: 3.078, year: 2008

  11. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    Science.gov (United States)

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synergistic effect of N- and F-codoping on the structure and photocatalytic performance of TiO2.

    Science.gov (United States)

    Yu, Jiemei; Liu, Zongming; Zhang, Haitao; Huang, Taizhong; Han, Jitian; Zhang, Yihe; Chong, Daohuang

    2015-02-01

    Three types of TiO2 nanostructures were synthesized via a facile hydrolysis method at 195°C. Effects of the preparation method and doping with N and F on the crystal structure and photocatalytic performance of TiO2 were investigated. The nanomaterials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller porosimetry, ultraviolet-visible diffuse reflectance spectroscopy and fluorescent emission spectra. Their photo-catalytic activity was examined by the photodegradation of methylene blue in aqueous solution under both ultra-violet and visible light irradiation. The results show that nitrogen and fluorine co-doped anatase TiO2 had the characteristics of a smaller crystalline size, broader light absorption spectrum and lower charge recombination than pure TiO2. Most importantly, more efficient photocatalytic activity under both ultra-violet and visible light was observed. The obtained N-F-TiO2 nanomaterial shows considerable potential for water treatment under sunlight irradiation. Copyright © 2014. Published by Elsevier B.V.

  13. Controllable synthesis and luminescence properties of TiO2:Eu3+ nanorods, nanoparticles and submicrospheres by hydrothermal method

    Science.gov (United States)

    Qi, Xiaofei; Song, Yanhua; Sheng, Ye; Zhang, Hongguang; Zhao, Huan; Shi, Zhan; Zou, Haifeng

    2014-12-01

    Eu3+-doped TiO2 nanocrystals with three kinds of morphologies (nanorods, nanoparticles, and submicrospheres) have been successfully fabricated in cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol reverse micelle by hydrothermal method for the first time and their photoluminescence (PL) properties have also been studied. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), FT-IR, and PL spectra were used to characterize the samples. The acidic and alkaline conditions of the microemulsion play an important role in determining the geometric morphologies of the final products. TiO2:Eu3+ with three different morphologies all exist only in anatase phase and show high luminescence intensity without further calcinations, which show its advantages of energy saving. The shape of emission spectra was independent of the morphologies of the products but the luminescence intensity of the TiO2:Eu3+ materials is strongly dependent on their morphology. The results show that TiO2:Eu3+ nanorods possess the strongest luminescence intensity among the three nanostructured samples.

  14. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    Directory of Open Access Journals (Sweden)

    Bessais B.

    2012-06-01

    Full Text Available One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 – ITO (Indium Tin Oxide and TiO2 – ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD and transmission Electron Microscopy (TEM. The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow. The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  15. Mesoporous anatase TiO2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chu, Liang; Qin, Zhengfei; Zhang, Qiaoxia; Chen, Wei; Yang, Jian; Yang, Jianping; Li, Xing’ao

    2016-01-01

    Graphical abstract: The photoelectrodes of DSSCs consisted of mesoporous anatase TiO 2 microspheres with interconnected nanoparticles. The interconnected nanoparticles enhance dye-loading capacity and charge transport. - Highlights: • The mesoporous anatase TiO 2 microspheres were synthesized by a template-free, one-step fast solvothermal process. • The mesoporous anatase TiO 2 microspheres with interconnected nanoparticles have the advantages of large surface area and connected-structure for electron transfer. • The mesoporous anatase TiO 2 microspheres were further utilized as efficient photoelectrodes for dye-sensitized solar cells. - Abstract: Mesoporous anatase TiO 2 microspheres with interconnected nanostructures meet both large surface area and connected-structure for electron transfer as ideal nano/micromaterials for application in solar cells, energy storage, catalysis, water splitting and gas sensing. In this work, mesoporous anatase TiO 2 microspheres consisting of interconnected nanoparticles were synthesized by template-free, one-step fast solvothermal process, where urea was used as capping agent to control phase and promote oriented growth. The morphology was assembled by nucleation-growth-assembly-mechanism. The mesoporous anatase TiO 2 microspheres with interconnected nanoparticles were further utilized as efficient photoelectrodes of dye-sensitized solar cells (DSSCs), which were beneficial to capacity of dye loading and charge transfer. The power conversion efficiency (PCE) based on the optimized thickness of TiO 2 photoelectrodes was up to 7.13% under standard AM 1.5 G illumination (100 mW/cm 2 ).

  16. Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties

    Science.gov (United States)

    Li, Min; Zhang, Xiaomei; Liu, Ying; Yang, Yi

    2018-05-01

    Praseodymium-doped biphasic TiO2 (rutile-brookite) nanorod arrays (Pr-TiO2 NRAs) were successfully prepared via a two-step hydrothermal reaction on activated carbon fibers (ACFs) which pre-coated with TiO2 nanoparticles at first step. The bicrystalline arrays grown on ACFs are primarily constructed by the well-aligned TiO2 nanorods growing along [0 0 1] direction, which were indicated by the results of SEM and XRD. The nanorods are uniform in diameter and length with about 250 nm and 2.5 μm. The composite photocatalyst with high specific surface area and well-aligned nanostructure are beneficial to enhance the adsorption capacity and even help to suppress electron-hole recombination effectively, which consequently revealed much better (2 times) catalytic performance than that of commercially available P25 TiO2 on methylene blue(MB) photodegradation. In addition, the existence of praseodymium in TiO2 gives rise to shift of absorption edge towards long wavelength, which was indicated by the results of UV-vis DRS. Photodegradation results reveal that Pr-doping significantly improves the activity of TiO2, which was 20% higher than that of undoped TiO2 NRAs for the photodegradation of MB in aqueous medium under visible light irradiation. Meanwhile, the doped amount of Pr had a tiny influence on the photocatalytic performance of the composites. In our experiment, 3% Pr-doped molar concentration was proven to be the relatively optimal dopant concentration for the doping of TiO2 NRAs. Moreover, the photocatalyst grown on ACFs substrates is favorable to reuse and photodegradation rate kept on 76% even after 4 times of reuse.

  17. CoFe2O4-TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Arturo Adrián Rodríguez-Rodríguez

    2017-01-01

    Full Text Available CoFe2O4 nanoparticles decorated and wrapped with TiO2 nanoparticles have been prepared by mixing well-dispersed CoFe2O4 with amorphous TiO2 (impregnation approach and growing amorphous TiO2 over the magnetic core (seed approach, respectively, followed by thermal treatment to achieve TiO2 crystallinity. Synthesis strategies were based on the oil-in-water microemulsion reaction method. Thermally treated nanomaterials were characterized in terms of structure, morphology, and composition, to confirm hybrid nanoparticles formation and relate with the synthesis approaches; textural, optical, and magnetic properties were evaluated. X-ray diffraction revealed coexistence of cubic spinel-type CoFe2O4 and tetragonal anatase TiO2. Electron microscopy images depicted crystalline nanoparticles (sizes below 25 nm, with homogeneous Ti distribution for the hybrid nanoparticles synthesized by seed approach. EDX microanalysis and ICP-AES corroborated established chemical composition. XPS evidenced chemical states, as well as TiO2 predominance over CoFe2O4 surface. According to BET measurements, the hybrid nanoparticles were mesoporous. UV-Vis spectroscopy showed optical response along the UV-visible light region. Magnetic properties suggested the breaking order of magnetic domains due to modification with TiO2, especially for mediated seed approach sample. The properties of the obtained hybrid nanoparticles were different in comparison with its individual components. The results highlight the usefulness of designed microemulsion approaches for the straightforward synthesis of CoFe2O4-TiO2 nanostructured hybrids.

  18. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  19. Comparison of dye solar cell counter electrodes based on different carbon nanostructures

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Halonen, Niina; Kaskela, Antti; Toivola, Minna; Nasibulin, Albert G.; Kordas, Krisztian; Toth, Geza; Kauppinen, Esko I.; Lund, Peter D.

    2011-01-01

    Three characteristically different carbon nanomaterials were compared and analyzed as platinum-free counter electrodes for dye solar cells: 1) single-walled carbon nanotube (SWCNT) random network films on glass, 2) aligned multi-walled carbon nanotube (MWCNT) forest films on Inconel steel and quartz, and 3) pressed carbon nanoparticle composite films on indium tin oxide-polyethylene terephtalate plastic. Results from electrochemical impedance spectroscopy and electron microscopy were discussed in terms of the catalytic activity, conductivity, thickness, transparency and flexibility of the electrode films. The SWCNT films showed reasonable catalytic performance at similar series resistance compared to platinized fluorine doped tin oxide-coated glass. The MWCNTs had similar catalytic activity, but the electrochemical performance of the films was limited by their high porosity. Carbon nanoparticle films had the lowest charge transfer resistance resulting from a combination of high catalytic activity and dense packing of the material.

  20. Comparison of dye solar cell counter electrodes based on different carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, Kerttu, E-mail: kerttu.aitola@aalto.fi [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Halme, Janne [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Halonen, Niina [Microelectronics and Materials Physics Laboratories, Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu (Finland); Kaskela, Antti; Toivola, Minna; Nasibulin, Albert G. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); Kordas, Krisztian; Toth, Geza [Microelectronics and Materials Physics Laboratories, Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu (Finland); Kauppinen, Esko I. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland); VTT Biotechnology, P.O. Box 1000, 02044 VTT (Finland); Lund, Peter D. [Aalto University, Department of Applied Physics, P.O. Box 15100, 00076 Aalto (Finland)

    2011-09-01

    Three characteristically different carbon nanomaterials were compared and analyzed as platinum-free counter electrodes for dye solar cells: 1) single-walled carbon nanotube (SWCNT) random network films on glass, 2) aligned multi-walled carbon nanotube (MWCNT) forest films on Inconel steel and quartz, and 3) pressed carbon nanoparticle composite films on indium tin oxide-polyethylene terephtalate plastic. Results from electrochemical impedance spectroscopy and electron microscopy were discussed in terms of the catalytic activity, conductivity, thickness, transparency and flexibility of the electrode films. The SWCNT films showed reasonable catalytic performance at similar series resistance compared to platinized fluorine doped tin oxide-coated glass. The MWCNTs had similar catalytic activity, but the electrochemical performance of the films was limited by their high porosity. Carbon nanoparticle films had the lowest charge transfer resistance resulting from a combination of high catalytic activity and dense packing of the material.

  1. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    Science.gov (United States)

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future.

  2. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    Science.gov (United States)

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  3. Intrinsically Stretchable Nanostructured Silver Electrodes for Realizing Efficient Strain Sensors and Stretchable Organic Photovoltaics.

    Science.gov (United States)

    Yu, Yang-Yen; Chen, Chien-Hsun; Chueh, Chu-Chen; Chiang, Chun-Ying; Hsieh, Jang-Hsing; Chen, Chih-Ping; Chen, Wen-Chang

    2017-08-23

    In this study, a new hybrid electrode featuring a high gauge factor of >30, decent stretchability (100% of the original conductivity can be retained after 50 cycles of stretching under a 20% strain without prestrain treatment), high transmittance (>70%) across 400-900 nm, and a good sheet resistance (electrode is susceptible to the applied tensile strain and the ensuing change in conductivity enables the realization of an efficient strain sensor. Besides, a representative PTB7-th:PC 71 BM organic photovoltaic (OPV) using this electrode (with the assistance of a wrinkled scaffold to reinforce the stretchability of the active layer) can exhibit a power-conversion efficiency (PCE) of 6% along with high deformability, for which 75% of its original PCE is retained after 50 cycles of stretching under a 20% strain. Meanwhile, a representative all-polymer OPV consisting of a PTB7-th:N2200 blend, in which the N2200 has a better mechanical stretchability than that of PC 71 BM, can maintain over 96% of its original PCE after 50 cycles of stretching (under a 20% strain) without employing the wrinkled scaffold. Such promising performance in stretchable OPVs is among the state-of-the-art results reported to date.

  4. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Morphologically controlled electrodeposition of CdSe on mesoporous TiO2 film for quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Song, Xiaohui; Wang, Minqiang; Zhang, Hao; Deng, Jianping; Yang, Zhi; Ran, Chenxin; Yao, Xi

    2013-01-01

    Highlights: • CdSe QDs were deposited onto mesoporous TiO 2 film via a one-step electrodeposition method. • The morphology and microstructure of TiO 2 /CdSe photoanodes can be controlled by electrodeposition current density. • A ZnS coating layer and thermal annealing could further enhance the performance of the TiO 2 /CdSe photoanodes. • A maximum power conversion efficiency of 2.72% was achieved with the optimum TiO 2 /CdSe/ZnS photoanodes. -- Abstract: CdSe quantum dots (QDs)-sensitized mesoporous TiO 2 (TiO 2 /CdSe) films were fabricated using a facile one-step electrodeposition method in an aqueous electrolyte. This technique has the advantage of being simple, low cost, and easily scalable to the sensitization of large-area panels. By adjusting the electrodeposition current density, the morphology and microstructure of the prepared TiO 2 /CdSe films can be precisely controlled, which influences the photovoltaic performances of quantum dot-sensitized solar cells based on the TiO 2 /CdSe films. At a moderate current density of 0.2 mA cm −2 , CdSe QDs can penetrate deep into the inner pores of the mesoporous TiO 2 film, thus leading to a dense and uniform distribution of QDs throughout the whole TiO 2 matrix, while higher current densities result in growth of larger, isolated CdSe nanoclusters. Furthermore, a ZnS passivation layer coated on TiO 2 /CdSe photoanodes and thermal annealing could significantly improve the photovoltaic performance. As a result, a quantum dot-sensitized solar cell based on a TiO 2 /CdSe/ZnS photoanode (350 °C, 30 min calcination), polysulfide electrolyte and Pt counter electrode achieves a power conversion efficiency of 2.72% under AM 1.5 G one sun illumination

  6. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhang, Qing; Shi, Chuan-Guo; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2013-10-15

    Low cost disposable working electrodes are specifically desired for practical applications of electrochemical detection considering maturity of electrochemical stations and data collection protocols. In this paper double-sided conductive adhesive carbon tape with nanostructure was applied to fabricate disposable working electrodes. Being supported by indium tin oxide glass, the prepared carbon tape electrodes were coated with bismuth film for stripping analysis of heavy metal ions. By integrating the bismuth modified electrodes with paper-based analytical devices, we were able to differentiate Zn, Cd and Pb ions with the sample volume of around 15 μL. After the optimization of parameters, including modification of bismuth film and the area of the electrodes, etc., Pb ions could be measured in the linear range from 10 to 500 μg/L with the detection limit of 2 μg/L. Our experimental results revealed that the disposable modified electrodes could be used to quantify migrated lead from toys with the results agreed well with that using atomic absorption spectrometry. Although bismuth modification and stripping analysis could be influenced by the low conductivity of the carbon tape, the low cost disposable carbon tape electrodes take the advantages of large-scaled produced double-sided carbon tape, including its reproducible nanostructure and scaled-up fabrication process. In addition, the preparation of disposable electrodes avoids time-consuming pretreatment and experienced operation. This study implied that the carbon tape might be an alternative candidate for practical applications of electrochemical detection. © 2013 Elsevier B.V. All rights reserved.

  8. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  9. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode.

    Science.gov (United States)

    Li, Yin; Shi, Gaoquan

    2005-12-22

    Two-dimensional gold nanostructures have been fabricated by electrochemical deposition of gold nanoparticles onto indium tin oxide (ITO) glass substrate modified with thin polypyrrole film. By controlling the electrodeposition conditions, gold nanoparticles with dendritic rod, sheet, flower-like (consisting of staggered nanosheets), and pinecone-like structures were generated. The flower-like gold nanoparticles showed high catalytic activity on electrochemical reduction of oxygen, and its activity was measured to be approximately 25 times that of gold pinecones and 10(4) times that of gold nanosheets in terms of gold weight. The pinecone-like nanoparticles can form a compact film with nano-/microscale binary structure like a lotus leaf surface. After modification with n-dodecanethiol, the surface showed superhydrophobic properties with a water contact angle of 153.4 degrees and a tilt angle of 4.4 degrees (5 microL droplet).

  10. Nanostructured Semiconductor Electrodes for Solar Energy Conversion and Innovations in Undergraduate Chemical Lab Curriculum

    Science.gov (United States)

    Lee, Sudarat

    This dissertation presents the methodology and discussion of preparing nanostructured, high aspect ratio p-type phosphide-based binary and ternary semiconductors via "top-down" anodic etching, a process which creates nanostructures from a large parent entity, and "bottom-up" vapor-liquid-solid growth, a mechanism which builds up small clusters of molecules block-by-block. Such architecture is particularly useful for semiconducting materials with incompatible optical absorption depth and charge carrier diffusion length, as it not only relaxes the requirement for high-grade crystalline materials, but also increases the carrier collection efficiencies for photons with energy greater than or equal to the band gap. The main focus of this dissertation is to obtain nanostructured p-type phosphide semiconductors for photoelectrochemical (PEC) cell applications. Chapter II in the thesis describes a methodology for creating high-aspect ratio p-GaP that function as a photocathode under white light illumination. Gallium phosphide (GaP, band gap: 2.26 eV) is a suitable candidate for solar conversion and energy storage due to its ability to generate large photocurrent and photovoltage to drive fuel-forming reactions. Furthermore, the band edge positions of GaP can provide sufficient kinetics for the reduction of protons and carbon dioxide. The structure is prepared by anodic etching, and the resulting macroporous structures are subsequently doped with Zn by thermally driving in Zn from conformal ZnO films prepared by atomic layer deposition (ALD). The key finding of this work is a viable doping strategy involving ALD ZnO films for making functioning p-type GaP nanostructures. Chapter III compares the GaP nanowires grown from gold (Au) and tin (Sn) VLS catalysts in a benign solid sublimation growth scheme in terms of crystal structure and photoactivity. Sn is less noble than Au, allowing complete removal of Sn metal catalysts from the nanowires through wet chemical etching which

  11. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO2-Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors.

    Science.gov (United States)

    Le, Zaiyuan; Liu, Fang; Nie, Ping; Li, Xinru; Liu, Xiaoyan; Bian, Zhenfeng; Chen, Gen; Wu, Hao Bin; Lu, Yunfeng

    2017-03-28

    Sodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO 2 mesocages anchored on graphene as a sodium storage material. The architecture of the nanocomposite results in pseudocapacitive charge storage behavior with fast kinetics, high reversibility, and negligible degradation to the micro/nanostructure. The nanocomposite delivers a high capacity of 268 mAh g -1 at 0.2 C, which remains 126 mAh g -1 at 10 C for over 18 000 cycles. Coupling with a carbon-based cathode, a full cell of sodium-ion capacitor successfully demonstrates a high energy density of 64.2 Wh kg -1 at 56.3 W kg -1 and 25.8 Wh kg -1 at 1357 W kg -1 , as well as an ultralong lifespan of 10 000 cycles with over 90% of capacity retention.

  12. Nanostructured Sn{sub 30}Co{sub 30}C{sub 40} alloys for lithium-ion battery negative electrodes prepared by horizontal roller milling

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, P.P. [Secteur des Sciences, Université de Moncton, campus de Shippagan, Shippagan, N.B. E8S 1P6 (Canada); Le, Dinh-Ba [3M Co., 3M Center, St. Paul, MN 55144-1000 (United States); Todd, A.D.W. [NRC Institute for National Measurements Standards, Ottawa, ON K1A 0R6 (Canada); Martine, M.L. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Trussler, S. [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Obrovac, M.N. [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 4R2 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.ca [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 4R2 (Canada)

    2014-05-15

    Highlights: • Horizontal roller milling used to prepare nanostructured alloys for Li-ion batteries. • Sn{sub 30}Co{sub 30}C{sub 40} prepared by horizontal roller milling shows excellent properties. • Horizontal roller milling is an economical alternative to other methods. • Nanostructured Sn{sub 30}Co{sub 30}C{sub 40} by horizontal roller milling. - Abstract: Horizontal roller milling was used to prepare Sn{sub 30}Co{sub 30}C{sub 40} electrode materials. By varying the milling conditions, it was possible to obtain nanostructured materials whose X-ray diffraction patterns mimicked the diffraction pattern of the same material obtained by vertical-axis attritor milling or by co-sputtering. Electrochemical testing showed that composite electrodes made from each of the prepared materials showed stable charge–discharge capacity for at least 100 charge discharge cycles and displayed stable differential capacity versus potential profiles. Small angle neutron scattering results showed that samples prepared by roller milling and by attriting showed similar nanostructure with Co–Sn grains of about 60 Å in a carbon matrix.

  13. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  14. Carbon nanostructures obtained by underwater arc discharge of graphite electrodes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Darias Gonzalez, J. G.; Hernandez Tabare, L.; Herrera Palma, V.; Sierra Trujillo, J. S.; Desdin Garcia, L. F.; Codorniu Pujals, D.; Bermudez Martinez, A.; Arias de Fuentes, O.; Maury Toledo, A.

    2015-01-01

    In the present work, the application of the method of underwater arc discharge of graphite electrodes for obtaining several carbon nano structures is described. The analysis of the obtained products by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Raman spectroscopy, Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) showed that the samples collected from the material floating on the water surface were composed mainly by polyhedral onion-like particles, while those taken from the precipitate were a mixture multi walled nano-tubes, onion-like particles and other graphitic structures. The main features of the obtained nano structures are discussed. (Author)

  15. Nanostructured 3D electrode architectures for high-rate Li-ion batteries.

    Science.gov (United States)

    Haag, Jacob M; Pattanaik, Gyanaranjan; Durstock, Michael F

    2013-06-18

    By initially depositing a sub-10 nm-thick SnO2 film, the microstructural evolution that is often considered problematic can be utilized to form Sn nanoparticles on the surface of a 3D current collector for enhanced cycling stability. The work described here highlights a novel approach for the uniform deposition of Sn nanoparticles, which can be used to design electrodes with high capacities and high-rate capabilities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2017-11-01

    Full Text Available Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  17. Designing 3D interconnected continuous nanoporous Co/CoO core-shell nanostructure electrodes for a high-performance pseudocapacitor

    Science.gov (United States)

    Qing, Chen; Zhou, Qin; Qu, Gan; Chen, Xinqi; Wang, Hai; Sun, Daming; Wang, Bixiao; Xu, Lifeng; Tang, Yiwen

    2017-02-01

    A high-performance supercapacitor electrode is designed and fabricated with the 3D interconnected continuous nanoporous Co/CoO core-shell hybrid nanostructure grown on nickel foam. The Co/CoO core-shell hybrid nanostructures are obtained via a hydrothermal method, followed by high-temperature annealing in hydrogen atmosphere, and finally placed in air at 50 °C for 1 h. The Co/CoO core-shell nanostructure assembled by a conductive metal-core and a CoO shell, brings low resistance, high specific capacitance of 5.632 F cm-2 and good capability stability (81.5% capacitance retention after 6000 cycles). An asymmetric supercapacitor device built by the Co/CoO (positive electrode) and activated carbon (negative electrode) can deliver a working voltage of 1.7 V and display a high energy density of 0.002 67 Wh cm-2 at a power density of 0.001 62 W cm-2, which is far superior to that of a supercapacitor at a similar power density.

  18. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode.

    Science.gov (United States)

    Srinivasa Rao, S; Punnoose, Dinah; Venkata Tulasivarma, Ch; Pavan Kumar, C H S S; Gopi, Chandu V V M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-02-07

    In dye-sensitized solar cells (DSSCs), the TiO2 photoanode film plays an important role in increasing the power conversion efficiency. In this work, TiO2 nanoparticles were first coated on fluorine-doped tin oxide by the doctor-blade method, and then a thin film of zinc sulfide (ZnS) was successfully fabricated on the surface of the TiO2 nanoparticles using the successive ionic layer adsorption and reaction method. The performance of the DSSCs was examined in detail using a cobalt sulfide counter electrode and I(-)/I3(-) electrolyte. X-ray diffraction and energy dispersive X-ray spectroscopy measurements were used to find the composition of the films. Characterization with electrochemical impedance spectroscopy indicated that the recombination rate decreased drastically during the electron transportation. The DSSCs based on ZnS coated TiO2 photoanode achieved a power conversion efficiency of 5.90% under 1 sunlight illumination, which is higher than that of the bare TiO2 photoanode (4.43%). This suggests that the promising ZnS-coated TiO2 nanoparticles accumulate a large number of photo-injected electrons in the conduction band of the photoanode and the N719 dye lowers the recombination of photo-injected electrons with the redox electrolyte.

  19. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  20. Enhanced Optoelectronic Properties of PFO/Fluorol 7GA Hybrid Light Emitting Diodes via Additions of TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bandar Ali Al-Asbahi

    2016-09-01

    Full Text Available The effect of TiO2 nanoparticle (NP content on the improvement of poly(9,9′-di-n-octylfluorenyl-2,7-diyl (PFO/Fluorol 7GA organic light emitting diode (OLED performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO2 NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO2 NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO2/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO2 NPs, while maximum luminance efficiency was achieved with 15 wt % TiO2 NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO2 NP content.

  1. Dynamics of fibronectin adsorption on TiO2 surfaces.

    Science.gov (United States)

    Sousa, S R; Brás, M Manuela; Moradas-Ferreira, P; Barbosa, M A

    2007-06-19

    In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of incubation. Time dependence is also observed for the evolution of the atomic (%) of N determined by XPS and by the increase of the thickness by ellipsometry. TiO2 cp adsorbs more FN than the TiO2 sp surfaces, after 60 min of adsorption, as shown by the radiolabeling data. FN molecules are also more strongly attached to the former surface as indicated by the exchangeability studies. The overall results provide novel evidence that FN spontaneously adsorbs as a self-assembly at TiO2 surfaces as a function of time. The aggregate structure is an intermediate feature shared by some protein fibrillar assemblies at interfaces, which is believed to promote cell adhesion and cytoskeleton organization (Pellenc, D.; Berry, H.; Gallet, O. J. Colloid Interface Sci. 2006, 298 (1), 132-144. Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. J. Cell Sci. 2000, 113 (10), 1677-1686).

  2. Strong room-temperature chemiresistive effect of TiO2 nanowires to nitro-aromatic compounds

    Science.gov (United States)

    Wang, Danling; Chen, Antao; Zhang, Qifeng; Cao, Guozhong

    2011-05-01

    Nanostructured TiO2 thin films are found to be highly responsive to trace vapors of common nitro-explosives at room temperature. Thin films of TiO2 nanowires, made with high yield hydrothermal synthesis, present very reliable sensing characteristics to nitro-aromatic molecules with high sensitivity and fast response at ambient condition. The detection limit of 2, 4-dinitrotoluene (DNT) vapor at room temperature could reach up to 3ppb. The experimental results indicate titania nanowires as a novel chemical sensor to explosive gas have a great commercial potential due to its unique advantages: high sensitivity, rapid response and recovery, small size suitable for intergration with microelectronics and low fabrication cost. Experimental results and a theoretical model are presented.

  3. Effects of TiO2 Film Thickness and Electrolyte Concentration on Photovoltaic Performance of Dye-Sensitized Solar Cell

    Science.gov (United States)

    Domtau, D. L.; Simiyu, J.; Ayieta, E. O.; Nyakiti, L. O.; Muthoka, B.; Mwabora, J. M.

    Effects of film thickness and electrolyte concentration on the photovoltaic performance of TiO2-based dye-sensitized solar cell (DSSC) were studied. Nanocrystalline anatase TiO2 thin films with varying thicknesses (3.2-18.9μm) have been deposited on FTO/glass substrates by screen printing method as work electrodes for DSSC. The prepared samples were characterized by UV-Vis spectroscopy, Atomic Force Microscopy/Scanning Tunneling Microscopy (AFM/STM) and X-ray diffraction (XRD). The optimal thickness of the TiO2 photoanode is 13.5μm. Short-circuit photocurrent density (Jsc) increases with film thickness due to enlargement of surface area whereas open-circuit voltage decreases with increase in thickness due to increase in electron diffusion length to the electrode. However, the Jsc and Voc of DSSC with a film thickness of 18.9μm (7.5mA/cm2 and 0.687V) are smaller than those of DSSC with a TiO2 film thickness of 13.5μm (9.9mA/cm2 and 0.734V). This is because the increased thickness of TiO2 thin film resulted in the decrease in the transmittance of TiO2 thin films hence reducing the incident light intensity on the N719 dye. Photovoltaic performance also depends greatly on the redox couple concentration in iodide∖triiodide. Jsc decreases as the redox concentration increases as a result of increased viscosity of the solution which lowers ion mobility. Similarly, Voc decreases as the electrolyte concentration increases due to enhanced back electron transfer reaction. An optimum power conversion efficiency of 4.3% was obtained in a DSSC with the TiO2 film thickness of 13.5μm and redox concentration of 0.03mol dm-3 under AM 1.5G illumination at 100mW/cm2.

  4. Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors.

    Science.gov (United States)

    García-Mendiola, T; Gamero, M; Campuzano, S; Revenga-Parra, M; Alonso, C; Pedrero, M; Pariente, F; Pingarrón, J M; Lorenzo, E

    2013-07-25

    An electrochemical DNA genosensor constructed by using rough gold as electrode support is reported in this work. The electrode surface nanopatterning was accomplished by repetitive square-wave perturbing potential (RSWPP). A synthetic 25-mer DNA capture probe, modified at the 5' end with a hexaalkylthiol, able to hybridize with a specific sequence of lacZ gene from the Enterobacteriaceae bacterial family was assembled to the rough gold surface. A 25 bases synthetic sequence fully complementary to the thiolated DNA capture probe and a 326 bases fragment of lacZ containing a fully matched sequence with the capture probe, which was amplified by a specific asymmetric polymerase chain reaction (aPCR), were employed as target sequences. The hybridization event was electrochemically monitored by using two different indicators, hexaammineruthenium (III) chloride showing an electrostatic DNA binding mode, and pentaamineruthenium-[3-(2-phenanthren-9-yl-vinyl)-pyridine] (in brief RuL) which binds to double stranded DNA (dsDNA) following an intercalative mechanism. After optimization of the different variables involved in the hybridization and detection reactions, detection limits of 5.30 pg μL(-1) and 10 pg μL(-1) were obtained for the 25-mer synthetic target DNA and the aPCR amplicon, respectively. A RSD value of 6% was obtained for measurements carried out with 3 different genosensors prepared in the same manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nanoscale TiO2 and Fe2O3 Architectures for Solar Energy Conversion Schemes

    Science.gov (United States)

    Sedach, Pavel Anatolyvich

    The direct conversion of sunlight into more useable forms of energy has the potential of alleviating the environmental and social problems associated with a dependence on fossil fuels. If solar energy is to be utilized en-masse, however, it must be inexpensive and widely available. In this vein, the focus of this thesis is on nanostructured materials relevant to solar energy conversion and storage. Specifically, this thesis describes the ambient sol-gel synthesis of titanium dioxide (Ti02) nanowires designed for enhanced charge-transfer in solar collection devices, and the synthesis of novel disordered metal-oxide (MOx) catalysts for water oxidation. The introductory chapter of this thesis gives an overview of the various approaches to solar energy conversion. Sol---gel reaction conditions that enable the growth of one-dimensional (1-D) anatase TiO2 nanostructures from fluorine-doped tin oxide (FTO) for photovoltaics (PVs) are described in the second chapter. The generation of these linear nanostructures in the absence of an external bias or template is achieved by using facile experimental conditions (e.g., acetic acid (HOAc) and titanium isopropoxide (Ti(OiPr)4) in anhydrous heptane). The procedure was developed by functionalizing base-treated substrates with Ti-oxide nucleation sites that serve as a foundation for the growth of linear Ti-oxide macromolecules, which upon calcination, render uniform films of randomly oriented anatase TiO2 nanowires. A systematic evaluation of how reaction conditions (e.g., solvent volume, stoichiometry of reagents, substrate base treatment) affect the generation of these TiO 2 films is presented. A photo-organic MO. deposition route (i.e., photochemical metal-organic deposition (PMOD)) used to deposit thin-films of amorphous iron oxide (a-Fe2O3) for water oxidation catalysis is detailed in third chapter. It is shown that the irradiation of a spin-coated metal-organic film produces a film of non-crystalline a-Fe203. It is shown

  6. Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries

    Science.gov (United States)

    Zhu, Qing; Wang, Man; Nan, Bo; Shi, Haohong; Zhang, Xinmei; Deng, Yonghong; Wang, Liping; Chen, Quanqi; Lu, Zhouguang

    2017-09-01

    Na3V2(PO4)3/C/TiO2 (NVP/C/TiO2) composite nanofibers with core/shell nanostructure are prepared by coaxial electrospinning plus heat treatment method. The physical and electrochemical performances of NVP/C/TiO2 nanofibers are investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electrochemical tests. The results show that the composite nanofibers are made of TiO2/C nanoparticles shell and Na3V2(PO4)3/C nanofibers core with embedded TiO2/C nanoparticles. NVP/C/TiO2 nanofibers exhibite much better electrochemical performance than both TiO2/C and Na3V2(PO4)3/C nanofibers prepared by coaxial electrospinning method. The core-shelled NVP/C/TiO2 nanofibers delivere a reversible capacity of 196.1 mAh g-1 at 0.2C (35.6 mA g-1) in the voltage of 0.01-3.0 V (vs.Na+/Na), which is higher than the theoretical capacity of 178 mAh g-1 for Na3V2(PO4)3 and that of TiO2/C composite. NVP/C/TiO2 also displays excellent cycle stability and rate capability. Even at a high rate of 20C, it can still release a high reversible charge capacity of 109 mAh g-1 and retain a capacity of more than 70 mAh g-1 after 1500 cycles. The special microstructure and synergetic effects of Na3V2(PO4)3, conductive carbon and ultrafine TiO2 are responsible for the excellent electrochemical performance. This facile strategy exhibits superiority in fabricating core-shell nanostructured composite nanofibers as promising electrode materials for energy storage devices.

  7. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  8. An investigation on the effect of deposition parameters on nanostructured electrode of lithium ion batteries and their performance

    Science.gov (United States)

    Dorri, Mehrdad; Zamani, Cyrus; Babaei, Alireza

    2018-01-01

    Nanostructured plate-like manganese cobalt oxide (MCO) was synthesized as the anode material for lithium-ion batteries. Under basic conditions and using a molar ratio of OH- /NO3-= 1.5, crystallite size of 14 nm was found for samples calcined at 350°C. The electrodes were fabricated by mixing MCO as the active material, Super P carbon as the conducting material and polyvinylidene fluoride (PVDF) as the binder in N-methyl-2-pyrrolidone (NMP) solvent. The slurry was coated onto a copper foil substrate. The aim of this investigation is the assessment of deposition parameters on different plausible defects (such as agglomeration/blisters, pinholes/divots, cracks and non-uniform coating) and also electrical behavior of the deposited layer. Because of high degree of agglomeration, mortar method was found to be ineffective while mixing using magnetic stirrer was proved to be more appropriate in terms of final rheology. The optimum value for the binder was found to be 2.73 wt% of the NMP solvent. Effective drying was achieved using hotplate followed by oven drying. SEM analysis revealed the disappearance of the surface cracks when samples are pressed after drying stage.

  9. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  10. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation.

    Science.gov (United States)

    Shen, Yu-Lin; Chen, Shih-Yun; Song, Jenn-Ming; Chen, In-Gann

    2012-06-26

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure.

  11. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Bijani, S.; Gabas, M.; Martinez, L.; Ramos-Barrado, J.R.; Morales, J.; Sanchez, L.

    2007-01-01

    Uniform films of Cu 2 O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu 2 O + 2e - + 2Li + ↔ 2Cu + Li 2 O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu 2 O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg -1

  12. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  13. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  14. Surface studies of nitrogen implanted TiO2

    International Nuclear Information System (INIS)

    Batzill, Matthias; Morales, Erie H.; Diebold, Ulrike

    2007-01-01

    Rutile TiO 2 (1 1 0) single crystals have been doped by nitrogen-ion implantation. The change in the valence band and in the core level peak shapes are characterized by photoemission spectroscopy. Surface morphologies are characterized by scanning tunneling microscopy. N-dopants are observed to be in a 3- charge state and to substitute for O-anions in the TiO 2 lattice for N-concentrations up to ∼5% of the anions. The higher valency of the N-dopants compared to the host O-anions is proposed to be compensated by the formation of O-vacancies and/or Ti-interstitials. Two chemically shifted components arise in the Ti-2p core level upon N-doping. These components, shifted by 0.9 eV and 2.1 eV, are assigned to Ti-bound to N-ligands and possibly due to O-vacancies in the lattice. The Ti-3d band gap state observed in UPS is initially suppressed upon room temperature N-implantation and recovers a similar intensity as for undoped TiO 2 samples upon annealing. This indicates that electrons left behind upon creation of O-vacancies are filling the N-2p level rather than Ti-3d states. The filled N-2p state is found at the top of the TiO 2 valence band and is believed to be responsible for the band gap narrowing of N-doped TiO 2 that shifts the photoactivity of TiO 2 into the visible spectrum

  15. Assembly of individual TiO2-C60/porphyrin hybrid nanoparticles for enhancement of photoconversion efficiency

    International Nuclear Information System (INIS)

    Jang, Jae Kwon; Park, Se Ho; Song, Hyunjoon; Park, Joon T; Kim, Chulwoo; Ko, Jaejung; Seo, Won Seok

    2011-01-01

    Rational organization of porphyrin and C 60 on the electrode surface in photovoltaic structures is essential to yield high quantum efficiency. In the present work, individual TiO 2 nanoparticles were modified by introducing C 60 and porphyrin units on the surface, and then electrophoretically deposited on an ITO/SnO 2 electrode. The morphology of the photoactive layer on the electrode was significantly different from that of the layer produced as a result of separate deposition of C 60 and porphyrin. The maximum incident photon to current efficiency of the resulting electrode approached 88% at 410 nm, which is the highest value among molecule-based photovoltaic cells reported to date. This indicates that molecular assembly of the C 60 and porphyrin units on the individual nanoparticles through strong chemical attachment is a key factor in improving effective electron transfer between the photoactive units and the electrodes.

  16. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabric.

    Science.gov (United States)

    Kokal, Ramesh K; Deepa, Melepurath; Kalluri, Ankarao; Singh, Shrishti; Macwan, Isaac; Patra, Prabir K; Gilarde, Jeff

    2017-10-04

    Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO 2 -multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO 2 , (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S 2- , an inert polymer and TiO 2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO 2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO 2 -MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO 2 /PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO 2 and TiO 2 -MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO 2 -MWCNT/PbS/ZnS cell relative to the TiO 2 /PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO 2 -MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm -2 ). This study attempts to unravel how simple strategies can amplify QDSC performances.

  17. Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Kavan, Ladislav; Procházka, Jan; Zukal, Arnošt; Yum, J. H.; Grätzel, M.

    2013-01-01

    Roč. 15, č. 5 (2013), s. 1640 ISSN 1388-0764 R&D Projects: GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * titanium dioxide * nanofibers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.278, year: 2013

  18. Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors

    Directory of Open Access Journals (Sweden)

    Yurii M. Shulga

    2015-03-01

    Full Text Available In this review we present information about obtaining and properties of carbon nanomaterials (graphite oxide, grapheme oxide, reduced graphene oxide, which are used as electrodes for supercapacitors (SC. This review describes methods of obtaining graphite oxide, followed by separation of graphene oxide and reducing graphene oxide by thermal, photochemical and chemical methods. Information on the composition and concentration of functional groups in graphene oxide and the elemental composition is described in detail. Results of the analysis of еру physical, electrochemical, thermal and optical properties of the graphene oxide and its derivatives are shown. The ratio of oxygen-containing functional groups was estimated by XPS. The presence of partial surface reduction is found. Hydroge-containing functional groups are characterized by IR spectroscopy. Method of estimating the size of graphene crystallites by Raman spectroscopy is shown. Mass loss upon heating is analyzed by thermogravimetry. The gassing of graphene oxide at thermal and photochemical reduction is studied by mass spectrometry. The difference between the abovementioned reduction methods is clearly demonstrated by the difference in the composition of the evolved gases. Also the chemical method of graphene oxide reduction with hydrazine is described. Review considers the literature data which illustrate the most interesting, from the Authors׳ point of view, aspects of that field of research.

  19. Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes

    International Nuclear Information System (INIS)

    Macounova, Katerina; Makarova, Marina; Jirkovsky, Jakub; Franc, Jiri; Krtil, Petr

    2008-01-01

    Nanocrystalline materials with chemical composition corresponding to formula Ru 1-x Ni x O 2-y (0.02 1-x Ni x O 2-y with respect to parallel oxygen (oxygen evolution reaction, OER) and chlorine (chlorine evolution reaction, CER) evolution in acidic media was studied by voltammetry combined with differential electrochemical mass spectrometry (DEMS). The DEMS data indicate a significant decrease of the over-voltage for chlorine evolution with respect to that of pure RuO 2 . The oxygen evolution is slightly hindered. The increasing Ni content affects the electrode material activity and selectivity. The overall material's activity increases with increasing Ni content. The activity of the Ru-Ni-O oxides towards Cl 2 evolution shows a distinguished maximum for material containing 10% of Ni. Further increase of Ni content results in suppression of Cl 2 evolution in favor of O 2 evolution. A model reflecting the cation-cation interactions resulting from Ni-doping is proposed to explain the observed trends in electrocatalytic behavior

  20. Performance Enhancement and Side Reactions in Rechargeable Nickel-Iron Batteries with Nanostructured Electrodes.

    Science.gov (United States)

    Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb

    2016-01-27

    We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.

  1. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    Directory of Open Access Journals (Sweden)

    Francisco Javier del Campo

    2013-05-01

    Full Text Available Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene (PEDOT and tyrosinase (Ty were successfully electrodeposited on conventional size gold (Au disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA and catechol (CT electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM.

  2. Photocatalytic reduction of CO2 on TiO2 and other semiconductors.

    Science.gov (United States)

    Habisreutinger, Severin N; Schmidt-Mende, Lukas; Stolarczyk, Jacek K

    2013-07-15

    Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  4. The Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements

    Directory of Open Access Journals (Sweden)

    María Pérez-Nicolás

    2017-10-01

    Full Text Available Mortars with two different binders (Portland cement (PC and high alumina cement (HAC were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO2, and TiO2 doped with either iron (Fe-TiO2 or vanadium (V-TiO2. Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was increased, slightly by bare TiO2 and Fe-TiO2, and strongly by V-TiO2, in agreement with the reduction of the particle size and the tendency to agglomerate. Isothermal calorimetry showed that hydration of the cementitious matrices was accelerated due to additional nucleation sites offered by the nano-additives. TiO2 and doped TiO2 did not show pozzolanic reactivity in the binding systems. Changes in the pore size distribution, mainly the filler effect of the nano-additives, accounted for the increase in compressive strengths measured for HAC mortars. A complex microstructure was seen in calcium aluminate cement mortars, strongly dependent on the curing conditions. Fe-TiO2 was found to be homogeneously distributed whereas the tendency of V-TiO2 to agglomerate was evidenced by elemental distribution maps. Water absorption capacity was not affected by the nano-additive incorporation in HAC mortars, which is a favourable feature for the application of these mortars.

  5. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  6. Pipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Mao, Minglei; Yan, Feilong; Cui, Chunyu; Ma, Jianmin; Zhang, Ming; Wang, Taihong; Wang, Chunsheng

    2017-06-14

    Metallic tin has been considered as one of the most promising anode materials both for lithium (LIBs) and sodium ion battery (NIBs) because of a high theoretical capacity and an appropriate low discharge potential. However, Sn anodes suffer from a rapid capacity fading during cycling due to pulverization induced by severe volume changes. Here we innovatively synthesized pipe-wire TiO 2 -Sn@carbon nanofibers (TiO 2 -Sn@CNFs) via electrospinning and atomic layer deposition to suppress pulverization-induced capacity decay. In pipe-wire TiO 2 -Sn@CNFs paper, nano-Sn is uniformly dispersed in carbon nanofibers, which not only act as a buffer material to prevent pulverization, but also serve as a conductive matrix. In addition, TiO 2 pipe as the protection shell outside of Sn@carbon nanofibers can restrain the volume variation to prevent Sn from aggregation and pulverization during cycling, thus increasing the Coulombic efficiency. The pipe-wire TiO 2 -Sn@CNFs show excellent electrochemical performance as anodes for both LIBs and NIBs. It exhibits a high and stable capacity of 643 mA h/g at 200 mA/g after 1100 cycles in LIBs and 413 mA h/g at 100 mA/g after 400 cycles in NIBs. These results would shed light on the practical application of Sn-based materials as a high capacity electrode with good cycling stability for next-generation LIBs and NIBs.

  7. Facile synthesis of GO@SnO2/TiO2nanofibers and their behavior in photovoltaics.

    Science.gov (United States)

    Mohamed, Ibrahim M A; Dao, Van-Duong; Yasin, Ahmed S; Choi, Ho-Suk; Khalil, KhalilAbdelrazek; Barakat, Nasser A M

    2017-03-15

    Chemical doping is a widely-used strategy to improve the performance of TiO 2 for the dye-sensitized solar cells (DSCs). However, the effect of two efficient dopants has been rarely investigated. We present the synthesis of GO@SnO 2 /TiO 2 nanofibers (NFs) by a facile method using electrospinning and hydrothermal processes. The synthesized NFs are described in terms of morphology, crystallinity and chemistry through FESEM, TEM, HR-TEM, XRD, EDX, XPS, FT-IR and Raman spectra. As the results, the axial ratio and the average diameter of NFs decreased after the hydrothermal treatment and calcination process, respectively. The prepared Titania-based nanofibers have 81.82% anatase and 18.18% rutile-structure. The developed materials are applied as working electrodes of DSCs. The photovoltaic performances showed that the efficiency of the device employed GO@SnO 2 /TiO 2 photoanode gave 5.41%, which was higher than those of cells fabricated with SnO 2 /TiO 2 NFs (3.41%) and GO@TiO 2 NFs (4.52%) photoanodes. The photovoltaic parameters such as J sc , V oc , FF and R ct are calculated and found to be 11.19mAcm -2 , 0.72V, 0.67 and 9.26Ω, respectively. The high photovoltaic response of DSC based of GO@SnO 2 /TiO 2 NFs may be attributed to the large surface area of the NFs, and the low electron recombination. Furthermore, the start-stop switches of the cell devices with the developed photoanode affirmed the stability and photovoltaic performance of the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    Directory of Open Access Journals (Sweden)

    Zatil Amali Che Ramli

    2014-01-01

    Full Text Available This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC, TiO2/carbon (C, and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, thermogravimetric analysis (TG-DTA, Brunauer-Emmet-Teller (BET, and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1. The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  9. Electrochemical treatment of domestic wastewater using boron-doped diamond and nanostructured amorphous carbon electrodes.

    Science.gov (United States)

    Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali

    2014-05-01

    The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.

  10. Novel dynamic effects in electrocatalysis of methanol oxidation on supported nanoporous TiO2 bimetallic nanocatalysts

    International Nuclear Information System (INIS)

    Hepel, Maria; Dela, Indeewari; Hepel, Tadeusz; Luo, Jin; Zhong, C.J.

    2007-01-01

    New dynamic aspects of the catalysis of methanol oxidation reaction (MOR) have been studied using quantum mechanical calculations applied to the support-catalyst cluster interactions and surface diffusivity of adsorbed intermediates. For very small catalyst-support clusters, we have found a strong enhancement of the ligand effect for bimetallic catalysts of the type Pt n M m attributed to the decreased local density of states near the Fermi level of Pt atoms neighboring the additive metal atom M. This enhancement results in a decreased barrier for surface diffusion of adsorbed CO ad through the cooperative diffusion mechanism, based on structural relaxation of the catalyst-support cluster, proposed in this work. The strong ligand effect dominates over the Schwoebel potential and trapping well effects, being responsible for accumulation of poisoning intermediates at step sites on the catalyst surface and gradual decrease of catalytic activity with decreasing size of catalyst nanoparticles. The lattice relaxation and strong ligand effects in small catalyst-support clusters lead to lower adsorption energy for CO ad and thus, to higher reactivity and mobility of reactants and intermediates. The experimental investigations included submonolayer films of bi-functional catalysts (PtRu, PtFe) deposited on novel nanostructured supporting materials, designed with the goal of achieving high variability of their electronic and chemical properties to influence the catalytic activity of sub-monolayer catalyst. The mesoscopic TiO 2 supporting film formation was investigated using EQCN, pulse voltammetric and AFM techniques. The conditions for the formation of monodispersed TiO 2 nanoparticles with regular nanopores (nanotubes), 20-80 nm in diameter, were described. It follows from EQCN and voltammetric measurements and AFM image analysis that the nanopores are formed by a dissolution-precipitation mechanism. The catalysts, Pt and PtRu, deposited on supporting nanoporous TiO 2-x

  11. Synthesis and characterization of TiO2@C core-shell nanowires and nanowalls via chemical vapor deposition for potential large-scale production.

    Science.gov (United States)

    Liu, Hao; Zhang, Yong; Li, Ruying; Cai, Mei; Sun, Xueliang

    2012-02-01

    TiO(2) nanowires and nanowalls core structures covered with carbon shell were selectively synthesized by a simple chemical vapor deposition (CVD) method using commercial titanium powder as the starting material. Morphology and structure of the products were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The core shell structure is composed of single crystalline rutile titanium dioxide wrapped by amorphous carbon shell. By adjusting the growth temperature, morphology of the products can be controlled from one-dimensional nanowires to two-dimensional nanowalls. While TiO(2)@C nanowires were a preferred structure at higher temperature, TiO(2)@C nanowalls dominated the final product at lower temperature. A growth mechanism was proposed based on the initial growth state of these nanostructures, in which solid-state diffusion of the elements involved in the reaction was assumed to play an essential role. The obtained TiO(2)@C core shell structures may find potential applications in various nanoscale realms such as optoelectronic, electronic and electrochemical nanodevices and the simple synthesis procedure promises large scale production and commercialization of the titanium oxide@carbon nanostructures. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-01-01

    We investigated CdSe-sensitized TiO 2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO 2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO 2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( 2 –CdSe core–shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO 2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm −2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V oc = 485 mV, J sc = 4.26 mA cm −2 , ff=0.37). (paper)

  13. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  14. Are TiO2 Nanotubes Worth Using in Photocatalytic Purification of Air and Water?

    Directory of Open Access Journals (Sweden)

    Pierre Pichat

    2014-09-01

    Full Text Available Titanium dioxide nanotubes (TNT have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene or acetaldehyde (ethanal in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  15. Preparation, characterization and photocatalytic activity of TiO2 ...

    Indian Academy of Sciences (India)

    FT–IR, UV-Vis-NIR, XRD, SEM and TEM techniques were used to characterize the PANI/TiO2 core-shell nanocomposite. Photocatalytic activity of PANI/TiO2 nanocomposite was investigated under both UV and visible light irradiations and compared with unmodified TiO2 nanoparticles. Results indicated deposition of PANI ...

  16. Stability of Anthocyanin Sensitized TiO2 Photoelectrochemical (PEC ...

    African Journals Online (AJOL)

    Highly porous dye sensitized TiO2 thin film solar cells have been prepared by the sol gel process. Sensitization was achieved by use of anthocyanin pigment extracted from delphinidin purple and cyanidin 3-5 diglucose (C35D). Sensitization was also studied on ruthenium complex RuL* sensitization dye. Dye sensitized ...

  17. Preparation, characterization and photocatalytic activity of TiO2 ...

    Indian Academy of Sciences (India)

    , but it suffers from dissolution and photocatalytic degradation of the dyes (Min et al 2007). Conducting polymers with extended π-conjugated electron system and good environmental stability act as stable photo-sensitizer to sensitize TiO2 by ...

  18. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  19. Impedance spectroscopy studies of surface engineered TiO2 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the.

  20. Impedance spectroscopy studies of surface engineered TiO 2 ...

    Indian Academy of Sciences (India)

    Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the dielectric ...