WorldWideScience

Sample records for nanostructured materials application

  1. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  2. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    OpenAIRE

    Hojin Choi; Hyeonseok Yoon

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, t...

  3. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  4. Nanostructured materials, production and application in construction

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2014-12-01

    Full Text Available The paper considers characteristics of water-soluble high module silicate systems: based on polysilicates of alkali element called liquid glasses and the chains of their transformations from the lowest oligomers into the highest ones with further formation colloid solutions – silica sol. The authors describe the potentialities of the use of such systems as binders or modifying additives to produce different nanostructured silicate polymer concretes. There are examples of prospective application of liquid glass and water solutions of high module silicates in industrial areas and construction. Quantum-chemical calculations of the structure and properties of tetraphenylarsonium are given and heterogeneity of its functional groups is shown.

  5. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications.

    Science.gov (United States)

    Sun, Tianying; Ai, Fujin; Zhu, Guangyu; Wang, Feng

    2018-02-16

    Photon upconversion that is characterized by high-energy photon emission followed by lower-energy excitation has been conventionally studied in bulk materials for several decades. This unique nonlinear luminescence process has become a subject of great attention since 2000 when upconverted emission was demonstrated in nanostructured crystals. In comparison with their bulk counterparts, nanostructured materials provide more room for optical fine-tuning by allowing flexible compositional integration and structural engineering. Moreover, the high colloidal stability of nanoparticles coupled with high amenability to surface functionalization opens up a number of new applications for upconversion, especially in the fields of biology and life science. In this focus review, we discuss recent developments in upconversion materials through nanostructural design and review emerging biomedical applications that involve these nanostructured upconversion materials. We also attempt to highlight challenging problems of these nanomaterials that constrain further progress in utilizing upconversion processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  7. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  8. Carbon-nanostructured materials for energy generation and storage applications

    Directory of Open Access Journals (Sweden)

    V. Linkov

    2010-01-01

    Full Text Available We have developed and refined a chemical vapour deposition method to synthesise nanotubes using liquid petroleum gasasthe carbonsource. The nanotubes were thoroughly characterised by scanning electron microscopy, transmission electron microscopy
    X-ray diffraction and thermogravimetric analysis. The protocol to grow nanotubes was then adapted to deposit nanotubes on the surface of different substrates, which were chosen based upon how
    the substrates could be applied in various hydrogen energyconver-sion systems. Carbon nanotubes area nanostructured material with an extremely wide range of application sinvariousenergy applications. The methods outlined demonstrate the complete
    development of carbon nanotube composite materials with direct applications in hydrogen energy generation, storage and conversion.

  9. Applications of Nanostructured Carbon Materials in Constructions: The State of the Art

    Directory of Open Access Journals (Sweden)

    Shu-Nan Lu

    2015-01-01

    Full Text Available The most recent studies on the applications of nanostructured carbon materials, including carbon nanotubes, carbon nanofibers, and graphene oxides, in constructions are presented. First, the preparation of nanostructured carbon/infrastructure material composites is summarized. This part is mainly focused on how the nanostructured carbon materials were mixed with cementitious or asphalt matrix to realize a good dispersion condition. Several methods, including high speed melting mixing, surface treatment, and aqueous solution with surfactants and sonication, were introduced. Second, the applications of the carbon nanostructured materials in constructions such as mechanical reinforcement, self-sensing detectors, self-heating element for deicing, and electromagnetic shielding component were systematically reviewed. This paper not only helps the readers understand the preparation process of the carbon nanostructured materials/infrastructure material composites but also sheds some light on the state-of-the-art applications of carbon nanostructured materials in constructions.

  10. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  11. ZnO nanostructures for optoelectronics: Material properties and device applications

    Science.gov (United States)

    Djurišić, A. B.; Ng, A. M. C.; Chen, X. Y.

    2010-07-01

    In recent years, there has been increasing interest in ZnO nanostructures due to their variety of morphologies and availability of simple and low cost processing. While there are still unanswered questions concerning fundamental properties of this material, in particular those related to defects and visible luminescence lines, great progress has been made in synthesis methods and device applications of ZnO nanostructures. In this review, we will provide a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications. Then, we will provide an overview of material properties of ZnO nanostructures, issues related to doping with various elements to achieve either p- or n-type conductivity. Doping to alter optical or magnetic properties will also be discussed. Then, issues related to practical problems in achieving good electrical contacts to nanostructures will be presented. Finally, we will provide an overview of applications of ZnO nanostructures to light-emitting devices, photodetectors and solar cells.

  12. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  13. Nano-Structured Materials for Energy Storage Applications

    Science.gov (United States)

    Zhao, Dongxue

    Hydrogen is a non-polluting and efficient energy carrier. One barrier to utilizing hydrogen is a reliable storage method. NaAlH4 is the prototypical example of a complex metal hydride with high hydrogen storage capacities (˜ 5.5 wt.%) and acceptable reaction temperatures of around 100 °C when using catalyst. On decomposition of these complex hydrides, such as NaAlH4, one is left with monohydride NaH. The kinetics of diffusion in the monohydrides is important because reversibility hinges on mass transport and the formation of [AlH4]- anions that must structurally coordinate with the alkali metal cation on hydrogen absorption. The NaH/NaOH system of a variety of molar ratios was investigated using in situ X-ray diffraction and differential scanning calorimetry. Nano porous carbons (NPC) materials have mesoporous structure, large surface area (> 600 m2/g), and high pore volume (> 0.5 cc/g). Several NPC materials for both hydrogen storage and battery applications were prepared and discussed. Nano-sized TiO2 is a superior material for lithium-ion batteries due to its high stability, low volume change on lithiation (˜ 3%), and high energy density. High purity (˜ 100%) anatase TiO2 nano particles with controllable particle size from 9 to 38 nm and excellent electrochemical properties (> 220 mAh/g) were synthesized using an efficient and reliable method. The synthesis, characterization and electrochemical measurements of prepared anatase TiO2 nano particles for lithium-ion battery applications were discussed. The lithium diffusion behaviors in TiO2 and SnO 2 nano particles were analyzed and compared using an extension of the galvanostatic intermittent titration technique (GITT) that utilizes the open cell potential of the relaxation portion of the GITT measurement.

  14. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    Science.gov (United States)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working

  15. [The application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum].

    Science.gov (United States)

    Grigor'eva, M V; Akimov, A V; Bagautdinov, A A

    2014-01-01

    The objective of the present work was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum. A total of 80 patients were recruited for the study. Half of them underwent plastic reconstruction of perforations in the nasal septum with the application of the nanostructured bioplastic material. Forty patients were treated using no biotransplants. The functional state of nasal cavity mucosa was evaluated before and after surgery. It is concluded that the nanostructured bioplastic material used in the present study ensures efficacious reconstruction of nasal septum integrity after plastic correction of septal perforations.

  16. Fabrication and application of nanostructured materials for sulfite biosensing

    OpenAIRE

    Hussain, Shahid

    2017-01-01

    A biosensor as an integrated miniaturized device, exploits the modern microelectronics with specific sensing probe through signal transduction. The challenge for new generation biosensors is to achieve specific analyte detection at very low concentrations, which is possible by tailoring the materials used for fabrication of these devices based on nanoscience and nanotechnology. The new approach is explored in this thesis for fabrication of novel nanobiosensors for ultrasensitive detection of ...

  17. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

    Directory of Open Access Journals (Sweden)

    Escudero Alberto

    2017-06-01

    Full Text Available Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  18. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

    Science.gov (United States)

    Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrión, Carolina; Núñez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; González-Mancebo, Daniel; Ocaña, Manuel; Parak, Wolfgang J.

    2017-06-01

    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  19. Synthesis of nanostructured manganese oxides based materials and application for supercapacitor

    Science.gov (United States)

    Dung Dang, Trung; Le, Thi Thu Hang; Bich Thuy Hoang, Thi; Mai, Thanh Tung

    2015-01-01

    Manganese oxides are important materials with a variety of applications in different fields such as chemical sensing devices, magnetic devices, field-emission devices, catalysis, ion-sieves, rechargeable batteries, hydrogen storage media and microelectronics. To open up new applications of manganese oxides, novel morphologies or nanostructures are required to be developed. Via sol—gel and anodic electrodeposition methods, M (Co, Fe) doped manganese oxides were prepared. On the other hand, nanostructured (nanoparticles, nanorods and hollow nanotubes) manganese oxides were synthesized via a process including a chemical reaction with carbon nanotubes (CNTs) templates followed by heat treatment. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used for characterization of the prepared materials. The influence of chemical reaction conditions, heat treatment and template present on the morphology, structure, chemical and electrochemical properties of the prepared materials were investigated. Chronopotentiometry (CP) and CV results show high specific capacitance of 186.2 to 298.4 F g-1 and the charge/discharge stability of the prepared materials and the ideal pseudocapacitive behaviors were observed. These results give an opening and promising application of these materials in advanced energy storage applications.

  20. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  1. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  2. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  3. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  4. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  5. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  6. Nanostructured materials in electroanalysis of pharmaceuticals.

    Science.gov (United States)

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic ...

  8. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    Science.gov (United States)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  9. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  10. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  11. Nanostructured Materials: Symthesis in Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuehe; Ye, Xiangrong; Wai, Chien M.

    2009-03-24

    This chapter summarizes the recent developent of synthesis and characterization of nanostructured materials synthesized in supercritical fluids. Nanocomposite catalysts such as Pt and Pd on carbon nanotube support have been synthesized and used for fuel cell applications.

  12. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application

    Directory of Open Access Journals (Sweden)

    Arshid Numan

    2017-08-01

    Full Text Available A facile and fast approach for the synthesis of a nanostructured nickel hydroxide (Ni(OH2 via sonochemical technique is reported in the present study. The X-ray diffraction results confirmed that the synthesized Ni(OH2 was oriented in β-phase of hexagonal brucite structure. The nanostructured Ni(OH2 electrode exhibited the maximum specific capacitance of 1256 F/g at a current density of 200 mA/g in 1 M KOH(aq. Ni(OH2 electrodes exhibited the pseudocapacitive behavior due to the presence of redox reaction. It also exhibited long-term cyclic stability of 85% after 2000 cycles, suggesting that the nanostructured Ni(OH2 electrode will play a promising role for high performance supercapacitor application.

  13. Quantitative Characterization of Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  14. [The emergency plastic reconstruction of the tympanic membrane defects of post-traumatic and iatrogenic etiology with the application of the nanostructured bioplastic material].

    Science.gov (United States)

    Zabirov, R A; Kar'kaeva, S M; Shchetinin, V N; Akimov, A V

    2014-01-01

    The objective of the present study was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of tympanic defects of post-traumatic and iatrogenic etiology. The authors report the results of the emergency plastic reconstruction of tympanic defects of post-traumatic and iatrogenic nature with the application of the nanostructured bioplastic material (giamatrix). The analysis of the results of the study prfovidd definitive evidence of the effectiveness of plastic reconstruction of tympanic defects with the application of the nanostructured bioplastic material.

  15. Ultrafast Photoresponsive Starburst and Dendritic Fullerenyl Nanostructures for Broadband Nonlinear Photonic Material Applications

    Science.gov (United States)

    2014-08-20

    AFRL-OSR-VA-TR-2014-0197 ULTRAFAST PHOTORESPONSIVE STARBURST AND DENDRITIC FULLERENYL NOSTRUCTURES FOR BROADBAND NONLINEAR PHOTONIC MATERIAL...Report 3. DATES COVERED (From - To) 03-01-2009 – 05-31-2014 4. TITLE AND SUBTITLE Ultrafast Photoresponsive Starburst and Dendritic Fullerenyl...photophysical properties of ultrafast photoresponsive starburst and dendritic C60/C70-light harvesting antenna-based organic nanostructures for broadband

  16. Synthesising Metal Oxide Materials and Their Composite Nanostructures for Sensing and Optoelectronic Device Applications

    OpenAIRE

    Khun, Kimleang

    2014-01-01

    Research on nanomaterials has been revolutionized in the last few years because of the attractive properties they have in comparison to the bulk phase of similar materials. These properties are physical, chemical, catalytic and optical. Among these nanomaterials, the metal oxide nanostructures have become of particular interest to scientists for the development of different optical, biochemical and biomedical nanodevices. In the present research work using the advantageous features of nanotec...

  17. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, Rajendra [Univ. of Washington, Seattle, WA (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States); Henager, Chuck [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  18. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    International Nuclear Information System (INIS)

    Bordia, Rajendra; Tomar, Vikas; Henager, Chuck

    2015-01-01

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  19. Application of Nanostructured Materials and Multi-junction Structure in Polymer Solar Cells

    KAUST Repository

    Gao, Yangqin

    2015-12-09

    With power conversion efficiency surpassing the 10% milestone for commercialization, photovoltaic technology based on solution-processable polymer solar cells (PSCs) provides a promising route towards a cost-efficient strategy to address the ever-increasing worldwide energy demands. However, to make PSCs successful, challenges such as insufficient light absorption, high maintenance costs, and relatively high production costs must be addressed. As solutions to some of these problems, the unique properties of nanostructured materials and complimentary light absorption in multi-junction device structure could prove to be highly beneficial. As a starting point, integrating nanostructure-based transparent self-cleaning surfaces in PSCs was investigated first. By controlling the length of the hydrothermally grown ZnO nanorods and covering their surface with a thin layer of chemical vapor-deposited SiO2, a highly transparent and UV-resistant superhydrophobic surface was constructed. Integrating the transparent superhydrophobic surface in a PSC shows minimal impact on the figure of merit of the PSC. To address the low mechanical durability of the transparent superhydrophobic surface based on SiO2-coated ZnO nanorods, a novel method inspired by the water condensation process was developed. This method involved directly growing hollow silica half-nanospheres on the substrate through the condensation of water in the presence of a silica precursor. Benefit from the decreased back scattering efficiency and increased light transport mean free path arise from the hollow nature, a transparent superhydrophobic surface was realized using submicrometer sized silica half-nanospheres. The decent mechanical property of silica and the “direct-grown” protocol are expected to impart improved mechanical durability to the transparent superhydrophobic surface. Regarding the application of multi-junction device structure in PSCs, homo multi-junction PSCs were constructed from an identical

  20. 3D Nanostructured materials: TiO2 nanoparticles incorporated gellan gum scaffold for photocatalyst and biomedical Applications

    Science.gov (United States)

    Hasmizam Razali, Mohd; Arifah Ismail, Nur; Zulkafli, Mohd Farhan Azly Mohd; Anuar Mat Amin, Khairul

    2018-03-01

    A unique three-dimensional (3D) nanostructured gellan gum (GG) is fabricated by incorporating TiO2 nanoparticles (GG + TiO2NPs) scaffold by freeze-drying. The fabricated GG + TiO2NPs were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) to study their physiochemical properties. FTIR was used to investigate the intermolecular interactions in the scaffolds. The crystal structure was determined by bulk analysis using XRD and SEM for microstructure observation of scaffold surfaces. The performance of synthesized GG + TiO2NPs scaffold 3D nanostructured materials was evaluated as a photocatalyst for methyl orange (MO) degradation and for biomedical applications. The results showed that the scaffold possessed good photocatalytic activity for removal of methyl orange with 88.24% degradation after 3 h of UV irradiation. The scaffold also induces the cell growth, thus offering a good candidate for biomedical applications.

  1. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications.

    Science.gov (United States)

    Zamora-Sequeira, Roy; Ardao, Inés; Starbird, Ricardo; García-González, Carlos A

    2018-06-01

    Smart electroactive biomaterials are sought to allow the direct delivery of electrical, electrochemical and electromechanical signals to biological tissues. Specifically, poly-(3,4-ethylenedioxythiophene) (PEDOT) is a polymer of special interest attending to its biocompatibility, tuneable electrical conductivity and processing versatility. In this work, nanostructured PEDOT was synthesized using starch/κ-carrageenan aerogels as templates. κ-carrageenan biopolymer acted as doping agent of the conductive polymer to enhance the biocompatibility and the electrical response. The physicochemical, morphological, mechanical and electrical properties of the nanostructured PEDOT and templates were characterized. The incorporation of κ-carrageenan to the nanostructured materials resulted in an increase in the compressive strength of ca. 40% and a decrease in the electrical impedance of one order-of-magnitude. The synergistic combination of the inherent electrical properties of the PEDOT, the advantageous features of κ-carrageenan as doping agent and the porous morphology of the aerogel template resulted in electroactive PEDOT nanostructures with relevant properties for biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Application of nanostructural materials in electro optical measuring sets of big powers based on usage of optical effects

    Science.gov (United States)

    Salihov, Aidar I.; Tljavlin, Anfar Z.; Kusimov, Salavat M.

    2005-06-01

    Optically transparent nanostructural materials show to themselves a heightened interest owing to display in them the new physic mechanical properties. Variation of structure of the materials received by methods of intensive plastic deformation, results in variation of many fundamental parameters. Among them special interest was caused with variations of fundamental magnetic characteristics. One of them is the magnetization of saturation, which is usually structurally tolerant, but reflects changes in an atomic-crystal structure of solids. Even in the first probing of the transparent nanostructures, received by intensive deformation by torsion of samples, was found that the magnetization of saturation was revealed at room temperature in comparison with coarse-grained samples. High-power measuring devices are based on Faraday effect, representing itself rotation of a plane of polarization of linearly polarized light in optical active substances under action of a magnetic field. Application of nanostructural materials in the optical insulator, which is the main part of the measuring device, allows improving the measuring characteristics of instruments qualitatively. Brought losses in Faraday cell make 0,35 -0,89 dB instead of 0,7 - I,2 dB, and value of the backward losses makes not less than 62 dB instead of 55 dB. Undoubtedly, improvement of the given parameters allows making the measuring operations with the greater accuracy, reducing both absolute, and relative errors.

  3. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  4. Nanostructured Biomaterials and Their Applications

    Directory of Open Access Journals (Sweden)

    Kirsten Parratt

    2013-05-01

    Full Text Available Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.

  5. Nanostructured materials in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali (ed.) [Avicenna Institute of Technology, Cleveland, OH (United States)

    2008-07-01

    Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications - ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices. (orig.)

  6. Nanostructured materials for multifunctional applications under NSF-CREST research at Norfolk State University

    Science.gov (United States)

    Pradhan, A. K.; Mundle, R.; Zhang, K.; Holloway, T.; Amponsah, O.; Biswal, D.; Konda, R.; White, C.; Dondapati, H.; Santiago, K.; Birdsong, T.; Arslan, M.; Peeples, B.; Shaw, D.; Smak, J.; Samataray, C.; Bahoura, M.

    2012-04-01

    Magnetic nanoparticles of CoFe2O4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles of varying size was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. The anomalous magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe2O4 nanoparticles were synthesized under applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments, which produce Co ions and vacancies disorder. We performed the fabrication of condensed and mesoporous silica coated CoFe2O4 magnetic nanocomposites. The CoFe2O4 magnetic nanoparticles were encapsulated with well-defined silica layer. The mesopores in the shell were fabricated as a consequence of removal of organic group of the precursor through annealing. The NiO nanoparticles were loaded into the mesoporous silica. The mesoporous silica coated magnetic nanostructure loaded with NiO as a final product may have potential use in the field of biomedical applications. Growth mechanism of ZnO nanorod arrays on ZnO seed layer investigated by electric and Kelvin probe force microscopy. Both electric and Kelvin force probe microscopy was used to investigate the surface potentials on the ZnO seed layer, which shows a remarkable dependence on the annealing temperature. The optimum temperature for the growth of nanorod arrays normal to the surface was found to be at 600 °C, which is in the range of right surface potentials and energy measured between 500 °C and 700 °C. We demonstrated from both EFM and Kelvin force probe microscopy studies that surface potential controls the growth of ZnO nanorods. This study will provide important understanding of growth of other nanostructures. Zn

  7. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Nanostructured systems are useful in tailoring the magnetic, optical and electronic properties of materials. It is obvious that .... A hysteresis effect is produced and forms a hysteresis loop, this loop is a key tool in the quantitative analysis of ..... below the secondary crystallization temperature, in controlled time. Doing so yields ...

  8. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  9. Ferroelectric mesocrystals of bismuth sodium titanate: formation mechanism, nanostructure, and application to piezoelectric materials.

    Science.gov (United States)

    Hu, Dengwei; Kong, Xingang; Mori, Kotaro; Tanaka, Yasuhiro; Shinagawa, Kazunari; Feng, Qi

    2013-09-16

    Ferroelectric mesocrystals of Bi0.5Na0.5TiO3 (BNT) with [100]-crystal-axis orientation were successfully prepared using a topotactic structural transformation process from a layered titanate H1.07Ti1.73O4·nH2O (HTO). The formation reactions of BNT mesocrystals in HTO-Bi2O3-Na2CO3 and HTO-TiO2-Bi2O3-Na2CO3 reaction systems and their nanostructures were studied by XRD, FE-SEM, TEM, SAED, and EDS, and the reaction mechanisms were given. The BNT mesocrystals are formed by a topotactic structural transformation mechanism in the HTO-Bi2O3-Na2CO3 reaction system and by a combination mechanism of the topotactic structural transformation and epitaxial crystal growth in the HTO-TiO2-Bi2O3-Na2CO3 reaction system, respectively. The BNT mesocrystals prepared by these methods are constructed from [100]-oriented BNT nanocrystals. Furthermore, these reaction systems were successfully applied to the fabrication of [100]-oriented BNT ferroelectric ceramic materials. A BNT ceramic material with a high degree of orientation, high relative density, and small grain size was achieved.

  10. Solution plasma applications for the synthesis/modification of inorganic nanostructured materials and the treatment of natural polymers

    Science.gov (United States)

    Watthanaphanit, Anyarat; Saito, Nagahiro

    2018-01-01

    Reducing the use of toxic chemicals, production steps, and time consumption are important concerns for researchers and process engineers to contribute in the quest for an efficient process in any production. If an equipment setup is simple, the process additionally becomes more profitable. Combination of the mentioned requirements has opened up various applications of the solution plasma process (SPP) — a physical means of generating plasma through an electrical discharge in a liquid medium at atmospheric pressure and room temperature. This review shows the progress of scientific research on the applications of the SPP for the synthesis/modification of inorganic nanostructured materials and the treatment of natural polymers. Development achieved in each application is demonstrated.

  11. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material.

    Science.gov (United States)

    Hatamie, Amir; Khan, Azam; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio; Mak, Wing Cheung; Sadollahkhani, Azar; Alnoor, Hatim; Zargar, Behrooz; Bano, Sumaira; Nur, Omer; Willander, Magnus

    2015-10-06

    Recently, one-dimensional nanostructures with different morphologies (such as nanowires, nanorods (NRs), and nanotubes) have become the focus of intensive research, because of their unique properties with potential applications. Among them, zinc oxide (ZnO) nanomaterials has been found to be highly attractive, because of the remarkable potential for applications in many different areas such as solar cells, sensors, piezoelectric devices, photodiode devices, sun screens, antireflection coatings, and photocatalysis. Here, we present an innovative approach to create a new modified textile by direct in situ growth of vertically aligned one-dimensional (1D) ZnO NRs onto textile surfaces, which can serve with potential for biosensing, photocatalysis, and antibacterial applications. ZnO NRs were grown by using a simple aqueous chemical growth method. Results from analyses such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the ZnO NRs were dispersed over the entire surface of the textile. We have demonstrated the following applications of these multifunctional textiles: (1) as a flexible working electrode for the detection of aldicarb (ALD) pesticide, (2) as a photocatalyst for the degradation of organic molecules (i.e., Methylene Blue and Congo Red), and (3) as antibacterial agents against Escherichia coli. The ZnO-based textile exhibited excellent photocatalytic and antibacterial activities, and it showed a promising sensing response. The combination of sensing, photocatalysis, and antibacterial properties provided by the ZnO NRs brings us closer to the concept of smart textiles for wearable sensing without a deodorant and antibacterial control. Perhaps the best known of the products that is available in markets for such purposes are textiles with silver nanoparticles. Our modified textile is thus providing acceptable antibacterial properties, compared to available commercial modified textiles.

  12. Nanostructured Materials for Li-Ion Batteries and Beyond

    Directory of Open Access Journals (Sweden)

    Xifei Li

    2016-04-01

    Full Text Available This Special Issue “Nanostructured Materials for Li-Ion Batteries and Beyond” of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs and future systems.[...

  13. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  14. CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications.

    Science.gov (United States)

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, Mohd

    2011-04-01

    Due to numerous potential applications of semiconductor transition metal-doped nanomaterials and the great advantages of hydrothermal synthesis in both cost and environmental impact, a significant effort has been employed for growth of copper oxide codoped zinc oxide (CuO codoped ZnO) nanostructures via a hydrothermal route at room conditions. The structural and optical properties of the CuO codoped ZnO nanorods were characterized using various techniques such as UV-visible, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), etc. The sensing performance has been executed by a simple and reliable I-V technique, where aqueous ammonia is considered as a target analyte. CuO codoped ZnO nanorods of thin film with conducting coating agents on silver electrodes (AgE, surface area of 0.0216 cm(2)) displayed good sensitivity, stability, and reproducibility. The calibration plot is linear over the large dynamic range, where the sensitivity is approximately 1.549 ± 0.10 μA cm(-2 )mM(-1) with a detection limit of 8.9 ± 0.2 μM, based on signal/noise ratio in short response time. Hence, on the bottom of the perceptive communication between structures, morphologies, and properties, it is displayed that the morphologies and the optical characteristics can be extended to a large scale in transition-metal-doped ZnO nanomaterials and efficient chemical sensors applications. © 2011 American Chemical Society

  15. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nanostructured Diclofenac Sodium Releasing Material

    Science.gov (United States)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  17. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  18. XPS analysis of nanostructured materials and biological surfaces

    International Nuclear Information System (INIS)

    Baer, D.R.; Engelhard, M.H.

    2010-01-01

    This paper examines the types of information that XPS can provide about a variety of nanostructured materials. Although it is sometimes not considered a 'nanoscale analysis method,' XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for sample types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as a part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structures of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

  19. Development, characterization, and analytical applications of microfluidic devices and nanostructured materials

    Science.gov (United States)

    Bhakta, Samir A.

    Compared to conventional benchtop instruments, microfluidic devices possess advantageous characteristics including portability, reduced analysis time, and relatively inexpensive production, making them attractive analytical devices. The goals of our research lab include the design, operation, and application of microfluidic techniques and the rational design of biosensors. In line with these goals, the objectives of my research are to develop and characterize novel microfluidic platforms and to improve their overall efficiency towards the analysis of a wide range of biologically active and environmentally-relevant compounds. Specifically, the research projects discussed herein are based on the development of novel strategies enabling the miniaturization of traditional analytical protocols using microfluidic devices. In addition, the development and characterization of novel biosensors incorporating thin-films of nanoporous materials that can be potentially used in series with the microfluidic platforms is discussed. A critical review of the field involving adsorption of proteins to nanomaterials for the use of biosensors is also discussed. Results related to the design, characterization, and applications of the devices and biosensors are discussed along with the advantages of these technologies.

  20. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications

    Science.gov (United States)

    Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina

    2017-05-01

    In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.

  1. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  2. Thin metal nanostructures: synthesis, properties and applications

    OpenAIRE

    Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang; Zhang, Hua

    2014-01-01

    Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. I...

  3. [Nanostructured bioplastic material for traumatic corneal injuries].

    Science.gov (United States)

    Kanyukov, V N; Stadnikov, A A; Trubina, O M; Yakhina, O M

    2015-01-01

    To substantiate the use of nanostructured bioplastic material for the treatment of traumatic eye injuries. The study enrolled 96 eyes of 48 rabbits and was carried out in 3 series of experiments, different in the type of induced corneal trauma: mechanical erosion, alkaline or acid burn. The animals were clinically monitored and sacrificed for morphological investigation at days 3, 7, 14, 30, and 90. The size of mechanical corneal erosions was repeatedly evaluated with fluorescein eye stain test. In the experimental group, Hyamatrix biomaterial was topically administered according to an original technique. In the controls, soft contact lenses were inserted and sutured. Complete closure of the epithelial defect with no impact on corneal properties was achieved in 3 days in the experimental group and in4 days in the control group. As for alkaline and acid corneal burns, experimental and control groups received Hyamatrix biomaterial and Solcoseryl eye gel correspondingly. In the experimental group of alkaline burn the defect closed by day 7, in the controls--by day 10-11. Acid-induced corneal edema also resolved by day 7 in the experimental group and by day 14 in the control group. 1. The results of this experimental and morphological study prove the hyaluronic acid-derived nanostructured bioplastic material effective in accelerating corneal re-epithelialization after mechanical erosions as compared with the controls. 2. Topical application of the hyaluronic acid-derived nanostructured bioplastic material shortens the exudative phase of inflammation, promotes corneal defect closure with formation of a more subtle opacification, and stimulates corneal restoration after chemical burns.

  4. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  5. Nanostructures: Current uses and future applications in food science.

    Science.gov (United States)

    Pathakoti, Kavitha; Manubolu, Manjunath; Hwang, Huey-Min

    2017-04-01

    Recent developments in nanoscience and nanotechnology intend novel and innovative applications in the food sector, which is rather recent compared with their use in biomedical and pharmaceutical applications. Nanostructured materials are having applications in various sectors of the food science comprising nanosensors, new packaging materials, and encapsulated food components. Nanostructured systems in food include polymeric nanoparticles, liposomes, nanoemulsions, and microemulsions. These materials enhance solubility, improve bioavailability, facilitate controlled release, and protect bioactive components during manufacture and storage. This review highlights the applications of nanostructured materials for their antimicrobial activity and possible mechanism of action against bacteria, including reactive oxygen species, membrane damage, and release of metal ions. In addition, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented. Copyright © 2017. Published by Elsevier B.V.

  6. Assessment of Lead Chalcogenide Nanostructures as Possible Thermoelectric Materials

    OpenAIRE

    Gabriel, Stefanie

    2013-01-01

    The assembly of nanostructures into “multi”-dimensional materials is one of the main topics occurring in nanoscience today. It is now possible to produce high quality nanostructures reproducibly but for their further application larger structures that are easier to handle are required. Nevertheless during their assembly their nanometer size and accompanying properties must be maintained. This challenge was addressed in this work. Lead chalcogenides have been chosen as an example system becaus...

  7. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  8. Synthesis and processing of nanostructured materials

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented

  9. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  10. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  11. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.

    Science.gov (United States)

    Gowda, Sanketh R; Reddy, Arava Leela Mohana; Shaijumon, Manikoth M; Zhan, Xiaobo; Ci, Lijie; Ajayan, Pulickel M

    2011-01-12

    Various three-dimensional (3D) battery architectures have been proposed to address effective power delivery in micro/nanoscale devices and for increasing the stored energy per electrode footprint area. One step toward obtaining 3D configurations in batteries is the formation of core-shell nanowires that combines electrode and electrolyte materials. One of the major challenges however in creating such architectures has been the coating of conformal thin nanolayers of polymer electrolytes around nanostructured electrodes. Here we show conformal coatings of 25-30 nm poly(methyl methacralate) electrolyte layers around individual Ni-Sn nanowires used as anodes for Li ion battery. This configuration shows high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Our results demonstrate conformal nanoscale anode-electrolyte architectures for an efficient Li ion battery system.

  12. Potential of AlN nanostructures as hydrogen storage materials.

    Science.gov (United States)

    Wang, Qian; Sun, Qiang; Jena, Puru; Kawazoe, Yoshiyuki

    2009-03-24

    The capability of AlN nanostructures (nanocages, nanocones, nanotubes, and nanowires) to store hydrogen has been studied using gradient-corrected density functional theory. In contrast to bulk AlN, which has the wurtzite structure and four-fold coordination, the Al sites in AlN nanostructures are unsaturated and have two- and three-fold coordination. Each Al atom is capable of binding one H(2) molecule in quasi-molecular form, leading to 4.7 wt % hydrogen, irrespective of the topology of the nanostructures. With the exception of AlN nanotubes, energetics does not support the adsorption of additional hydrogen. The binding energies of hydrogen to these unsaturated metal sites lie in the range of 0.1-0.2 eV/H(2) and are ideal for applications under ambient thermodynamic conditions. Furthermore, these materials do not suffer from the clustering problem that often plagues metal-coated carbon nanostructures.

  13. Nanostructured hybrid materials from aqueous polymer dispersions.

    Science.gov (United States)

    Castelvetro, Valter; De Vita, Cinzia

    2004-05-20

    Organic-inorganic (O-I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of electronic and optoelectronic devices, in controlled release and bioencapsulation, as active substrates for chromatographic separation and catalysis, as nanofillers for composite films in packaging and coating, in nanowriting and nanolithography, etc. A synergistic combination or totally new properties with respect to the two components of the hybrid can arise from nanostructuration, achieved by surface modification of nanostructures, self-assembling or simply heterophase dispersion. In fact, owing to the extremely large total surface area associated with the resulting morphologies, the interfacial interactions can deeply modify the bulk properties of each component. A wide range of starting materials and of production processes have been studied in recent years for the controlled synthesis and characterization of hybrid nanostructures, from nanoparticle or lamellar dispersions to mesoporous materials obtained from templating nanoparticle dispersions in a continuous, e.g. ceramic precursor, matrix. This review is aimed at giving some basic definitions of what is intended as a hybrid (O-I) material and what are the main synthetic routes available. The various methods for preparing hybrid nanostructures and, among them, inorganic-organic or O-I core-shell nanoparticles, are critically analyzed and classified based on the reaction medium (aqueous, non-aqueous), and on the role it plays in directing the final morphology. Particular attention is devoted to aqueous systems and water-borne dispersions which, in addition to being environmentally more acceptable or even a

  14. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  15. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  16. Photoemission from optoelectronic materials and their nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad; Bhattacharya, Sitangshu

    2009-01-01

    This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers..

  17. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  18. New trends in superplasticity in SPD-processed nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Valiev, R.; Islamgaliev, R.; Semenova, I.; Yunusova, N. [Ufa State Aviation Technical Univ. (Russian Federation). Inst. of Physics of Advanced Materials

    2007-04-15

    Recent studies have revealed that bulk nanostructured metals and alloys produced by severe plastic deformation (SPD) can demonstrate extraordinary superplasticity at low temperatures and/or high strain rates. This work presents new results on superplasticity in several nanostructured Al and Ti alloys focusing on microstructural evolution and strain hardening, as well as the challenges of their application. Grain refinement in these alloys was accomplished using severe plastic deformation techniques. Subsequent superplastic deformation allowed not only to attain their efficient forming, but also to improve the ultrafine-grained structure and to obtain enhanced mechanical properties in the articles produced. The results demonstrate the possibilities of new applications of superplastic forming using bulk nanostructured materials. (orig.)

  19. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  20. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  1. Electrochemistry, a technique to prepare redox nano-structured composite materials (polymer/nano-particles) - Characterizations - Applications; L'electrochimie, un outil pour elaborer des materiaux composites redox nanostructures (polymere/nanoparticules) - Caracterisations - Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chardon-Noblat, S. [Grenoble-1 Univ. Joseph Fourier, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR 5630, Institut de Chimie Moleculaire de Grenoble, FR CNRS 2607, 38 - Grenoble (France)

    2006-07-01

    In this work is presented at first the preparation by an electrochemical way of bi functional nano-structured composite materials. It is shown that with the pulsed electrolysis techniques, it is possible to obtain metallic particles whose size and organization are controlled at the nano-scopic scale in redox matrices. Then, are presented the physico-chemical characterizations of these nano-objects (coupled in situ or ex situ at the electrochemistry). The first results relative to the catalytic activation of CO{sub 2} with these materials used as composite cathodes are indicated. (O.M.)

  2. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  3. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  4. On thermophysical effects on the surface of functional nanostructured materials obtained with the application of femtosecond laser pulses

    Science.gov (United States)

    Babenko, D. D.; Dmitriev, A. S.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, a great scientific and practical interest is caused by functional energy surfaces, modified for certain technological problems. The urgency of the work is to develop promising technologies for thermal and nuclear power engineering, methods for converting solar energy, cooling low-current and high-current electronics devices, energy storage and transport systems on the basis of studying and developing new ways of creating and modifying the functional surfaces of heat exchange and other devices. Modified functional surfaces must have a number of new mechanical and thermophysical properties, including mechanical strength, a new surface morphology for controlling the processes of wetting and spreading working fluids on them, and have high efficiency from the viewpoint of thermohydrodynamic processes of flow and heat and mass transfer of working fluids to them. Among the various ways of modifying surfaces, recently, the method of surface exposure to femtosecond laser pulses (FLI) has become widespread. The technology of femtosecond laser surface treatment (FLPO) of solid materials has shown high efficiency, reliability, high productivity and a huge variety of modification methods. The paper presents new results on the study of thermophysical phenomena - the wetting and spreading of drops of various liquids, the study of the hysteresis of the contact angle, the study of evaporation and boiling processes on functional energy surfaces modified by femtosecond laser pulses. It is shown that in the majority of cases the presence of regular or stochastic nanostructures on the surface leads to a very strong change in the basic properties of the surface, which makes it possible to use such a technology to quickly and efficiently modify and obtain functional energy surfaces for certain predetermined purposes.

  5. Improved antireflection based on biomimetic nanostructures at material interface

    Science.gov (United States)

    Zhang, Lingyu; Song, Gang

    2018-02-01

    Reducing light reflections on the surface of materials has important applications in many fields, such as solar cells, photodetectors, and optical sensors, etc. An effective method of decreasing reflection is using the anti-reflective coating with a gradient refractive index. In this study, we designed a nanostructure composed of optimized cone arrays on the flat thin film surface. The tapered nanostructure forms an anti-reflection layer. The effective refractive index of the anti-reflection layer changes smoothly with the depth so that the surface can efficiently reduce the reflection in a wide visible light range. Moreover, the reflection can also be modulated by adjusting the height and the period of the nanocones. Furthermore, there is an optimal wavelength at which the highest anti-reflection efficiency is achieved. The results here provide a theoretical guidance for the practical design of broadband anti-reflection nanostructures at the device surface.

  6. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nickel antimony oxide (NiSb2O6): A fascinating nanostructured material for gas sensing application

    Science.gov (United States)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam

    2016-02-01

    Fabrication of nanocrystalline NiSb2O6 thin films via sol-gel spin coating method towards the development of liquefied petroleum gas (LPG) sensor operable at room temperature (25 °C) is being reported. Nanostructural, surface morphological and optical properties of trirutile-type NiSb2O6 have been investigated in order to explore the parameters of interest. The crystallite size has been found to be 19 nm. A detailed sensing performance (sensitivity, sensor response, response and recovery times, reproducibility and long term stability) of NiSb2O6 nanostructures grown on alumina substrate has been investigated.

  8. Nanostructured metal oxides as electrode materials for electrochemical capacitors.

    Science.gov (United States)

    Konstantinov, Konstantin; Wang, Guoxiu; Lao, Zhuo Jin; Liu, Hua Kun; Devers, T

    2009-02-01

    In this study, nanostructured transition metal oxides, such as Co3O4, NiO and MnO2 were comprehensively studied and reported as promising electrode materials for electrochemical capacitors. The materials have been obtained by solution or spray solution techniques, which are cost-effective and promising for industry application. All materials feature a large specific surface area, which can reach up to 270 m2/g. The high surface area is a compulsory condition for high capacitance. The best MnO2 materials yielded up to 406 F/g.

  9. Advanced transmission electron microscopy on nanostructured magnetic materials

    OpenAIRE

    Campanini, Marco

    2015-01-01

    This doctoral work is focused on the study of nanostructured magnetic materials by advanced transmission electron microscopy (TEM) techniques, with emphasis on Ni2MnGa shape memory alloy thin films and magnetite nanoparticles for biomedical applications. The combination of high-resolution transmission electron microscopy and electron diffraction to characterize morphology and crystalline structure, with Lorentz microscopy and Electron Holography, permits to achieve a deep insight in the s...

  10. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    Science.gov (United States)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  11. ZnO nanostructures and their applications

    CERN Document Server

    Xiaowei, Sun

    2011-01-01

    This book focuses on the various functional properties and potential applications of one-dimensional ZnO nanostructures, from basic principles to our most recent discoveries. It comprises experimental analysis of various properties of ZnO nanostructures, preparation techniques, research methods, and some promising applications. The areas of focus include ZnO-based gas/biochemical sensing devices, field emitters, solar cells, light-emitting diodes, e-papers, and single-nanowire-based transistors.

  12. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  13. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  14. Porphyrin-Based Nanostructures for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Yingzhi Chen

    2016-03-01

    Full Text Available Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed.

  15. Evolving application of biomimetic nanostructured hydroxyapatite.

    Science.gov (United States)

    Roveri, Norberto; Iafisco, Michele

    2010-11-09

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical-physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical-physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical-physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.

  16. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  17. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    Science.gov (United States)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  18. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  19. Graphene directed architecture of fine engineered nanostructures with electrochemical applications

    DEFF Research Database (Denmark)

    Hou, Chengyi; Zhang, Minwei; Halder, Arnab

    2017-01-01

    . In this review, we aim to highlight some recent efforts devoted to rational design, assembly and fine engineering of electrochemically active nanostructures using graphene or/and its derivatives as soft templates for controlled synthesis and directed growth. We organize the contents according to the chemically...... classified nanostructures, including metallic nanostructures, self-assembled organic and supramolecular structures, and fine engineered metal oxides. In these cases, graphene templates either sacrificed during templating synthesis or retained as support for final products. We also discuss remained challenges...... and future perspective in the graphene-templating design and synthesis of various materials. Overall, this review could offer crucial insights into the nanoscale engineering of new nanostructures using graphene as a soft template and their potential applications in electrochemical science and technology. We...

  20. Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications.

    Science.gov (United States)

    Hussein, Laith; Urban, Gerald; Krüger, Michael

    2011-04-07

    The fabrication process of buckypapers (BPs) made from stable suspensions of as-received or functionalized multi-walled carbon nanotubes (MWCNTs) with high purity (97.5 wt%, Baytubes), their characterization and their utilization towards novel biofuel cell electrode applications are reported. The BPs can vary in thickness between 1 μm and 200 μm, are mechanically robust, flexible, stable in solvents, possess high meso-porosities as well as high apparent electrical conductivities of up to 2500 S m(-1). Potentiodynamic measurements of biocathodes based on bilirubin oxidase (BOD)-decorated BPs for the oxygen reduction reaction (ORR) in neutral media (phosphate buffer solution) containing glucose indicate that BP electrodes based on functionalized MWCNTs (fBPs) perform better than BP electrodes of as-received MWCNTs and have high potential as an effective electrode material in biofuel cells and biosensors.

  1. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  2. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  3. Light-matter interaction in nanostructured materials

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst

    Light-matter interaction in nanostructured materials is studied theoretically with emphasis on spontaneous emission dynamics of quantum dots in photonic crystals. The main topics of the work are electromagnetic scattering calculations, decay dynamics of single quantum dots and multiple quantum do...... crystallite slab and apply the method for an example calculation with two quantum dots at specific locations in the unit cell. In this way it is explicitly shown how the decay dynamics of one quantum dot is qualitatively changed by the scattering properties of another.......Light-matter interaction in nanostructured materials is studied theoretically with emphasis on spontaneous emission dynamics of quantum dots in photonic crystals. The main topics of the work are electromagnetic scattering calculations, decay dynamics of single quantum dots and multiple quantum dot...... dynamics. The electromagnetic Green's tensor enters naturally in calculations of light-matter interaction in multiple scattering media such as photonic crystals. We present a novel solution method to the Lippmann-Schwinger equation for use in electric field scattering calculations and Green's tensor...

  4. Monocrystalline halide perovskite nanostructures : For optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  5. Combination of lightweight elements and nanostructured materials for batteries.

    Science.gov (United States)

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    ), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.

  6. Gold nanostructure materials in diabetes management

    Science.gov (United States)

    Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith

    2017-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.

  7. Gold nanostructure materials in diabetes management

    International Nuclear Information System (INIS)

    Si, Satyabrata; Mohanta, Jagdeep; Satapathy, Smith Sagar; Pal, Arttatrana

    2017-01-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences. (paper)

  8. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  9. Nanostructured metals. Fundamentals to applications

    International Nuclear Information System (INIS)

    Grivel, J.-C.; Hansen, N.; Huang, X.; Juul Jensen, D.; Mishin, O.V.; Nielsen, S.F.; Pantleon, W.; Toftegaard, H.; Winther, G.; Yu, T.

    2009-01-01

    In the today's world, materials science and engineering must as other technical fields focus on sustainability. Raw materials and energy have to be conserved and metals with improved or new structural and functional properties must be invented, developed and brought to application. In this endeavour a very promising route is to reduce the structural scale of metallic materials, thereby bridging industrial metals of today with emerging nanometals of tomorrow, i.e. structural scales ranging from a few micrometres to the nanometre regime. While taking a focus on metals with structures in this scale regime the symposium spans from fundamental aspects towards applications, uniting materials scientists and technologists. A holistic approach characterizes the themes of the symposium encompassing synthesis, characterization, modelling and performance where in each area significant progress has been made in recent years. Synthesis now covers top-down processes, e.g. plastic deformation, and bottom-up processes, e.g. chemical and physical synthesis. In the area of structural and mechanical characterization advanced techniques are now widely applied and in-situ techniques for structural characterization under mechanical or thermal loading are under rapid development in both 2D and 3D. Progress in characterization techniques has led to a precise description of different boundaries (grain, dislocation, twin, phase), and of how they form and evolve, also including theoretical modelling and simulations of structures, properties and performance. (au)

  10. Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation

    Directory of Open Access Journals (Sweden)

    Santiago Gómez-Ruiz

    2018-01-01

    Full Text Available A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i a simple grafting protocol via protonolysis of the Ti–Cl bond; and (ii a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B and three human colon carcinomas (DLD-1, HT-29, COLO320 and very low cytotoxicity against normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.

  11. Surface modification of microfibrous materials with nanostructured carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krasnikova, Irina V., E-mail: tokareva@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Mishakov, Ilya V.; Vedyagin, Aleksey A. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Bauman, Yury I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); Korneev, Denis V. [State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region 630559 (Russian Federation)

    2017-01-15

    The surface of fiberglass cloth, carbon and basalt microfibers was modified with carbon nanostructured coating via catalytic chemical vapor deposition (CCVD) of 1,2-dichloroethane. Incipient wetness impregnation and solution combustion synthesis (SCS) methods were used to deposit nickel catalyst on the surface of microfibrous support. Prepared NiO/support samples were characterized by X-ray diffraction analysis and temperature-programmed reduction. The samples of resulted hybrid materials were studied by means of scanning and transmission electron microscopies as well as by low-temperature nitrogen adsorption. The nature of the support was found to have considerable effect on the CCVD process peculiarities. High yield of nanostructured carbon with largest average diameter of nanofibers within the studied series was observed when carbon microfibers were used as a support. This sample characterized with moderate surface area (about 80 m{sup 2}/g after 2 h of CCVD) shows the best anchorage effect. Among the mineral supports, fiberglass tissue was found to provide highest carbon yield (up to 3.07 g/g{sub FG}) and surface area (up to 344 m{sup 2}/g) due to applicability of SCS method for Ni deposition. - Highlights: • The microfibers of different nature were coated with nanostructured carbon layer. • Features of CNF growth and characteristics of hybrid materials were studied. • Appropriate anchorage of CNF layer on microfiber’s surface was demonstrated.

  12. Precisely Tailored DNA Nanostructures and their Theranostic Applications.

    Science.gov (United States)

    Zhu, Bing; Wang, Lihua; Li, Jiang; Fan, Chunhai

    2017-12-01

    A critical challenge in nanotechnology is the limited precision and controllability of the structural parameters, which brings about concerns in uniformity, reproducibility and performance. Self-assembled DNA nanostructures, as a newly emerged type of nano-biomaterials, possess low-nanometer precision, excellent programmability and addressability. They can precisely arrange various molecules and materials to form spatially ordered complex, resulting in unambiguous physical or chemical properties. Because of these, DNA nanostructures have shown great promise in numerous biomedical theranostic applications. In this account, we briefly review the history and advances on construction of DNA nanoarchitectures and superstructures with accurate structural parameters. We focus on recent progress in exploiting these DNA nanostructures as platforms for quantitative biosensing, intracellular diagnosis, imaging, and smart drug delivery. We also discuss key challenges in practical applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fibrin nanostructures for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Riedelová-Reicheltová, Zuzana; Brynda, Eduard; Riedel, Tomáš

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S263-S272 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : fibrinogen * fibrin-bound thrombin * nanostructures Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S263.pdf

  14. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Anupriya Baranwal

    2018-03-01

    Full Text Available Nanostructured materials (NSMs have increasingly been used as a substitute for antibiotics and additives in various products to impart microbicidal effect. In particular, use of silver nanoparticles (AgNPs has garnered huge researchers' attention as potent bactericidal agent due to the inherent antimicrobial property of the silver metal. Moreover, other nanomaterials (carbon nanotubes, fullerenes, graphene, chitosan, etc. have also been studied for their antimicrobial effects in order ensure their application in widespread domains. The present review exclusively emphasizes on materials that possess antimicrobial activity in nanoscale range and describes their various modes of antimicrobial action. It also entails broad classification of NSMs along with their application in various fields. For instance, use of AgNPs in consumer products, gold nanoparticles (AuNPs in drug delivery. Likewise, use of zinc oxide nanoparticles (ZnO-NPs and titanium dioxide nanoparticles (TiO2-NPs as additives in consumer merchandises and nanoscale chitosan (NCH in medical products and wastewater treatment. Furthermore, this review briefly discusses the current scenario of antimicrobial nanostructured materials (aNSMs, limitations of current research and their future prospects. To put various perceptive insights on the recent advancements of such antimicrobials, an extended table is incorporated, which describes effect of NSMs of different dimensions on test microorganisms along with their potential widespread applications.

  15. Debye screening length effects of nanostructured materials

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2014-01-01

    This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped ...

  16. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Hao; Guo, Zhiguang; Wang, Shimin; Liu, Weimin

    2014-01-01

    One-dimensional (1D) titania (TiO 2 ) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO 2 nanostructures and the applications of 1D TiO 2 nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO 2 nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO 2 nanostructures in DSCs into four parts, that is, 1D TiO 2 nanostructures only, 1D TiO 2 nanostructure/nanoparticle composites, branched 1D TiO 2 nanostructures, and 1D TiO 2 nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO 2 nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO 2 nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO 2 nanostructures in DSCs are summarized in this review article.

  17. In-situ TEM studies of nanostructured thermoelectric materials: An application to Mg-doped Zn4Sb3 alloy

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Le, Hung Thanh; Ngo, Nong Van

    2018-01-01

    material have been dynamically captured as a function of temperature from 300 K to 573 K. On heating, we have observed clearly precipitation and growth of a Zn-rich secondary phase as nanoinclusions in the matrix of primary Zn4Sb3 phase. Elemental mapping by STEM-EDX spectroscopy reveals enrichment of Zn...

  18. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Designing fractal nanostructured biointerfaces for biomedical applications.

    Science.gov (United States)

    Zhang, Pengchao; Wang, Shutao

    2014-06-06

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  1. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  2. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  3. Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis

    Science.gov (United States)

    Krausz, Ivo Michael

    The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation

  4. Semiconductive Nanostructures - Materials for Spinelectronics: New Data Bank Requirement

    Directory of Open Access Journals (Sweden)

    Paata J Kervalishvili

    2007-12-01

    Full Text Available Nanoscience, the interdisciplinary science that draws on physics, chemistry, biology, and computational mathematics, is still in its infancy. Control and manipulation on a nanometric scale allow the fabrication of nanostructures, the properties of which are mainly determined by quantum mechanics and differ considerably from that of the common crystalline state. Nanostructures constructed from inorganic solids such as semiconductors have new electronic and optical properties because of their size and quantization effects [1, 2]. The quantization effects reflect the fundamental characteristics of structures as soon as their size falls below a certain limit. An example of the simplest nanostructure is the quantum dot formed from the energy well of certain semiconductor materials with 5-10nm thickness sandwiched between other semiconductors with normal properties. Quantum dots, for example, have led to important novel technology for lasers, optical sensors, and other electronic devices. The application of nanolayers to data storage, switching, lighting, and other devices can lead to substantially new hardware, for example, energy cells, and eventually to the quantum-based internet. Nanoscience and nanotechnology encompass the development of nano-spinelectronics, spinelectronics materials production, and nano-spinelectronic measuring devices and technologies. Nano-spinelectronics, based on usage of magnetic semiconductors, represents a new and emerging area of science and engineering of the 21st century. It is a primary example of the creation and enhancement of new materials and devices for information technologies, operating with charge and spin degrees of freedom of carriers, free from present-day limitations. This new multi-disciplinary direction of science and technology is very much in need of support from new data banks, which will function as a source of new ideas and approaches.

  5. Hybrid nanostructured materials with tunable magnetic characteristics

    Science.gov (United States)

    Torres-Martínez, Nubia E.; Garza-Navarro, M. A.; García-Gutiérrez, Domingo; González-González, Virgilio A.; Torres-Castro, Alejandro; Ortiz-Méndez, U.

    2014-12-01

    We report on the development of hybrid nanostructured materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) stabilized in carboxymethyl-cellulose (CMC)/cetyltrimethyl-ammonium-bromide (CTAB) templates, with tunable magnetic characteristics. These HNM were synthesized using a one-pot chemical approach to obtain CMC/CTAB templates with controllable size and morphology, where the SMON could be densely arranged. The synthesized HNM were characterized by transmission electron microscopy and its related techniques, such as bright field (BF) and Z-contrast (HAADF-STEM) imaging, and selected area electron diffraction, as well as static magnetic measuring. Experimental evidence suggests that the morphology and size of the CMC/CTAB templates are highly dependent on the weight ratio of CTAB:SMON, as well as the hydration days of the CMC that is used for the synthesis of the HNM. Controlling these parameters allows modifying the density of the SMON arrangement in the CMC/CTAB templates. Moreover, magnetic features such as remanence, coercivity, and blocking/de-blocking processes of the particles' magnetic moments are highly dependent on the interactions among the SMON assembled in the templates. Hence, the magnetic characteristics of HNM can be modulated or tuned by controlling the manner the SMON are arranged within the CMC/CTAB templates.

  6. Hybrid nanostructured materials with tunable magnetic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martínez, Nubia E.; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; García-Gutiérrez, Domingo; González-González, Virgilio A.; Torres-Castro, Alejandro; Ortiz-Méndez, U. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2014-12-15

    We report on the development of hybrid nanostructured materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) stabilized in carboxymethyl-cellulose (CMC)/cetyltrimethyl-ammonium-bromide (CTAB) templates, with tunable magnetic characteristics. These HNM were synthesized using a one-pot chemical approach to obtain CMC/CTAB templates with controllable size and morphology, where the SMON could be densely arranged. The synthesized HNM were characterized by transmission electron microscopy and its related techniques, such as bright field (BF) and Z-contrast (HAADF-STEM) imaging, and selected area electron diffraction, as well as static magnetic measuring. Experimental evidence suggests that the morphology and size of the CMC/CTAB templates are highly dependent on the weight ratio of CTAB:SMON, as well as the hydration days of the CMC that is used for the synthesis of the HNM. Controlling these parameters allows modifying the density of the SMON arrangement in the CMC/CTAB templates. Moreover, magnetic features such as remanence, coercivity, and blocking/de-blocking processes of the particles’ magnetic moments are highly dependent on the interactions among the SMON assembled in the templates. Hence, the magnetic characteristics of HNM can be modulated or tuned by controlling the manner the SMON are arranged within the CMC/CTAB templates.

  7. Lyotropic liquid crystal directed synthesis of nanostructured materials

    Directory of Open Access Journals (Sweden)

    Cuiqing Wang, Dairong Chen and Xiuling Jiao

    2009-01-01

    Full Text Available This review introduces and summarizes lyotropic liquid crystal (LLC directed syntheses of nanostructured materials consisting of porous nanostructures and zero-dimensional (0-D, one-dimensional (1-D and two-dimensional (2-D nanostructures. After a brief introduction to the liquid crystals, the LLCs used to prepare mesoporous materials are discussed; in particular, recent advances in controlling mesostructures are summarized. The LLC templates directing the syntheses of nanoparticles, nanorods, nanowires and nanoplates are also presented. Finally, future development in this field is discussed.

  8. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    OpenAIRE

    Liu Jun; Xue Dongfeng

    2010-01-01

    Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at th...

  9. Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications.

    Science.gov (United States)

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications.

  10. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.

  11. Nanostructured surfaces for anti-biofouling/anti-microbial applications

    Science.gov (United States)

    Choi, Chang-Hwan; Kim, Chang-Jin

    2009-05-01

    Recent nanotechnology revolutions have cast increased challenges to biotechnology including bio-adhesion of cells. Surface topography and chemistry tailored by the nanotechnology exert significant effects on such applications so that it is necessary to understand how cells migrate and adhere on three-dimensional micro- and nanostructures. However, the effects of the surface topography and chemistry on cell adhesions have not been studied systematically and interactively yet mostly due to the inability to create well-controlled nanostructures over a relatively large surface area. In this paper, we report on the bio-adhesions of varying cell types on well-ordered (post and grate patterns), dense-array (230 nm in pattern periodicity), and sharp-tip (less than 10 nm in tip radius) nanostructures with varying three-dimensionalities (50- 500 nm in structural height). Significantly lower cell proliferation and smaller cell size were measured on tall nanostructures. On a grate pattern, significant cell elongation and alignment along the grate pattern were observed. On tall nanostructures, it was shown that cells were levitated by sharp tips and easily peeled off, suggesting that cell adherence to the tall and sharp-tip nanostructures was relatively weak. The control of cell growth and adherence by the nanoscale surface topographies can benefit the micro- and nanotechnogies-based materials, devices, and systems, such as for anti-biofouling and anti-microbial surfaces. The obtained knowledge by this investigation will also be useful to deal with engineering problems associated with the contact with biological substances such as biomaterials and biosensors.

  12. Synthesis and applications of MOF-derived porous nanostructures

    Directory of Open Access Journals (Sweden)

    Min Hui Yap

    2017-07-01

    Full Text Available Metal organic frameworks (MOFs represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability. Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017, on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture. Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed. Keywords: Metal organic frameworks, Porous nanostructures, Supercapacitors, Lithium ion batteries, Heterogeneous catalyst

  13. X-ray characterisation of nanostructured materials

    DEFF Research Database (Denmark)

    Oddershede, Jette

    X-ray powder di®raction (XRPD) is an excellent tool for characterising the bulk structure of crystalline materials. Along with the growing interest in exploiting materials with decreasing particle sizes and increasing number of defects, factors that complicate the traditional interpretation...... of the experi- mental XRPD patterns, the need for new interpretation methods has arisen. The method described in the present thesis is by no means new, in fact it was developed by Debye in 1915. However, the Debye method it is rather computationally heavy, so in practise it is only applicable to the X-ray char...

  14. Nanostructures for Electronic and Sensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will develop sensors and electronic components from metal oxide based nanotubes and nanowires. These nanostructured materials will be grown...

  15. Tailored antireflective biomimetic nanostructures for UV applications

    Energy Technology Data Exchange (ETDEWEB)

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  16. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  17. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States); Bai, Zhaojun [Univ. of California, Davis, CA (United States); Ceperley, David [Univ. of Illinois, Urbana, IL (United States); Cai, Wei [Stanford Univ., CA (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Marzari, Nicola [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pickett, Warren [Univ. of California, Davis, CA (United States); Spaldin, Nicola [Univ. of California, Santa Barbara, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  18. Nanostructured CdS:O film: preparation, properties, and application

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X.; Yan, Y.; Dhere, R.G.; Zhang, Y.; Zhou, J.; Perkins, C.; To, B. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2004-03-01

    In this paper, we report on a novel material: nanostructured CdS:O film prepared at room temperature by rf sputtering, and its application in CdTe solar cells. The CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and a nanostructure; the bandgap increases with an increase of oxygen content (from {proportional_to}4 at.% to {proportional_to}23 at.%) and a decrease of grain size (from about a few hundred A to a few tenths A). Our results have also demonstrated that the higher oxygen content presented in the nanostructured CdS:O films can significantly suppress the Te diffusion from the CdTe into the CdS film and the formation of a CdS{sub 1-y}Te{sub y} alloy with a lower bandgap that results in poor quantum efficiency in the short-wavelength region. The preliminary device results have demonstrated that the J{sub sc} of the CdTe device can be greatly improved by exploiting the thin nanostructured CdS:O film, while maintaining higher V{sub oc} and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed total-area efficiency of 15.5%. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Nanotechnology and health safety--toxicity and risk assessments of nanostructured materials on human health.

    Science.gov (United States)

    Singh, Surya; Nalwa, Hari Singh

    2007-09-01

    The field of nanotechnology has recently emerged as the most commercially viable technology of this century because of its wide-ranging applications in our daily lives. Man-made nanostructured materials such as fullerenes, nanoparticles, nanopowders, nanotubes, nanowires, nanorods, nanofibers, quantum dots, dendrimers, nanoclusters, nanocrystals, and nanocomposites are globally produced in large quantities due to their wide potential applications, e.g., in skincare and consumer products, healthcare, electronics, photonics, biotechnology, engineering products, pharmaceuticals, drug delivery, and agriculture. Human exposure to these nanostructured materials is inevitable, as they can enter the body through the lungs or other organs via food, drink, and medicine and affect different organs and tissues such as the brain, liver, kidney, heart, colon, spleen, bone, blood, etc., and may cause cytotoxic effects, e.g., deformation and inhibition of cell growth leading to various diseases in humans and animals. Since a very wide variety of nanostructured materials exits, their interactions with biological systems and toxicity largely depend upon their properties, such as size, concentration, solubility, chemical and biological properties, and stability. The toxicity of nanostructured materials could be reduced by chemical approaches such by surface treatment, functionalization, and composite formation. This review summarizes the sources of various nanostructured materials and their human exposure, biocompatibility in relation to potential toxicological effects, risk assessment, and safety evaluation on human and animal health as well as on the environment.

  20. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering.

    Science.gov (United States)

    Krenkova, Jana; Foret, Frantisek; Svec, Frantisek

    2012-06-01

    Scaffolds modified with nanostructures are recently finding use in a broad range of applications spanning from chromatographic separations to tissue engineering. This continuation of the review series on design and applications of monolithic materials covers some of the less common monoliths including use of nanostructures in preparation, modifications, and applications. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  2. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  3. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  4. Optical properties of nanostructured materials: a review

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Berginc, Gérard

    2011-01-01

    Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications

  5. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    Science.gov (United States)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  6. Nanostructured films of inorganic-organic hybrid materials for application in photovoltaics; Nanostrukturierte Filme aus anorganisch-organischen Hybridmaterialien fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Perlich, Jan

    2009-06-25

    Nanostructured thin films of crystalline TiO{sub 2} for applications in photovoltaics were studied. The fabrication of the thin films is based on a hybrid approach. The anorganic metal oxide prepared via a sol-gel synthesis is structurated by the template properties of the applied organic block-copolymer. Via the film epitaxy by means of centrifugal coating first hybrid films (polymer-nanocomposite films) were fabricated, which were changed by calcination into crystalline TiO{sub 2} films with taylored morphology. The successful development of novel preparation approaches to the adaption to consisting conditions in the application field of photovoltaics contains a route to the fine-tuning of the morphology as well as the fabrication of hierarchical morphologies in different configurations. The structural study of the single nanostructurated TiO{sub 2} films up to the functional multilayer arrangement as photovoltaic demonstration cell was performed with conventionally imaging methods, as for instance scanning force microscopy and electron microscopy as well as the special small-angle X-ray scattering method under rigid incident angle (GISAXS). [German] Es wurden nanostrukturierte duenne Filme aus kristallinem TiO{sub 2} fuer Anwendungen in der Photovoltaik untersucht. Die Herstellung der duennen Filme basiert auf einem Hybridansatz. Das ueber eine Sol-Gel-Synthese bereitgestellte anorganische Metalloxid wird durch die Template-Eigenschaften des eingesetzten organischen Block-Copolymers strukturiert. Ueber die Filmaufbringung mittels Schleuderbeschichtung wurden zunaechst Hybridfilme (Polymer-Nanokompositfilme) hergestellt, die durch Kalzinierung in kristalline TiO{sub 2}-Filme mit massgeschneiderter Morphologie umgewandelt werden. Die erfolgreiche Entwicklung von neuartigen Praeparationsansaetzen zur Adaption an bestehende Gegebenheiten im Anwendungsgebiet der Photovoltaik beinhaltet eine Route zur Feineinstellung der Morphologie sowie die Herstellung von

  7. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.

    Science.gov (United States)

    Li, Feng; Zhou, Zhen

    2018-02-01

    High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    Science.gov (United States)

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  9. Functional nanostructured materials for stormwater runoff treatment

    DEFF Research Database (Denmark)

    Ko, Dongah

    metal sorption behaviour. Although COP-63 has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon (AC), while it also exhibited 16 times faster sorption kinetics compared to AC, owing to high affinity towards disulphide and thiol functionality......Numerous heavy metal removal practices for stormwater runoff have been studied and applied; however, there is still room for improvement. Among these practices, adsorption has proven to be the most efficient way of removing heavy metals. Commonly used adsorbents have an innate sorption capacity...... in relation to high concentrations of heavy metal ions, but if they are to be used for stormwater runoff, high affinity with rapid sorption kinetics for low concentrations of heavy metals is necessary. Therefore, in this study, new types of functional nanostructured polymer sorbents for effective heavy metal...

  10. Briquettes with nanostructured materials used to modify of cast iron

    Science.gov (United States)

    Znamenskii, L. G.; Ivochkina, O. V.; Varlamov, A. S.; Petrova, N. I.

    2016-05-01

    A method is developed to fabricate briquettes with nanostructured materials aimed at modification of cast iron resulting in the improvement of the physicochemical properties of cast iron and its castings. This improvement is achieved by grain refinement, stable modification, the elimination of pyroelectric effect upon modification, and a decrease in the sensitivity to chilling upon melt solidification.

  11. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications

    Science.gov (United States)

    Pandiyarasan, V.; Suhasini, S.; Archana, J.; Navaneethan, M.; Majumdar, Abhijit; Hayakawa, Y.; Ikeda, H.

    2017-10-01

    We have investigated ZnO nanostructures on cotton fabric (CF) s a flexible material for an application of wearable thermoelectric (TE) power generator which requires super-hydrophobicity, UV protection, and high TE efficiency. Field emission scanning electron microscopy images revealed that the formed ZnO nanostructures have a mixture of nanorods and nanosheets and are uniformly coated on the CF. XRD pattern and Raman spectra revealed that the ZnO nanostructure has a wurtzite structure. Contact angle measurements showed that the ZnO-nanostructures-coated CF possessed a high super hydrophobic nature with an angle of 132.5°. ZnO nanocomposite/CF sample exhibited an excellent UV protection factor 183.84. Seebeck coefficient, electrical resistivity and thermoelectric power factor of the ZnO nanostructures on cotton fabric were evaluated to be 28 μV/K, 0.04 Ω-cm, and 22 μW/m K2, respectively.

  12. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing.

    Science.gov (United States)

    Zhang, Shuaidi; Geryak, Ren; Geldmeier, Jeffrey; Kim, Sunghan; Tsukruk, Vladimir V

    2017-10-25

    The robust, sensitive, and selective detection of targeted biomolecules in their native environment by prospective nanostructures holds much promise for real-time, accurate, and high throughput biosensing. However, in order to be competitive, current biosensor nanotechnologies need significant improvements, especially in specificity, integration, throughput rate, and long-term stability in complex bioenvironments. Advancing biosensing nanotechnologies in chemically "noisy" bioenvironments require careful engineering of nanoscale components that are highly sensitive, biorecognition ligands that are capable of exquisite selective binding, and seamless integration at a level current devices have yet to achieve. This review summarizes recent advances in the synthesis, assembly, and applications of nanoengineered reporting and transducing components critical for efficient biosensing. First, major classes of nanostructured components, both inorganic reporters and organic transducers, are discussed in the context of the synthetic control of their individual compositions, shapes, and properties. Second, the design of surface functionalities and transducing path, the characterization of interfacial architectures, and the integration of multiple nanoscale components into multifunctional ordered nanostructures are extensively examined. Third, examples of current biosensing structures created from hybrid nanomaterials are reviewed, with a distinct emphasis on the need to tailor nanosensor designs to specific operating environments. Finally, we offer a perspective on the future developments of nanohybrid materials and future nanosensors, outline possible directions to be pursued that may yield breakthrough results, and envision the exciting potential of high-performance nanomaterials that will cause disruptive improvements in the field of biosensing.

  13. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  14. Nanostructured polymeric materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia [Argonne National Lab. (ANL), Argonne, IL (United States; Yu, Luping [Argonne National Lab. (ANL), Argonne, IL (United States

    2013-03-01

    The objective of this project is to develop a new class of hydrogen storage adsorbent, nanostructured porous organic polymers (POPs), through collaboration between Argonne National Laboratory and The University of Chicago. POPs have excellent thermal stability and tolerance to gas contaminants such as moisture. They also have low skeleton density and high intrinsic porosity via covalent bonds, capable of maintaining specific surface area (SSA) during high pressure pelletizing for better volumetric density. Furthermore, they can be produced at a commercial scale with the existing industrial infrastructure. The team’s approach focused on improving hydrogen uptake capacity and the heat of adsorption by enhancing SSA, porosity control, and framework-adsorbate interactions through rational design and synthesis at the molecular level. The design principles aim at improving the following attributes of the polymers: (a) high SSA to provide sufficient interface with H2; (b) narrow pore diameter to enhance van der Waals interactions in the confined space; and (c) “metallic” features, either through π- conjugation or metal doping, to promote electronic orbital interactions with hydrogen.

  15. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  16. Magnetic Nanostructures Patterned by Self-Organized Materials

    Science.gov (United States)

    2016-01-05

    AFRL-AFOSR-CL-TR-2016-0004 Magnetic nanostructures Patterned by Self - Organized Materials Dora Altbir-Drullinky UNIV OF SANTIAGO Final Report 01/05... ORGANIZATION NAME(S) AND ADDRESS(ES). Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by...PATTERNED BY SELF - ORGANIZED MATERIALS AFOSR – AFOSR FA9550-11-1-0347 Prof. Dora Altbir Drullinsky, P.I. Universidad de Santiago de Chile

  17. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  18. Zinc oxide nanostructures: new properties for advances applications

    International Nuclear Information System (INIS)

    Lupan, Oleg; Chow, Lee; Pauporte, Thierry

    2011-01-01

    Zinc oxide is a material which exhibits a variety of new properties at nanometer dimensions. Various synthesis techniques have been carried out to provide growth of nanowires, nanorods, nanorings, nanosprings, and nanobelts of ZnO under various conditions. These nanostructures show that ZnO possesses probably the richest family of nanoarchitectures among all materials, including their structures and properties. Such nanoarchitectures are potential building blocks for novel applications in optoelectronics, sensors, photovoltaic and nano-biomedical sciences. This work presents a review of various nano architectures of ZnO grown by the electrochemical, hydrothermal and solid-vapor phase techniques and their properties. The possible applications of ZnO nanowires as sensors, nano-DSSC, photodetectors and nano-LEDs will be presented.

  19. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2014-01-01

    Full Text Available Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.

  20. Quantitative Electron Tomography for Nanostructured Materials

    NARCIS (Netherlands)

    Friedrich, H.

    2009-01-01

    The controlled assembly of materials on the nanoscale has been a major focus of research across many scientific disciplines. In the nanometer size range, materials characteristics can be tuned not only by composition but more importantly by size and shape of constituent phases, giving rise to

  1. Disclinations in bulk nanostructured materials: their origin, relaxation and role in material properties

    International Nuclear Information System (INIS)

    Nazarov, Ayrat A

    2013-01-01

    The role of disclinations in the processing, microstructure and properties of bulk nanostructured materials is reviewed. Models of grain subdivision during severe plastic deformation (SPD) based on the disclination concept, a structural model of the bulk nanostructured materials processed by SPD are presented. The critical strength of triple junction disclinations is estimated. Kinetics of relaxation of triple junction disclinations and their role in the grain boundary diffusion are studied. (review)

  2. Small angle neutron scattering of micro- and nanostructured materials

    International Nuclear Information System (INIS)

    Trinker, M.

    2006-05-01

    In this work studies of micro- and nanostructured materials by means of neutron scattering techniques are presented. The first part contains the theory of neutron scattering by structures in condensed matter necessary for the understanding of the experimental results. The method of small angle neutron scattering (SANS) is applied to a sample of highly irradiated SiC/SiCf composite. These materials play an important role in concepts for future fusion reactors. Radiation induced structural changes after high-dose irradiation in the spallation target of the SINQ neutron source, Switzerland, are analyzed. For testing instruments and methods used in ultra-small angle neutron scattering (USANS) artificial microstructured samples fabricated from silicon are particularly suitable. Because of the known structure parameters and the model-like character of such samples the performance of the instruments involved and the models used for interpretation of the scattering data can be tested. The development and fabrication of a series of such silicon gratings at the Center for Micro- and Nanostructures (ZMNS) of the Vienna University of Technology are described. The following USANS measurements at the instrument S18 of the Institute Laue-Langevin, Grenoble, which is run by the Atomic Institute of the Austrian Universities, and the instrument itself are presented. Subsequently the results are compared to those of the newly developed spinecho small angle neutron scattering technique (SESANS) at the Delft University of Technology. The complementarity of both techniques is demonstrated by means of the scattering data obtained from the silicon gratings. A method for the direct reconstruction of one-dimensional scattering length density distributions is applied to the USANS scattering data of the silicon microstructures. The results are compared to those obtained from scanning electron microscopy and the applicability of the method to USANS scattering data for the reconstruction of one

  3. Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications.

    Science.gov (United States)

    Bhaumik, Anagh; Shearin, Austin M; Patel, Rishi; Ghosh, Kartik

    2014-06-14

    The optical absorption coefficient is a crucial parameter in determining solar cell efficiency under operational conditions. It is well known that inorganic nanocrystals are a benchmark model for solar cell nanotechnology, given that the tunability of optical properties and stabilization of specific phases are uniquely possible at the nanoscale. A hydrothermal method was employed to fabricate nanostructured copper oxides where the shape, size and phase were tailored by altering the growth parameters, namely the base media used, the reaction temperature, and the reaction time. The nano crystalline structures, phases, morphology, molecular vibrational modes, and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL), and UV-vis spectroscopy. A significantly large optical absorption coefficient, of the order of twice that of Si in the visible range, was observed in a particular phase mixture of nanostructured copper oxides. An optical absorption coefficient of 7.05 10(+5) cm(-1) at 525 nm was observed in a particular nanostructured phase mixture of copper oxides which is appreciably larger than commercially pure CuO (1.19 10(+5) cm(-1)) and Si (1.72 10(+5) cm(-1)). A possible mechanism of formation of phase mixtures and morphology of copper oxides has also been discussed, which opens up a roadmap in synthesis of similar morphology nanostructures for efficient solar cells.

  4. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    International Nuclear Information System (INIS)

    Arya, Sunil K.; Saha, Shibu; Ramirez-Vick, Jaime E.; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P.

    2012-01-01

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  5. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  6. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  7. Nanostructure arrays in free-space: optical properties and applications

    International Nuclear Information System (INIS)

    Collin, Stéphane

    2014-01-01

    Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light–matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays. (review article)

  8. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  9. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  10. Spark Plasma Sintering for Nanostructured Smart Materials

    Science.gov (United States)

    2009-03-02

    material. The above relationship shows that at low frequencies a piezoelectric plate can be assumed to behave like a parallel plate capacitor . Hence...predicted load from, Eq.(4.37). By assuming as low frequencies the PZT behaves like a parallel plate capacitor , power available from PZT can be...However, in this case EDAXS analysis showed that the bulges were likely due to agglomeration of NiTi particles in the fiber. The large diameter of the

  11. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications

    Directory of Open Access Journals (Sweden)

    Genç Aziz

    2016-09-01

    Full Text Available Metallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.

  12. Heterogeneous nanostructured electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Liu, Ran; Duay, Jonathon; Lee, Sang Bok

    2011-02-07

    In order to fulfil the future requirements of electrochemical energy storage, such as high energy density at high power demands, heterogeneous nanostructured materials are currently studied as promising electrode materials due to their synergic properties, which arise from integrating multi-nanocomponents, each tailored to address a different demand (e.g., high energy density, high conductivity, and excellent mechanical stability). In this article, we discuss these heterogeneous nanomaterials based on their structural complexity: zero-dimensional (0-D) (e.g. core-shell nanoparticles), one-dimensional (1-D) (e.g. coaxial nanowires), two-dimensional (2-D) (e.g. graphene based composites), three-dimensional (3-D) (e.g. mesoporous carbon based composites) and the even more complex hierarchical 3-D nanostructured networks. This review tends to focus more on ordered arrays of 1-D heterogeneous nanomaterials due to their unique merits. Examples of different types of structures are listed and their advantages and disadvantages are compared. Finally a future 3-D heterogeneous nanostructure is proposed, which may set a goal toward developing ideal nano-architectured electrodes for future electrochemical energy storage devices.

  13. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  14. Nanostructured energetic materials derived from sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  15. Conducting polymer nanostructures for biological applications

    Science.gov (United States)

    Berdichevsky, Yevgeny

    A novel polypyrrole nanowire actuator was fabricated and characterized, representing a completely new approach to the design of nanoscale mechanically active components (nanomachines). This design paradigm takes advantage of the fact that unique properties of polypyrrole allow development of mechanically active nanostructures capable of operating in aqueous salt solutions with many potential applications biology and medicine. Template synthesis technique was used to electropolymerize polypyrrole nanowires in the nanoporous alumina templates. Commercial alumina filters were used both "as is" and patterned with microbeads to reduce the open pore density, along with anodized alumina prepared as a thin film on a semiconductor substrate. The ability of the nanowires to expand and contract with applied voltage was then evaluated with scanning electron microscopy and high-resolution optical microscopy. It was confirmed that the nanowires can function as nanoactuators, which is a significant advance in developing nanomechanical structures. Polypyrrole nanoactuators are electrically controlled, rather than relying on changing the chemical composition of solution, can be easily synthesized in parallel and in high numbers without requiring e-beam lithography, and can operate in aqueous salt solutions at biologically-relevant pH. Furthermore, the speed of polypyrrole actuators depends on their size due to diffusion limitations, and nanoactuators are therefore able to operate at higher speeds that micro- or macro-sized devices. The development of these nanoactuators paves the way for mimicking the function of biological actuators such as cilia, creation of controllable membranes, small particle manipulation, cellular nanomechanical probes, and many other biomedical applications. Furthermore, the same technology and process flow used for fabrication of nanoactuators was also used to create nanosensors for detection of electrochemically oxidizable neurotransmitters such as

  16. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  17. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  18. Novel graphene-based nanostructures: physicochemical properties and applications

    International Nuclear Information System (INIS)

    Chernozatonskii, L A; Sorokin, P B; Artukh, A A

    2014-01-01

    The review concerns graphene-based nanostructures including graphene nanoribbons a few nanometres wide, structures functionalized with hydrogen and fluorine atoms as well as pure carbon composites. The physicochemical properties and the chemical engineering methods for their fabrication are considered. Methods for solving problems in modern nanotechnology are discussed. Possible applications of graphene and graphene-based nanostructures in various devices are outlined. The bibliography includes 286 references

  19. Plasmonic nanostructures for bioanalytical applications of SERS

    Science.gov (United States)

    Kahraman, Mehmet; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a potential analytical technique for the detection and identification of chemicals and biological molecules and structures in the close vicinity of metallic nanostructures. We present a novel method to fabricate tunable plasmonic nanostructures and perform a comprehensive structural and optical characterization of the structures. Spherical latex particles are uniformly deposited on glass slides and used as templates to obtain nanovoid structures on polydimethylsiloxane surfaces. The diameter and depth of the nanovoids are controlled by the size of the latex particles. The nanovoids are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of the surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of these plasmonic nanostructures are evaluated via UV/Vis spectroscopy, and SERS. The sample preparation step is the key point to obtain strong and reproducible SERS spectra from the biological structures. When the colloidal suspension is used as a SERS substrate for the protein detection, the electrostatic interaction of the proteins with the nanoparticles is described by the nature of their charge status, which influences the aggregation properties such as the size and shape of the aggregates, which is critical for the SERS experiment. However, when the solid SERS substrates are fabricated, SERS signal of the proteins that are background free and independent of the protein charge. Pros and cons of using plasmonic nano colloids and nanostructures as SERS substrate will be discussed for label-free detection of proteins using SERS.

  20. Synthesis, characterization and applications of different nanostructures

    Science.gov (United States)

    Snyder, Whitney Elaine

    There has been a growing interest in the field of nanoscience for the last several decades including the use in optical, electrical, biological and medicinal applications. This thesis focuses on the synthesis of different nanoparticles for their potential uses in drug delivery and antimicrobial agents as well as porous alumina membranes as surface enhanced Raman scattering or SERS substrates. The synthesis of nanocomposites (NCs) composed of silica and poly(4-vinyl pyridine) (P4VP) in a basic ethanol solution is presented in chapter 2. The composition of the NCs appears to be homogenous after synthesis and is greatly affected by heat and pH changes. When the NCs are heated, a core-shell nanostructure is produced with silica forming a shell around a P4VP core. At lower pHs, the NCs form a silica core with a P4VP shell while at higher pHs the silica is etched away causing the NC to decompose. A novel synthesis method of growing stable copper oxide nanoparticles with poly(acrylic acid) (PAA) is presented in chapter 3. Insoluble copper (I) oxide is dissolved with ammonium hydroxide and reduced using sodium borohydride to form metallic copper nanoparticles that oxidize overtime to form copper oxide nanoparticles stable in an aqueous environment. In addition to copper oxide nanoparticles, copper (I) iodide and copper (II) sulfide particles were also synthesized in the presence of PAA. In chapter 4, alumina membranes with 100nm and 200nm pores were coated with silver and used as SERS substrates to detect small molecules. The alumina membranes are coated with silver by reducing silver (I) oxide with ethanol. The thickness of the silver layer depends primarily on the length of time the substrate comes into contact with the Ag2O in solution with longer exposure times producing thicker films. Raman scattering of 10-100nM adenine concentrations were collected.

  1. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    Science.gov (United States)

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-05

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  3. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  4. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  5. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  6. Ab initio prediction of nano-structured materials using supercomputer

    International Nuclear Information System (INIS)

    Kumar, V.; Kawazoe, Y.

    2003-01-01

    Full text: Nano-structured materials are currently attracting great attention due to their promise in future nano-technologies. In the scale of a nanometer, properties of matter are sensitive to the atomic details that are often difficult to obtain from experiments. Impurities could change the properties very significantly. Predictive computer simulations based on ab initio methods are playing a very important role in not only supporting and explaining the experimental findings but also suggesting new possibilities. We shall present a brief overview of the current research done in our group using the supercomputing facilities of the IMR in designing and predicting nano-structured materials. These include the areas of molecular electronics, carbon fullerenes and nanotubes, super-structures on surfaces, multilayers, clusters and nanowires using calculational approaches such as all electron mixed basis, augmented plane wave, localized basis and pseudopotential plane wave methods. More accurate descriptions based on GW and QMC methods are also used. The possibilities of doing large scale calculations are also allowing the study of biological systems such as DNA. We shall discuss in more detail our recent predictions of novel metal encapsulated silicon fullerenes and nanotubes that offer new possibilities in developing silicon based technologies at the nano-scale

  7. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  8. Thermal investigation of nanostructured bulk thermoelectric materials with hierarchical structures: An effective medium approach

    Science.gov (United States)

    Hao, Qing; Zhao, Hongbo; Xiao, Yue; Xu, Dongchao

    2018-01-01

    In recent years, hierarchical structures have been intensively studied as an effective approach to tailor the electron and phonon transport inside a bulk material for thermoelectric applications. With atomic defects and nano- to micro-scale structures in a bulk material, the lattice thermal conductivity can be effectively suppressed across the whole phonon spectrum, while maintaining or somewhat enhancing the electrical properties. For general materials with superior electrical properties, high thermoelectric performance can be achieved using hierarchical structures to minimize the lattice thermal conductivity. Despite many encouraging experimental results, accurate lattice thermal conductivity predictions are still challenging for a bulk material with hierarchical structures. In this work, an effective medium formulation is developed for nanograined bulk materials with embedded nanostructures for frequency-dependent phonon transport analysis. This new formulation is validated with frequency-dependent phonon Monte Carlo simulations. For high-temperature thermoelectric applications, nanograined bulk ZnO with embedded GaN nanoparticles is studied with the formulation.

  9. Synthesis, Morphologies and Building Applications of Nanostructured Polymers

    Directory of Open Access Journals (Sweden)

    Yong Lu

    2017-10-01

    Full Text Available Nanostructured polymers (NSPs are polymeric materials in the size of nanoscale, normally consisting of nanoparticles, nanofibers, nanowires, nanospheres and other morphologies. Polymer nanoparticles (PNPs can be fabricated either by physical methods (i.e., solvent evaporation, nanoprecipitation, salting out or by direct nanosynthesis, using micro- or nanoemulsions with nanoreactor compartments to perform polymerization. Polymer nanofibers (PNFs can be produced via various techniques and the most commonly used approach is electrospinning, whereby a charged solution of a polymer when exposed to an opposite high electric field is pulled into long thin nanofibers. NSPs in general exhibit enhanced properties such as excellent structural and mechanical properties, making them promising candidates for some particular building applications. A variety of PNFs have been developed and used for noise and air pollution filtration. Moreover, PNFs can also be fabricated with phase change materials which are usually employed for thermal energy storage in construction industry. In this review, we will summarize the morphologies and nanosynthesis methods of NSPs, in particular, PNPs and PNFs. In addition, representative NSPs mainly used in construction are introduced for building applications.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  11. Structure, hardness and fracture features of nanostructural materials

    International Nuclear Information System (INIS)

    Noskova, N.I.; Korznikov, A.V.; Idrisova, S.R.

    2000-01-01

    A study is made into nanocrystalline metals Cu and Mo, nanocrystalline intermetallic compound Ni 3 Al produced using severe plastic deformation; nanophase alloys Fe 73.5 Cu 1 Nb 3 Si 1.35 B 9 and Pd 81 Cu 7 Si 12 produced by crystallization from amorphous state as well as nanophase materials TiN and Al 2 O 3 produced by nano powder compacting in the temperature range of 273-573 K. Methods of transmission and scanning electron microscopy, X-ray diffraction analysis, mechanical testing and microhardness measurement are applied to study structure, internal elastic stress, phase composition, hardness, strength and plastic properties, surface fracture mode of nanostructural materials [ru

  12. Optimized designs and materials for nanostructure based solar cells

    Science.gov (United States)

    Shao, Qinghui

    Nanostructure-based solar cells are attracting significant attention as possible candidates for drastic improvement in photovoltaic (PV) energy conversion efficiency. Although such solar cells are expected to be more expensive there is growing need for the efficient and light-weight solar cells in aero-space and related industries. In this dissertation I present results of the theoretical, computational and experimental investigation of novel designs for quantum dot superlattice (QDS) based PV elements and advanced materials for transparent solar cells. In the first part of the dissertation I describe possible implementation of the intermediate-band (IB) solar cells with QDS. The IB cells were predicted to have PV efficiency exceeding the Shockley-Queisser limit for a single junction cell. The parameters of QDS structure have to be carefully tuned to achieve the desired charge carrier dispersion required for the IB operation. The first-principles models were used to calculate the electrical properties and light absorption in QDS. This approach allowed me to determine the dimensions of QDS for inducing the mini-band which plays the role of the IB. Using the detailed balance theory it was determined that the upper-bound PV efficiency of such IB solar cells can be as high as ˜51%. The required QDS dimensions on the basis of InAsN/GaAsSb are technologically challenging but feasible: ˜2-6 nm. Using the developed simulation tools I proposed several possible designs of QDS solar cells including one, which combined the benefits of the IB concept and the advanced tandem cell design. The second part of the dissertation presents a study of graphene layers as transparent electrodes for the PV cells. The graphene layers were mechanically exfoliated from bulk graphite and characterized with micro-Raman spectroscopy. It was found that graphene electrodes have good electrical conductivity, which reveals unusual temperature dependence beneficial for the proposed application. The

  13. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  15. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    Science.gov (United States)

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  17. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  18. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    International Nuclear Information System (INIS)

    Silva, Valdirene Aparecida; Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira; Costa, Michelle Leali

    2013-01-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  19. Nanostructured diamond coatings for orthopaedic applications

    Science.gov (United States)

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  20. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  1. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kan-Sheng [Department of Materials; Xu, Rui [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Luu, Norman S. [Department of Materials; Secor, Ethan B. [Department of Materials; Hamamoto, Koichi [Department of Materials; Li, Qianqian [Department of Materials; Kim, Soo [Department of Materials; Sangwan, Vinod K. [Department of Materials; Balla, Itamar [Department of Materials; Guiney, Linda M. [Department of Materials; Seo, Jung-Woo T. [Department of Materials; Yu, Xiankai [Department of Materials; Liu, Weiwei [Department of Materials; Wu, Jinsong [Department of Materials; Wolverton, Chris [Department of Materials; Dravid, Vinayak P. [Department of Materials; Barnett, Scott A. [Department of Materials; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Hersam, Mark C. [Department of Materials

    2017-03-01

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  2. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors

    Directory of Open Access Journals (Sweden)

    Thangavel P

    2017-04-01

    Full Text Available Prakash Thangavel,1 Buddolla Viswanath,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on “traditional” (ie, non-nanostructured Ru-based cancer therapies is included in a precise manner. Keywords: metallodrugs, nanotechnology, cancer treatment, cell apoptosis, DNA damage, toxicity

  3. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    Science.gov (United States)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  4. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors.

    Science.gov (United States)

    Thangavel, Prakash; Viswanath, Buddolla; Kim, Sanghyo

    2017-01-01

    In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru) complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on "traditional" (ie, non-nanostructured) Ru-based cancer therapies is included in a precise manner.

  5. Nano-structured electron transporting materials for perovskite solar cells

    Science.gov (United States)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  6. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    John Alexis, S.; Jayakumar, S.

    2012-01-01

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  7. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang [Colorado School of Mines, Golden, CO (United States)

    2017-05-31

    A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is to develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow

  8. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    Science.gov (United States)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  9. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications.

    Science.gov (United States)

    Fang, Baizeng; Kim, Jung Ho; Kim, Min-Sik; Yu, Jong-Sung

    2013-07-16

    Nanostructured porous carbon materials have diverse applications including sorbents, catalyst supports for fuel cells, electrode materials for capacitors, and hydrogen storage systems. When these materials have hierarchical porosity, interconnected pores of different dimensions, their potential application is increased. Hierarchical nanostructured carbons (HNCs) that contain 3D-interconnected macroporous/mesoporous and mesoporous/microporous structures have enhanced properties compared with single-sized porous carbon materials, because they have improved mass transport through the macropores/mesopores and enhanced selectivity and increased specific surface area on the level of fine pore systems through mesopores/micropores. The HNCs with macro/mesoporosity are of particular interest because chemists can tailor specific applications through controllable synthesis of HNCs with designed nanostructures. An efficient and commonly used technique for creating HNCs is "nanocasting", a technique that first involves the creation of a sacrificial silica template with hierarchical porous nanostructure and then the impregnation of the silica template with an appropriate carbon source. This is followed by carbonization of the filled carbon precursor, and subsequent removal of the silica template. The resulting HNC is an inverse replica of its parent hierarchical nanostructured silica (HNS). Through such nanocasting, scientists can create different HNC frameworks with tailored pore structures and narrow pore size distribution. Generally, HNSs with specific structure and 3D-interconnected porosity are needed to fabricate HNCs using the nanocasting strategy. However, how can we fabricate a HNS framework with tailored structure and hierarchical porosity of meso-macropores? This Account reports on our recent work in the development of novel HNCs and their interesting applications. We have explored a series of strategies to address the challenges in synthesis of HNSs and HNCs. Through

  10. Preparation and properties on hollow nano-structured smoke material

    Science.gov (United States)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  11. Graphene-Metal Oxide Hybrid Nanostructured Materials for Electrocatalytic Sensing and Sustainable Energy Storage

    DEFF Research Database (Denmark)

    Halder, Arnab; Zhang, Minwei; Chi, Qijin

    2016-01-01

    with specific metal oxide nanostructures, resulting nanohybrid materials can play a significant role in the cutting-edge development of state-of-the-art electrocatalysts using commercially available and low-cost precursors. Herein, we review the mostly recent advances in the development of noble metal free...... technology and sensor applications. In particular, graphene-metal oxide nanohybrid materials have been introduced as a new basis for preparation of low cost and highly efficient electrocatalysts for energy storage and conversion as well as for electrochemical sensing applications. By combining graphene...... graphene supported electrocatalysts. This review includes an introduction to graphene-metal oxide based nanohybrid materials, different synthetic strategies for the preparation of graphene/metal oxide nanocomposites and their structural characterization, and an overview of various electrochemical...

  12. Nanostructured Transparent Conducting Oxides for Device Applications

    Science.gov (United States)

    Dutta, Titas

    2011-12-01

    bilayers showed significant increase in work function values (˜5.3 eV). The work function of the bilayer films was tuned by varying the processing conditions and doping of over layers. Preliminary test device results of the organic photovoltaic cells (OPVs) based on these surfaces modified TCO layers have shown an increase in the open circuit voltage (Voc) and/or increase in Fill factor (FF) and the power conversion efficiency of these devices. These results suggest that the surface modified GZO films have a potential to substitute for ITO in transparent electrode applications. To gain a better understanding of the fundamentals and factors affecting the properties of p-type TCO, NiO thin films have been grown on c-sapphire and glass substrates with controlled properties. Growth of NiO on c-sapphire occurs epitaxially in [111] direction with two types of crystalline grains rotated by 60° with respect to each other. We have also investigated the effects of the deposition parameters and Li doping concentration variations on the electrical and optical properties of NiO thin films. The analysis of the resistivity measurement showed that doped Li+ ions occupy the substitutional sites in the NiO films, enhancing the p-type conductivity. The minimum resistivity of 0.15 O-cm was obtained for Li0.07Ni 0.93O film. The results of this research help to understand the conduction mechanisms in TCOs and are critical to further improvement and optimization of TCO properties. This work has also demonstrated interesting possibilities for fabricating a p-LixNi1-xO/ i-MgZnO /n-ZnO heterojunction diode on c-sapphire. It has been demonstrated that epitaxial LixNi 1-xO can be grown on ZnO integrated with c-sapphire. Heteroeptaxial growth of the p-n junction is technologically important as it minimizes the electron scattering at the interface. The insertion of i-MgZnO between the p and n layer led to improved current-voltage characteristics with reduced leakage current. An attempt has been made

  13. Present and future applications of magnetic nanostructures grown by FEBID

    Science.gov (United States)

    De Teresa, J. M.; Fernández-Pacheco, A.

    2014-12-01

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems.

  14. Present and future applications of magnetic nanostructures grown by FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Teresa, J.M. de [CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon (ICMA), Saragossa (Spain); Universidad de Zaragoza, Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Saragossa (Spain); Fernandez-Pacheco, A. [University of Cambridge, TFM Group, Cavendish Laboratory, Cambridge (United Kingdom)

    2014-12-15

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems. (orig.)

  15. Plasmonic Nanostructures for Solar and Biological Application

    Science.gov (United States)

    Neumann, Oara

    The electromagnetic absorption properties of plasmonic nanostructures were utilized to develop mesoscopic sites for highly efficient photothermal generation steam, SERS biosensing, and light-triggered cellular delivery uptake. Plasmonic nanostructures embedded in common thermal solutions produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Solar illuminated aqueous nanoparticle solution can drive water-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation and also produced saturated steam destroying Geobacillus stearothermophilus bacteria in a compact solar powered autoclave. Subwavelength biosensing sites were developed using the plasmonic properties of gold nanoshells to investigate the properties of aptamer (DNA) target complexes. Nanoshells are tunable core-shell nanoparticles whose resonant absorption and scattering properties are dependent on core/shell thickness ratio. Nanoshells were used to develop a label free detection method using SERS to monitor conformational change induced by aptamer target binding. The conformational changes to the aptamers induced by target binding were probed by monitoring the aptamer SERS spectra reproducibility. Furthermore, nanoshells can serve as a nonviral light-controlled delivery vector for the precise temporal and spatial control of molecular delivery in vitro. The drug delivery concept using plasmonic vectors was shown using a monolayer of ds-DNA attached to the nanoshell surface and the small molecular "parcel" intercalated inside ds-DNA loops. DAPI, a fluorescent dye, was used as the molecular parcel to visualize the release process in living cells. Upon laser illumination at the absorption resonance the nanoshell converts photon energy into heat producing a

  16. Development of sensors based on advanced micro- and nanostructured carbon materials

    Science.gov (United States)

    Mendoza Centeno, Frank Willi

    The thesis is focused on the development of sensors based on advanced micro- and nano-structured carbon materials. In particular, we developed prototype diamond-based ultraviolet photodetectors and carbon nanotubes-based gas sensors. We describe the method of preparation and characterization of the active carbon-based materials and their structural and compositional characterizations. This is followed by the corresponding device fabrication and testing. The thesis briefly gives an introduction to our current understanding about carbon materials, with emphasis on synthetic diamond and bamboo-like carbon nanotubes, and to the materials' properties that are useful for ultraviolet photodetectors and gas sensor applications. The thesis also give an overview of the experience gained through this research, and some suggestions for those who would like follow the research methods employ here. It provides experimental information learned through experience that may be helpful and avoid delays to the newer experimentalists.

  17. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  18. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    Science.gov (United States)

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    Science.gov (United States)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  20. Nanostructured polyamic acid membranes as novel electrode materials.

    Science.gov (United States)

    Andreescu, Daniel; Wanekaya, Adam K; Sadik, Omowunmi A; Wang, Joseph

    2005-07-19

    This paper describes a new approach for the preparation of polyamic acid (PAA) composites containing Ag and Au nanoparticles. The composite film of PAA and metal particles were obtained upon electrodeposition of a PAA solution containing gold or silver salts with subsequent thermal treatment, while imidization to polyimide is prevented. The structural characterization of the films is provided by 1H NMR and Fourier transform infrared spectroscopy (FTIR), while the presence of metallic nanoparticles within the polymeric matrix was confirmed by scanning electron microscopy (SEM), cyclic voltammetry (CV), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This approach utilizes the unique reactivity of PAA by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperature to design polymer-assisted nanostructured materials. The ability to prevent the cyclization process should enable the design of a new class of electrode materials by use of thermal reduction and/or electrodeposition.

  1. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  2. Recent advances in ZnO nanostructures and thin films for biosensor applications: review.

    Science.gov (United States)

    Arya, Sunil K; Saha, Shibu; Ramirez-Vick, Jaime E; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P

    2012-08-06

    Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review highlights recent advances in various approaches towards synthesis of ZnO nanostructures and thin films and their applications in biosensor technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Investigation of ferrofluid nanostructure by laser light scattering: medical applications

    Science.gov (United States)

    Nepomnyashchaya, E. K.; Velichko, E. N.; Pleshakov, I. V.; Aksenov, E. T.; Savchenko, E. A.

    2017-05-01

    Investigation of ferrofluids nanostructure by the laser light scattering technique is presented. Experimental studies involved measurements of the intensity of the laser radiation scattered by ferrofluid particles in interaction with albumin and under the influence of magnetic field. The effects of the magnitude and duration of the applied magnetic field on the formation of aggregates of magnetic nanoparticles and also the influence of magnetic fluids of different concentrations on blood proteins are considered. The findings may be useful for medical applications.

  4. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  5. Nanostructured material-based biofuel cells: recent advances and future prospects.

    Science.gov (United States)

    Zhao, Cui-E; Gai, Panpan; Song, Rongbin; Chen, Ying; Zhang, Jianrong; Zhu, Jun-Jie

    2017-03-06

    During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production. In this review, we presented the major novel nanostructured materials applied for BFCs and highlighted the breakthroughs in this field. Based on different natures of the bio-catalysts and electron transfer process at the bio-electrode surfaces, the fundamentals of BFC systems, including enzymatic biofuel cells (EBFCs) and microbial fuel cells (MFCs), have been elucidated. In particular, the principle of electrode materials design has been detailed in terms of enhancing electrical communications between biological catalysts and electrodes. Furthermore, we have provided the applications of BFCs and potential challenges of this technology.

  6. 2D Organic Materials for Optoelectronic Applications.

    Science.gov (United States)

    Yang, Fangxu; Cheng, Shanshan; Zhang, Xiaotao; Ren, Xiaochen; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2018-01-01

    The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  8. Evolving application of biomimetic nanostructured hydroxyapatite

    OpenAIRE

    Norberto Roveri; Michele Iafisco

    2010-01-01

    Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC), Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their int...

  9. Nanostructured materials based on nano-ZrO2 in the nuclear-power engineering

    International Nuclear Information System (INIS)

    Garibov, A.A.; Agayev, T.N.; Imanova, G.T.

    2014-01-01

    Full text : The review of the results of research, development and use of nanomaterials in the nuclear-power engineering and technology have been presented. The basic properties of nanostructured materials are given. The prospects for the use of nanomaterials in the nuclear-power engineering, associated with the creation of nanostructured materials and coatings for structural elements of nuclear-power enginnering plant and future themal nuclear reactor to increase hardness and strength characteristics, raising corrosion and radiation resistance have been considered

  10. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2017-11-01

    Full Text Available Since the initial discovery of surface-enhanced Raman scattering (SERS in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions. Finally, we present an overview of ZnO nanostructures for the versatile SERS application.

  11. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application.

    Science.gov (United States)

    Yang, Lili; Yang, Yong; Ma, Yunfeng; Li, Shuai; Wei, Yuquan; Huang, Zhengren; Long, Nguyen Viet

    2017-11-19

    Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0-3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application.

  12. Functionalized surfaces and nanostructures for nanotechnological applications

    Science.gov (United States)

    2003-01-01

    not know where to look. Over the last decade, technology has become synonymous with computers, software and communications, whether the internet or mobile telephones. Many of the initial applications of nanotechnology are materials related, such as additives for plastics, nanocarbon particles for improved steels, coatings and improved catalysts for the petrochemical industry. All of these are technology based industries, maybe not new ones, but industries with multi-billion dollar markets. 5. The nanotechnology industry It is increasingly common to hear people referring to `the nanotechnology industry', just like the software or mobile phone industries, but will such a thing ever exist? Many of the companies working with nanotechnology are simply applying our knowledge of the nanoscale to existing industries, whether it is improved drug delivery mechanisms for the pharmaceutical industry, or producing nanoclay particles for the plastics industry. In fact nanotechnology is an enabling technology rather than an industry in its own right. No one would ever describe Microsoft or Oracle as being part of the electricity industry, even though without electricity the software industry could not exist. Rather, nanotechnology is a fundamental understanding of how nature works at the atomic scale. New industries will be generated as a result of this understanding, just as the understanding of how electrons can be moved in a conductor by applying a potential difference led to electric lighting, the telephone, computing, the internet and many other industries, all of which would not have been possible without it. While it is possible to buy a packet of nanotechnology, a gram of nanotubes for example, it would have zero intrinsic value. The real value of the nanotubes would be in their application, whether within existing industry, or to enable the creation of a whole new one. 6. Fantastic voyage Shrinking machines down to the size where they can be inserted into the human body in

  13. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  14. Advanced materials for space applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2007-12-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency—nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  15. The development of biopolymer-based nanostructured materials : plastics, gels, IPNs and nanofoams

    NARCIS (Netherlands)

    Soest, van J.J.G.

    2006-01-01

    The ability to design products with structural features on a nanometric scale is a major technology driver in materials research Nanostructured materials are defined as materials with structural features on a sub-micron scale determining specific properties They consist of materials such as metals,

  16. Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials

    International Nuclear Information System (INIS)

    In this review paper, an overview is given of different modelling efforts for plasmas used for the formation and growth of nanostructured materials. This includes both the plasma chemistry, providing information on the precursors for nanostructure formation, as well as the growth processes itself. We limit ourselves to carbon (and silicon) nanostructures. Examples of the plasma modelling comprise nanoparticle formation in silane and hydrocarbon plasmas, as well as the plasma chemistry giving rise to carbon nanostructure formation, such as (ultra)nanocrystalline diamond ((U)NCD) and carbon nanotubes (CNTs). The second part of the paper deals with the simulation of the (plasma-based) growth mechanisms of the same carbon nanostructures, i.e. (U)NCD and CNTs, both by mechanistic modelling and detailed atomistic simulations.

  17. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  18. Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance

    International Nuclear Information System (INIS)

    Benkstein, Kurt D.; Martinez, Carlos J.; Li, Guofeng; Meier, Douglas C.; Montgomery, Christopher B.; Semancik, Steve

    2006-01-01

    The development of miniaturized chemical sensors is an increasingly active area of research. Such devices, particularly when they feature low mass and low power budgets, can impact a broad range of applications including industrial process monitoring, building security and extraterrestrial exploration. Nanostructured materials, because of their high surface area, can provide critical enhancements in the performance of chemical microsensors. We have worked to integrate nanomaterial films with MEMS (microelectromechanical systems) microhotplate platforms developed at the National Institute of Standards and Technology in order to gain the benefits of both the materials and the platforms in high-performance chemical sensor arrays. Here, we describe our success in overcoming the challenges of integration and the benefits that we have achieved with regard to the critical sensor performance characteristics of sensor response, speed, stability and selectivity. Nanostructured metal oxide sensing films were locally deposited onto microhotplates via chemical vapor deposition and microcapillary pipetting, and conductive polymer nanoparticle films were deposited via electrophoretic patterning. All films were characterized by scanning electron microscopy and evaluated as conductometric gas sensors

  19. Nanostructured ZnO-TiO2thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water.

    Science.gov (United States)

    El-Kacemi, Sana; Zazou, Hicham; Oturan, Nihal; Dietze, Matthias; Hamdani, Mohamed; Es-Souni, Mohammed; Oturan, Mehmet A

    2017-01-01

    Electrochemical oxidative degradation of diazo dye Amido black 10B (AB10B) as model pollutant in water has been studied using nanostructured ZnO-TiO 2 thin films deposited on graphite felt (GrF) substrate as anode. The influence of various operating parameters, namely the current intensity, the nature and concentration of catalyst, the nature of electrode materials (anode/cathode), and the adsorption of dye and ambient light were investigated. It was found that the oxidative degradation of AB10B followed pseudo first-order kinetics. The optimal operating conditions for the degradation of 0.12 mM (74 mg L -1 ) dye concentration and mineralization of its aqueous solution were determined as GrF-ZnO-TiO 2 thin film anode, 100 mA current intensity, and 0.1 mM Fe 2+ (catalyst) concentration. Under these operating conditions, discoloration of AB10B solution was reached at 60 min while 6 h treatment needed for a mineralization degree of 91 %. Therefore, this study confirmed that the electrochemical process is effective for the degradation of AB10B in water using nanostructured ZnO-TiO 2 thin film anodes.

  20. Influence of Nanotechnology and the Role of Nanostructures in Biomimetic Studies and Their Potential Applications

    Directory of Open Access Journals (Sweden)

    Puneet Garg

    2017-05-01

    Full Text Available With the advent of nanotechnology, by looking further deep down into the molecular level, today, we are able to understand basic and applied sciences even better than ever before. Not only has nanoscience and nanotechnology allowed us to study the composing structures of materials in detail, it has also allowed us to fabricate and synthesize such nanostructures using top-down and bottom-up approaches. One such field, which has been significantly influenced by the dawn of nanotechnology is biomimetics. With powerful spectroscopic and microscopic tools presenting us with images like double nanostructured pillars on the lotus surface for superhydrophobicity, the conical protuberances of moth eye demonstrating anti-reflection properties and nanostructured spatulae of gecko feet for high adhesivity, we are now able to fabricate these structures in the lab with properties showing close resemblance to their natural counterparts. Here, we present a review of various nanostructures that exist in nature, their fabrication techniques and some of their promising future applications. We hope this review will provide the reader with a basic understanding of what biomimetics is and how nanotechnology has significantly influenced this field.

  1. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.

    Science.gov (United States)

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun

    2016-05-20

    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  3. Monolithic integration of III-V nanostructures for electronic and photonic applications

    Science.gov (United States)

    Mayer, B.; Wirths, S.; Schmid, H.; Mauthe, S.; Convertino, C.; Baumgartner, Y.; Czornomaz, L.; Sousa, M.; Riel, H.; Moselund, K. E.

    2017-08-01

    We have recently developed a novel III-V integration scheme, where III-V material is grown directly on top of Si within oxide nanotubes or microcavities which control the geometry of nanostructures. This allows us to grow III-V material non-lattice matched on any crystalline orientation of Si, to grow arbitrary shapes as well as abrupt heterojunctions, and to gain more flexibility in tuning of composition. In this talk, applications for electronic devices such as heterojunction tunnel FETs and microcavity III-V lasers monolithically integrated on Si will be discussed along with an outlook for the future.

  4. Nanostructured Diamond Device for Biomedical Applications.

    Science.gov (United States)

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  5. Promising applications of graphene and graphene-based nanostructures

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.

  6. MnO2 Based Nanostructures for Supercapacitor Energy Storage Applications

    KAUST Repository

    Chen, Wei

    2013-11-01

    Nanostructured materials provide new and exciting approaches to the development of supercapacitor electrodes for high-performance electrochemical energy storage applications. One of the biggest challenges in materials science and engineering, however, is to prepare the nanomaterials with desirable characteristics and to engineer the structures in proper ways. This dissertation presents the successful preparation and application of very promising materials in the area of supercapacitor energy storage, including manganese dioxide and its composites, polyaniline and activated carbons. Attention has been paid to understanding their growth process and performance in supercapacitor devices. The morphological and electrochemical cycling effects, which contribute to the understanding of the energy storage mechanism of MnO2 based supercapacitors is thoroughly investigated. In addition, MnO2 based binary (MnO2-carbon nanocoils, MnO2-graphene) and ternary (MnO2-carbon nanotube-graphene) nanocomposites, as well as two novel electrodes (MnO2-carbon nanotube-textile and MnO2-carbon nanotube-sponge) have been studied as supercapacitor electrode materials, showing much improved electrochemical storage performance with good energy and power densities. Furthermore, a general chemical route was introduced to synthesize different conducting polymers and activated carbons by taking the MnO2 nanostructures as reactive templates. The electrochemical behaviors of the polyaniline and activated nanocarbon supercapacitors demonstrate the morphology-dependent enhancement of capacitance. Excellent energy and power densities were obtained from the template-derived polyaniline and activated carbon based supercapacitors, indicating the success of our proposed chemical route toward the preparation of high performance supercapacitor materials. The work discussed in this dissertation conclusively showed the significance of the preparation of desirable nanomaterials and the design of effective

  7. Nanostructured thin films for icephobic applications

    Science.gov (United States)

    Noormohammed, Saleema

    Icing on surfaces such as cables or high voltage insulators often leads to severe safety issues such as power outages in cold winter conditions. Conventional methods used to avoid such icing problems include mechanical deicing where the ice is scraped or broken and chemical deicing where deicers such as ethylene glycol are used. These methods have their own disadvantages of being destructive, expensive and time consuming. A better approach would be to prevent ice from forming in the first place by producing coating materials that are icephobic. Superhydrophobic surfaces, which demonstrate high water-repellency due to the negligible contact area of water with those surfaces, are also expected to minimize the contact area of ice. A low dielectric constant surface is also expected to reduce the adhesion of ice due to the screening of mirror charges, thereby eliminating one of the strongest interaction forces---the electrostatic forces of attraction at the ice-surface interface. In the present research work, both concepts were studied by producing superhydrophobic nanorough low-epsilon dielectric surfaces on aluminum or alumina substrates. Superhydrophobic properties were achieved on surfaces of aluminum or alumina by creating a certain nanoroughness using chemical methods followed by a low surface energy coating of rf-sputtered Teflon or fluoroalkyl-silane (FAS-17) providing a water contact angle greater than 160°. The same behavior is reported even when the nanorough substrates were coated with dielectric thin films of ZnO (lower epsilon) or TiO 2, (higher epsilon). It is found that the superhydrophobic nanorough low surface energy surfaces are also icephobic and the presence of a low dielectric constant surface coating of Teflon (lowest epsilon; epsilon = 2) allows a considerable reduction of the ice adhesion strength even on non-nanotextured surfaces where ice would stick. The superhydrophobic nanorough low-epsilon surfaces also demonstrate morphological and

  8. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter

    2007-01-01

    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  9. Nanostructured MnO₂ as Electrode Materials for Energy Storage.

    Science.gov (United States)

    Julien, Christian M; Mauger, Alain

    2017-11-17

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO₂ nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO₂ particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  10. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    International Nuclear Information System (INIS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-01-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.

  11. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    Science.gov (United States)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  12. Epicrystal modification of construction composites of different purpose with application of granulated nanostructured aggregate

    Directory of Open Access Journals (Sweden)

    STROKOVA Valeria Valerievna

    2016-10-01

    Full Text Available The paper shows that the volume impregnation of the concrete matrix in case of using granular nanostructured aggregate is an example of several anthropogenic metasomatosis such as phase replacement with the change of the chemical composition, as well as formation of new paragenesises, transformation of characteristics of final material. It is shown the impregnation of concrete with modifying solution results in microstructure impaction and homogenization; grain surface is covered with micro- and nano-sized new formations with different morphology. Considering the relevance of researches related to the development of new lightweight concrete aggregates and modification of traditionally used aggregates application of nanostructured granular aggregate for the implementation epicrystal modification of lightweight concrete based on inorganic binders is proposed. It allows creating composite macroporous structure with joint modification of the matrix on nano- and microlevel. Also, in view of increase in number of researches devoted to alkali-activated silicate and aluminosilicate systems for application as individually and as modifiers for increasing of hydrophobic properties of building materials, the possibility of creating a fine-grained concrete with low water absorption by the introduction of hydrophobic additives into the composition of granular nanostructured aggregate is demonstrated. During the steam treatment the fluids from solutions of sodium polysilicates and hydrophobic additives are form at the core of the granular aggregate with its later migration through the shell of the granules and spreading in the volume of the concrete matrix. Improving of performance characteristics presented construction composites for various purposes is defined by the infiltrational metasomatic transformation of crystalline matrix with the activated functional systems, obtained during the thermal activation of granulated nanostructured aggregate.

  13. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  14. Organic-inorganic hybrid nanostructures for solar cell applications

    Science.gov (United States)

    AbdulAlmohsin, Samir M.

    The enticing electro-optical properties of nanostructured materials such as carbon nanotubes, graphene, CdS nanocrystals and ZnO nanowrie bring new vigor into the innovation of photovoltaics. The main purpose of this dissertation is to develop novel nano-structured materials for low cost solar cell applications. Fabrication, characterization, and solar cell application of organic-inorganic hybrid structures are the main focus of this research. Polyaniline (PANI)/multi-walled carbon nanotube (MWNT) composite films were synthesized by an electrochemical polymerization of aniline with airbrushed MWNTs on ITO substrates. It was found that the incorporation of MWNTs in PANI effectively increase the film conductivity with a percolation threshold of 5% of nanotubes in the composite. The solar cell performance strongly depends on the conductivity of the composite films, which can be tuned by adjusting nanotube concentration. A higher conductivity resulted in a better cell performance, resulting from an efficient charge collection. This study indicates that PANI/MWNT composite films with optimized conductivity are potentially useful for low-cost hybrid solar cell applications. CdS nanocrystal-sensitized solar cells (NCSSCs) were investigated by using polyaniline (PANI) as a replacement for conventional platinum counter electrode. The growth time of the nanocrystals significantly affects the solar cell performance. At an optimum growth, the NCSSCs exhibit 0.83% of the conversion efficiency in comparison to 0.13% for the identical cells without CdS nanocrystals. Electrochemical impedance spectroscopy showed that the charge transfer in the solar cells with CdS nanocrystals was improved. The enhanced overall energy conversion efficiency by nanocrystals is attributed to improved light absorption and suppressed recombination rate of interfacial charges at the injection, resulting in significantly improved charge transfer and electron lifetime. In addition, the PANI electrodes

  15. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  16. Shape-Controlled Synthesis of Co2P Nanostructures and Their Application in Supercapacitors.

    Science.gov (United States)

    Chen, Xiaojuan; Cheng, Ming; Chen, Di; Wang, Rongming

    2016-02-17

    Co2P nanostructures with rod-like and flower-like morphologies have been synthesized by controlling the decomposition process of Co(acac)3 in oleylamine system with triphenylphosphine as phosphorus source. Investigations indicate that the final morphologies of the products are determined by their peculiar phosphating processes. Electrochemical measurements manifest that the Co2P nanostructures exhibit excellent morphology-dependent supercapacitor properties. Compared with that of 284 F g(-1) at a current density of 1 A g(-1) for Co2P nanorods, the capacitance for Co2P nanoflowers reaches 416 F g(-1) at the same current density. Furthermore, an optimized asymmetric supercapacitor by using Co2P nanoflowers as anode and graphene as cathode is fabricated. It can deliver a high energy density of 8.8 Wh kg(-1) (at a high power density of 6 kW kg(-1)) and good cycling stability with over 97% specific capacitance remained after 6000 cycles, which makes the Co2P nanostructures potential applications in energy storage/conversion systems. This study paves the way to explore a new class of cobalt phosphide-based materials for supercapacitor applications.

  17. Recent progress in p-type doping and optical properties of SnO2 nanostructures for optoelectronic device applications.

    Science.gov (United States)

    Pan, Shusheng; Li, Guanghai

    2011-06-01

    SnO(2) semiconductor is a host material for ultraviolet optoelectronic devices applications because of its wide band gap (3.6 eV), large exciton binding energy (130 meV) and exotic electrical properties and has attracted great interests. The renewed interest is fueled by the availability of exciton emission in nanostructures, high quality epitaxial films, p-type conductivity, and heterojunction light emitting devices. This review begins with a survey of the patents and reports on the recent developments on SnO2 films. We focus on the epitaxial growth, p-type doping and photoluminescence properties of SnO(2) films and nanostructures, including the achievements in our group. Finally, the applications of SnO(2) nanostructures to optoelectronic devices including heterojunction light emitting devices, photodetectors and photovoltaic cells will be discussed.

  18. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach

    Science.gov (United States)

    Patil, Jyoti V.; Mali, Sawanta S.; Kamble, Archana S.; Hong, Chang K.; Kim, Jin H.; Patil, Pramod S.

    2017-11-01

    One dimensional (1D) metal oxide nanostructures (1D-MONS) play a key role in the development of functional devices including energy conversion, energy storage and environmental devices. They are also used for some important biomedical products like wound dressings, filter media, drug delivery and tissue engineering. The electrospinning (ES) is the versatile technique for making of 1D growth of nanostructured nanofibers, an experimental approach and its applications. The present review is focused on the 1D growth of nanostructured nanofibers in different applications like dye sensitized solar cells, perovskite solar cells, fuel cells, lithium ion batteries, redox flow batteries, supercapacitor, photocatalytic, and gas sensors based on ZnO, TiO2, MnO2, WO3, V2O5, NiO, SnO2, Fe2O3 etc. metal oxides, their composites and carbon. This review article presents an introduction to various types of ES techniques and their technical details. Also, the advantages and disadvantages of each ES technique are summarized. The various technical details such as preparative parameters, post-deposition methods, applied electric field, solution feed rate and a distance between a tip to the collector are the key factors in order to obtain exotic 1D nanostructured materials. Also, the lucid literature survey on the growth of nanostructures of various metal oxides and application in different fields are covered in this review. Further, the future perspectives has also been discussed.

  19. Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials

    Science.gov (United States)

    Jones, Brad Howard

    nanoporous materials with well-defined pore structures prepared from a single PE template. They are anticipated to have potential application in diverse technological areas, including catalysis, separations, sensors, and electronic devices.

  20. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  1. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective.

    Science.gov (United States)

    Ragni, Roberta; Cicco, Stefania R; Vona, Danilo; Farinola, Gianluca M

    2017-11-27

    Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 µm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Special section guest editorial: Nanostructured thin films V: Fundamentals and applications

    OpenAIRE

    MacKay, Tom G.; Jen, Yijun; Martín-Palma, Raúl José

    2013-01-01

    MacKay, Tom G., Jen, Yijun, Martín-Palma, Raúl José, "Special section guest editorial: Nanostructured thin films V: Fundamentals and applications" Journal of Nanophotonics, Elsevier B.V, 7, 73501, (2013). Copyright 2014 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the p...

  3. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  4. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying

  5. Sustainable synthesis, characterization, and applications of metal oxide nanostructures

    Science.gov (United States)

    Tiano, Amanda Lyn

    Nanomaterials have attracted significant research focus due to their advantageous and unique properties (i.e. electronic, magnetic, optical, and mechanical) as compared with the bulk. Metal oxide nanostructures are of particular interest, as they are very robust and display high chemical and thermal stability, while offering a diverse array of fascinating properties. By reliably controlling the size, morphology, composition, and crystallinity of these nanostructures, their properties can be tuned for a specific purpose. These advantageous tailorable properties render them as ideal candidates for many applications such as catalysis, sensing, electronics, optoelectronics, energy storage, and even medicine. Driven by their increased popularity and potential applications, efforts to synthesize nanomaterials have moved toward environmentally-friendly methodologies, such as wet-chemical, molten-salt, hydrothermal, and sol-gel methods. We will discuss the green synthesis of strontium ruthenate (SrRuO 3), the yttrium manganese oxides (YMnO3 and YMn2O 5), and the magnetic spinel ferrites (MFe2O4 where 'M' is Mg, Fe, Co, Ni, Cu, and Zn) and our ability to reliably tune their properties for various applications. The effects of the molten salt parameters on the resulting particle size and morphology were explored for SrRuO 3 and the yttrium manganese oxides. For example, rapid cooling rates and the use of surfactants allowed us to produced faceted octahedra of SrRuO 3, which resulted in a 4-fold enhancement of their activity towards methanol oxidation with respect to smooth rounded particles. Similarly, using the hydrothermal method, we generated ferrite nanoparticles of different compositions and sizes. We investigated their potential as contrast agents for magnetic resonance imaging (MRI) and as photocatalysts, and observed significant differences as a function of both size and composition. Similarly, we will also examine surface and structural effects upon the electronic

  6. Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application

    Science.gov (United States)

    Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.

  7. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  8. nanostructures

    Indian Academy of Sciences (India)

    Wintec

    collected at the bottom of the cell after electrolysis at 2 V for 1 h, (b) is the representative TEM micro- graph of dense Cu2O network of nanowires, obtained after electrolysis at 6 and 10 V, respectively for 1 h and (c) is the X-ray diffraction of the as obtained materials at the bottom of the electrolytic cell after electrolysis at 6 V.

  9. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  10. Neutron scattering—The key characterization tool for nanostructured magnetic materials

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Schuller, Ivan K.

    2014-01-01

    The novel properties of materials produced using nanoscale manufacturing processes often arise from interactions across interfaces between dissimilar materials. Thus, to characterize the structure and magnetism of nanoscale materials demands tools with interface specificity. Neutron scattering has long been known to provide unique and quantitative information about nuclear and magnetic structures of bulk materials. Moreover, the specialty techniques of polarized neutron reflectometry and small angle neutron scattering (SANS) with polarized neutron beams and polarization analysis, are ideally and often uniquely suited to studies of nanostructured magnetic materials. Since neutron scattering is a weakly interacting probe, it gives quantifiable and easily-interpreted information on properties of statistically representative quantities of bulk, thin film and interfacial materials. In addition, neutron scattering can provide information to complement that obtained with bulk probes (magnetization, Kerr effect) or surface measurements obtained with scanning probe microscopy or resonant soft x-ray scattering. The straightforward interpretation and the simultaneous availability of structural information, make neutron scattering the technique of choice for the structural and physical characterization of many novel materials, especially those with buried interfaces, ones allowing for isotopic substitutions to decorate buried interfaces, or cases where the magnetic response to an external stimulus can be measured. We describe recent applications of neutron scattering to important thin film materials systems and future opportunities. Unquestionably, neutron scattering has played a decisive role in the development and study of new emergent phenomena. We argue with the advent of new techniques in neutron scattering and sample environment, neutron scattering's role in such studies will become even more dominant. In particular, neutron scattering will clarify and distinguish

  11. Neutron scattering—The key characterization tool for nanostructured magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, M.R., E-mail: fitz@lanl.gov [Los Alamos National Laboratory (United States); Schuller, Ivan K. [University of California, San Diego (United States)

    2014-01-15

    The novel properties of materials produced using nanoscale manufacturing processes often arise from interactions across interfaces between dissimilar materials. Thus, to characterize the structure and magnetism of nanoscale materials demands tools with interface specificity. Neutron scattering has long been known to provide unique and quantitative information about nuclear and magnetic structures of bulk materials. Moreover, the specialty techniques of polarized neutron reflectometry and small angle neutron scattering (SANS) with polarized neutron beams and polarization analysis, are ideally and often uniquely suited to studies of nanostructured magnetic materials. Since neutron scattering is a weakly interacting probe, it gives quantifiable and easily-interpreted information on properties of statistically representative quantities of bulk, thin film and interfacial materials. In addition, neutron scattering can provide information to complement that obtained with bulk probes (magnetization, Kerr effect) or surface measurements obtained with scanning probe microscopy or resonant soft x-ray scattering. The straightforward interpretation and the simultaneous availability of structural information, make neutron scattering the technique of choice for the structural and physical characterization of many novel materials, especially those with buried interfaces, ones allowing for isotopic substitutions to decorate buried interfaces, or cases where the magnetic response to an external stimulus can be measured. We describe recent applications of neutron scattering to important thin film materials systems and future opportunities. Unquestionably, neutron scattering has played a decisive role in the development and study of new emergent phenomena. We argue with the advent of new techniques in neutron scattering and sample environment, neutron scattering's role in such studies will become even more dominant. In particular, neutron scattering will clarify and distinguish

  12. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co 3 O 4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu 2 O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn 3 O 4 , which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O 2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these

  13. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  14. Material optimization of multi-layered enhanced nanostructures

    Science.gov (United States)

    Strobbia, Pietro

    physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  15. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    International Nuclear Information System (INIS)

    Manivannan, Shanmugam; Ramaraj, Ramasamy

    2013-01-01

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV–Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications

  16. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    Science.gov (United States)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  17. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  19. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  20. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  1. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    Science.gov (United States)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  2. SCANNING PROBE MICROSCOPY STUDY OF MOLECULAR NANOSTRUCTURES ON 2D MATERIALS

    OpenAIRE

    Chen, Chuanhui

    2017-01-01

    Molecules adsorbed on two-dimensional (2D) materials can show interesting physical and chemical properties. This thesis presents scanning probe microscopy (SPM) investigation of emerging 2D materials, molecular nanostructures on 2D substrates at the nanometer scale, and biophysical processes on the biological membrane. Two main techniques of nano-probing are used: scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The study particularly emphasizes on self-assembled molecul...

  3. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    OpenAIRE

    Ronghua Wang; Meng Han; Qiannan Zhao; Zonglin Ren; Xiaolong Guo; Chaohe Xu; Ning Hu; Li Lu

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10?20?nm are uniformly composited with GNS by a two-step hydrothermal-a...

  4. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  5. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  6. Method of producing catalytic material for fabricating nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.; Wang, Wei

    2018-01-30

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  7. Nanoscale materials in chemistry

    National Research Council Canada - National Science Library

    Klabunde, Kenneth J; Richards, Ryan

    2009-01-01

    ...: Disordered, Porous Nanostructures Stephanie L. Brock 209 9 Ordered Microporous and Mesoporous Materials Freddy Kleitz 243 10 Applications of Microporous and Mesoporous Materials Anirban Ghosh,...

  8. [Application of electrostatic spinning technology in nano-structured polymer scaffold].

    Science.gov (United States)

    Chen, Denglong; Li, Min; Fang, Qian

    2007-04-01

    To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.

  9. DNA-based Artificial Nanostructures: Fabrication, Properties, and Applications

    OpenAIRE

    Sun, Young; Kiang, Ching-Hwa

    2005-01-01

    Table of Content 1. Introduction 2. DNA fundamentals 3. Attachment of DNA to surface 4. Fabrication of nanostructures using DNA 4.1 Nanostructures of pure DNA 4.2 DNA-based assembly of metal nanoparticles 4.3 Construction of semiconductor particle arrays using DNA 4.4 DNA-directed nanowires 4.5 DNA-functionalized carbon nanotubes 4.6 Field-transistor based on DNA 4.7 Nanofabrication using artificial DNA 5. DNA-based nanostructures as biosensors 6. Properties of DNA-linked gold nanoparticles 6...

  10. Atomic Layer Thermopile Materials: Physics and Application

    Directory of Open Access Journals (Sweden)

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  11. Enhanced zinc oxide and graphene nanostructures for electronics and sensing applications

    Science.gov (United States)

    Verma, Ved Prakash

    Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ˜5.7 cm2/V·s at low operation voltage of high on-to-off ratio (˜106) and mobility (˜28 cm2/V·s). A bottom gated FET showed large hysteresis of ˜5.0 to 8.0 V which was significantly reduced to ˜1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ˜46% and a minimum detection limit of ˜1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene

  12. Acoustic charge manipulation in semiconductor nanostructures for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, Stefan

    2010-07-30

    Within this thesis, the influence of a surface acoustic wave (SAW) on the luminescence of semiconductor nanostructures is investigated. Beginning with the physics of low-dimensional semiconductor structures, the quantum mechanical and optical properties of quantum dot (QD) systems are discussed. In particular, intrinsic parameters of QDs such as morphology, composition, strain and occupation with carriers are taken into account. Subsequently, the influence of an applied electric field and of externally induced strain are introduced. From this general approach, the discussion is focused to quantum posts (QPs) which are columnar shaped semiconductor nanostructures. In contrast to conventional self-assembled QDs, the height of the QPs can be controlled by the epitaxial growth process. Due to the adjustable height, electronic states and therefore the exciton transition energies can be tailored. Furthermore, QPs are embedded in a matrix-quantum-well structure which has important influence on the carrier dynamic if a SAW is excited on the sample. Mainly, two effects have to be considered regarding the interaction of charge carriers with SAWs: deformation potential coupling and acousto-electric coupling. For the investigated material and used SAW frequencies, acousto-electric coupling dominates the interaction between charges and SAW. For a quantum well (QW) structure, the periodic band modulation dissociates excitons into sequential stripes of electrons and holes which then are conveyed by the SAW. This so called bipolar transport or charge conveyance effect can be used to inject carriers into remote QD structures and has already been demonstrated for QD ensembles. The injection of carriers into individual quantum posts is successfully demonstrated for the first time within this work. The spectrally resolved photoluminescence (PL) data of individual QPs show an unexpected switching of PL lines which cannot be induced by varying other parameters, e.g. the laser intensity

  13. Nanostructured glass–ceramic coatings for orthopaedic applications

    Science.gov (United States)

    Wang, Guocheng; Lu, Zufu; Liu, Xuanyong; Zhou, Xiaming; Ding, Chuanxian; Zreiqat, Hala

    2011-01-01

    Glass–ceramics have attracted much attention in the biomedical field, as they provide great possibilities to manipulate their properties by post-treatments, including strength, degradation rate and coefficient of thermal expansion. In this work, hardystonite (HT; Ca2ZnSi2O7) and sphene (SP; CaTiSiO5) glass–ceramic coatings with nanostructures were prepared by a plasma spray technique using conventional powders. The bonding strength and Vickers hardness for HT and SP coatings are higher than the reported values for plasma-sprayed hydroxyapatite coatings. Both types of coatings release bioactive calcium (Ca) and silicon (Si) ions into the surrounding environment. Mineralization test in cell-free culture medium showed that many mushroom-like Ca and phosphorus compounds formed on the HT coatings after 5 h, suggesting its high acellular mineralization ability. Primary human osteoblasts attach, spread and proliferate well on both types of coatings. Higher proliferation rate was observed on the HT coatings compared with the SP coatings and uncoated Ti-6Al-4V alloy, probably due to the zinc ions released from the HT coatings. Higher expression levels of Runx2, osteopontin and type I collagen were observed on both types of coatings compared with Ti-6Al-4V alloy, possibly due to the Ca and Si released from the coatings. Results of this study point to the potential use of HT and SP coatings for orthopaedic applications. PMID:21292725

  14. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    Science.gov (United States)

    2007-12-01

    fracture behavior. Similar loading conditions for multilayer material have been reported in the literature for both composite materials and geologic...8 5. Bordeaux F., Yavari, R. Multiple Necking and Deformation Behavior of Multilayer Composites Prepared by Cold Rolling. Zeitschrift f’r Metallkunde...Stiffness Greater Than Diamond. Science 315: 620-622, 2007 13. ASTM D 1238-01, Standard Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer

  15. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials

    Science.gov (United States)

    2006-02-05

    ferromagnetic SMA composites, piezo-composites with and without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites...without functionally graded microstructure( FGM ), a new active materials such as piezo-SMA composites. These composites will be used for higher performance...g) Sintering Ambience Air. vacuum or inert gas (h) Viewing Windows 0 50mm A O80mm quartz glass with individual protecting plates Wi) Vacuum Neters

  16. A facile synthesis of a novel optoelectric material: a nanocomposite of SWCNT/ZnO nanostructures embedded in sulfonated polyaniline

    Directory of Open Access Journals (Sweden)

    Rajesh K. Agrawalla

    2014-07-01

    Full Text Available Functionalized single-walled carbon nanotubes (f-SWCNTs hybridized with freshly prepared zinc oxide (ZnO nanocrystals have been found to be good luminescent material with tuned emission properties. A three-phase nanocomposite of sulfonated polyaniline embedded with such SWCNT/ZnO nanostructures has been prepared by a simple solution mixing chemical process and characterized by using high-resolution transmission electron microscopy, X-ray diffractometry, Raman spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The study of UV-visible absorption and photoluminescence spectroscopies reveal that the ternary polymer nanocomposite is a luminescent material with enhanced emission intensity. Also an increase in DC conductivity indicates that the nanocomposite is also a good conductive material, satisfying Mott’s variable range hopping model for a two-dimensional conduction. Such a three-phase nanocomposite may find extensive application in dye-sensitized solar cells, sensors, and supercapacitors.

  17. Functionalization of DNA Nanostructures for Cell Signaling Applications

    Science.gov (United States)

    Pedersen, Ronnie O.

    Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by

  18. Quantitative structure determination of nanostructured materials using the atomic pair distribution function analysis

    Science.gov (United States)

    Masadeh, Ahmad Salah

    The employed experimental method in this Ph.D. dissertation research is the atomic pair distribution function (PDF) technique specializing in high real space resolution local structure determination. The PDF is obtained via Fourier transform from powder total scattering data including the important local structural information in the diffuse scattering intensities underneath, and in-between, the Bragg peaks. Having long been used to study liquids and amorphous materials, the PDF technique has been recently successfully applied to highly crystalline materials owing to the advances in modern X-ray and neutron sources and computing power. The conventional XRD experiments probe for the presence of periodic structure which are reflected in the Bragg peaks. Local structural deviations or disorder mainly affect the diffuse scattering background. In order to have information about both long-range order and local structure disorder, a technique that takes both Bragg and diffuse scattering need to be used, such as the atomic pair distribution function (PDF) technique. This Ph.D. work introduces a PDF based methodology to quantitatively study nanostructure materials in general. The introduced methodology have been applied to a size-dependent structural study on CdSe nanoparticles (NPs). Quantitative structural information about structure, crystallinity level, core size, NP size, and inhomogeneous internal strain in the studied NPs have been obtained. This method is generally applicable to the characterization of the nano-scale solid, many of which may exhibit complex disorder and strain. The introduced methodology have been also applied on technologically important system, ultra-small CdSe NPs.

  19. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    properties. We applied reactive ion etching technology at -20ºC to create nano-structures on silicon samples and obtained an average reflectance below 0.5%. For passivation purposes, we used 37 nm ALD Al2O3 films. Lifetime measurements resulted in 1220 µs and to 4170 µs for p- and ntype CZ silicon wafers......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  20. Compressibility of nanostructured Fe-Cu materials prepared by mechanical milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J.S.; Gerward, Leif

    1999-01-01

    The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...... ferromagnetic fcc-FeCu solid solution prepared by mechanical alloying has a bulk modulus of about 85 GPa, which is much smaller than the corresponding values for bulk fcc-Cu and bcc-Fe.......The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...

  1. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  2. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    Science.gov (United States)

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically.

  3. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    Science.gov (United States)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2017-05-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  4. Multifunctional DNA Nano materials for Biomedical Applications

    International Nuclear Information System (INIS)

    Tam, D.Y.; Lo, P.K.; Tam, D.Y.; Lo, P.K.

    2014-01-01

    The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  5. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Science.gov (United States)

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  6. Multiscale Methods for the Systematic Analysis and Design of Nanostructures and Nanostructrued Materials

    Science.gov (United States)

    2012-02-22

    coming from the Hellmann- Feynman theorem based on full Born-Oppenheimer quantum mechanics. The manifold also depends on time in an explicit way. The...James, Objective formulas, preprint. [5] Kaushik Dayal and Richard D. James, Nonequilibrium molecular dynamics for bulk materi- als and...nanostructures. J. Mech. Phys. Solids 58 (2010), 145-163. [6] Kaushik Dayal and Richard D. James, Design of viscometers corresponding to a universal molecular

  7. Design, Synthesis, and Characterization of Nanostructured Materials for Energy Storage Devices and Flexible Chemical Sensors

    Science.gov (United States)

    Kang, Ning

    Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for

  8. Application of iron-based nanostructures to contaminant remediation

    OpenAIRE

    Calderón Roca, Blanca

    2017-01-01

    This thesis focuses on the synthesis and applications of nanoscale zero valent iron (nZVI) in the environmental remediation of contaminants. The polyvalent characteristics of this nanomaterial are evaluated in this work with the study of its application in a wide range of contaminants: heavy metals and pesticides in water medium, and malodorous sulfur compounds present in air streams. Moreover, a novel method of synthesis of encapsulated nZVI from a waste material is presented, which meets th...

  9. Fabrication and applications of copper sulfide (CuS) nanostructures

    Science.gov (United States)

    Shamraiz, Umair; Hussain, Raja Azadar; Badshah, Amin

    2016-06-01

    This review article presents different fabrication procedures (under the headlines of solvothermal routes, aerosol methods, solution methods and thermolysis), and applications (photocatalytic degradation, ablation of cancer cells, electrode material in lithium ion batteries and in gas sensing, organic solar cells, field emission properties, super capacitor applications, photoelectrochemical performance of QDSCs, photocatalytic reduction of organic pollutants, electrochemical bio sensing, enhanced PEC characteristics of pre-annealed CuS film electrodes) of copper sulfide (Covellite).

  10. Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications

    Science.gov (United States)

    Jiang, Qianqing; Li, Wuxia; Tang, Chengchun; Chang, Yanchun; Hao, Tingting; Pan, Xinyu; Ye, Haitao; Li, Junjie; Gu, Changzhi

    2016-11-01

    Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source. Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.

  11. Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications.

    Science.gov (United States)

    Neto, Ana I; Cibrão, Ana C; Correia, Clara R; Carvalho, Rita R; Luz, Gisela M; Ferrer, Gloria G; Botelho, Gabriela; Picart, Catherine; Alves, Natália M; Mano, João F

    2014-06-25

    In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry is used to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films are developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation is monitored by quartz crystal microbalance. The film surface is characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements are also conducted. The adhesion properties are analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests show an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  13. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    Science.gov (United States)

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  14. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  15. Nanostructured Catalytic Hybrid Materials for Energy Conversion or Storage

    Science.gov (United States)

    2017-08-27

    Distribution Ultimate goal: An integrated energy generation/storage system The above three elements can be achieved using carbon -based materials...8DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Figure 2 • SEM images of Al/ carbon nanofibers containing Al nanoparticles...9DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution Figure 3 • SEM images of AlOA/PAN and carbon nanofibers containing Al nanoparticles

  16. Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials

    DEFF Research Database (Denmark)

    Amato, Letizia; Schulte, Lars; Heiskanen, Arto

    2015-01-01

    In this work, we compare pyrolyzed carbon derived from the photoresist SU‐8 alone or in combination with polystyrene and poly(styrene)‐block‐poly(dimethylsiloxane) copolymer (PS‐b‐PDMS), to be used as novel materials for micro‐ and nanoelectrodes. The pyrolyzed carbon films are evaluated...... films. This may be related to the lower carbon content of PS‐b‐PDMS, as well as to its higher microstructural disorder....

  17. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  18. Active brazed diamond and cubic boron nitride interfacial nanostructure and application

    International Nuclear Information System (INIS)

    Klotz, U.E.; Elsener, H.R.; Elsener, H.R.

    2005-01-01

    Active brazing is an effective technique for joining diamond or cBN grit onto metallic substrates. Current use of this technique is being made for super abrasive, high performance tools. The lecture will give an overview over different aspects such as (i) tool performance in selected applications, (ii) interfacial nanostructure between super abrasive grit and brazing alloys matrix, (iii) attempts to computer model such interface reactions and (iv) recent improvements of the abrasion resistance of the brazing alloy itself. Super abrasive tools with outstanding performance in applications such as grinding, honing or stone cutting can be manufactured by a single-layer of brazed diamond or cBN grit. A method to obtain regular grit patterns will be presented. Examples of prototype tools and their performance in different applications will be shown. The investigation of interface reactions between diamond and active brazing alloys plays an important role to further improve the brazing process and resulting tool performance. The interfacial nanostructure is characterised by a thin reaction layer of Ti with diamond and cBN, respectively. Results for Ag- and Cu-based brazing alloys will be presented and discussed in view of the influence of brazing process parameters and brazing alloy matrix. Computer modelling of the thermodynamics and kinetics of the interface reactions may allow optimising the process parameters. This requires reliable databases currently being built up. The potential of such methods in ceramic to metal joining will be described. The abrasion resistance of brazing alloys itself plays an important role for tool performance. A new method to achieve a dispersion of nano sized TiC precipitates in the alloy matrix by addition of an organic binder, decomposing during brazing will be presented. In an outlook further applications of brazed diamond grit, such as thermal management materials will be discussed. (author)

  19. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kaushik, E-mail: kaushikpal@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Zhan, Bihong, E-mail: bihong_zhan@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Madhu Mohan, M.L.N. [Liquid Crystal Research Laboratory (LCRL), Bannari Amman Institute of Technology, Sathyamangalam 638 401 (India); Schirhagl, Romana [University Medical Center Groningen, Department of BioMedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen (Netherlands); Wang, Guoping, E-mail: guopingwang@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China)

    2015-12-01

    Graphical abstract: - Highlights: • One step bench top novel synthesis and growth dynamics of ZnO structures are successfully performed. • Nanostructures dispersing liquid crystals (NDLC) is recently found to have significant influence on the nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. • Electro-optical switching application ensures the bright field droplet design marble pattern of smectic G phase, nematic and most significant twist nematic phase pattern are obtained. • Spontaneous polarization, rotational viscosity and response time study, exploring smart applications in LCD technology. - Abstract: The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were

  20. Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications

    DEFF Research Database (Denmark)

    Kim, Jongbum; Zhao, Yang; Naik, Gururaj V.

    2013-01-01

    Transparent conductive oxides (TCOs) as substitutes to metals could offer many advantages for low-loss plasmonic and metamaterial (MM) applications in the near infrared (NIR) regime. By employing a lift-off process, we fabricated 2D-periodic arrays of TCO nanodisks and characterized the material...

  1. Application of focused ion beam technology for photonic nanostructures

    NARCIS (Netherlands)

    Ay, F.; Gadgil, V.J.; Geskus, D.; Aravazhi, S.; Worhoff, Kerstin; Pollnau, Markus

    Al2O3 and KY(WO4)2 are promising materials for photonic applications with excellent optical properties and of interest for obtaining on chip resonator structures. However, there is no method available to fabricate these structures except FIB technology. We will discuss strategies to optimize the

  2. Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

    Directory of Open Access Journals (Sweden)

    Rahmat Hidayat

    2014-11-01

    Full Text Available We have studied the preparation of organic-inorganic hybrid polymer precursors by sol-gel technique and their utilization for nanostructured optical components for photonic applications. The gel polymer precursors were prepared from siloxane modified by polymerizable acrylate groups, which can be processed further by photopolymerization process. Molecular structure characterizations by means of the FTIR measurements indicate the conversion of C=C bonds into C-C bonds after photopolymerization. This bond conversion produces high cross-linking between the organic and inorganic moieties, resulting in thermally stable and chemically resistant thin polymer layer which provide unique advantages of this material for particular optical/photonic applications. By employing laser interference technique, gratings with periodicity between 400-1000 nm have been successfully fabricated. Application of those sub-micron periodicity of grating structure as active elements in optically pumped polymer laser system and Surface Plasmon Resonance (SPR based measurement system have been also explored. The experimental results therefore also show the potential applications of this hybrid polymer as a building material for micro/nano-photonics components.

  3. CuO-PANI nanostructure with tunable spectral selectivity for solar selective coating application

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L., E-mail: cind@nitt.edu; Prabhu, S., E-mail: sprabhuk@gmail.com

    2016-08-15

    Highlights: • CuO-PANI nanostructure has been reported as the solar selective absorber coating. • Solar selectivity and efficiency of the coatings have been evaluated. • PANI provides a surface texture favourable for multiple reflection. - Abstract: CuO-PANI nanostructure has been demonstrated as the solar selective absorber coating for the first time. The effortless chemical methods and easily scalable techniques such as precipitation, in-situ polymerization and spray coating were adopted for the fabrication of CuO nanorods and CuO-PANI nanostructures for solar application. The synthesis was carried out without using any template. The morphology and phase structure of fabricated CuO nanorods and CuO-PANI nanostructure coatings were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction analysis. The energy dispersive X-ray spectra and elemental mapping confirm the presence of the chosen elements in the nanostructure. The solar absorptance (α{sub s}), thermal emittance (ε{sub t}) and selectivity (ξ) of the nanostructure coatings on glass substrate were optimized to 0.94, 0.01 and 94 respectively by changing the polyaniline content on the surface of the CuO nanorods. The efficiency of the solar selective coatings were evaluated. The optimized solar absorber coating of CuO-PANI nanostructure is highly promising for its selective optical properties.

  4. Elaboration and characterization of nanostructured biocements for biomedical applications

    Directory of Open Access Journals (Sweden)

    Nelson Heriberto Almeida Camargo

    2007-06-01

    Full Text Available Biocements formed from the composition Ca/P have been studied and developed since 1983. These biomaterials are promissing and have aroused great interest to biomedical surgery applications, fixation of prostheses and filling and reconstruction of bones. They can be employed as an element of load to fix implant and bone structure. In addition, biocements are easily shaped during surgical processes and favor early bone habitation, absorption, osseointegration, and osteoconduction of bone structure into the microstructure of the biocement thus favoring regeneration and reconstruction of bone tissue. This paper aims to develop biocements formed from calcium phosphate through the aqueous precipitation method by means of the dissolution-precipitation reaction, which involves solid/ liquid phase of CaO and phosphoric acid to form the calcium phosphate. The biocements investigated were synthesized when the molar ratios of Ca/P = 1.4, 1.5, 1.6, 1.7 and 1.8. The present results indicate that the aqueous precipitation method allowed nanostructured powder of calcium phosphate to form. Thermal treatment at 1300 °C for 2 hours provided biocements formed from calcium phosphate and hydroxyapatite. The study of hydration behaviour from 1 to 28 days in a solution, which contained 0.4% of sodium phosphate, emphasized phase modification and the presence of a microporous microstructure made of crystalline fibers. It was found that the shape and size of the crystalline fiber had a direct influence on the resulting mechanical properties. Investigating more carefully the behaviour of the specimens with a Ca/P molar ratio of 1.5, there was an increase in the strength value under compression as a function of time so that it reached the maximum value of strength ±45 MPa to specimens that had been hydrated for 28 days.

  5. Raman Studies of the Nanostructure of Sol-Gel Materials

    Science.gov (United States)

    Doss, Calvin James

    Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of process variables such as the time spent in the sol phase. Small but systematic changes, as a function of sol aging time, were discovered in the lineshape and position of the dominant boehmite Raman band observed in the alumina hydrogels. These spectral changes were interpreted in terms of nanocrystallinity-induced finite-size effects associated with the slow growth of AlO(OH) nanocrystals in the sol. X-ray diffraction experiments were used to determine nanocrystal sizes (as small as 3 nm for gels prepared from fresh sols) and to estimate growth kinetics from the Raman-lineshape results. These results appear to be among the first available for crystallite growth kinetics (ripening) in the near-atomic-scale nanocrystal regime. The trihydroxide polymorph system is closely related to the sol-gel alumina system. The processing temperature and the method of hydrolysis were varied, in order to determine their effect on the trihydroxide phase mix. The trihydroxide phase mix does not change with time; it depends only on the initial hydrolysis conditions. Bayerite is the primary phase present for materials processed at 25 C, while nordstrandite is the primary phase present for materials processed at 60 C. It is shown that the trihydroxide crystal nucleation kinetics are responsible for the Al(OH)_3 phase mix. Hydroxide/oxyhydroxide phase-mix kinetics were also studied; this ratio increases with time. The associated rate constant decreases with increasing temperature. Sol-gel zirconia was prepared by using atmospheric water to

  6. Nanostructure characterization of high k materials by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Pereira, L.; Aguas, H.; Fortunato, E.; Martins, R.

    2006-01-01

    In this work, the optical and structural properties of high k materials such as tantalum oxide and titanium oxide were studied by spectroscopic ellipsometry, where a Tauc-Lorentz dispersion model based in one (amorphous films) or two oscillators (microcrystalline films) was used. The samples were deposited at room temperature by radio frequency magnetron sputtering and then annealed at temperatures from 100 to 500 deg. C. Concerning the tantalum oxide films, the increase of the annealing temperature, up to 500 deg. C does not change the amorphous nature of the films, increasing, however, their density. The same does not happen with the titanium oxide films that are microcrystalline, even when deposited at room temperature. Data concerning the use of a four-layer model based on one and two Tauc-Lorentz dispersions is also discussed, emphasizing its use for the detection of an amorphous incubation layer, normally present on microcrystalline films grown by sputtering

  7. Dinuclear transition metal complexes in carbon nanostructured materials synthesis

    Science.gov (United States)

    Ayuso, J. I.; Hernández, E.; Delgado, E.

    2013-06-01

    Carbon nanomaterials (CNMs) were prepared with two similar techniques using organometallic complexes as catalysts precursors. Chemical vapour deposition (CVD) and pyrolysis with chlorine gas approaches were employed in order to explore the effect of dinuclear transition metal compounds [Fe2(CO)6(μ-S2C6H2X2), (X=OH, Cl)] in synthesis of CNMs. Our to-date results have shown these complexes generate different carbonaceous materials when they are used in bulk, it was also observed that their performances in synthesis differ even though these compounds are analogous. With X=OH complex used in CVD process, metal nanoparticles of ca. 20-50 nm in size and embedded in carbon matrix were obtained. X=C1 complex has been used in pyrolysis experiments and showed an entire volatilisation or no reaction, depending on selected temperature. Furthermore, obtaining of a new tetranuclear iron cluster is presented in this work.

  8. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  9. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.

    Science.gov (United States)

    Fruijtier-Pölloth, Claudia

    2012-04-11

    Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown

  10. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  11. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    Science.gov (United States)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8

  12. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  13. Combination of SANS and 3D stochastic reconstruction techniques for the study of nanostructured materials

    CERN Document Server

    Kikkinides, E S; Steriotis, T A; Kanellopoulos, N K; Mitropoulos, A C; Treimer, W

    2002-01-01

    Ceramic nanostructured materials have recently received scientific and industrial interest due to their unique properties. A series of such nanoporous structures were characterised by SANS techniques. The resulting scattering curves were analysed to obtain basic structural information regarding the pore size distribution and autocorrelation function of each material. Furthermore, stochastic reconstruction models were employed to generate 3D images with the same basic structural characteristics obtained from SANS. Finally, simulation results of permeation on the reconstructed images provide very good agreement with experimental data. (orig.)

  14. Materials for Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří

    2013-01-01

    Roč. 53, č. 2 (2013), s. 197-212 ISSN 1210-2709. [Symposium on Plasma Physics and Technology/25./. Praha, 18.06.2012-21.06.2012] R&D Projects: GA ČR(CZ) GAP108/12/1872; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : nuclear fusion * materials * plasma facing components * plasma-material interaction * functionally graded materials Subject RIV: BL - Plasma and Gas Discharge Physics http://ctn.cvut.cz/ap/download.php?id=797

  15. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  16. Mixed valence nanostructured Mn3O4 for supercapacitor applications

    Indian Academy of Sciences (India)

    VIPIN C BOSE and V BIJU. ∗. Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, India. MS received 18 July 2014; accepted 18 December 2014. Abstract. Nanostructured Mn3O4 with an average crystallite size of ∼19 nm was synthesized through a microwave-assisted chemical route.

  17. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    Science.gov (United States)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  18. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  19. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    Science.gov (United States)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  20. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  1. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    the product dissolves in THF. The solution was filtered through diatomaceous earth and the solvent removed under vacuum to give a quantitative...the solution clarified as the product dissolves in THF. The solution was filtered through diatomaceous earth and the solvent removed under vacuum to...solution was 30 filtered through diatomaceous earth and the solvent removed under vacuum to give a quantitative yield of the salt with fluoride inside

  2. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  3. Photonic Nanostructures Design and Optimization for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2015-08-01

    Full Text Available In this paper, a semiconducting photonic nanostructure capable of wide range absorption and tunable optical resonance has been designed with a proposed theoretical optimization model. The design consists of ZnO/CdS core-shell nanowire arrays as well as multilayer thin films that act to absorb incident electromagnetic (EM waves over a broad frequency range. Theoretical, as well as numerical, studies of the nanostructure inside a solar cell plate have been conducted in order to validate the proposed microstructural design. Excellent energy absorption rates of EM waves have been achieved in the high frequency range by using the optical resonance of the nanowire array. By combining multilayer thin film with the core-shell nanowire in the unit cell of a photonic solar cell, a broadband high absorption has been achieved. Moreover, the geometry of the proposed photonic nanostructure is obtained through the implementation of a genetic algorithm. This avoids local minima and an optimized absorption rate of ~90% over the frequency range of 300 to 750 THz has been obtained in the solar cell.

  4. Fabrication of hybrid nanostructures by liquid plasma for biomedical applications

    Science.gov (United States)

    Ponraj, Sri Balaji; Dai, Xiujuan Jane; Li, Luhua; Chen, Zhiqiang; Surya Narayanan, Jayanth; Kanwar, Jagat; Du Plessis, Johan

    2013-09-01

    Liquid plasma, generated by a nanosecond pulsed generator at atmospheric pressure, was used to treat bamboo-like boron nitride nanotubes (BNNTs). It was observed that the length of the BNNTs was reduced and found more cup like structures called boron nitride nanocups (BNNCs). Interestingly, a new peak appeared at 406.86 eV in the N1s X-ray photoelectron spectrum, which seems to be attributable to the oxidation of nitrogen (N-O) in BNNTs. The C1s spectrum showed that oxygen functional groups were introduced onto the BNNT/BNNC surface. The liquid plasma was also used to assemble gold nanoparticles onto the treated BNNTs/BNNCs. This hybrid nanostructure was fabricated efficiently, compared with normal equilibrium conditions. The pH values and conductivity of all samples were measured. After plasma treatment, the pH values were greatly reduced and conductivity was significantly increased. We propose that the plasma acid, hydrogen peroxide, OH-, H ions and radicals formed in liquid plasma as well as the pulsed electric field contribute to the oxidation of nitrogen, reduced length of the BNNTs(forming BNNCs), surface functionalization, and to the fabrication of hybrid nanostructure. The cytotoxic tests for these hybrid nanostructures is underway. The authors acknowledge Rosey van Driel and Prabhukumar Sellamuthu for assisting with TEM and SEM, and the access of the XPS facility at RMIT University.

  5. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  6. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...... network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized:metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning...... the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out...

  7. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  8. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-11-01

    Full Text Available Semiconductor photocatalysis provides potential solutions for many energy and environmental-related issues. Recently, various semiconductors with hierarchical nanostructures have been fabricated to achieve efficient photocatalysts owing to their multiple advantages, such as high surface area, porous structures, as well as enhanced light harvesting. ZnO has been widely investigated and considered as the most promising alternative photocatalyst to TiO2. Herein, we present a review on the fabrication methods, growth mechanisms and photocatalytic applications of hierarchical ZnO nanostructures. Various synthetic strategies and growth mechanisms, including multistep sequential growth routes, template-based synthesis, template-free self-organization and precursor or self-templating strategies, are highlighted. In addition, the fabrication of multicomponent ZnO-based nanocomposites with hierarchical structures is also included. Finally, the application of hierarchical ZnO nanostructures and nanocomposites in typical photocatalytic reactions, such as pollutant degradation and H2 evolution, is reviewed.

  9. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  10. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  11. Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films.

    Science.gov (United States)

    Okkelman, Irina A; Dolgova, Alla A; Banerjee, Swagata; Kerry, Joseph P; Volynskii, Aleksandr; Arzhakova, Olga V; Papkovsky, Dmitri B

    2017-04-19

    It is well known that sensitivity of quenched-phosphorescence O 2 sensors can be tuned by changing the nature of indicator dye and host polymer acting as encapsulation and quenching mediums. Here, we describe a new type of sensor materials based on nanostructured hard elastic polymeric substrates. With the example of hard elastic polypropylene films impregnated with Pt-benzoporphyrin dye, we show that such substrates enable simple one-step fabrication of O 2 sensors by standard and scalable polymer processing technologies. In addition, the resulting sensor materials show prominent response to tensile drawing via changes in phosphorescence intensity and lifetime and O 2 quenching constant, K q . The mechanosensitive response shows reversibility and hysteresis, which are related to macroscopic changes in the nanoporous structure of the polymer. Such multifunctional materials can find use as mechanically tunable O 2 sensors, as well as strain/deformation sensors operating in a phosphorescence-lifetime-based detection mode.

  12. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application.

    Science.gov (United States)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R; Lee, Dong Won; Lee, Seung Hee; Malhotra, B D

    2014-01-21

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL(-1), detection limit of 19.78 mg (dL cm(-2))(-1), and high sensitivity of 0.9245 μA (mg per dL cm(-2))(-1) with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.

  13. Synthesis and functional properties of nanostructured ceria materials; Synthese und funktionelle Eigenschaften nanostrukturierter Ceroxidmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, Meike

    2014-06-02

    Nanostructured ceria tubes have been synthesised using electro spun polymer fibers as templating material. These polymer mats are produced by electro spinning starting with a polymer solution. In a next step polymer fibers are decorated with cer containing sol, which is then dried. To receive ceria tubes the polymer is removed on the one hand by thermal decomposition of the polymer or on the other hand by oxygen plasma treatment of ceria/polymer hybrid material. The resulting ceria tubes have a specific surface area of 98 m2 g-1. TEM, XRD, SAED and Raman investigations show a fully nanostructured crystallinity with cubic fluorine type structure. This obtained material shows a photo catalytic activity within decomposition of methylene blue in the Vis part of the electromagnetic spectrum. This photo catalytic activity can be increased using doping ions of transition and rare earth elements that are introduced in the sol-gel synthesis. Also here XRD and TEM investigations show a fully nano crystalline structure of ceria. Raman spectroscopy verifies the doping of ceria by transition and rare earth elements up to 22% of doping. No phase separation can be observed. The photo catalytic activity can be increased using these doped materials. Additionally a catalytic activity of pure ceria and mixed ceria/zirconia materials have been investigated synthesis of dimethylcarboxilate without water addition. Here a direct dependence between turn over and doping cannot be detected. The dependence can be deduced to the synthesis process of the catalyst. Terminal sensoric properties of doped and undoped ceria (n-type semiconductor) are investigated. The prepared materials are used as chemiresistors against oxygen at temperatures of 700 C. These investigations show a reversible increase of the electrical resistance against oxygen.

  14. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  15. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Science.gov (United States)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (characteristic dimension in both 1D (nanolines) and 2D (nanocubes) geometries, I uncovered a new surprising regime of nanoscale thermal transport called the

  16. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.

    Science.gov (United States)

    Chaudhari, Nitin K; Jin, Haneul; Kim, Byeongyoon; Lee, Kwangyeol

    2017-08-31

    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H 2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

  17. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  18. Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon J. L. [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics; Brookhaven National Lab. (BNL), Upton, NY (United States). X-ray Scattering Group; Duxbury, Phillip M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Gonçalves, Douglas S. [Univ. Federal de Santa Catarina,; Lavor, Carlile [Univ. of Campinas (UNICAMP), Sao Paulo (Brazil). Dept. of Applied Mathematics (IMECC-UNICAMP); Mucherino, Antonio [Univ. de Rennes, Rennes (France). Institut de Recherche en Informatique et Systemes Aleatoires

    2016-04-04

    Here, considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

  19. Plasmonic enhancement of scattering and emission of light in nanostructures: from basic science to biomedical applications

    International Nuclear Information System (INIS)

    Gaponenko, Sergey

    2013-01-01

    Advances and challenges of plasmonic enhancement of Raman scattering and fluorescence with metal-dielectric nanostructures are discussed. Theoretical predictions and experimental implementation are presented and compared. Reasonable agreement of experimental data with the theory is outlined. Special attention is given to biomedical applications including fluorescent and Raman immunospectroscopy. (author)

  20. Experimental Study of Nonequilibrium Electrodeposition of Nanostructures on Copper and Nickel for Photochemical Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Rajesh K. Shanmugam

    2011-01-01

    Full Text Available To increase the performance of photochemical fuel cells, nonequilibrium electrodeposition has been performed on Cu and Ni to make photosensitive anodes. Processing parameters including electrolyte concentration, and electrode potential were studied using cyclic voltammetry. Scanning electron microscopy (SEM and X-ray Spectroscopy (EDS were performed to understand the formation of the nanostructures during the nonequilibrium deposition of copper fractals. An increase in the deposition rate was observed with the increase in electrolyte concentration (from 0.05 M to 1.0 M. Similar trend was found when the cathode potential was decreased from −0.5 V to −4.5 V. The effect of substrate material was also examined. Porous fractal structures on copper were achieved, while the deposited material showed high density of surface cracks on nickel. The fractal structures deposited on copper electrode with the increased surface area were converted into copper oxide by oxidation in air. Such oxide samples were made into anodes for photochemical fuel cell application. We demonstrated that an increase in the magnitude of open circuit output voltage is associated with the increase in the fractal surface area under the ultraviolet irradiation test conditions. However, the electrodeposited fractals on nickel showed very limited increase in the magnitude of open circuit voltage.

  1. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  2. Superhard nanophase cutter materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  3. Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-03-01

    Full Text Available The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a “space-holder” sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthesized by mechanical alloying and annealing mixed with 1.0 mm diameter of saccharose crystals was finally compacted in the form of pellets. In the next step, the saccharose crystals were dissolved in water, leaving open spaces surrounded by metallic-bioceramic scaffold. The sintering of the scaffold leads to foam formation. It was found that 1:1 Ti-10 wt% 45S5 Bioglass-1 wt% Ag/sugar ratio leads to porosities of about 70% with pore diameter of about 0.3–1.1 mm. The microstructure, corrosion resistance in Ringer’s solution of the produced foams were investigated. The value of the compression strength for the Ti-10 wt% 45S5 Bioglass-1 wt% Ag foam with 70% porosity was 1.5 MPa and the Young’s modulus was 34 MPa. Silver modified Ti-10 wt% 45S5 Bioglass composites possess excellent antibacterial activities against Staphylococcus aureus. Porous Ti-10 wt% 45S5 Bioglass-1 wt% foam could be a possible candidate for medical implants applications.

  4. Nanostructured porous graphene and its composites for energy storage applications

    Science.gov (United States)

    Ramos Ferrer, Pablo; Mace, Annsley; Thomas, Samantha N.; Jeon, Ju-Won

    2017-10-01

    Graphene, 2D atomic-layer of sp2 carbon, has attracted a great deal of interest for use in solar cells, LEDs, electronic skin, touchscreens, energy storage devices, and microelectronics. This is due to excellent properties of graphene, such as a high theoretical surface area, electrical conductivity, and mechanical strength. The fundamental structure of graphene is also manipulatable, allowing for the formation of an even more extraordinary material, porous graphene. Porous graphene structures can be categorized as microporous, mesoporous, or macroporous depending on the pore size, all with their own unique advantages. These characteristics of graphene, which are further explained in this paper, may be the key to greatly improving a wide range of applications in energy storage systems.

  5. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  6. Multi-particle assembled porous nanostructured MgO: its application in fluoride removal

    International Nuclear Information System (INIS)

    Gangaiah, Vijayakumar; Chandrappa, Gujjarahalli Thimanna; Siddaramanna, Ashoka

    2014-01-01

    In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N 2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications. (paper)

  7. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  8. An investigation into carbon nanostructured materials as catalyst support in proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune

    than carbon blacks. Even then the possible durability of the platinum containing catalyst is a major concern for fuel cell degradation during operation. In order to evaluate platinum containing electrocatalysts for proton exchange membrane fuel cells (PEMFC), the rotating disc electrode (RDE......Polymer electrolyte fuel cells (PEFCs) are among the key research areas concerning clean cost-effective energy. Carbon nano fibres (CNF), single walled carbon nano tubes (SWCNT), multi walled carbon nano tubes (MWCNT) and other related materials are among the possible successors to standard carbon...... black support materials for low platinum containing electrocatalyst. This is partly due to their high electronic conductivity. Partly due to their high surface area needed for the dispersion of nanoparticulate metal-clusters. In addition carbon nano-structures (CNF, SWCNT, MWCNT etc.) are more durable...

  9. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  10. Thermal and Electronic Transport in Graphene-Based Nanostructures and Applications in Electrical Sensors

    Science.gov (United States)

    Ramnani, Pankaj Ghanshyam

    It is a general consensus that silicon metal-oxide-semiconductor FET (MOSFET) is approaching its scaling limits due to issues including high power dissipation, short channel effects and degraded electrostatics. In recent years, a significant amount of research has been directed towards exploring novel materials like graphene and other two-dimensional atomic crystals to replace Si. Graphene is an ideal candidate owing to its exceptional properties including high carrier mobility (exceeding 15,000 cm2 V -1 s-1), high charge carrier concentration ( 1012 cm -2), low contact resistance due to tunable fermi level, excellent thermal conductivity ( 5000W m-1 K-1), optical transparency ( 97.7%) and flexibility. Despite all these intriguing properties, the absence of a bandgap in graphene has limited its potential applications owing to large off-state currents and low Ion/Ioff ratios observed in graphene-based field effect transistors (FETs). Additionally, most of these experimental studies are conducted using pristine graphene isolated by mechanical exfoliation of graphite, which is not a practical approach for large scale synthesis of graphene. In this dissertation, a scalable method of synthesizing high quality single-layer and bilayer graphene was developed using ambient pressure chemical vapor deposition (AP-CVD). The crystalline nature and physical properties were characterized using electron microscopy and spectroscopic techniques. We investigated the effects of point defects--typically introduced during material characterization and device fabrication steps--on thermal transport in CVD grown single-layer graphene. Furthermore, we investigated methods to engineer a bandgap in graphene by nanopatterning graphene into pseudo one-dimensional nanostructures called graphene nanoribbons (GNRs) using two different top-down approaches. The edge defects in GNRs, which limit carrier mobility and induce p-doping, were characterized using Raman spectroscopy and x

  11. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    International Nuclear Information System (INIS)

    Dhak, Debasis; Das, Soma; Communication Engineering.); Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolution of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices

  12. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material.

    Science.gov (United States)

    González, Joaquín Antonio; Bafico, Jonathan Germán; Villanueva, María Emilia; Giorgieri, Sergio Alejandro; Copello, Guillermo Javier

    2018-05-15

    A novel nanostructured material was successfully developed by combining a chitin matrix with graphene oxide nanosheets (Chi:nGO) and then used for the continuous flow adsorption of ciprofloxacin. The spectroscopic characterization indicated that none covalent interaction between both components would be occurring and the introduction of nGO did not interfere in chitin nanostructure rearrangement during gelling and later drying. SEM images and Mercury Intrusion Porosimetry results showed a wide pore size distribution ranging from nano to micrometers. The continuous flow adsorption was observed to be dependent on the pH which affects the electrostatic interaction. The flow rate, Na + concentration and water hardness were evaluated to describe the adsorption process. The resistance to alkali allowed to regenerate and reuse the column for subsequent adsorption cycles. Finally, ciprofloxacin spiked real water samples were assessed and the results confirmed that the medium pH was the main parameter that defines the adsorption behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  14. Ferroelectric materials and their applications

    CERN Document Server

    Xu, Y

    2013-01-01

    This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable

  15. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries.

    Science.gov (United States)

    Brun, Nicolas; Sakaushi, Ken; Yu, Linghui; Giebeler, Lars; Eckert, Jürgen; Titirici, Magdalena M

    2013-04-28

    Carbon hollow spheres were produced using a sustainable approach, i.e. hydrothermal carbonization, using monosaccharides as carbon precursors and silica nanoparticles as hard-templates. Hydrothermal carbonization is an eco-efficient and cost-effective route to synthesize nanostructured carbonaceous materials from abundant biomass-derived molecules. After further thermal treatment under an inert atmosphere and removal of the silica-based core by chemical etching, porous hollow spheres depicting 5-8 nm thin shells were obtained. Subsequently, carbon-sulfur composites were synthesized via a melt diffusion method and used as nanostructured composites for cathodes in lithium-sulfur (Li-S) cells. The morphology of the hollow spheres was controlled and optimized to achieve improved electrochemical properties. Both high specific energies and high specific powers were obtained, due to the unique nanostructure of the hollow spheres. These results revealed that using optimized carbonaceous materials, it is possible to design sustainable Li-S cells showing promising electrochemical properties.

  16. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    Science.gov (United States)

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  17. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    Tisza, M

    2013-01-01

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  18. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior.

    Science.gov (United States)

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L

    2012-08-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  19. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites

  1. Fine-tunable plasma nano-machining for fabrication of 3D hollow nanostructures: SERS application.

    Science.gov (United States)

    Mehrvar, L; Hajihoseini, H; Mahmoodi, H; Tavassoli, S H; Fathipour, M; Mohseni, S M

    2017-08-04

    Novel processing sequences for the fabrication of artificial nanostructures are in high demand for various applications. In this paper, we report on a fine-tunable nano-machining technique for the fabrication of 3D hollow nanostructures. This technique originates from redeposition effects occurring during Ar dry etching of nano-patterns. Different geometries of honeycomb, double ring, nanotube, cone and crescent arrays have been successfully fabricated from various metals such as Au, Ag, Pt and Ti. The geometrical parameters of the 3D hollow nanostructures can be straightforwardly controlled by tuning the discharge plasma pressure and power. The structure and morphology of nanostructures are probed using atomic force microscopy (AFM), scanning electron microscopy (SEM), optical emission spectroscopy (OES) and energy dispersive x-ray spectroscopy (EDS). Finally, a Ag nanotube array was assayed for application in surface enhanced Raman spectroscopy (SERS), resulting in an enhancement factor (EF) of 5.5 × 10 5 , as an experimental validity proof consistent with the presented simulation framework. Furthermore, it was found that the theoretical EF value for the honeycomb array is in the order of 10 7 , a hundred times greater than that found in nanotube array.

  2. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  3. Carbon Nanofibrous Materials from Electrospinning: Preparation and Energy Applications

    Science.gov (United States)

    Aboagye, Alex

    Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique one-dimensional nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. The overall objective of this research was the design and production fiber based carbon nanomaterials, investigation of their structures and use in functional applications. Specifically, these carbon nanofibrous materials were employed as electrode material for energy storage and conversion devices such as dye sensitized solar cells and supercapacitors Morphology and structure of the carbon nanofibrous materials were investigated and their performance in corresponding applications were evaluated.

  4. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  5. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    Energy Technology Data Exchange (ETDEWEB)

    Beznosyuk, Sergey A., E-mail: bsa1953@mail.ru; Maslova, Olga A., E-mail: maslova-o.a@mail.ru [Altai State University, Barnaul, 656049 (Russian Federation); Zhukovsky, Mark S., E-mail: zhukovsky@list.ru [Altai State Technical University, Barnaul, 656038 (Russian Federation)

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{sub 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.

  6. Emission of Coherent Radiation from Ultra-High Mobility Carriers in Nano-structured Materials

    Science.gov (United States)

    2011-03-31

    to the design of a practical device.   The  effective  Q of the cavity, on the other hand, will be  li‐ mited   by  the  ohmic  losses  of  the...bringing together  long‐established concepts from plasma physics with cutting‐ edge  nanostructured materials could lead to  a new compact, DC‐powered...carriers  to  low dimensions.   Another approach is to stimulate the emission of coherent phonons.   Effectively , the lattice ions them‐ selves

  7. Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview

    Directory of Open Access Journals (Sweden)

    Antonio Angel Romero

    2009-12-01

    Full Text Available Heterogeneous photocatalysis offer many possibilities for finding appropiate environmentally friendly solutions for many of the the problems affecting our society (i.e., energy issues. Researchers are still looking for novel routes to prepare solid photocatalysts able to transform solar into chemical energy more efficiently. In many developing countries, biomass is a major energy source, but currently such countries lack of the technology to sustainably obtain chemicals and/or fuels from it. The Roadmap for Biomass Technologies, authored by 26 leading experts from academia, industry, and government agencies, has predicted a gradual shift back to a carbohydrate-based economy. Biomass and biofuels appear to hold the key to satisfy the basic needs of our societies for the sustainable production of liquid fuels and high value-added chemicals without compromising the scenario of future generations. In this review, we aim to discuss various design routes for nanostructured photocatalytic solid materials in view of their applications in the selective transformation of lignocellulosic biomass to high value-added chemicals.

  8. Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications

    International Nuclear Information System (INIS)

    Heiser, T.; Adamopoulos, G.; Brinkmann, M.; Giovanella, U.; Ould-Saad, S.; Brochon, C.; Wetering, K. van de; Hadziioannou, G.

    2006-01-01

    The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains

  9. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    NARCIS (Netherlands)

    Callini, Elsa; Aguey-Zinsou, Kondo Francois; Ahuja, Rajeev; Ares, Jos Ramon; Bals, Sara; Biliskov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Novakovic, Jasmina G.; Hirscher, Michael; Hirscher, M.; Jensen, Torben R.; Jensen, Peter Bjerre; Novakovic, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated

  10. Next-generation nanostructured lithium-ion cathode materials: critical challenges for new directions in R&D

    CSIR Research Space (South Africa)

    Ozoemena, K

    2016-07-01

    Full Text Available the readership an understanding of the critical scientific challenges faced by the existing cathode materials used in LIBs and the critical roles engineered nanostructures can play in the realisation of next-generation LIBs for the ever-emerging technologies....

  11. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    Science.gov (United States)

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  12. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    Science.gov (United States)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  13. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    Directory of Open Access Journals (Sweden)

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  14. Dynamical theory applications to neutron scattering from periodic nanostructures

    Science.gov (United States)

    Ashkar, Rana

    The self-assembly of matter in nano-confinements is a potential cost-effective method for fabricating ultra-dense films of ordered nanomaterials. Non-destructively probing the depth-dependent lateral order in such films challenges conventional microscopy techniques, and the submicron size of a single confinement is impractical for scattering experiments. This problem can be overcome if the confining medium is made up of an array of identical confining cells, such as a diffraction grating, because scattering then appears at Bragg peaks. The caveat is that the periodicity of the sample amplifies dynamical scattering effects that are not accounted for in approximate scattering theories and a complete dynamical theory (DT) calculation becomes unavoidable. Unlike traditional diffraction techniques that measure in reciprocal space and must resolve individual Bragg peaks, the Spin-Echo Scattering Angle Measurement (SESAME) technique overcomes this resolution problem by Fourier transforming the scattering signal and directly measuring real-space density correlations. In addition, the technique allows access to length scales of interest (few-tens-of-nanometers to several-microns). The combination of DT and SESAME has been successfully tested on periodic nanostructures and has been implemented in the study of confined matter. The dynamical theory can also be used as a reference for studying the limits of validity of approximate theories (such as DWBA and POA) on periodic systems.

  15. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  16. Synthesis, characterization, and applications of electroactive polymeric nanostructures for organic coatings

    Science.gov (United States)

    Suryawanshi, Abhijit Jagnnath

    Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.

  17. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    Directory of Open Access Journals (Sweden)

    Adam M

    2014-02-01

    Full Text Available Martin Adam,1 Cornelia Ganz,1 Weiguo Xu,1 Hamid-Reza Sarajian,2 Werner Götz,3 Thomas Gerber1 1Institute of Physics, Rostock University, Rostock, Germany; 2Department of Oral and Maxillofacial Plastic Surgery, Rostock University, Rostock, Germany; 3Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, Faculty of Medicine, University of Bonn, Bonn, Germany Abstract: Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the

  18. In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications.

    Science.gov (United States)

    Zarrabi, Ali; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Farokhi, Mehdi

    2014-02-01

    In the present study, a detailed biocompatibility testing of a novel class of hybrid nanostructure based on hyperbranched polyglycerol and β-cyclodextrin is conducted. This highly water soluble nanostructure with size of less than 10 nm, polydispersity of less than 1.3, chemical tenability and highly branched architecture with the control over branching structure could be potentially used as a carrier in drug delivery systems. To this end, extensive studies in vitro and in vivo conditions have to be demonstrated. The in vitro studies include in vitro cytotoxicity tests; MTT and Neutral Red assay as an indicator of mitochondrial and lysosomal function, and blood biocompatibility tests such as effects on coagulation cascade, and complement activation. The results show that these hybrid nanostructures, which can be prepared in a simple reaction, are considerably biocompatible. The in vivo studies showed that the hybrid nanostructure is well tolerated by rats even in high doses of 10 mg ml(-1). After autopsy, the normal structure of liver tissue was observed; which divulges high biocompatibility and their potential applications as drug delivery and nanomedicine.

  19. Ferroic materials synthesis and applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    Ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics. The basis of this study is to understand the large changes in physical characteristics that occur over a very narrow temperature range. In recent years, a new class of ferroic materials has been attracting increased interest. These multiferroics exhibit more than one ferroic property simultaneously in a single phase. The present volume: ""Ferroic Materials: Synthesis and Applications"" has ten Chapters, spread over areas as diverse as Magnetic Oxide Nanomaterials, Ferrites Synthesis, Hexaferrite

  20. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  1. Fabrication of nanostructured metal oxide films with supercritical carbon dioxide: Processing and applications

    Science.gov (United States)

    You, Eunyoung

    Nanostructured metal oxide films have many applications in catalysis, microelectronics, microfluidics, photovoltaics and other fields. Since the performance of a device depends greatly on the structure of the material, the development of methodologies that enable prescriptive control of morphology are of great interest. The focus of this work is to control the structure and properties of the nanostructured metal oxide films using novel synthetic schemes in supercritical fluids and to use those films as key building components in alternative energy applications. A supercritical fluid is a substance at a temperature and pressure above its critical point. It typically exhibits gas-like transport properties and liquid-like densities. Supercritical fluid deposition (SFD) utilizes these properties of supercritical CO2 (scCO2) to deposit chemically pure metal, oxides and alloys of metal films. SFD is a chemical vapor deposition (CVD)-like process in the sense that it uses similar metal organic precursors and deposits films at elevated temperatures. Instead of vaporizing or subliming the precursors, they are dissolved in supercritical fluids. SFD has typically shown to exhibit higher precursor concentrations, lower deposition temperatures, conformal deposition of films on high aspect ratio features as compared to CVD. In2 O3, ZnO and SnO2 are attractive materials because they are used in transparent conductors. SFD of these materials were studied and In2 O3 deposition kinetics using tris(2,2,6,6-tetramethyl-3,5-heptanedionato) In (III) as precursor were determined. Growth rate dependence on the deposition temperature and the precursor concentrations were studied and the physicochemical and optical properties of In2 O3 films were characterized. Metal oxide nanochannels that can potentially be used for microfluidics have been fabricated by sequentially performing nanoimprint lithography (NIL) and SFD. NIL was used to pattern photoresist grating on substrates and SFD of TiO2

  2. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    Science.gov (United States)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material properties were most desirable based on experimental results. Strategies to improve material design for second-generation materials are suggested based on promising reaction results coupled with pre and post reaction characterization analysis.

  3. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  4. The Role of pH in PEG-b-PAAc Modification of Gadolinium Oxide Nanostructures for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Eva Hemmer

    2012-01-01

    Full Text Available Upconversion and near-infrared emitting Gd2O3:Er3+,Yb3+ nanostructured phosphors (nanoparticles and nanorods for applications in bioimaging have been synthesized by precipitation methods and hydrothermal treatment. Variation of the material synthesis conditions (additives and pH allows controlling particle size (40 nm to μm range and rod aspect ratio (5 to 18. It was shown that PEG-b-PAAc (poly(ethylene glycol poly(acrylic acid block polymer is suitable to provide the required chemical durability, dispersion stability, and noncytotoxic behaviour for biomedical applications, where the coating of Gd2O3 with a protecting and biocompatible layer is essential in order to prevent the release of toxic Gd3+ ions. Physicochemical properties of the Gd2O3:Er3+,Yb3+ nanostructures modified with PEG-b-PAAc have been investigated by TG-DTA, FT-IR, and DLS revealing a strong influence of modification conditions, namely, pH of the reaction media, on the nature of the PEG-b-PAAc layer.

  5. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.

    Science.gov (United States)

    Regulacio, Michelle D; Han, Ming-Yong

    2016-03-15

    Semiconductor nanostructures that can effectively serve as light-responsive photocatalysts have been of considerable interest over the past decade. This is because their use in light-induced photocatalysis can potentially address some of the most serious environmental and energy-related concerns facing the world today. One important application is photocatalytic hydrogen production from water under solar radiation. It is regarded as a clean and sustainable approach to hydrogen fuel generation because it makes use of renewable resources (i.e., sunlight and water), does not involve fossil fuel consumption, and does not result in environmental pollution or greenhouse gas emission. Another notable application is the photocatalytic degradation of nonbiodegradable dyes, which offers an effective way of ridding industrial wastewater of toxic organic pollutants prior to its release into the environment. Metal oxide semiconductors (e.g., TiO2) are the most widely studied class of semiconductor photocatalysts. Their nanostructured forms have been reported to efficiently generate hydrogen from water and effectively degrade organic dyes under ultraviolet-light irradiation. However, the wide band gap characteristic of most metal oxides precludes absorption of light in the visible region, which makes up a considerable portion of the solar radiation spectrum. Meanwhile, nanostructures of cadmium chalcogenide semiconductors (e.g., CdS), with their relatively narrow band gap that can be easily adjusted through size control and alloying, have displayed immense potential as visible-light-responsive photocatalysts, but the intrinsic toxicity of cadmium poses potential risks to human health and the environment. In developing new nanostructured semiconductors for light-driven photocatalysis, it is important to choose a semiconducting material that has a high absorption coefficient over a wide spectral range and is safe for use in real-world settings. Among the most promising candidates

  6. Electrospinning Materials, Processing, and Applications

    CERN Document Server

    Wendorff, Joachim H; Greiner, Andreas

    2012-01-01

    Bringing together the world's experts in the field, this book summarizes the state-of-the art in electrospinning with detailed coverage of the various techniques, material systems, and their resulting fiber structures and properties, theoretical aspects, and applications. Throughout the book, the current status of knowledge is introduced with a critical view on accomplishments and novel persepectives. An experimental section gives hands-on guidance to beginners and experts alike.

  7. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  8. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  9. Development of nanocomposite polymer materials for electrical and electronic applications

    International Nuclear Information System (INIS)

    Chine, Bruno

    2007-01-01

    Some results and experimental procedures of laboratory are reported in the frame of researches conducted for the development of new nanostructured composite materials. These new materials, which are constituted by an organic phase: the polymer and an inorganic phase: the silicate, are being strongly investigated nowadays so it is expected that they could provide, among other, better electrical insulation properties and flame-delay in electrical and electronic applications. The laboratory experimental work has been developed from two families of polymers, thermoplastics and thermosets and clays silicates providing lamellar type. There are now some preliminary results, such as obtaining thin films of these nanocomposite materials, their complete characterization by X-ray diffraction, scanning microscopy and thermogravimetric analysis, they do well to wait for future research activities. (author) [es

  10. Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Li, Xinxi; Li, Zhenghui; Zhang, Guoqing; Wu, Dingcai

    2015-01-01

    Highlights: • Wormholelike carbon (WMC) with controllable nanostructure is prepared by sol–gel method. • The reversible capacity of WMC is much higher than that of many other reported nanocarbons. • The effect of pore diameter on Li storage capacity is investigated. - Abstract: A class of mesoporous wormholelike carbon (WMC) with controllable nanostructure was prepared by sol–gel method and then used as the anode material of lithium-ion batteries. Based on the experimental results, it is found that the nanostructure of the as-prepared WMC plays an important role in the electrochemical performances. A suitable mesopore size is necessary for a high performance carbon-based anode material since it can not only guarantee effective mass transport channels but also provide large surface area. As a result, F30 with a mesopore size of 4.4 nm coupled with high surface area of 1077 m 2 g −1 shows a reversible capacity of 630 mAh g −1 , much higher than commercial graphite and many other reported nanocarbons

  11. Pulsed laser deposited Cr{sub 2}O{sub 3} nanostructured thin film on graphene as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Khamlich, S., E-mail: skhamlich@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Bello, A.; Fabiane, M.; Dangbegnon, J.K.; Manyala, N. [Department of Physics, SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-07-15

    Graphical abstract: A different approach for the fabrication of an anode material system that comprises pulsed laser-deposited (PLD) Cr{sub 2}O{sub 3} grown on few layer graphene (FLG) by chemical vapor deposition (CVD) was used. The electrochemical performance of Cr{sub 2}O{sub 3} nanostructured thin film was improved by FLG, which make it a promising candidate for future lithium-ion batteries application. - Highlights: • Pulsed laser deposition technique was used to deposit Cr{sub 2}O{sub 3} on few-layer graphene (FLG). • FLG improved the electrochemical performance of Cr{sub 2}O{sub 3} nanostructured thin film. • Good stable cycle of Cr{sub 2}O{sub 3}/FLG/Ni electrode make it one of the promise anode materials for future lithium-ion batteries. - Abstract: Pulsed laser deposition technique was used to deposit Cr{sub 2}O{sub 3} nanostructured thin film on a chemical vapor deposited few-layer graphene (FLG) on nickel (Ni) substrate for application as anode material for lithium-ion batteries. The experimental results show that graphene can effectively enhance the electrochemical property of Cr{sub 2}O{sub 3}. For Cr{sub 2}O{sub 3} thin film deposited on Ni (Cr{sub 2}O{sub 3}/Ni), a discharge capacity of 747.8 mA h g{sup −1} can be delivered during the first lithiation process. After growing Cr{sub 2}O{sub 3} thin film on FLG/Ni, the initial discharge capacity of Cr{sub 2}O{sub 3}/FLG/Ni was improved to 1234.5 mA h g{sup −1}. The reversible lithium storage capacity of the as-grown material is 692.2 mA h g{sup −1} after 100 cycles, which is much higher than that of Cr{sub 2}O{sub 3}/Ni (111.3 mA h g{sup −1}). This study reveals the differences between the two material systems and emphasizes the role of the graphene layers in improving the electrochemical stability of the Cr{sub 2}O{sub 3} nanostructured thin film.

  12. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  13. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  14. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given...

  15. Nanostructured Antireflection Layer, and Application of Same to LEDs

    DEFF Research Database (Denmark)

    2013-01-01

    An optical device having a surface in a silicon carbide or gallium nitride material is provided, the optical device having a non-periodic nano structure formed in the surface, the nano structure comprising a plurality of cone shaped structures wherein the cones are distributed non-periodically on......An optical device having a surface in a silicon carbide or gallium nitride material is provided, the optical device having a non-periodic nano structure formed in the surface, the nano structure comprising a plurality of cone shaped structures wherein the cones are distributed non......-periodic nano structured surface on an optical device is furthermore provided, the method comprising the steps of providing a silicon carbide or gallium nitride device,forming a thin film of a masking material on at least a part of the substrate, treating the thin film to form nano islands of the thin film...

  16. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  17. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  18. Mixed valence nanostructured Mn3O4 for supercapacitor applications

    Indian Academy of Sciences (India)

    surements were performed using a Bio-Logic Model VMP3. 16 Channel Electrochemical Workstation. Cyclic voltammo- grams (CVs) were recorded in the voltage ..... the electrolyte have difficulty to diffuse into the available sites in the inner and outer surface of the active electrode material.9,31 Thus the interaction between ...

  19. Focused Ion Beam Nano-structuring for Applications in Photonics

    NARCIS (Netherlands)

    Ay, F.; de Ridder, R.M.; Pollnau, Markus

    2010-01-01

    To date, nano- and micro-structuring has commonly been implemented by a combination of specifically optimized processes of electron-beam lithography and reactive ion etching, thus limiting the range of materials that can be structured to only a few. In this talk we will introduce focused ion beam

  20. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application

    Science.gov (United States)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R.; Lee, Dong Won; Lee, Seung Hee; Malhotra, B. D.

    2013-12-01

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL-1, detection limit of 19.78 mg (dL cm-2)-1, and high sensitivity of 0.9245 μA (mg per dL cm-2)-1 with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared

  1. Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Xu, Lin; Yang, Hai-Bo

    2016-06-01

    During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.

    Science.gov (United States)

    Xue, Xiaozheng; Wang, Jianchao; Furlani, Edward P

    2015-10-14

    A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic-dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly

  3. Nanostructured metal-polyaniline composites and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  4. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    OpenAIRE

    Exarhos, Stephen

    2015-01-01

    As harmful effects caused by the extraction, purification, and combustion of natural resources for energy generation become more clearly understood, the need for economically competitive renewable energy becomes more desirable. Solar energy- generation is a technologically feasible method, though its primary drawback is cost. Traditional single-crystal silicon-based photovoltaics are too expensive to compete with nonrenewable energy generation, while alternative materials such as cadmium tell...

  5. The Functionalization of Nanostructures and Their Potential Applications in Edible Coatings

    Directory of Open Access Journals (Sweden)

    Ricardo M. González-Reza

    2018-04-01

    Full Text Available Nowadays, edible coatings incorporated with nanostructures as systems of controlled release of flavors, colorants and/or antioxidants and antimicrobial substances, also used for thermal and environmental protection of active compounds, represent a gap of opportunity to increase the shelf life of food highly perishable, as well as for the development of new products. These functionalized nanostructures have the benefit of incorporating natural substances obtained from the food industry that are rich in polyphenols, dietary fibers, and antimicrobial substances. In addition, the polymers employed on its preparation, such as polysaccharides, solid lipids and proteins that are low cost and developed through sustainable processes, are friendly to the environment. The objective of this review is to present the materials commonly used in the preparation of nanostructures, the main ingredients with which they can be functionalized and used in the preparation of edible coatings, as well as the advances that these structures have represented when used as controlled release systems, increasing the shelf life and promoting the development of new products that meet the characteristics of functionality for fresh foods ready to eat.

  6. Synthesis, characterization and application of semiconducting oxide ...

    Indian Academy of Sciences (India)

    Nanostructured; Cu2O nanostructures; electrolysis based oxidation; aligned ZnO nanorods. Abstract. In the present study, we report the synthesis, characterization and application of nanostructured oxide materials. The oxide ... The copper electrode served as a sacrificial anode for the synthesis of different nanostructures.

  7. Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    2016-03-01

    Full Text Available Microtubes and rods with nanopipes of transparent conductive oxides (TCO, such as SnO2, TiO2, ZnO and In2O3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn. Energy Dispersive X-ray Spectroscopy (EDS measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to 3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.

  8. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications.

    Science.gov (United States)

    Kunuku, Srinivasu; Sankaran, Kamatchi Jothiramalingam; Tsai, Cheng-Yen; Chang, Wen-Hao; Tai, Nyan-Hwa; Leou, Keh-Chyang; Lin, I-Nan

    2013-08-14

    We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.

  9. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    International Nuclear Information System (INIS)

    Jiang Yi; Gao Shuyan; Li Zhengdao; Jia Xiaoxia; Chen Yanli

    2011-01-01

    Highlights: → In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. → The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. → The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. → To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. → It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  10. Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.

    Science.gov (United States)

    Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju

    2013-05-27

    A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... for organic solar cell applications, opening new patterning possibilities....

  12. Ultra-Lightweight High Efficiency Nanostructured Materials and Coatings for Deep Space Mission Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a nanostructured spray self-assembly manufacturing method that has resulted in ultra-lightweight ( 1000%), and multi-layer, high efficiency...

  13. Polymer-nanostructured carbon composites as multifunctional sensor materials: design, processing, and properties

    Czech Academy of Sciences Publication Activity Database

    Knite, M.; Hill, A.; Bovtun, Viktor; Teteris, V.; Solovjovs, A.; Shakale, G.; Zavickis, J.; Aulika, I.; Polakovs, B.; Pas, S.J.; Veljko, Sergiy; Noujni, Dmitri; Klemenoks, I.; Zicans, J.; Kiploka, A.; Erts, D.; Petzelt, Jan; Fuith, A.

    -, č. 2 (2006), s. 15-29 ISSN 0868-8257 Institutional research plan: CEZ:AV0Z10100520 Keywords : polymer-nanostructured carbon composites * carbon black * sensors * conductivity * dielectric conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Coupling between plasmonic films and nanostructures: from basics to applications

    Directory of Open Access Journals (Sweden)

    Maurer Thomas

    2015-11-01

    Full Text Available Plasmonic film-nanoparticles coupled systems have had a renewed interest for the past 5 years both for the richness of the provided plasmonic modes and for their high technological potential. Many groups started to investigate the optical properties of film-nanoparticles coupled systems, as to whether the spacer layer thickness is tens of nanometers thick or goes down to a few nanometers or angstroms, even reaching contact. This article reviews the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays. The potential for applications, especially as perfect absorbers or transmitters is also put into evidence.

  15. The innovative applications of therapeutic nanostructures in dentistry.

    Science.gov (United States)

    Elkassas, Dina; Arafa, Abla

    2017-05-01

    Nanotechnology has paved multiple ways in preventing, reversing or restoring dental caries which is one of the major health care problems. Nanotechnology aided in processing variety of nanomaterials with innovative dental applications. Some showed antimicrobial effect helping in the preventive stage. Others have remineralizing potential intercepting early lesion progression as nanosized calcium phosphate, carbonate hydroxyapatite nanocrystals, nanoamorphous calcium phosphate and nanoparticulate bioactive glass particularly with provision of self-assembles protein that furnish essential role in biomimetic repair. The unique size of nanomaterials makes them fascinating carriers for dental products. Thus, it is recentlyclaimedthat fortifying the adhesives with nanomaterials that possess biological meritsdoes not only enhance the mechanical and physical properties of the adhesives, but also help to attain and maintain a durable adhesive joint and enhanced longevity. Accordingly, this review will focus on the current status and the future implications of nanotechnology in preventive and adhesive dentistry. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  17. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  18. Giant magnetoresistance in lateral metallic nanostructures for spintronic applications.

    Science.gov (United States)

    Zahnd, G; Vila, L; Pham, V T; Marty, A; Beigné, C; Vergnaud, C; Attané, J P

    2017-08-25

    In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

  19. Reactive ballistic deposition of nanostructured model materials for electrochemical energy conversion and storage.

    Science.gov (United States)

    Flaherty, David W; Hahn, Nathan T; May, R Alan; Berglund, Sean P; Lin, Yong-Mao; Stevenson, Keith J; Dohnalek, Zdenek; Kay, Bruce D; Mullins, C Buddie

    2012-03-20

    Porous, high surface area materials have critical roles in applications including catalysis, photochemistry, and energy storage. In these fields, researchers have demonstrated that the nanometer-scale structure modifies mechanical, optical, and electrical properties of the material, greatly influencing its behavior and performance. Such complex chemical systems can involve several distinct processes occurring in series or parallel. Understanding the influence of size and structure on the properties of these materials requires techniques for producing clean, simple model systems. In the fields of photoelectrochemistry and lithium storage, for example, researchers need to evaluate the effects of changing the electrode structure of a single material or producing electrodes of many different candidate materials while maintaining a distinctly favorable morphology. In this Account, we introduce our studies of the formation and characterization of high surface area, porous thin films synthesized by a process called reactive ballistic deposition (RBD). RBD is a simple method that provides control of the morphology, porosity, and surface area of thin films by manipulating the angle at which a metal-vapor flux impinges on the substrate during deposition. This approach is largely independent of the identity of the deposited material and relies upon limited surface diffusion during synthesis, which enables the formation of kinetically trapped structures. Here, we review our results for the deposition of films from a number of semiconductive materials that are important for applications such as photoelectrochemical water oxidation and lithium ion storage. The use of RBD has enabled us to systematically control individual aspects of both the structure and composition of thin film electrodes in order to probe the effects of each on the performance of the material. We have evaluated the performance of several materials for potential use in these applications and have identified

  20. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li + diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg 2+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO 2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g −1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  1. Nanoporous materials for energy applications

    Science.gov (United States)

    Yonemoto, Bryan T.

    Batteries have become ubiquitous in modern society by powering small, consumer electronic devices such as flashlights, cell phones, and laptops. Increasingly, batteries are also being examined as a method to improve energy efficiency (and reduce greenhouse gas emissions) for vehicles and power transmission/distribution applications. For lithium-ion based batteries to meet the demands of these new applications, new electrode materials and morphologies are the key to access high energy and/or power density. In this work, the research efforts include two major thrusts, concentrating on the synthesis and understanding of novel porous materials as potential electrodes for rechargeable lithium-ion batteries. The nano-sized walls and multidimensional pore structures allow fast solid state and electrolytic transport, while micron-sized particle ensure better interparticulate contact. The first thrust of research focused on the development of new synthetic approaches for porous material fabrication. A novel ionothermal synthetic method has been developed using deep-eutectic solvents, such as choline chloride and N,N-dimethylurea, to form iron, manganese and cobalt phosphates with a zeotype framework. Through this advanced method the successful synthesis of 4 previously undiscovered metal phosphate zeotypes was achieved. A careful control of water content during the ionothermal synthesis elucidated the multistep decomposition of our framework template and its impacts in the resulting zeotype structures. Upon conclusion of the ionothermal work, the focus shifted to the methodology development for mesoporous metal sulfides. An "oxide-to-sulfide" synthetic strategy was developed for the first time, resulting in the first synthesis of ordered porous iron, cobalt and nickel sulfides. More importantly, this is a general synthetic method, relying primarily on volumetric calculations per metal atom, which could be further extend to other metal-containing compounds, such as metal

  2. Improved cladding nano-structured materials with self-repairing capabilities

    International Nuclear Information System (INIS)

    Popa-Simil, L.

    2012-01-01

    When designing nuclear reactors or the materials that go into them, one of the key challenges is finding materials that can withstand an outrageously extreme environment. In addition to constant bombardment by radiation, reactor materials may be subjected to extremes in temperature, physical stress, and corrosive conditions. A limitation in fuel burnup is and usage of the nuclear fuel material is related to the structural material radiation damage, that makes the fuel be removed with low-burnup and immobilized in the waste storage pools. The advanced burnup brings cladding material embitterment due to radiation damage effects corroborated with corrosion effects makes the fuel pellet life shorter. The novel nano-clustered structured sintered material may mitigate simultaneously the radiation damage and corrosion effects driving to more robust structural materials that may make the nuclear reactor safer and more reliable. The development of nano-clustered sinter alloys provides new avenues for further examination of the role of grain boundaries and engineered material interfaces in self-healing of radiation-induced defects driving to the design of highly radiation-tolerant materials for the next generation of nuclear energy applications. (authors)

  3. Block copolymer self-assembly fundamentals and applications in formulation of nano-structured fluids

    Science.gov (United States)

    Sarkar, Biswajit

    Dispersions of nanoparticles in polymer matrices form hybrid materials that can exhibit superior structural and functional properties and find applications in e.g. thermo-plastics, electronics, polymer electrolytes, catalysis, paint formulations, and drug delivery. Control over the particle location and orientation in the polymeric matrices are essential in order to realize the enhanced mechanical, electrical, and optical properties of the nanohybrids. Block copolymers, composed of two or more different monomers, are promising for controlling particle location and orientation because of their ability to organize into ordered nanostructures. Fundamental questions pertaining to nanoparticle-polymer interfacial interactions remain open and formulate the objectives of our investigation. Particle-polymer enthalpic and entropic interactions control the nanoparticle dispersion in polymer matrices. Synthetic chemical methods for modifying the particle surface in order to control polymer-particle interactions are involved and large scale production is not possible. In the current approach, a physical method is employed to control polymer-particle interactions. The use of commercially available solvents is found to be effective in modifying particle-polymer interfacial interactions. The approach is applicable to a wide range of particle-polymer systems and can thereby enable large scale processing of polymer nanohybrids. The systems of silica nanoparticles dispersed in long-range or short-range self-assembled structures of aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics) is considered here. The effect of various parameters such as the presence of organic solvents, pH, and particle size on the block copolymer organization and the ensuing particle-polymer interactions are investigated. Favorable surface interactions between the deprotonated silica nanoparticle and PEO-rich domain facilitate particle

  4. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    DEFF Research Database (Denmark)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries......, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg-1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg-1), good cycling stability and rate capability....

  5. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  6. Magnetite nanostructures functionalized with cytostatic drugs exhibit great anti-tumoral properties without application of high amplitude alternating magnetic fields.

    Science.gov (United States)

    Voicu, Georgeta; Crică, Livia Elena; Fufă, Oana; Moraru, Lavinia Iuliana; Popescu, Roxana Cristina; Purcel, Gabriela; Stoilescu, Miruna Codruta; Grumezescu, Alexandru Mihai; Bleotu, Coralia; Holban, Alina Maria; Andronescu, Ecaterina

    2014-01-01

    Here, we report the synthesis, characterization and the impact of magnetite nanoparticles functionalized with cytostatic drugs, epirubicin (Epi) and fludarabine (Flu) (Fe3O4@Epi, Fe3O4@Flu) prepared by chemical co-precipitation method on tumoral cells in vitro. The average diameter of the resulted particles was about 4 nm for both Fe3O4@Epi and for Fe3O4@Flu. These bioactive nanostructured materials proved to significantly enhance the antitumor effect of tested cytostatic drugs in vitro. The most significant result was obtained in the case of Epi, where the tested magnetite nanostructured material enhanced the cytotoxic effect of this drug with more than 50%.

  7. Focused-ion-beam nano-structuring of photonic cavities in dielectric materials

    NARCIS (Netherlands)

    Ay, F.; Pollnau, Markus

    Focused ion beam (FIB) milling is an emerging technology that enables fast, reliable and well-controlled nanometer-size feature definition. In this work we will discuss applications of the tool in the area of photonics. The FIB technique can be adapted and optimized almost for any material system

  8. Beam-induced magnetic property modifications: Basics, nanostructure fabrication and potential applications

    International Nuclear Information System (INIS)

    Devolder, T.; Bernas, H.; Ravelosona, D.; Chappert, C.; Pizzini, S.; Vogel, J.; Ferre, J.; Jamet, J.-P.; Chen, Y.; Mathet, V.

    2001-01-01

    We have developed an irradiation technique that allows us to tune the magnetic properties of thin films without affecting their roughness. We discuss the mechanisms involved and the applications. He + ion irradiation of Co/Pt multilayers lowers their magnetic anisotropy in a controlled way, reducing the coercive force and then leading to in-plane magnetization. By X-ray reflectometry, we study how irradiation-induced structural modifications correlate with magnetic properties. We also report the L1 0 chemical ordering of FePt by irradiation at 280 deg. C, and the consequent increase of magnetic anisotropy. Planar magnetic patterning at the sub 50 nm scale can be achieved when the irradiation is performed through a mask. New magnetic behaviors result from the fabrication process. They appear to arise from collateral damage. We model these effects in the case of SiO 2 and W masks. The planarity of irradiation-induced patterning and its ability to independently control nanostructure size and coercivity make it very appealing for magnetic recording on nanostructured media. Finally, possible applications to the granular media used in current hard disk drive storage technology are discussed

  9. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nguyen

    2018-03-01

    Full Text Available Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.

  10. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  11. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    Science.gov (United States)

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  12. Applications: Accelerators for new materials

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1990-01-01

    Ion beams bring important benefits to material processing, and the Seventh International Conference on Ion Beam Modification of Materials (IBMM 90), held in Knoxville, Tennessee, in September showed the promising progress being made

  13. Synthesis and Characterization of One-Dimensional Porous (Zn,CdS/SiO2 Composite Nanostructural Materials

    Directory of Open Access Journals (Sweden)

    Xiuli Fu

    2014-01-01

    Full Text Available One-dimensional (1D porous (Zn,CdS/SiO2 composite nanostructural materials were synthesized by thermal evaporation of ZnS and CdS mixture powder at 950°C. The nanomaterials were collected from silicon wafers which were coated with 10 nm thick gold and were set apart from the source about 10 cm away. The diameter of the as-prepared 1D porous composite nanostructures is in the range of 1–1.5 μm and their lengths are up to tens to hundreds of micrometers. The photoluminescence spectra measured at different temperatures of the prepared nanostructures display a similar broadband signature, which can be fitted by Gaussian function into three emission peaks centered at 477, 536, and 588 nm and attributed to band edge emission, neutral oxygen vacancies, and antisymmetric stretching of Si–O–Si and nonstoichiometric SiOx (1

  14. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  15. Opportunities in chemistry and materials science for topological insulators and their nanostructures

    KAUST Repository

    Kong, Desheng

    2011-10-24

    Electrical charges on the boundaries of topological insulators favour forward motion over back-scattering at impurities, producing low-dissipation, metallic states that exist up to room temperature in ambient conditions. These states have the promise to impact a broad range of applications from electronics to the production of energy, which is one reason why topological insulators have become the rising star in condensed-matter physics. There are many challenges in the processing of these exotic materials to use the metallic states in functional devices, and they present great opportunities for the chemistry and materials science research communities. © 2011 Macmillan Publishers Limited. All rights reserved.

  16. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2017-11-01

    Full Text Available Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  17. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind

    2016-10-27

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  18. Nanostructuring of thin Au films deposited on ordered Ti templates for applications in SERS

    Science.gov (United States)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Macewicz, Łukasz; Skiba, Franciszek; Szkoda, Mariusz; Karczewski, Jakub; Burczyk, Łukasz; Śliwiński, Gerard

    2017-10-01

    In this work the results on thermal nanostructuring of the Au films on Ti templates as well as morphology and optical properties of the obtained structures are reported. The bimetal nanostructures are fabricated in a multi-step process. First, the titania nanotubes are produced on the surface of Ti foil by anodization in an ethylene glycol-water solution containing fluoride ions. This is followed by chemical etching in oxalic acid and results in a highly ordered dimpled surface. Subsequently, thin gold films (5-20 nm) are deposited onto prepared Ti substrates by magnetron sputtering. The as-prepared layers are then dewetted by the UV nanosecond laser pulses or alternatively in the furnace (temperature cavity diameter: ∼100 nm) covered with Au nanoparticles (NPs). It is observed that both the laser annealing and continuous thermal treatment in furnace can lead to the creation of NPs inside every Ti dimple and result in uniform coating of the whole area of structured templates. The size and localization of NPs obtained via both dewetting processes as well as their shape can be tuned by the annealing time and the laser processing parameters and also by initial thickness of Au layer and presence of the dimples themselves in the substrate. Results confirm that the prepared material can be used as substrate for SERS (Surface Enhanced Raman Spectroscopy).

  19. Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials.

    Science.gov (United States)

    Tahersima, Mohammad H; Sorger, Volker J

    2015-08-28

    Recent investigations of semiconducting two-dimensional (2D) transition metal dichalcogenides have provided evidence for strong light absorption relative to its thickness attributed to high density of states. Stacking a combination of metallic, insulating, and semiconducting 2D materials enables functional devices with atomic thicknesses. While photovoltaic cells based on 2D materials have been demonstrated, the reported absorption is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we show that taking advantage of the mechanical flexibility of 2D materials by rolling a molybdenum disulfide (MoS(2))/graphene (Gr)/hexagonal boron nitride stack to a spiral solar cell allows for optical absorption up to 90%. The optical absorption of a 1 μm long hetero-material spiral cell consisting of the aforementioned hetero stack is about 50% stronger compared to a planar MoS(2) cell of the same thickness; although the volumetric absorbing material ratio is only 6%. A core-shell structure exhibits enhanced absorption and pronounced absorption peaks with respect to a spiral structure without metallic contacts. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.

  20. Nanostructured MnO2 as Electrode Materials for Energy Storage

    OpenAIRE

    Christian M. Julien; Alain Mauger

    2017-01-01

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on ...

  1. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS.

    Science.gov (United States)

    Sivakov, Vladimir A; Höflich, Katja; Becker, Michael; Berger, Andreas; Stelzner, Thomas; Elers, Kai-Erik; Pore, Viljami; Ritala, Mikko; Christiansen, Silke H

    2010-06-21

    A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface-enhanced Raman spectroscopy (SERS)-based sensing. As host material for the plasmonically active nanostructures we use dense single-crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core-shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core-shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning- and transmission electron microscopy. Optimized core-shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.

  2. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2015-04-01

    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  3. Application of aqueous dispersions of silver nanostructures for treatment of pyoinflammatory diseases with a chronic component

    International Nuclear Information System (INIS)

    Rutberg, Ph; Kolikov, V; Snetov, V; Stogov, A; Moshkin, A; Khalilov, M

    2011-01-01

    Bactericidal properties of aqueous dispersions of oxide silver nanostructures (ADSN) produced by means of pulsed electric discharges (PED) in water can use in surgery for treatment of upper purulent wounds with a chronic component. The patients with such wounds are of large number and differ on etiology of diseases but their mutual feature is long treatment without marked positive changes. Thus long application of antibiotics leads to abnormality of immune processes and antibacterial resistance of microbial flora. Moreover, local antiseptics are frequently toxic and one can oppress processes of reparation in a wound. The investigation is addressed to finding out the opportunity of usage of an ADSN for treatment of purulent wounds with a chronic component and comparison of its efficiency with the sodium hypochlorite. At investigation, the ADSN formed at PED of 5 - 10 μs duration, with highest share of 'small' (hydrodynamic diameter ≤ 100 nm) nanostructures and greatest surface electric charge we used. It was found that the usage of ADSN during the first 5 days characterized by high active reparative processes with their maximum at 3rd - 4th days and subsequent moderate further healing. At local use of ADSN, there were no cellular atypia and preternatural representations about inflammatory reactions. It is possible to assume that usage of ADSN will allow in prospect to correct the practice of out-patient therapy of chronic and slow pyoinflammatory diseases.

  4. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    Science.gov (United States)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940

  5. Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, E., E-mail: maniphysics@gmail.com [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); Materials Science Group (MSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Sree Balaji Medical College & Hospital (SBMCH), Bharath University, Chrompet, Chennai 600044 (India); Kennedy, J. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kavitha, G. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); PG& Research Dept of Physics, AM Jain College Affiliated to University of Madras, Chennai 600114 (India); and others

    2015-10-25

    We report the observation of hybrid nanostructured thin-films such as diamond-like carbon (DLC) signature on the ZnO epitaxial thin-films grown onto the device silicon/quartz substrate by reactive pulsed laser deposition (r-PLD) under the argon–oxygen (Ar|O{sub 2}) ambient at 573 K. Undoped and Carbon (C) doped epitaxial ZnO thin-film layer formation is revealed by the accelerator based ion-beam analysis (IBA) technique of resonant Rutherford backscattering spectrometry (RRBS), glancing-incidence X-ray diffraction (GIXRD) pattern, micro-Raman spectroscopy (μ-RS) and field-emission (F-E) studies. The RRBS and GIXRD results show the deposition of epitaxial thin-films containing C into ZnO. The μ-RS technique is a standard nondestructive tool (NDT) for the characterization of crystalline, nano-crystalline, and amorphous carbons (a-C). As grown ZnO and C-doped ZnO thin-films μ-RS result reveal the doping effect of C-impurities that appear in the form of DLC evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak at 438 cm{sup −1} with E{sub 2}(h) phonon of ZnO. The electron transport F-E result shows the hybrid thin-films has high conductivity than the un-doped film. Fabricated hybrid nanostructured thin-films materials could be very useful for the emerging applications of micro-nano dosimetry. - Highlights: • Observation of hybrid nanostructured diamond-like carbon (DLC) on ZnO epitaxial thin-films at 573 K. • Carbon doped epitaxial ZnO thin-film layer formation is revealed by RRBS, Micro-Raman. • Field-emission (F-E) study. • DLC formation evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak of ZnO. • The electron transport F-E result shows the hybrid thin-film has high conductivity than the undoped thin-film.

  6. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  7. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  8. Finishing panels for electromagnetic shielded premises on the basis of nanostructured composite material

    Directory of Open Access Journals (Sweden)

    AHMED Abdulbaset Arabi A

    2015-11-01

    Full Text Available A wide utilization of electronic equipment produces the need in integration of building and shielding technologies. This would allow to construct premises and buildings, capable of attenuation of the electromagnetic fields, generated by industrious and household sources. Such kinds of premises would solve the problems of electromagnetic compatibility, uncontrolled effect of electromagnetic radiation (EMR on humans’ organisms, protection of critical types of information assets, processed by automatic facilities. In addition to the high shielding effectiveness the materials should ensure the fire safety in the premises. The developed multilayered shielding materials based on composites, which are characterized by high dielectric and magnetic losses, ensure the EMR attenuation 20…35 dB in the frequency range of 0,7…17 GHz. The EMR reflection factor, ensured by the suggested materials, is -5…-1 dB. Open fire (+1700ºС impact on the developed materials was studied and the burning-through time for different samples was determined. The burning-through time is sufficiently increased upto 140 s due to hygroscopic aqueous solutions application in the composite materials content.

  9. Nanostructural effect of acid-etching and fluoride application on human primary and permanent tooth enamels

    International Nuclear Information System (INIS)

    Cheong, Youjin; Choi, Samjin; Kim, So Jung; Park, Hun-Kuk

    2012-01-01

    This study examined the nanostructural effects of fluoride application and the acid-etching time with respect to the time elapsed after fluoride application on the primary and permanent tooth enamel layers using atomic force microscopy (AFM) and scanning electron microscopy (SEM). 192 non-carious teeth were assigned to sixteen experimental groups (n = 12) including primary (1 to 8) and permanent (9 to 16) teeth, based on the timing of acid-etching with 37% phosphoric acid after an acidulated phosphate fluoride (APF) pre-treatment. The APF pre-treatment led to a decrease in surface roughness in both the primary and permanent teeth. After the APF treatment, the roughness in both primary and permanent teeth increased with the time elapsed. An acid-etching time of 40 s led to increased nanostructural changes in the enamel surfaces compared to the conventional acid-etching time of 20 s. This acid-etching process led to a higher roughness changes in the primary teeth than in the permanent teeth. To obtain proper enamel adhesion of a sealant after APF pre-treatment, it is important to apply acid-etching two weeks after pre-treatment. In addition, the acid-etching time should be prolonged to apply etching more quickly than two weeks, regardless of the primary and permanent teeth. Highlights: ► APF pre-treatment led to decreased surface roughness in the enamel. ► After APF treatment, the more roughness increased with increasing time elapsed. ► Acid-etching should be performed two weeks after fluoride application.

  10. Nanostructural effect of acid-etching and fluoride application on human primary and permanent tooth enamels

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Youjin [Department of Biomedical Engineering and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Choi, Samjin [Department of Biomedical Engineering and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Department of Orthodontics, College of Dental Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kim, So Jung [Department of Pediatric Dentistry, College of Dental Medicine, Kyung Hee University, Seoul (Korea, Republic of); Park, Hun-Kuk, E-mail: sigmoidus@khu.ac.kr [Department of Biomedical Engineering and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Program of Medical Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2012-07-01

    This study examined the nanostructural effects of fluoride application and the acid-etching time with respect to the time elapsed after fluoride application on the primary and permanent tooth enamel layers using atomic force microscopy (AFM) and scanning electron microscopy (SEM). 192 non-carious teeth were assigned to sixteen experimental groups (n = 12) including primary (1 to 8) and permanent (9 to 16) teeth, based on the timing of acid-etching with 37% phosphoric acid after an acidulated phosphate fluoride (APF) pre-treatment. The APF pre-treatment led to a decrease in surface roughness in both the primary and permanent teeth. After the APF treatment, the roughness in both primary and permanent teeth increased with the time elapsed. An acid-etching time of 40 s led to increased nanostructural changes in the enamel surfaces compared to the conventional acid-etching time of 20 s. This acid-etching process led to a higher roughness changes in the primary teeth than in the permanent teeth. To obtain proper enamel adhesion of a sealant after APF pre-treatment, it is important to apply acid-etching two weeks after pre-treatment. In addition, the acid-etching time should be prolonged to apply etching more quickly than two weeks, regardless of the primary and permanent teeth. Highlights: Black-Right-Pointing-Pointer APF pre-treatment led to decreased surface roughness in the enamel. Black-Right-Pointing-Pointer After APF treatment, the more roughness increased with increasing time elapsed. Black-Right-Pointing-Pointer Acid-etching should be performed two weeks after fluoride application.

  11. Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo

    Science.gov (United States)

    Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan

    2014-02-01

    Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.

  12. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications.

    Science.gov (United States)

    Zhao, Huaping; Wang, Chengliang; Vellacheri, Ranjith; Zhou, Min; Xu, Yang; Fu, Qun; Wu, Minghong; Grote, Fabian; Lei, Yong

    2014-12-03

    Self-supported metallic nanopore arrays with highly oriented nanoporous structures are fabricated and applied as ideally nanostructured electrodes for supercapacitor applications. Their large specific surface area can ensure a high capacitance, and their highly oriented and stable nanoporous structure can facilitate ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hierarchical plasmonic-metal/semiconductor micro/nanostructures: green synthesis and application in catalytic reduction of p-nitrophenol

    Science.gov (United States)

    Gao, Shuyan; Jia, Xiaoxia; Li, Zhengdao; Chen, Yanli

    2012-03-01

    Hierarchical micro/nano arrays can offer both the advantages of nano-sized building blocks and micro- or submicrometer-sized ordered arrays, therefore representing one kind of potential functional materials and having received enormous attention for a wealth of applications. In this study, four-dimensionally flower-like CuO micro/nanostructures decorated by Au nanoparticles are synthesized via an environmentally friendly route assisted by polyethylene glycol. Experiments reveal that the product demonstrates high catalytic performance for the reduction of 4-nitrophenol using NaBH4 as the reducing agent, which could be attributed to the rich Au/CuO interfaces in the samples. Compared to the pure noble metal catalysts, the obtained sample is quite economic. In terms of methodology and cost-effectiveness, this study proposes an economically useful and green method to produce a highly efficient metal-based catalyst. It is also a good example for the organic combination of green chemistry and functional materials.

  14. Synthesis of Ce-doped In2O3 nanostructure for gas sensor applications

    Science.gov (United States)

    Liu, Xiaojing; Jiang, Li; Jiang, Xiumei; Tian, Xueying; Sun, Xin; Wang, Yanli; He, Weidong; Hou, Peiyu; Deng, Xiaolong; Xu, Xijin

    2018-01-01

    Nanostructured materials with advantages in large surface-to-volume ratio and high specific surface area have demonstrated great potential in improving the gas sensing property because these structural and morphology features provide improved surface sensing activities. In this work, porous Ce-doped In2O3 nanospheres have been successfully prepared using a facile hydrothermal method, and their morphology, microstructure, and gas-sensing properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and gas sensing testing (GST). Ce doping not only enhances the response value and reduces response-recovery time but also lowers the operating temperature and retains good stability. The possible reasons for enhanced sensing properties of as-prepared Ce-doped In2O3 sensors were also proposed.

  15. Nanostructured materials for sensing Pb(II and Cd(II ions: Manganese oxohydroxide versus carbonized polyanilines?

    Directory of Open Access Journals (Sweden)

    Šljukić Biljana

    2013-01-01

    Full Text Available Nanostructured materials including three different carbonized polyanilines and manganese oxyhydroxide were prepared and evaluated as electrode materials for sensing of lead and cadmium ions in aqueous media. Anodic stripping voltammetry results indicated that all prepared materials could be successfully used for determination of these two heavy metal ions. Carbonized polyaniline-based electrodes have higher signal and lower limits of detection (10-7 М compared to manganese oxyhydroxide-based electrode. Among the three studied carbonized polyanilines, the one that was derived from polyaniline precursor produced in the presence of 3,5-dinitrosalicyclic acid showed the highest electrocatalytic activity towards the lead and cadmium oxidation. [Projekat Ministarstva nauke Republike Srbije, br. OI172043 i br. III45014

  16. First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces

    International Nuclear Information System (INIS)

    Ogata, Shigenobu; Umeno, Yoshitaka; Kohyama, Masanori

    2009-01-01

    First-principles studies on the intrinsic mechanical properties of various materials and systems through ab initio tensile and shear testing simulations based on density-functional theory are reviewed. For various materials, ideal tensile and shear strength and features of the deformation of bulk crystals without any defects have been examined, and the relation with the bonding nature has been analyzed. The surfaces or low-dimensional nano-structures reveal peculiar strength and deformation behavior due to local different bonding nature. For grain boundaries and metal/ceramic interfaces, tensile and shear behaviors depend on the interface bonding, which impacts on the research of real engineering materials. Remaining problems and future directions in this research field are discussed. (topical review)

  17. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches.

    Science.gov (United States)

    Yue, Ming; Zhang, Xiangyi; Liu, J Ping

    2017-03-17

    Nanostructured permanent magnetic materials, including exchange-coupled nanocomposite permanent magnets, are considered as the next generation of high-strength magnets for future applications in energy-saving and renewable energy technologies. However, fabrication of bulk nanostructured magnets remains very challenging because conventional compaction and sintering techniques cannot be used for nanostructured bulk material processing. In this paper we review recent efforts at producing bulk nanostructured single-phase and composite magnetic materials with emphasis on grain size control, anisotropy generation and interface modification.

  18. Electromagnetism principles, materials, and applications

    CERN Document Server

    Sorge, Korey

    2018-01-01

    This book meets the needs of professors and students by encompassing all necessary information into one single comprehensive text by restructuring presentation, simplifying mathematics, reinforcing physics, and fully expanding topics related to materials.

  19. Large-scale nanofabrication of periodic nanostructures using nanosphere-related techniques for green technology applications (Conference Presentation)

    Science.gov (United States)

    Yen, Chen-Chung; Wu, Jyun-De; Chien, Yi-Hsin; Wang, Chang-Han; Liu, Chi-Ching; Ku, Chen-Ta; Chen, Yen-Jon; Chou, Meng-Cheng; Chang, Yun-Chorng

    2016-09-01

    Nanotechnology has been developed for decades and many interesting optical properties have been demonstrated. However, the major hurdle for the further development of nanotechnology depends on finding economic ways to fabricate such nanostructures in large-scale. Here, we demonstrate how to achieve low-cost fabrication using nanosphere-related techniques, such as Nanosphere Lithography (NSL) and Nanospherical-Lens Lithography (NLL). NSL is a low-cost nano-fabrication technique that has the ability to fabricate nano-triangle arrays that cover a very large area. NLL is a very similar technique that uses polystyrene nanospheres to focus the incoming ultraviolet light and exposure the underlying photoresist (PR) layer. PR hole arrays form after developing. Metal nanodisk arrays can be fabricated following metal evaporation and lifting-off processes. Nanodisk or nano-ellipse arrays with various sizes and aspect ratios are routinely fabricated in our research group. We also demonstrate we can fabricate more complicated nanostructures, such as nanodisk oligomers, by combining several other key technologies such as angled exposure and deposition, we can modify these methods to obtain various metallic nanostructures. The metallic structures are of high fidelity and in large scale. The metallic nanostructures can be transformed into semiconductor nanostructures and be used in several green technology applications.

  20. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  1. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  2. Multifunctional materials for tribological applications

    CERN Document Server

    Wood, Robert J K

    2015-01-01

    ""Professor Wood's excellent book is a must-read for all those with an interest in surface engineering and tribology. He has brought together leading experts in their field to produce a comprehensive compilation of topics highly relevant to today's needs. The book will also appeal to non-tribologists, especially engineers and scientists, developing new systems and looking for up-to-date information on advanced materials and coatings.""-Mr. Keith Harrison, The Institute of Materials, Minerals and Mining, UK""A group of well-written, informative ar

  3. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    Science.gov (United States)

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  5. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  6. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  7. New Cork-Based Materials and Applications.

    Science.gov (United States)

    Gil, Luís

    2015-02-10

    This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork) for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders), and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  8. New Cork-Based Materials and Applications

    Directory of Open Access Journals (Sweden)

    Luís Gil

    2015-02-01

    Full Text Available This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders, and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  9. Application of Advanced Materials in Petroleum Engineering

    Science.gov (United States)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  10. Selective adsorption of nano-bio materials and nanostructure fabrication on molecular resists modified by proton beam irradiation

    International Nuclear Information System (INIS)

    Lee, H. W.; Kim, S. K.; Cheon, J.; Kwon, K. J.; Kim, H. S.

    2006-05-01

    The purpose of this research is to use the substrate modified with the proton or ion beam irradiation to form nanostructures and to selectively adsorb bio-nano materials on the patterned substrate. Recently, the miniaturization of the integrated devices with fine functional structures was intensively investigated, based on combination of nanotechnology (NT), biotechnology (BT) and information technology (IT). The molecular thin films such as a self-assembled monolayer or a polymer resist layer have been used as an alternative to modifying the surface property. Although proton or ion beam irradiation has been used as an efficient tool to modify the physical, chemical and electrical properties of a surface, the nano-patterning on the substrate or the molecular film modified with the beam irradiation has hardly been studied at both home and abroad. The selective adsorption of nano-bio materials such as carbon nanotubes and proteins on the patterns would contribute to developing the integrated devices

  11. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries

    Science.gov (United States)

    Mosavati, Negar; Salley, Steven O.; Ng, K. Y. Simon

    2017-02-01

    The Lithium Sulfur (Li-S) battery system is one of the most promising candidates for electric vehicle applications due to its higher energy density when compared to conventional lithium ion batteries. However, there are some challenges facing Li-S battery commercialization, such as: low active material utilization, high self-discharge rate, and high rate of capacity fade. In this work, a series of transition metal nitrides: Tungsten nitride (WN), Molybdenum Nitride (Mo2N), and Vanadium Nitride (VN) was investigated as cathode materials for lithium polysulfide conversion reactions. Capacities of 697, 569, and 264 mAh g-1 were observed for WN, Mo2N, VN, respectively, with 8 mg cm-2 loading, after 100 cycles at a 0.1 C rate. WN higher electrochemical performance may be attributed to a strong reversible reaction between nitrides and polysulfide, which retains the sulfur species on the electrode surface, and minimizes the active material and surface area loss. X-ray photoelectron spectroscopy (XPS) analysis was performed to gain a better understanding of the mechanism underlying each metal nitride redox reactions.

  12. Nanostructured platinum as an electrochemically and mechanically stable electrode coating.

    Science.gov (United States)

    Boehler, C; Oberueber, F; Stieglitz, T; Asplund, M

    2017-07-01

    Nanostructured materials exhibit large electrochemical surface areas and are thus of high interest for neural interfaces where low impedance and high charge transfer characteristics are desired. While progress in nanotechnology successively enabled smaller feature sizes and thus improved electrochemical properties, concerns were raised with respect to the mechanical stability of such nano structures for use in neural applications. In our study we address these concerns by investigating the mechanical and electrochemical stability of nanostructured platinum. Neural probes with nano-Pt were exposed to exaggerated stress tests resembling insertion into neural tissue over 60 mm distance or long-term stimulation over 240 M biphasic current pulses. Thereby only insignificant changes in electrochemical properties and morphological appearance could be observed in response to the test, proving that nanostructured platinum exhibits outstanding stability. With this finding, a major concern in using nanostructured materials for interfacing neural tissue could be eliminated, demonstrating the high potential of nanostructured platinum for neuroprosthetic devices.

  13. Magneto-optic material selectivity in self-assembled BiFeO3-CoFe2O4 biferroic nanostructures

    Science.gov (United States)

    Postava, K.; Hrabovský, D.; Životský, O.; Pištora, J.; Dix, N.; Muralidharan, R.; Caicedo, J. M.; Sánchez, F.; Fontcuberta, J.

    2009-04-01

    Material selective sensitivity of a magneto-optical polar Kerr effect to magnetic contributions from different inclusions in self-organized magnetic nanostructures is presented. The method is supported by modeling of the magneto-optic response based on the effective medium approximation and by hysteresis loop measurement of the multiferroic BiFeO3-CoFe2O4 self-assembled nanostructure. Magneto-optic selective sensitivity is demonstrated and explained as an effect of different complex diagonal and off-diagonal permittivity tensor elements of two materials.

  14. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    Science.gov (United States)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with

  15. New generation photoelectric converter structure optimization using nano-structured materials

    Science.gov (United States)

    Dronov, A.; Gavrilin, I.; Zheleznyakova, A.

    2014-12-01

    In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.

  16. Supercapacitors materials, systems and applications

    CERN Document Server

    Lu, Max; Frackowiak, Elzbieta

    2013-01-01

    Written by an international group of leading experts from both academia and industry, this is the first comprehensive book on the topic for 10 years. Taking into account the commercial interest in these systems and the scientific and technological developments over the past decade, all important materials and systems are covered, with several chapters devoted to topics of direct industrial relevance.The book starts by providing an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. There

  17. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  18. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Hashemi Beni, Batoul; Vashaee, Daryoosh; Tayebi, Lobat

    2014-05-01

    Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications. Published by Elsevier B.V.

  19. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Po-I; Chung, Li-Ching; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Ma, Chen-Chi M.; Chang, Min-Chao

    2013-01-01

    The nanostructured anatase titanium dioxide/activated carbon composite material for capacitive deionization electrode was prepared in a short time by a lower temperature two-step microwave-assisted ionothermal (sol–gel method in the presence of ionic liquid) synthesis method. This method includes a reaction and a crystallization step. In the crystallization step, the ionic liquid plays a hydrothermal analogy role in driving the surface anatase crystallization of amorphous titanium dioxide nanoparticles formed in the reaction step. The energy dispersive spectroscopic study of the composite indicates that the anatase titanium dioxide nanoparticles are evenly deposited in the matrix of activated carbon. The electrochemical property of the composite electrode was investigated. In comparison to the pristine activated carbon electrode, higher specific capacitance was observed for the nanostructured anatase titanium dioxide/activated carbon composite electrode, especially when the composite was prepared with a molar ratio of titanium tetraisopropoxide/H 2 O equal to 1:15. Its X-ray photoelectron spectroscopic result indicates that it has the highest amount of Ti-OH. The Ti-OH group can enhance the wetting ability and the specific capacitance of the composite electrode. The accompanying capacitive deionization result indicates that the decay of electrosorption capacity of this composite electrode is insignificant after five cycle tests. It means that the ion electrosorption–desorption becomes a reversible process

  20. 2015 International Conference on Physics and Mechanics of New Materials and their Applications

    CERN Document Server

    Chang, Shun-Hsyung; Topolov, Vitaly

    2016-01-01

    This proceedings volume presents selected and peer reviewed 50 reports of the 2015 International Conference on “Physics and Mechanics of New Materials and Their Applications” (Azov, Russia, 19-22 May, 2015), devoted to 100th Anniversary of the Southern Federal University, Russia. The book presents processing techniques, physics, mechanics, and applications of advanced materials. The book is concentrated on some nanostructures, ferroelectric crystals, materials and composites and other materials with specific properties. In this book are presented nanotechnology approaches, modern piezoelectric techniques, physical and mechanical studies of the structure-sensitive properties of the materials. A wide spectrum of mathematical and numerical methods is applied to the solution of different technological, mechanical an