WorldWideScience

Sample records for nanostructured composite materials

  1. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  3. Mechanical Spectroscopy of Nanostructured Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mari, Daniele; Schaller, Robert; Mazaheri, Mehdi, E-mail: daniele.mari@epfl.ch [Ecole Polytechnique Federale de Lausanne, Laboratoire de Physique de la Matiere Complexe, Groupe de Spectroscopie Mecanique, CH-1015 Lausanne (Switzerland)

    2011-07-06

    The thermo-mechanical behavior of different nano-structured composite materials, which were processed within the SAPHIR European Integrated Project, has been characterized by mechanical spectroscopy. The obtained results show clearly that creep resistance of fine grain ceramics such as zirconia can be improved by carbon nano-tube (CNT) reinforcements. On the other hand the elastic modulus and the damping capacity of aluminum matrix composites were increased by SiC nano-particle additions. It has also been observed that CNT additions are responsible for a better thermal stability of polymer such as ABS (Acrylonitrile-Butadiene-Styrene) used in automotive industry.

  4. Composite, nanostructured, super-hydrophobic material

    Science.gov (United States)

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  5. Hybrid Aluminum Composite Materials Based on Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Tatiana S. Koltsova

    2015-09-01

    Full Text Available We investigated formation of carbon nanofibers grown by chemical deposition (CVD method using an acetylene-hydrogen mixture on the surface of micron-sized aluminum powder particles. To obtain uniform distribution of the carbon nanostructures on the particles we deposited nickel catalyst on the surface by spraying from the aqueous solution of nickel nitrate. It was found that increasing the time of the synthesis lowers the rate of growth of carbon nanostructures due to the deactivation of the catalyst. The Raman spectroscopy measurements confirm the presence of disordered carbon corresponding to CNFs in the specimen. X-ray photoelectron spectroscopy showed the presence of aluminum carbide in the hot pressed samples. An aluminum composite material prepared using 1 wt.% CNFs obtained by uniaxial cold pressing and sintering showed 30% increase in the hardness compared to pure aluminum, whereas the composites prepared by hot pressing showed 80% increase in the hardness. Composite materials have satisfactory ductility. Thus, the aluminum based material reinforced with carbon nanostructures should be appropriate for creating high-strength and light compacts for aerospace and automotive applications and power engineering.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7355

  6. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    with macroscopic reinforcements such as fiber, clay, glass mineral and other fillers. The nano-alloyed polymers are particularly useful for producing...applications, including space-sur- vivable materials and seals, gaskets, cosmetics , and personal care. 25 Claims, 10 Drawing Sheets B-3 U.S. Patent Mar...the incorporation of fluorinated nanostructured chemicals onto the surface of a secondary material (such as Ti02 , CaC03 , glass or mineral

  7. Nanostructured composite materials of cerium oxide and barium cerate

    Science.gov (United States)

    Medvedev, D. A.; Pikalova, E. Yu.; Demin, A. K.; Khrustov, V. R.; Nikolaenko, I. V.; Nikonov, A. V.; Malkov, V. B.; Antonov, B. D.

    2013-02-01

    Nanosized powders with a composition of (1- x)Ce0.8Sm0.2O2-δ- xBace0.8Sm0.2O3-δ ( x = 0, 0.3, and 1) were obtained by self-ignition combustion synthesis (SICS) from the appropriate nitrates and various organic fuels (glycine, glycerol, citric acid, and a mixture of citric acid and ethylene glycol). The most finely dispersed powders formed when the concentration of the perovskite phase in the system decreased or when glycerol or citric acid-enthyleneglycol mixture was used as a fuel during SICS. A procedure for the preparation of powders and nanostructured ceramics was developed and their electric properties were studied.

  8. Fabrication of a nanostructured gold-polymer composite material.

    Science.gov (United States)

    Mallick, K; Witcomb, M; Scurrell, M

    2006-07-01

    A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl(4) as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl(4). It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50+/-10nm, while the reduction of AuCl(4) (-) results in the formation of gold nanoparticles ( approximately 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.

  9. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    Mechanical Testing Measurements were made of the Young’s modulus and toughness of half-Heusler bulk materials with compositions [Zro.5Hfo...will be optimized to meet the needs of engineered devices. A microhardness tester will be used to obtain hardness measurements and determine the...modulus of elasticity for thermoelectric samples. These tests will be used to assess homogeneity of mechanical properties as a function of processing

  10. Elastomer-Carbon Nanostructure Composites as Prospective Materials for Flexible Robotic Tactile Sensors

    OpenAIRE

    Knite, M; Podiņš, G; Zīke, S; Zavickis, J

    2008-01-01

    Our recent achievements in the design, processing and studies of physical properties of elastomer – nano-structured carbon composites as prospective compressive strain sensor materials for robotic tactile elements are presented. Composites made of polyisoprene matrix and high-structured carbon black or multi-wall carbon nano-tube filler have been designed and manufactured to develop completely flexible conductive polymer nano-composites for tactile sensing elements. Electrical resistance of t...

  11. Permittivity of dielectric composite materials comprising graphene nanoribbons. The effect of nanostructure.

    Science.gov (United States)

    Dimiev, Ayrat; Zakhidov, Dante; Genorio, Bostjan; Oladimeji, Korede; Crowgey, Benjamin; Kempel, Leo; Rothwell, Edward J; Tour, James M

    2013-08-14

    New lightweight, flexible dielectric composite materials were fabricated by the incorporation of several new carbon nanostructures into a dielectric host matrix. Both the permittivity and loss tangent values of the resulting composites were widely altered by varying the type and content of the conductive filler. The dielectric constant was tuned from moderate to very high values, while the corresponding loss tangent changed from ultralow to extremely high. The data exemplify that nanoscale changes in the structure of the conductive filler result in dramatic changes in the dielectric properties of composites. A microcapacitor model most explains the behavior of the dielectric composites.

  12. Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials

    DEFF Research Database (Denmark)

    Amato, Letizia; Schulte, Lars; Heiskanen, Arto

    2015-01-01

    In this work, we compare pyrolyzed carbon derived from the photoresist SU‐8 alone or in combination with polystyrene and poly(styrene)‐block‐poly(dimethylsiloxane) copolymer (PS‐b‐PDMS), to be used as novel materials for micro‐ and nanoelectrodes. The pyrolyzed carbon films are evaluated with sca...

  13. A brief review on graphene/inorganic nanostructure composites: materials for the future

    Science.gov (United States)

    Mitra, S.; Banerjee, S.; Datta, A.; Chakravorty, D.

    2016-09-01

    The exotic physical properties of graphene have led to intense research activities on the synthesis and characterization of graphene composites during the last decade. The methods developed for preparation of such materials and the different application areas are reviewed. Mainly the inorganic nanostructure/graphene composites have been discussed. The techniques of ex-situ and in-situ hybridization respectively, have been pointed out. Some of the application areas such as batteries, ultracapacitors for energy storage, fuel cells and solar cells for energy generation are discussed. The possible future directions of research are highlighted.

  14. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  15. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  16. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    Science.gov (United States)

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  17. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  18. Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers

    OpenAIRE

    L.A. Dobrzański; M. Pawlyta; A. Hudecki

    2011-01-01

    Purpose: The purpose of the paper is to analyse theoretically the possibilities of the development of a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers and to study into the material science grounds of synthesis and/or production and formulation of such materials’ structure and properties and to characterise and model their structure and properties depending on the compositional, phase and chemical composition and the app...

  19. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  20. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  1. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  2. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  3. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R V Ramanujan

    2003-02-01

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic materials are provided. Advantages of nanocrystalline magnetic materials in the context of both materials and devices are discussed. Several high technology examples of the use of nanostructured magnetic materials are presented. Methods of processing nanostructured materials are described and the examples of sol gel, rapid solidification and powder injection moulding as potential processing methods for making nanostructured materials are outlined. Some opportunities and challenges are discussed.

  4. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials

    Indian Academy of Sciences (India)

    Srilakshmi P Bhaskar; Balaji R Jagirdar

    2012-11-01

    The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMADreactor maintained at 77 K.Warming of the matrix results in a slurry ofmetal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

  5. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  6. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  7. Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-12-01

    Full Text Available Purpose: The purpose of the paper is to analyse theoretically the possibilities of the development of a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers and to study into the material science grounds of synthesis and/or production and formulation of such materials’ structure and properties and to characterise and model their structure and properties depending on the compositional, phase and chemical composition and the applied synthesis and/or production and/or processing processes, without the attitude towards any direct practical application or use, but with confirming the highly probable future application areas, using the unexpected effects of formulating such materials’ functional properties.Design/methodology/approach: In general, the study is of priority cognitive importance as theoretical considerations and the author’s initial analyses related to technology foresight concerning this group of issues as well as sporadical results of research provided in the literature, usually in its incipient phase, indicating a great need to intensify scientific research, to develop the new groups of materials with quite unexpected predictable effects, resulting from the use of nanofibers for fabricating super advanced composite and porous materials.Findings: The description of the state of the art for the subject of the study has been limited to the issues initially selected with an analysis with the method of weighted scores.Practical implications: The outcoming materials may have direct influence on the development of electronics and photonics, medicine and pharmacy, environmental protection, automotive industry, space industry, machine industry, textile and clothing industry, cosmetic industry, agriculture and food sector.Originality/value: The value of this paper lies in the fact that it proposes a new generation of the high-innovative advanced porous and composite

  8. Nanostructured TiO2-coated activated carbon composite as an electrode material for asymmetric hybrid capacitors.

    Science.gov (United States)

    Kim, Sang-Ok; Lee, Joong Kee

    2012-02-01

    A nanostructured TiO2-coated activated carbon (TAC) composite was synthesized by a modified sol-gel reaction and employed it as a negative electrode active material for an asymmetric hybrid capacitor. The structural characterization showed that the TiO2 nano-layer was deposited on the surface of the activated carbon and the TAC composite has a highly mesoporous structure. The evaluation of electrochemical characteristics of the TAC electrode was carried out by galvanostatic charge/discharge cycling tests and electrochemical impedance spectroscopy. The obtained specific capacitance of the TAC composite was 42.87 F/g, which showed by 27.1% higher than that of the activated carbon (AC). The TAC composite also exhibited an excellent cycle performance and kept 95% of initial capacitance over 500 cycles.

  9. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    Science.gov (United States)

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK(-1). Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles.

  10. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  11. Electrochemistry, a technique to prepare redox nano-structured composite materials (polymer/nano-particles) - Characterizations - Applications; L'electrochimie, un outil pour elaborer des materiaux composites redox nanostructures (polymere/nanoparticules) - Caracterisations - Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chardon-Noblat, S. [Grenoble-1 Univ. Joseph Fourier, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR 5630, Institut de Chimie Moleculaire de Grenoble, FR CNRS 2607, 38 - Grenoble (France)

    2006-07-01

    In this work is presented at first the preparation by an electrochemical way of bi functional nano-structured composite materials. It is shown that with the pulsed electrolysis techniques, it is possible to obtain metallic particles whose size and organization are controlled at the nano-scopic scale in redox matrices. Then, are presented the physico-chemical characterizations of these nano-objects (coupled in situ or ex situ at the electrochemistry). The first results relative to the catalytic activation of CO{sub 2} with these materials used as composite cathodes are indicated. (O.M.)

  12. Finishing panels for electromagnetic shielded premises on the basis of nanostructured composite material

    Directory of Open Access Journals (Sweden)

    AHMED Abdulbaset Arabi A

    2015-11-01

    Full Text Available A wide utilization of electronic equipment produces the need in integration of building and shielding technologies. This would allow to construct premises and buildings, capable of attenuation of the electromagnetic fields, generated by industrious and household sources. Such kinds of premises would solve the problems of electromagnetic compatibility, uncontrolled effect of electromagnetic radiation (EMR on humans’ organisms, protection of critical types of information assets, processed by automatic facilities. In addition to the high shielding effectiveness the materials should ensure the fire safety in the premises. The developed multilayered shielding materials based on composites, which are characterized by high dielectric and magnetic losses, ensure the EMR attenuation 20…35 dB in the frequency range of 0,7…17 GHz. The EMR reflection factor, ensured by the suggested materials, is -5…-1 dB. Open fire (+1700ºС impact on the developed materials was studied and the burning-through time for different samples was determined. The burning-through time is sufficiently increased upto 140 s due to hygroscopic aqueous solutions application in the composite materials content.

  13. A 1 V supercapacitor device with nanostructured graphene oxide/polyaniline composite materials

    Indian Academy of Sciences (India)

    Deepak Kumar; Anjan Banerjee; Satish Patil; Ashok K Shukla

    2015-10-01

    Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g−1 specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg−1 and 72 kW kg−1, respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.

  14. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  15. Hierarchically nanostructured materials for sustainable environmental applications

    Science.gov (United States)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  16. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    Directory of Open Access Journals (Sweden)

    Zheng eRen

    2013-11-01

    Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  17. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil

    2016-06-08

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.

  18. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  19. Nanostructured materials in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali (ed.) [Avicenna Institute of Technology, Cleveland, OH (United States)

    2008-07-01

    Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications - ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices. (orig.)

  20. Plasma Spray Forming of Nanostructured Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nanostructure composite coating is obtained via plasma spraying of Al2O3-13 wt pct TiO2 powder. Brittle and hard lamella results from melted nanostructured powder. Ductile nanostructured matrix forms from unmelted nanostructured particles. Through the adjustment of constituent and nanostructure, hardness/strength and toughness/ductility are balanced and overall properties of the structure composite are achieved.

  1. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  2. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  3. Nano-structures Enhanced Novel Composite Electrode Material for Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode material for use in Li-ion batteries while maintaining high level of...

  4. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  5. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  6. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    Science.gov (United States)

    Dědková, Kateřina; Lang, Jaroslav; Matějová, Kateřina; Peikertová, Pavlína; Holešinský, Jan; Vodárek, Vlastimil; Kukutschová, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80°C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Electrical Breakdown Characteristic of Nanostructured W-Cu Contacts Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Junbo; CHEN Wen'ge; DING Bingjun

    2006-01-01

    Nanostructured (NS) W- Cu composite powder was prepared by mechanical alloying ( MA ), and nanostructured bulk of W- Cu contact material was fabricated by hot press sintering in an electrical vacuum furnace. The microstructure, electric conductivity, hardness and break down voltage of NS W-Cu alloys were measured and compared to those of conventional W- Cu alloys prepared by powder metallurgy. The experimental results show that microstructural refinement and uniformity can improve the breakdown behavior and the electric arc stability of nanostructured W- Cu contacts materials. Also, the nanostructured W- Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.

  8. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  9. Nanostructured materials for thermoelectric applications.

    Science.gov (United States)

    Bux, Sabah K; Fleurial, Jean-Pierre; Kaner, Richard B

    2010-11-28

    Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices.

  10. Nanostructured materials for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Humplik, T; Lee, J; O' Hern, S C; Fellman, B A; Karnik, R; Wang, E N [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T, E-mail: tlaoui@kfupm.edu.sa, E-mail: karnik@mit.edu, E-mail: enwang@mit.edu [Departments of Mechanical Engineering and Chemical Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  11. Nanostructured materials for water desalination

    Science.gov (United States)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  12. Nanostructured materials for water desalination.

    Science.gov (United States)

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  13. Nanoprobes, nanostructured materials and solid state materials

    Science.gov (United States)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  14. Method of fabrication of anchored nanostructure materials

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  15. Composite material

    Science.gov (United States)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  16. Anchored nanostructure materials and method of fabrication

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  17. Energy transfer in nanostructured materials

    Science.gov (United States)

    Haughn, Chelsea

    Energy transport and loss are critical to the performance of optoelectronic devices such as photovoltaics and terahertz imaging devices. Nanostructured materials provide many opportunities to tailor transport and loss parameters for specific device applications. However, it has been very difficult to correlate specific nanoscale structural parameters with changes in these performance metrics. I report the development of new ways of using time-resolved photoluminescence (TRPL) to probe charge and energy transport and loss dynamics. These techniques are applied to several types of nanostructured materials, including bulk semiconductors with defects, self-assembled quantum dots and colloidal quantum dots. First, GaAs/InP double heterostructures grown via metal organic chemical vapor deposition (MOCVD) were characterized with TRPL. TRPL is typically used to extract minority carrier lifetimes, but we discovered that the measured lifetime depended critically on the intensity of the exciting laser. We developed a Shockley-Read-Hall model to extract trap state densities from intensity-dependent TRPL measurements. Second, we characterized energy and charge transfer between InAs quantum dots and ErAs nanoinclusions within III-V heterostructures. Using intensity- and temperature-dependent TRPL, we confirmed tunneling as the dominant mechanism of charge transport and characterized the electronic structure of the ErAs nanoparticles. Finally, we characterized energy transport in colloidal quantum dot cascade structures. These cascade structures utilize Forster Resonance Energy Transfer and trap state recycling to funnel excitons from donor layers to acceptor layers and suggest a promising method for avoiding losses associated with surface trap states. Collectively, the analysis of these disparate material types advances our understanding of energy dynamics in nanostructured materials and improves our ability to design the next generation of photovoltaic and optoelectronic

  18. Quantitative Characterization of Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  19. Nanostructured materials in electroanalysis of pharmaceuticals.

    Science.gov (United States)

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.

  20. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.

    Science.gov (United States)

    Zhou, Xiang; Torabi, Mohsen; Lu, Jian; Shen, Ruiqi; Zhang, Kaili

    2014-03-12

    Nanotechnology has stimulated revolutionary advances in many scientific and industrial fields, particularly in energetic materials. Powder mixing is the simplest and most traditional method to prepare nanoenergetic composites, and preliminary findings have shown that these composites perform more effectively than their micro- or macro-sized counterparts in terms of energy release, ignition, and combustion. Powder mixing technology represents only the minimum capability of nanotechnology to boost the development of energetic material research, and it has intrinsic limitations, namely, random distribution of fuel and oxidizer particles, inevitable fuel pre-oxidation, and non-intimate contact between reactants. As an alternative, nanostructured energetic composites can be prepared through a delicately designed process. These composites outperform powder-mixed nanocomposites in numerous ways; therefore, we comprehensively discuss the preparation strategies adopted for nanostructured energetic composites and the research achievements thus far in this review. The latest ignition and reaction models are briefly introduced. Finally, the broad promising applications of nanostructured energetic composites are highlighted.

  1. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    Science.gov (United States)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  2. Nanostructured Energetic Materials with Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-25

    The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe{sub 2}O{sub 3}/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed aerogels and xerogels of the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH{sub 4}ClO{sub 4}) oxidizer present.

  3. Processes for fabricating composite reinforced material

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  4. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    Science.gov (United States)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  5. Copper-micrometer-sized diamond nanostructured composites

    Science.gov (United States)

    Nunes, D.; Livramento, V.; Shohoji, N.; Fernandes, H.; Silva, C.; Correia, J. B.; Carvalho, P. A.

    2011-12-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamond (μDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  6. Using flowerlike polymer-copper nanostructure composite and novel organic-inorganic hybrid material to construct an amperometric biosensor for hydrogen peroxide.

    Science.gov (United States)

    Wang, Jinfen; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Fu, Ping; Min, Ligen

    2010-02-01

    A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping horseradish peroxidase (HRP) in the organic-inorganic hybrid material composed of zirconia-chitosan sol-gel and Au nanoparticles (ZrO2-CS-AuNPs). The sensitivity of the biosensor was enhanced by a flowerlike polymer-copper nanostructure composite (pPA-FCu) which was prepared from co-electrodeposition of CuSO4 solution and 2,6-pyridinediamine solution. Several techniques, including UV-vis absorption spectroscopy, scanning electron microscopy, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to characterize the assembly process and performance of the biosensor. The results showed that this pPA-FCu nanostructure not only had excellent redox electrochemical activity, but also had good catalytic efficiency for hydrogen peroxide. Also the ZrO2-CS-AuNPs had good film forming ability, high stability and good retention of bioactivity of the immobilized enzyme. The resulting biosensors showed a linear range from 7.80 x 10(-7) to 3.7 x 10(-3) mol L(-1), with a detection limit of 3.2 x 10(-7) mol L(-1) (S/N=3) under optimized experimental conditions. The apparent Michaelis-Menten constant was determined to be 0.32 mM, showing good affinity. In addition, the biosensor which exhibits good analytical performance, acceptable stability and good selectivity, has potential for practical applications.

  7. Nanostructured materials and their applications

    CERN Document Server

    Logothetidis, Stergios

    2012-01-01

    This book applies nanostructures and nanomaterials to energy and organic electronics, offering advanced deposition and processing methods and theoretical and experimental aspects for nanoparticles, nanotubes and thin films for organic electronics applications.

  8. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  9. Applications of Nanostructured Carbon Materials in Constructions: The State of the Art

    Directory of Open Access Journals (Sweden)

    Shu-Nan Lu

    2015-01-01

    Full Text Available The most recent studies on the applications of nanostructured carbon materials, including carbon nanotubes, carbon nanofibers, and graphene oxides, in constructions are presented. First, the preparation of nanostructured carbon/infrastructure material composites is summarized. This part is mainly focused on how the nanostructured carbon materials were mixed with cementitious or asphalt matrix to realize a good dispersion condition. Several methods, including high speed melting mixing, surface treatment, and aqueous solution with surfactants and sonication, were introduced. Second, the applications of the carbon nanostructured materials in constructions such as mechanical reinforcement, self-sensing detectors, self-heating element for deicing, and electromagnetic shielding component were systematically reviewed. This paper not only helps the readers understand the preparation process of the carbon nanostructured materials/infrastructure material composites but also sheds some light on the state-of-the-art applications of carbon nanostructured materials in constructions.

  10. Application opportunities for nanostructured materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy

    1995-12-01

    Nanostructured materials have the potential to change materials science as we know it today significantly, as well as to provide a new generation of materials with a quantum improvement in properties. While many interesting properties have been generated in the laboratory, there is still much work to be done before there are production applications for nanostructured materials and coatings in gas turbine engines and similar demanding strength- and temperature-limited applications. This paper (1) describes the need for improved materials in gas turbine engines, (2) summarizes the improved physical and mechanical properties that have been reported for nanostructured materials, (3) discusses a research and development methodology that has the potential for accelerating technology implementation, and (4) describes high pay-off applications. (orig.)

  11. Nanostructured Ion Storage Electrode Materials for Lithium Batteries and Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    S.R.S.Prabaharan

    2007-01-01

    1 Results Performance of lithium-ion batteries, electrochemical capacitors, and other electric-energy storage devices is not only determined simply by macroscopic chemical composition of their electrode, but also strongly affected by shape and size of the active materials. Nanostructured materials are distinguished from conventional polycrystalline materials by the nanometer size of the structural units that compose them, and they often exhibit properties that are drastically different from the conventi...

  12. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  13. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  14. Nanostructured metal-polyaniline composites

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  15. Nanostructured materials in the food industry.

    Science.gov (United States)

    Augustin, Mary Ann; Sanguansri, Peerasak

    2009-01-01

    Nanotechnology involves the application, production, and processing of materials at the nanometer scale. Biological- and physical-inspired approaches, using both conventional and innovative food processing technologies to manipulate matter at this scale, provide the food industry with materials with new functionalities. Understanding the assembly behavior of native and modified food components is essential in developing nanostructured materials. Functionalized nanostructured materials are finding applications in many sectors of the food industry, including novel nanosensors, new packaging materials with improved mechanical and barrier properties, and efficient and targeted nutrient delivery systems. An improved understanding of the benefits and the risks of the technology based on sound scientific data will help gain the acceptance of nanotechnology by the food industry. New horizons for nanotechnology in food science may be achieved by further research on nanoscale structures and methods to control interactions between single molecules.

  16. Photoemission from optoelectronic materials and their nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad; Bhattacharya, Sitangshu

    2009-01-01

    This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers..

  17. UV fluorescence enhancement from nanostructured aluminum materials

    Science.gov (United States)

    Montanari, Danielle E.; Dean, Nathan; Poston, Pete E.; Blair, Steve; Harris, Joel M.

    2016-09-01

    Interest in label-free detection of biomolecules has given rise to the need for UV plasmonic materials. DNA bases and amino acid residues have electronic resonances in the UV which allow for sensitive detection of these species by surface-enhanced UV fluorescence spectroscopy. Electrochemical roughening has been used extensively to generate plasmonically-active metal surfaces that produce localized enhancement of excitation and emission of electromagnetic radiation from surface-bound molecules. Electrochemically roughened gold and silver surfaces produce enhancement in the visible and near-IR regions, but to the best of our knowledge, application of this technique for producing UV-enhancing substrates has not been reported. Using electropolishing of aluminum, we are able to generate nanostructured surfaces that produce enhanced spectroscopic detection of molecules in the UV. Aluminum is a natural choice for substrate composition as it exhibits a relatively large quality factor in the UV. We have fabricated electropolished aluminum films with nanometer scale roughness and have studied UV-excited fluorescence enhancement from submonolayer coverage of tryptophan on these substrates using a UV-laser based spectrometer. Quantitative dosing by dip-coating was used to deposit known surface concentrations of the aromatic amino acid tryptophan, so that fluorescence enhancement could be evaluated. Compared to a dielectric substrate (surface-oxidized silicon), we observe a 180-fold enhancement in the total fluorescence emitted by tryptophan on electropolished aluminum under photobleaching conditions, allowing detection of sub-monolayer coverages of molecules essential for development of biosensor technologies.

  18. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin;

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results ...... revealed that substantial heat is generated in the titanium adhesive layer between gold and glass. Even when the Ti layer is as thin as 2 nm it absorbs as much as a 30 nm Au layer and hence should not be ignored....

  19. Giant magnetoresistive nanostructured materials by electrodeposition

    Science.gov (United States)

    Myung, No Sang

    NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) electrodeposited by newly developed flow-through electrochemical reactor. Sub-micron (Ni)Cu and nano-size (CoFe)Cu granular alloys have been electrodeposited by magneto-electrodeposition method. These two methods eliminate the problems confronted by conventional methods and provide a new direction in fabrication of nanostructured materials by electrodeposition. Prior to fabrication of GMR materials, electrodeposition kinetics of individual metals (Co, NiFe, Cu) were studied. In Co electrodeposition and dissolution from sulfate bath, substrates have a great impact on the initial growth mode of film. On polycrystalline platinum metal, cobalt film grew in hemispherical shape (nodule) where it grew in right conical shape on amorphous glass carbon. In NiFe alloys electrodeposition, the effects of applied current density, solution composition, substrate and solution hydrodynamics on current efficiency, film composition, crystal structure, corrosion resistant, and magnetic properties of NiFe alloys from all-chloride and citrate-sulfate-chloride bath have been studied. Citrate ions enhance the anomalous codeposition phenomena in NiFe electrodeposition. In crystal structure studies on electrodeposited. NiFe, the narrow mixed phase solid region was noted around 50% Fe. In addition, the smallest grain size were also observed in that region. In corrosion studies, the maximum corrosion resistance was observed at 50% Fe in naturally aerated 0.5 M NaCl. In Ni/Cu and Co/Cu multilayers by single bath technique, the optimum deposition potential ranges of pure copper and nickel (cobalt) were determined to minimize copper codeposition during nickel (cobalt) deposition and to minimize cobalt dissolution during copper deposition. Well defined laminated NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) were successfully electrodeposited by utilizing flow-through electrochemical

  20. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  1. Nanostructured Lead Compounds in Electrode Materials of a Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    A.P. Kuzmenko

    2016-11-01

    Full Text Available The nanostructure and phase composition of the electrode material of lead-acid batteries, formed by chemical transformations with involvement of sulfuric acid solutions of various concentrations, water and carbon dioxide have been studied.

  2. Nanostructure studies of strongly correlated materials.

    Science.gov (United States)

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  3. Gas sensors based on nanostructured materials.

    Science.gov (United States)

    Jiménez-Cadena, Giselle; Riu, Jordi; Rius, F Xavier

    2007-11-01

    Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.

  4. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    Science.gov (United States)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  5. Hydrogen storage in nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Assfour, Bassem

    2011-02-28

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn{sup 2+}) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its

  6. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    Science.gov (United States)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  7. Nano-structured alloy and composite coatings for high temperature applications

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2004-03-01

    Full Text Available Nano-structured materials often possess special properties that materials with identical compositions but ordinary grain size do not have. This paper reports our work on the surface nano-crystallisation and nano-structured alloy and composite coatings. A number of processing methods including magnetron sputtering, thermal spray and pulse electro-spark deposition have been used to produce surface nano-crystalline structure. The compositions and microstructures can be well controlled by using different targets or electrodes, nano-structured composites and adjusting processing parameters. Surface nano-structured coatings can provide special chemical, mechanical and electronic properties such as high temperature corrosion and corrosive wear resistance. It has potential applications such as turbine blades, engine parts for petrochemical, aerospace and electronic device industries. This paper is focused on the study of the interrelations between processing, microstructure and properties. Physical models have been established to explain the effects of nano-crystalline structure on the properties.

  8. Leafy nanostructure PANI for material of supercapacitors

    Directory of Open Access Journals (Sweden)

    XI Dong

    2013-06-01

    Full Text Available Nanostructure conducting polyaniline(PANI has great potential applications in supercapacitor electrode materials.In this paper,we report a template-free approach to synthesize PANI by a galvanostatic current procedure with a three-electrode configuration directly on indium-doped tin-oxide substrates (ITO.The morphology of product was characterized by Hitachi S-4800 field emission scanning electron microscope (FE-SEM.Due to the nanostructure,the specific capacitance of PANI film with the thickness of 100nm were measured as high as 829 F/g and 667 F/g at a charge-discharge current density of 1 A/g and 10 A/g respectively.After 500 cycle charge-discharge test employed at the current density of 20 A/g the PANI film still had a 95.1% capacitance retention.

  9. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    OpenAIRE

    Chang, Chong Hyun

    2011-01-01

    Nanostructured materials have attracted extensive attention due to their small dimension and enhanced properties compared to bulk materials, and their large range of potential applications in energy harvesting devices. Among these materials, nanostructured chalcogenides play an important role in thermoelectric and solar cell devices. Electrochemical techniques have drawn attention as an improved method for synthesizing nanostructured chalcogenide materials, since they provide a cost-effective...

  10. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin; Jeon, Sea Ho; Mack, Nathan H.

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  11. Preparation and reactivity of gasless nanostructured energetic materials.

    Science.gov (United States)

    Manukyan, Khachatur V; Shuck, Christopher E; Rogachev, Alexander S; Mukasyan, Alexander S

    2015-04-02

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites.

  12. Controlled thermal sintering of a metal-metal oxide-carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries.

    Science.gov (United States)

    Kim, Hwan Jin; Zhang, Kan; Choi, Jae-Man; Song, Min Sang; Park, Jong Hyeok

    2014-03-11

    We report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode.

  13. Nanostructured energetic materials derived from sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  14. Surfactant Assisted Hydrothermal Synthesis of CdSe Nanostructural Materials

    Institute of Scientific and Technical Information of China (English)

    Ganganagappa Nagaraju; Cujjarahalli Thimmanna Chandrappa

    2012-01-01

    CdSe/CTAB composite nanostructural materials were successfully synthesized at 160-200℃ for 2 days through a facile surfactant (cetyl trimethyl ammonium bromide-CTAB) assisted hydrothermal method us- ing cadmium acetate and sodium selenate as precursor. The obtained products were characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and thermo gravimetric analysis. Optical properties were studied by photoluminescence and UV-visible spectroscopy and morphology was investigated by scanning electron microscopy.

  15. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  16. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage.

    Science.gov (United States)

    Li, Gao-Ren; Xu, Han; Lu, Xue-Feng; Feng, Jin-Xian; Tong, Ye-Xiang; Su, Cheng-Yong

    2013-05-21

    Electrochemical synthesis represents a highly efficient method for the fabrication of nanostructured energy materials, and various nanostructures, such as nanorods, nanowires, nanotubes, nanosheets, dendritic nanostructures, and composite nanostructures, can be easily fabricated with advantages of low cost, low synthetic temperature, high purity, simplicity, and environmental friendliness. The electrochemical synthesis, characterization, and application of electrochemical energy nanomaterials have advanced greatly in the past few decades, allowing an increasing understanding of nanostructure-property-performance relationships. Herein, we highlight some recent progress in the electrochemical synthesis of electrochemical energy materials with the assistance of additives and templates in solution or grafted onto metal or conductive polymer supports, with special attention to the effects on surface morphologies, structures and, more importantly, electrochemical performance. The methodology for preparing novel electrochemical energy nanomaterials and their potential applications has been summarized. Finally, we outline our personal perspectives on the electrochemical synthesis and applications of electrochemical energy nanomaterials.

  17. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  18. Gold nanostructure materials in diabetes management

    Science.gov (United States)

    Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith

    2017-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.

  19. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.

    Science.gov (United States)

    Zhu, Xianjun; Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ruoff, Rodney S

    2011-04-26

    Reduced graphene oxide/Fe(2)O(3) composite was prepared using a facile two-step synthesis by homogeneous precipitation and subsequent reduction of the G-O with hydrazine under microwave irradiation to yield reduced graphene oxide (RG-O) platelets decorated with Fe(2)O(3) nanoparticles. As an anode material for Li-ion batteries, the RG-O/Fe(2)O(3) composite exhibited discharge and charge capacities of 1693 and 1227 mAh/g, respectively, normalized to the mass of Fe(2)O(3) in the composite (and ∼1355 and 982 mAh/g, respectively, based on the total mass of the composite), with good cycling performance and rate capability. Characterization shows that the Fe(2)O(3) nanoparticles are uniformly distributed on the surface of the RG-O platelets in the composite. The total specific capacity of RG-O/Fe(2)O(3) is higher than the sum of pure RG-O and nanoparticle Fe(2)O(3), indicating a positive synergistic effect of RG-O and Fe(2)O(3) on the improvement of electrochemical performance. The synthesis approach presents a promising route for a large-scale production of RG-O platelet/metal oxide nanoparticle composites as electrode materials for Li-ion batteries.

  20. Multifunctional materials and composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  1. Nanostructured photovoltaic materials using block polymer assemblies

    Science.gov (United States)

    Mastroianni, Sarah Elizabeth

    Despite its potential as an abundant, sustainable alternative to non-renewable energy sources, solar energy currently is underutilized. Photovoltaics, which convert energy from sunlight into electricity, commonly are made from inorganic semiconductor materials that require expensive manufacturing and processing techniques. Alternatively, organic materials can be used to produce flexible and lightweight organic photovoltaic (OPV) devices, which can be prepared using solution-based processing techniques. However, OPV devices are limited by low efficiencies and short lifetimes compared to their inorganic counterparts. In OPV systems, charge carriers are generated in the active layer via the separation of excitons (electron-hole pairs) at interfaces between donor and acceptor materials. Because excitons have a limited diffusion length (˜10 nm), they may recombine before reaching a donor-acceptor interface if domain sizes are large. This exciton recombination can limit device efficiency; thus, the design parameters for improved active layer morphologies include large interfacial areas, small size scales, and continuous conducting pathways. Currently, most OPV devices are prepared by blending donor and acceptor materials in bulk heterojunction (BHJ) devices, often resulting in non-ideal, process-dependent morphologies. Alternatively, the self-assembly of block polymers (BP)s offers a reproducible means to generate nanostructured active layers. The work presented in this dissertation examines the synthetic approaches to preparing BPs containing different electroactive materials: non-conjugated, amorphous poly(vinyl-m-triphenylamine) [PVmTPA] and conjugated poly(3-alkythiophene) [P3AT] p-type materials as well as fullerene-based n-type materials. The synthesis and self-assembly of a model poly(methyl methacrylate)- b-PVmTPA system is presented. This work was extended to synthesize PVmTPA BPs with complementary poly(methyl methacrylate- co-hydroxyethyl methacrylate) [P

  2. Nanostructured Materials for Li-Ion Batteries and Beyond

    Directory of Open Access Journals (Sweden)

    Xifei Li

    2016-04-01

    Full Text Available This Special Issue “Nanostructured Materials for Li-Ion Batteries and Beyond” of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs and future systems.[...

  3. Multifunctional Composite Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  4. Quantitative Electron Tomography for Nanostructured Materials

    NARCIS (Netherlands)

    Friedrich, H.

    2009-01-01

    The controlled assembly of materials on the nanoscale has been a major focus of research across many scientific disciplines. In the nanometer size range, materials characteristics can be tuned not only by composition but more importantly by size and shape of constituent phases, giving rise to except

  5. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  6. Modeling plasticity of materials with nanostructure

    Science.gov (United States)

    Kudinova, N. R.

    2017-02-01

    A new approach to modeling of the plasticity of materials with the particle size in the range from 3 to 20 nm (nanostructure) has been proposed. It is based on classical thermodynamic approach employing the surface tension of nanoparticles. Its main advantage is the minimum number of physical parameters in use. In the context of the proposed model, we calculated the dependence of the melting temperature on the nanoparticle size which is consistent with experimental data. The volume density of the surface energy of nanoparticles was also determined. This energy is assumed to be a significant part of the internal energy during deformation Yield point was interpreted as the result of changes of grains surface energy during the deformation. The obtained yield point dependence on the grain size was related to the Hall–Petch law, and this resulted in confirmation of the hypothesis on the crucial role of surface tension forces in the initial stage of plastic deformation of nanomaterials.

  7. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  8. Core-Shell and Segmented Polymer-Metal Composite Nanostructures

    Science.gov (United States)

    Lahav, Michal; Weiss, Emily; Xu, Qiaobing; Whitesides, George M.

    2008-01-01

    Composite nanostructures (~200 nm wide and several μm long) of metal and polyaniline (PANI) in two new variations of core-shell (PANI-Au) and segmented (Au-PANI and Ni-Au-PANI) architectures were fabricated electrochemically within anodized aluminum oxide (AAO) membranes. Control over the structure of these composites (including the length of the gold shells in the core-shell structures) was accomplished by adjusting the time and rate of electrodeposition, and the pH of the solution from which the materials were grown. Exposure of the core-shell structures to oxygen plasma removed the PANI and yielded aligned gold nanotubes. In the segmented structures, a self-assembled monolayer (SAM) of thioaniline nucleated the growth of PANI on top of metal nanorods, and acted as an adhesion layer between the metal and PANI components. PMID:16968046

  9. Debye screening length effects of nanostructured materials

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2014-01-01

    This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped ...

  10. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  11. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials.

  12. Inorganic nanostructured materials for high performance electrochemical supercapacitors.

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-02-21

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  13. Size-dependent density of nanoparticles and nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Karuna Kar, E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 12 (India)

    2012-10-01

    We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. -- Highlights: ► Density of nanoparticles depends mainly on the size-dependent lattice parameter. ► Density is predicted to increase with decreasing size for nanoparticles. ► Density decreases with size for nanostructured materials.

  14. Metallic glass nanostructures of tunable shape and composition.

    Science.gov (United States)

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J; Schroers, Jan

    2015-04-22

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

  15. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  16. High volume production of nanostructured materials

    Science.gov (United States)

    Ripley, Edward B.; Morrell, Jonathan S.; Seals, Roland D.; Ludtka, Gerard M.

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  17. The influence of nanostructured materials on biointerfacial interactions.

    Science.gov (United States)

    Koegler, Peter; Clayton, Andrew; Thissen, Helmut; Santos, Gil Nonato C; Kingshott, Peter

    2012-12-01

    Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.

  18. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.

    Science.gov (United States)

    Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui

    2010-11-26

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  19. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    Directory of Open Access Journals (Sweden)

    Jin Min Wang

    2010-11-01

    Full Text Available The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  20. Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zinghang Zhang; K. Ted Hartwig

    2009-08-12

    This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

  1. Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zinghang Zhang; K. Ted Hartwig

    2009-08-12

    This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

  2. Understanding and tuning nanostructured materials for chemical energy conversion

    Science.gov (United States)

    Jian, Guoqiang

    The conversion of energy that employs chemical reaction is termed chemical energy conversion. In my dissertation, I have focused on chemical energy conversion systems involving energetic materials and lithium ion batteries, where performance is strongly dependent on the properties of materials and their architecture. The objective of this study is to enhance our understanding and tuning of nanostructured materials that might find application toward energetic materials and electrode materials in lithium ion batteries. Rapid heating diagnostics tools, i.e. temperature-jump techniques, have been used to study the ignition of aluminum nanoparticles, nanothermite reaction mechanism and metal oxides nanoparticles decomposition under rapid heating conditions (˜105-106 K/s). Time-resolved mass spectra results support the hypothesis that Al containing species diffuse outwards through the oxide shell. Low effective activation energies were found for metal oxides nanoparticles decomposition at high heating rates, implying the mass transfer control at high heating rates. The role of oxygen release from oxidizer in nanothermite reactions have been examined for several different systems, including some using microsized oxidizer (i.e., nano-Al/micro-I 2O5). In particular, for periodate based nanothermites, direct evidence from high heating rate SEM and mass spectrometry results support that direct gas phase oxygen release from oxidizer decomposition is critical in its ignition and combustion. Efforts have also been made to synthesize nanostructured materials for nanoenergetic materials and lithium ion batteries applications. Hollow CuO spheres were synthesized by aerosol spray pyrolysis, employing a gas blowing mechanism for the formation of hollow structure during aerosol synthesis. The materials synthesized as oxidizers in nanothermite demonstrated superior performance, and of particular note, periodate salts based nanothermite demonstrated the best gas generating performance

  3. Surface analysis of nanostructured carbonaceous materials

    Science.gov (United States)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  4. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.

  5. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  6. Phthalocyanine-Carbon Nanostructure Materials Assembled through Supramolecular Interactions.

    Science.gov (United States)

    Bottari, Giovanni; Suanzes, Juan A; Trukhina, Olga; Torres, Tomas

    2011-04-21

    The use of self-assembly for the construction of materials based on phthalocyanines and carbon nanostructures-fullerenes, single-walled carbon nanotubes, and graphene-has demonstrated to be a versatile strategy for the preparation of novel, multifunctional systems. Photophysical studies carried out on these photo- and electroactive supramolecular ensembles have revealed the occurrence of an efficient photoinduced electron-transfer process, thus paving the way for the utilization of these materials as active components in optoelectronic devices. This Perspective highlights the recent progress in the preparation of such materials and the potential use of these systems for the construction of nanostructured materials with singular physicochemical properties.

  7. Nanostructured Multifilamentary Carbon-Copper Composites: Fabrication, Microstructural Characterization, and Properties

    Directory of Open Access Journals (Sweden)

    Evarice Yama Nzoma

    2012-01-01

    Full Text Available This work is part of research on the emerging techniques to produce bulk nanostructured composites materials by severe plastic deformation and their characterization. Based on the Levi work, we present a new method to synthesize a composite wire-containing carbon-nanosized filaments (graphite and C60 fullerenes embedded in a copper matrix. The originality of this process is using powder media as fiber. Microstructures and electrical, mechanical, and thermal properties are presented.

  8. Preparation and characterization of GA/RDX nanostructured energetic composites

    Indian Academy of Sciences (India)

    YUANFEI LAN; XUEBAO WANG; YUNJUN LUO

    2016-12-01

    Graphene aerogel (GA) with nano-porous structure was assembled through the formation of physical cross-links between graphene sheets by a facile sol–gel method and supercritical CO$_2$ drying process. Thenhexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was added and trapped in the nano-porous three-dimensional networks of GA to obtain a novel GA/RDX nanostructured energetic composite. The composition, morphology andstructure of the obtained GA/RDX nanostructured energetic composite were characterized by elemental analysis, scanning electron microscopy, nitrogen sorption tests and X-ray diffraction. Moreover, the thermal decompositioncharacteristic was investigated by thermogravimetry and differential scanning calorimetry. The results showed that GA could be a perfect aerogel matrix for the fabrication of GA/RDX nanostructured energetic composite due to itsunique nano-porous structure and attributes. It was also demonstrated that RDX homogeneously disperses in the asprepared GA/RDX nanostructured energetic composite at nanometric scale. GA showed promising catalytic effects for the thermal decomposition of RDX. After incorporating with GA, the decomposition of RDX was obviously accelerated.

  9. ZnS nanostructure arrays: a developing material star.

    Science.gov (United States)

    Fang, Xiaosheng; Wu, Limin; Hu, Linfeng

    2011-02-01

    Semiconductor nanostructure arrays are of great scientific and technical interest because of the strong non-linear and electro-optic effects that occur due to carrier confinement in three dimensions. The use of such nanostructure arrays with tailored geometry, array density, and length-diameter-ratio as building blocks are expected to play a crucial role in future nanoscale devices. With the unique properties of a direct wide-bandgap semiconductor, such as the presence of polar surfaces, excellent transport properties, good thermal stability, and high electronic mobility, ZnS nanostructure arrays has been a developing material star. The research on ZnS nanostructure arrays has seen remarkable progress over the last five years due to the unique properties and important potential applications of nanostructure arrays, which are summarized here. Firstly, a survey of various methods to the synthesis of ZnS nanostructure arrays will be introduced. Next recent efforts on exploiting the unique properties and applications of ZnS nanostructure arrays are discussed. Potential future directions of this research field are also highlighted.

  10. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  11. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  12. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  13. One-dimensional Nanostructured Materials From Organic Precursor

    Institute of Scientific and Technical Information of China (English)

    K. F. Cai

    2005-01-01

    @@ 1Introduction One-dimensional nanostructured materials, such as nanowires, nanobelts, nanotubes and nanocables have been attracting a great research interest in the last decade due to their superior electrical, optical, mechanical and thermal properties, and many methods have been explored to synthesis of the materials, e.g., arc discharge, laser ablation, chemical vapor deposition, thermal evaporation, sol-gel method, template method and so on. In this work, we present a novel and simple method to one-dimensional nanostructured materials by pyrolysis of organic precursor.

  14. Development of Methods for Surface Modification of Nanostructured Materials

    Science.gov (United States)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  15. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  16. Heat-Resistant Composite Materials Based on Polyimide Matrix

    Directory of Open Access Journals (Sweden)

    Vitaly Sergeyevich Ivanov

    2016-12-01

    Full Text Available Heat-resistant composite materials with a polyimide-based binder were obtained in this paper. Composites were prepared with different content of single-wall carbon nanotubes (SWCNT and nanostructured silicon carbide, and polyimides coated carbon fibers woven into the cloth. Composite materials showed high values of thermostability and resistance to thermo-oxidative degradation, as well as good mechanical properties.

  17. Preparation and properties on hollow nano-structured smoke material

    Science.gov (United States)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  18. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  19. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    Biotechnology, in general terms, is the science and engineering of using living organisms for making useful products such as pharmaceuticals, foods , fuels...chemicals, materials or in waste treatment processes and clinical and chemical analyses. It encompases the prosaic form of using yeast cells to make...ductile component of the composite. Table 1. Mechanical Properties of Ceramics, Cermets, and Abalone Shell •if KIC Hardness MPa MPam 1n 2 /2 Mohs KIlN

  20. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  1. Nanostructured materials, production and application in construction

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2014-12-01

    Full Text Available The paper considers characteristics of water-soluble high module silicate systems: based on polysilicates of alkali element called liquid glasses and the chains of their transformations from the lowest oligomers into the highest ones with further formation colloid solutions – silica sol. The authors describe the potentialities of the use of such systems as binders or modifying additives to produce different nanostructured silicate polymer concretes. There are examples of prospective application of liquid glass and water solutions of high module silicates in industrial areas and construction. Quantum-chemical calculations of the structure and properties of tetraphenylarsonium are given and heterogeneity of its functional groups is shown.

  2. Nanostructure materials for biosensing and bioimaging applications

    Science.gov (United States)

    Law, Wing Cheung

    not fully understand, three possible factors are concluded after systematic researches: (i) an increase of the absolute mass in each binding event, (ii) an increase in the bulk refractive index of the analyte, and (iii) coupling between the localized surface plasmon resonance (LSPR) of metallic nanoparticles and surface plasmon resonance (SPR) of the sensing film. Indeed, the role of plasmonic coupling in sensitivity enhancement is still an open question. In order to obtain a better understanding of this phenomenon, at the end of part I, extended studies were performed to investigate how the LSPR properties of metallic nanoparticle labels correlate with the enhancement factor. For this purpose, gold nanorods (Au-NRs) were chosen as the amplification labels because of the easy tunability of LSPR peak of Au-NR. After reading the "Result and Discussion" section, the readers will have better understanding of "plasmonic coupling" between the sensing film and the metallic labels with suitable operating laser source. In the second part of the thesis, the bioimaging part, the application of nanostructure materials in live cancer cell imaging and small animal imaging were demonstrated. There are different types of imaging technique available in laboratories and clinics: optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), thermography and ultrasound imaging. Although such imaging techniques have been well developed and used over a decade, improving the sensitivity, enhancing the contrast, decreasing the acquisition time and reducing the toxicity of the contrast agent are highly desirable. For optical imaging, the scientists discovered that the use of near infrared fluorescence materials can assist the surgeon to locate the tumor, the nerve and the lymph node more accurately. For CT scan, the use of Au-NR as the contrast agent can improve the sensitivity. Iron oxide nanoparticle or gadolinium ion containing

  3. Advanced composite materials and processes

    Science.gov (United States)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  4. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  5. Failure Modes in Composite Materials.

    Science.gov (United States)

    1987-05-19

    Derek, An Introduction to Composite Materials , New York: Cambridge University Press, 1981. 12. Jamison, R. D., Mechanical Engineering Department...1978. 19. Tsai, Stephen W., Introduction to Composite Materials , Lancaster, Pennsylvania: Technomic Publishing Company, Inc., 1980. 4,’ * .20. Vernon

  6. Conducting nanotubes or nanostructures based composites, method of making them and applications

    Science.gov (United States)

    Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)

    2013-01-01

    An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.

  7. Nanostructured Materials Developed for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  8. Thermoelectric nanostructures: from physical model systems towards nanograined composites

    Energy Technology Data Exchange (ETDEWEB)

    Nielsch, Kornelius; Bachmann, Julien; Kimling, Johannes [University of Hamburg, Institute of Applied Physics, Jungiusstr. 11, 20355 Hamburg (Germany); Boettner, Harald [Frauenhofer Institute for Physical Measurement Techniques IPM, Department of Thermoelectrics and Integrated Sensor Systems, Heidenhofstrasse 8, 79110 Freiburg (Germany)

    2011-10-15

    Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S{sup 2}{sigma}T)/{kappa} (S Seebeck coefficient, {sigma} electrical conductivity, {kappa} thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk-materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high-performance thermoelectrics for high-temperature applications is discussed at the end. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  10. Self-assembled peptide nanostructures for functional materials

    Science.gov (United States)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  11. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  12. The equipment for controlling the structure and functional properties of nanostructured composite films

    Science.gov (United States)

    Burov, V. G.; Plotnikova, N. V.; Prokhorenko, E. V.; Smirnov, A. I.

    2016-04-01

    The article is devoted to the creation of an instrumental system allowing evaluating the functional properties and current-voltage characteristics of nanostructured composite films at different temperatures and other environmental parameters. The system is based on an assessment of current-voltage characteristics of a nanostructured film material. The main components of the system are a chamber and a unit for current-voltage characteristics measuring. The stage with the test material and the contact system are provided with a heating element and a cooling system thus allowing warming to 150 °C and fast cooling to negative temperatures by liquid nitrogen circulating. The chamber body leak proofness against the external environment allows forming a composition of the atmosphere at a predetermined humidity level, which is essential for the measurement of current-voltage characteristics of polymer materials. The article describes the design features of the instrumental system and results of its application used for determining the properties of polymer nanostructured composite films.

  13. Micro-and nano-structured conducting polymeric materials

    Institute of Scientific and Technical Information of China (English)

    LU Gewu; CHEN Feng'en; WU Xufeng; QU Liangti; ZHANG Jiaxin; SHI Gaoquan

    2005-01-01

    Conducting polymeric materials with micro-/nano-structures have potential applications in fabrication of various optical, electronic, sensing and electrochemical devices. This is mainly because these materials not only possess the characteristics of conducting polymers, but also have special functions based on their micro- or nano-structures. In this review, we summarize the recent work on "soft" and "hard" template-guided syntheses of micro-/nano-structured conducting polymers and open up the prospects of the main trends in this field.

  14. Nanostructure of gel-derived aluminosilicate materials.

    Science.gov (United States)

    Sinkó, Katalin; Hüsing, Nicola; Goerigk, Günter; Peterlik, Herwig

    2008-02-01

    In the present work, aluminosilicate aerogels prepared under various conditions were compared with respect to their nanostructures and porosity. The purpose of this investigation was to find a suitable way to predict the final product structure and to tailor a required texture. Several Al and Si precursors (Al nitrate, Al isopropoxide, Al acetate, tetraethoxysilane (TEOS), and sodium silicate) were used in our examinations; the solvent content (water and alcohols), surfactants, as well as the catalysts were varied. In addition, the aerogels were subjected to various heat treatments. Hybrid aerogels were synthesized by the addition of different polymers (poly(acrylic acid), polyvinyl acetate, and polydimethylsiloxane). Aluminosilicate and hybrid aerogel structures were investigated by 27Al MAS NMR, SAXS, SEM, and porosity measurements. Loose fractal structures with a good porosity and high Al incorporation can be achieved from TEOS and Al nitrate or isopropoxide via a sol-gel preparation route. The use of Al acetate led to compact aerogel structures independently of the Si precursor, the pH, and the catalyst.

  15. Nanostructured polymeric materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia [Argonne National Lab. (ANL), Argonne, IL (United States; Yu, Luping [Argonne National Lab. (ANL), Argonne, IL (United States

    2013-03-01

    The objective of this project is to develop a new class of hydrogen storage adsorbent, nanostructured porous organic polymers (POPs), through collaboration between Argonne National Laboratory and The University of Chicago. POPs have excellent thermal stability and tolerance to gas contaminants such as moisture. They also have low skeleton density and high intrinsic porosity via covalent bonds, capable of maintaining specific surface area (SSA) during high pressure pelletizing for better volumetric density. Furthermore, they can be produced at a commercial scale with the existing industrial infrastructure. The team’s approach focused on improving hydrogen uptake capacity and the heat of adsorption by enhancing SSA, porosity control, and framework-adsorbate interactions through rational design and synthesis at the molecular level. The design principles aim at improving the following attributes of the polymers: (a) high SSA to provide sufficient interface with H2; (b) narrow pore diameter to enhance van der Waals interactions in the confined space; and (c) “metallic” features, either through π- conjugation or metal doping, to promote electronic orbital interactions with hydrogen.

  16. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  17. Radiation-protective polymer-matrix nanostructured composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaloshkin, S.D.; Tcherdyntsev, V.V. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gorshenkov, M.V., E-mail: mvg@misis.ru [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Gulbin, V.N. [College of Advanced Materials and Nanotechnologies, National University of Science and Technology ' MISiS' , Leninsky Prospect, 4 Moscow (Russian Federation); Kuznetsov, S.A. [Russian State Technological University ' MATI' , Orshanskaya 3, Moscow (Russian Federation)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Radiation-protective composites were fabricated by solid state intermixing and thermal pressing. Black-Right-Pointing-Pointer The composites based on UHMWPE contain B{sub 4}S and W nanopowders as fillers. Black-Right-Pointing-Pointer The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. Black-Right-Pointing-Pointer For composites containing 12% B{sub 4}C and 12% W the mechanical properties were studied prior to and after the irradiation with fast neutrons. - Abstract: UHMWPE-based nanostructured composites containing B{sub 4}C and W nanopowders were fabricated and studied. The mechanical and {gamma}-radiation protective properties of the polymer-matrix nanocomposites were determined experimentally. For selected composites the mechanical properties were studied prior to and after the irradiation.

  18. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  19. Novel thermal properties of nanostructured materials.

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  20. Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2016-03-01

    Full Text Available Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar and Enamel HRi Plus (Micerium. The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation.

  1. Ignition of Propellants Through Nanostructured Materials

    Science.gov (United States)

    2016-03-31

    case gaseous O2 was introduced in a coaxial flow at a rate of 7 Lit/min with a swirl motion in order to produce an effective fuel and oxidizer mixing...system should be robust, efficient , reliable, simple, low cost, and flexible. Also, an ignition system should initiate combustion under a broad range...discovered that the SWCNT material does not ignite well if wet, so we encapsulated the material to protect it from the fuel spray. To improve the

  2. Combination of lightweight elements and nanostructured materials for batteries.

    Science.gov (United States)

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3

  3. Epicrystal modification of construction composites of different purpose with application of granulated nanostructured aggregate

    Directory of Open Access Journals (Sweden)

    STROKOVA Valeria Valerievna

    2016-10-01

    Full Text Available The paper shows that the volume impregnation of the concrete matrix in case of using granular nanostructured aggregate is an example of several anthropogenic metasomatosis such as phase replacement with the change of the chemical composition, as well as formation of new paragenesises, transformation of characteristics of final material. It is shown the impregnation of concrete with modifying solution results in microstructure impaction and homogenization; grain surface is covered with micro- and nano-sized new formations with different morphology. Considering the relevance of researches related to the development of new lightweight concrete aggregates and modification of traditionally used aggregates application of nanostructured granular aggregate for the implementation epicrystal modification of lightweight concrete based on inorganic binders is proposed. It allows creating composite macroporous structure with joint modification of the matrix on nano- and microlevel. Also, in view of increase in number of researches devoted to alkali-activated silicate and aluminosilicate systems for application as individually and as modifiers for increasing of hydrophobic properties of building materials, the possibility of creating a fine-grained concrete with low water absorption by the introduction of hydrophobic additives into the composition of granular nanostructured aggregate is demonstrated. During the steam treatment the fluids from solutions of sodium polysilicates and hydrophobic additives are form at the core of the granular aggregate with its later migration through the shell of the granules and spreading in the volume of the concrete matrix. Improving of performance characteristics presented construction composites for various purposes is defined by the infiltrational metasomatic transformation of crystalline matrix with the activated functional systems, obtained during the thermal activation of granulated nanostructured aggregate.

  4. Probing Compositional Variation within Hybrid Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  5. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  6. Laser Propagation in Nanostructured Ultra-Low-Density Materials

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colvin, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yogo, A [Osaka Univ. (Japan). Inst. of Laser Engineering; Kemp, G. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matsukuma, H. [Osaka Univ. (Japan). Inst. of Laser Engineering; Tanaka, N. [Osaka Univ. (Japan). Inst. of Laser Engineering; Zhang, Z. [Osaka Univ. (Japan). Inst. of Laser Engineering; Koga, K. [Osaka Univ. (Japan). Inst. of Laser Engineering; Tosaki, S. [Osaka Univ. (Japan). Inst. of Laser Engineering; Nishimura, H. [Osaka Univ. (Japan). Inst. of Laser Engineering

    2016-03-15

    The nanostructure of very-low-density aerogels (< 10 mg/cm3) affects the laser heating and propagation of the subsequent heat front. Simulations treat these materials as an atomistic medium without any structure differentiating between near-solid-density material and voids. Thus, simulations fail to predict the effects of the aerogel’s physical micro or nanostructure on the laser-matter interaction. We have designed an experiment using the GEKKO XII laser and ILE diagnostics to characterize the ionization-wave propagation and x-ray yield from aerogel and mass-matched gaseous targets as the laser passes through each. By design, the gas and aerogel targets will have identical densities and identical effective ionization states.

  7. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  8. Magnetic Cluster States in Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Diandra Leslie-Pelecky

    2008-06-13

    The goal of this work is to fabricate model nanomaterials with different types of disorder and use atomic-scale characterization and macroscopic magnetization measurements to understand better how specific types of disorder affects macroscopic magnetic behavior. This information can be used to produce magnetic nanomaterials with specific properties for applications such as permanent magnets, soft magnetic material for motors and biomedical applications.

  9. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    Science.gov (United States)

    2006-05-15

    by modifying limits of integration over certain orientational variables [1,64,66]. Typical agreement between theory and experiment is shown below...must be different to realize an entropy enhancement, our preliminary experiments indicate that the difference can be realized in 400 ! , 5 . 3146-C168(75...Lecture: "Rational Desing of Nanostructured Organic Electro-Optic Materials". Conference-January 15-20, 2006--Conference on Photoresponsive Organics and

  10. Nanostructured Electrode Materials for Fuel Cells and Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    W.Sugimoto; T.Saida; Y.Takasu

    2007-01-01

    1 Results Owing to its electrochemical stability, catalytic activity and high electrical conductivity, ruthenium-based oxides have been realized in electrochemistry as excellent electrode materials with applications ranging from electrocatalysts for industrial electrolysis to high power energy storage. Recent studies have suggested that RuOx may have an active role in electrocatalysts for fuel cells.We have been engaged in the fundamental and practical study of nanostructured RuO2-based electrodes[1-5]....

  11. Electron Field Emission from Nanostructured Carbon Materials

    Science.gov (United States)

    Gupta, Sanju

    2005-03-01

    Fabricating small structures has almost become fashionable and the rationale is that reducing one or more dimensions below some critical length changes the systems' physical properties drastically, where nanocrystalline diamond (n-D) and carbon nanotubes (CNTs) in the class of advanced carbon materials serve model examples. Emission of electrons at room temperature - cold electron emitters - are of vital importance for a variety of vacuum microelectronic devices - electron microscopes, photo multipliers, X-ray generators, lamps, and flat panel displays and microwave cathodes. Electron emitters may lead to otherwise difficult to obtain advantages in performance and/or design. This is the driving force to investigate the carbon-related materials as cold cathodes. In this talk, the performance of various forms of carbon in thin film form including diamond, n-D, and vertically aligned CNTs as cold cathodes for their potential use in field emission displays (FEDs) in terms of I-V characteristics and corresponding spatial imaging will be presented. Physics based models such as, NEA, surface modification, geometric enhancement, and microstructure alteration due to particle bombardment, and doping, will be described to support the experimental observations of electron field enhancement (low turn-on voltage, high current and emission site density) and its reliability from the abovementioned carbon-related materials. Other vacuum device applications such as thermionic power generators will be mentioned briefly.

  12. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  13. X-ray characterisation of nanostructured materials

    DEFF Research Database (Denmark)

    Oddershede, Jette

    austenite produced using a novel method showed that CrN formed even at temperatures below 450± where the mobility of Cr is very low. 3) Carbon nanotubes, a non-crystalline material with a periodic structure. It was shown that the mean bulk structural properties of the nanotubes can be obtained from XRPD...... of the experi- mental XRPD patterns, the need for new interpretation methods has arisen. The method described in the present thesis is by no means new, in fact it was developed by Debye in 1915. However, the Debye method it is rather computationally heavy, so in practise it is only applicable to the X-ray char...

  14. Nanostructural Materials for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2011-01-01

    Full Text Available The aim of this study was to assess of carbonaceous monoliths used for adsorption cooling systems. The carbonaceous monoliths prepared from coal precursors are obtained. The porous structure of monoliths was evaluated on the basis of nitrogen adsorption-desorption data. The investigated monoliths have significantly developed microporous structure. The large specific area of carbonaceous monoliths (about 2000 m2/g and volume of micropores are observed. Methanol adsorption isotherms and heat of wetting using methanol was determined. Results show that monoliths materials are high adsorption capacity of methanol and heat of wetting, which can improve of heat exchange and efficiency in processes of refrigeration and air conditioning.

  15. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  16. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  17. Scaling Laws for van der Waals Interactions in Nanostructured Materials

    Science.gov (United States)

    Gobre, Vivekanand; Tkatchenko, Alexandre

    2014-03-01

    Van der Waals (vdW) forces originate from interactions between fluctuating multipoles in matter and play a significant role in the structure and stability of nanostructured materials. Many models used to describe vdW interactions in nanomaterials are based on a simple pairwise-additive approximation, neglecting the strong electrodynamic response effects caused by long-range fluctuations in matter. We develop and utilize an efficient microscopic method to demonstrate that vdW interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of vdW interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  18. Surface modification of microfibrous materials with nanostructured carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krasnikova, Irina V., E-mail: tokareva@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Mishakov, Ilya V.; Vedyagin, Aleksey A. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Bauman, Yury I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk 630090 (Russian Federation); Korneev, Denis V. [State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region 630559 (Russian Federation)

    2017-01-15

    The surface of fiberglass cloth, carbon and basalt microfibers was modified with carbon nanostructured coating via catalytic chemical vapor deposition (CCVD) of 1,2-dichloroethane. Incipient wetness impregnation and solution combustion synthesis (SCS) methods were used to deposit nickel catalyst on the surface of microfibrous support. Prepared NiO/support samples were characterized by X-ray diffraction analysis and temperature-programmed reduction. The samples of resulted hybrid materials were studied by means of scanning and transmission electron microscopies as well as by low-temperature nitrogen adsorption. The nature of the support was found to have considerable effect on the CCVD process peculiarities. High yield of nanostructured carbon with largest average diameter of nanofibers within the studied series was observed when carbon microfibers were used as a support. This sample characterized with moderate surface area (about 80 m{sup 2}/g after 2 h of CCVD) shows the best anchorage effect. Among the mineral supports, fiberglass tissue was found to provide highest carbon yield (up to 3.07 g/g{sub FG}) and surface area (up to 344 m{sup 2}/g) due to applicability of SCS method for Ni deposition. - Highlights: • The microfibers of different nature were coated with nanostructured carbon layer. • Features of CNF growth and characteristics of hybrid materials were studied. • Appropriate anchorage of CNF layer on microfiber’s surface was demonstrated.

  19. Novel hybrid nanostructured materials of magnetite nanoparticles and pectin

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Saurabh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Dutta, Raj Kumar, E-mail: duttafcy@iitr.ernet.i [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2011-04-15

    A novel hybrid nanostructured material comprising superparamagnetic magnetite nanoparticles (MNPs) and pectin was synthesized by crosslinking with Ca{sup 2+} ions to form spherical calcium pectinate nanostructures, referred as MCPs, which were typically found to be 100-150 nm in size in dried condition, confirmed from transmission electron microscopy and scanning electron microscopy. The uniform size distribution was revealed from dynamic light scattering measurement. In aqueous medium the MCPs showed swelling behavior with an average size of 400 nm. A mechanism of formation of spherical MCPs is outlined constituting a MNP-pectin interface encapsulated by calcium pectinate at the periphery, by using an array of characterization techniques like zeta potential, thermogravimetry, Fourier transformed infrared and X-ray photoelectron spectroscopy. The MCPs were stable in simulated gastrointestinal fluid and ensured minimal loss of magnetic material. They exhibited superparamagnetic behavior, confirmed from zero field cooled and field cooled profiles and showed high saturation magnetization (M{sub s}) of 46.21 emu/g at 2.5 T and 300 K. M{sub s} decreased with increasing precursor pectin concentrations, attributed to quenching of magnetic moments by formation of a magnetic dead layer on the MNPs. - Research highlights: > In the present investigation we have developed a facile route to synthesize a novel, low cost calcium pectinate nanostructure functionalized with SPIONs (magnetite nanoparticles). > Though there are sufficient scientific illustrations on polymer as well as biopolymers coated on SPIONs for various biomedical applications, the one presented here, is novel of its kind as it is considered to offer a new dimension to the magnetic responsive properties of calcium pectinate nanomaterials towards biomedical applications, especially as a potential carrier for magnetically targeted drug delivery to colon specific sites. > The synthesis of these nanostructured

  20. Composite Materials for Structural Design.

    Science.gov (United States)

    1982-03-01

    Introduction to Composite Materials , Technomic, Westport, Connecticut, 1980, pp. 19-20, 388-401. 8. W.D. Bascom, J.L. Bitner, R.J. Moulton, and A.R. Siebert...34 Introduction to Composite Materials ", Technomic Publishing Co., pp. 8-18,(1980). [6] Beckwith, S. W., "Viscoelastic Characterization of a Nonlinear Glass

  1. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-09-27

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  3. Thermal properties of graphene and nanostructured carbon materials

    Science.gov (United States)

    Balandin, Alexander A.

    2011-08-01

    Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range -- of over five orders of magnitude -- from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

  4. Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan

    2017-09-19

    Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M. (Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR))

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  6. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  7. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials.

    Science.gov (United States)

    Pola, Josef; Ouchi, Akihiko

    2009-03-12

    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  8. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  9. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  10. Dielectric behavior of epoxy/BaTiO₃ composites using nanostructured ceramic fibers obtained by electrospinning.

    Science.gov (United States)

    Ávila, H A; Ramajo, L A; Góes, M S; Reboredo, M M; Castro, M S; Parra, R

    2013-02-01

    Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 °C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin.

  11. Nanostructured Sulfide Composite Coating Prepared by Atmospheric Plasma Spraying

    Institute of Scientific and Technical Information of China (English)

    关耀辉

    2006-01-01

    Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying (APS). The microstructure and phase composition of the coating were characterized with SEM and XRD, respectively. In addition, the size distribution of the reconstituted powders and the porosity of the coating have been measured. It was found that the reconstitiuted powers with sizes in the range of 20 to 80 μm had excellent flowability and were suitable for plasma spraying process. The assprayed FeS-SiC composite coating exhibited a bimodal distribution with small grains (30~80nm) and large grains (100~200nm). The coating was mainly composed of FeS and SiC, a small quantity of Fe1-x S and oxide were also found. The porosity of the coating was approximately 19 %.

  12. In situ transmission electron microscopy experimentation of nanostructured materials

    Science.gov (United States)

    Alducin, Diego

    Due to the remarkable mechanical and electrical properties some nanostructured materials possess, it is important to be able to quantitatively characterize how these materials react under different types of stimulus. In situ transmission electron microscopy is a unique technique that allows the user to fully observe and record the crystallographic behavior of such materials undergoing a variety of tests. The crystallographic orientations silver nanowires were mapped in order to understand the structure and facets due to its geometry. Measuring the toughness and yield of the material led us to understand the anisotropic behavior of AgNWs. Depending on whether a load is applied to either a boundary between facets or on a facet will change the mechanical strength of the nanowire. By measuring the resistivity of the this material during deformation has also led us to understand that the intrinsic defects in the crystal structure of nanowires will change the way the material reacts to an electric potential. We have been also able to completely map the crystallographic orientations of very complex geometries of gold nanoparticles and characterize the weak forces involved in the manipulation if these nanoparticles. Finally, the elasticity of MoS2 was tested and found to be exponentially dependent upon the thickness of the nanosheets. However, the resistivity of this material does not seem to be affected by any type of deformation it is subjected to. The complete categorization of how materials interact with external stimulus while comparing the changes observed in its crystal structure is essential to understanding the underlying properties of nanostructured materials, which would not be possible without in situ transmisison electron microscopy experimentation.

  13. Mechanics in Composite Materials and Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Gil

    1993-03-15

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  14. Self-assembled peptide nanostructures for functional materials.

    Science.gov (United States)

    Ekiz, Melis Sardan; Cinar, Goksu; Khalily, Mohammad Aref; Guler, Mustafa O

    2016-10-07

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  15. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  16. Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications.

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

    2012-01-01

    Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO(3)-type perovskites, A(2)BO(4) spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)(6)) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches- such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction-arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  17. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  18. Nanostructured materials: A novel approach to enhanced performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others

    1996-05-01

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  19. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    Science.gov (United States)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  20. Semiconductive Nanostructures - Materials for Spinelectronics: New Data Bank Requirement

    Directory of Open Access Journals (Sweden)

    Paata J Kervalishvili

    2007-12-01

    Full Text Available Nanoscience, the interdisciplinary science that draws on physics, chemistry, biology, and computational mathematics, is still in its infancy. Control and manipulation on a nanometric scale allow the fabrication of nanostructures, the properties of which are mainly determined by quantum mechanics and differ considerably from that of the common crystalline state. Nanostructures constructed from inorganic solids such as semiconductors have new electronic and optical properties because of their size and quantization effects [1, 2]. The quantization effects reflect the fundamental characteristics of structures as soon as their size falls below a certain limit. An example of the simplest nanostructure is the quantum dot formed from the energy well of certain semiconductor materials with 5-10nm thickness sandwiched between other semiconductors with normal properties. Quantum dots, for example, have led to important novel technology for lasers, optical sensors, and other electronic devices. The application of nanolayers to data storage, switching, lighting, and other devices can lead to substantially new hardware, for example, energy cells, and eventually to the quantum-based internet. Nanoscience and nanotechnology encompass the development of nano-spinelectronics, spinelectronics materials production, and nano-spinelectronic measuring devices and technologies. Nano-spinelectronics, based on usage of magnetic semiconductors, represents a new and emerging area of science and engineering of the 21st century. It is a primary example of the creation and enhancement of new materials and devices for information technologies, operating with charge and spin degrees of freedom of carriers, free from present-day limitations. This new multi-disciplinary direction of science and technology is very much in need of support from new data banks, which will function as a source of new ideas and approaches.

  1. Soft nanostructured films for directing the assembly of functional materials

    Science.gov (United States)

    Steer, D.; Kang, M.; Leal, C.

    2017-04-01

    Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.

  2. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion.

    Science.gov (United States)

    Kang, Ji Yun; Kim, Jung Gi; Park, Hyo Wook; Kim, Hyoung Seop

    2016-05-27

    The concept of multiscale architectured materials is established using composition and grain size gradients. Composition-gradient nanostructured materials are produced from coarse grained interstitial free steels via carburization and high-pressure torsion. Quantitative analyses of the dislocation density using X-ray diffraction and microstructural studies clearly demonstrate the gradients of the dislocation density and grain size. The mechanical properties of the gradient materials are compared with homogeneous nanostructured carbon steel without a composition gradient in an effort to investigate the gradient effect. Based on the above observations, the potential of multiscale architecturing to open a new material property is discussed.

  3. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  4. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...... and concrete and associated internal stress states are examples of analysis made in this report. In this context is discussed that concrete strength is not an invariable material property. It is a property the potentials of which is highly and negatively influenced by any damage caused by stress concentrations...

  5. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    Science.gov (United States)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  6. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  7. Novel hybrid nanostructured materials of magnetite nanoparticles and pectin

    Science.gov (United States)

    Sahu, Saurabh; Dutta, Raj Kumar

    2011-04-01

    A novel hybrid nanostructured material comprising superparamagnetic magnetite nanoparticles (MNPs) and pectin was synthesized by crosslinking with Ca2+ ions to form spherical calcium pectinate nanostructures, referred as MCPs, which were typically found to be 100-150 nm in size in dried condition, confirmed from transmission electron microscopy and scanning electron microscopy. The uniform size distribution was revealed from dynamic light scattering measurement. In aqueous medium the MCPs showed swelling behavior with an average size of 400 nm. A mechanism of formation of spherical MCPs is outlined constituting a MNP-pectin interface encapsulated by calcium pectinate at the periphery, by using an array of characterization techniques like zeta potential, thermogravimetry, Fourier transformed infrared and X-ray photoelectron spectroscopy. The MCPs were stable in simulated gastrointestinal fluid and ensured minimal loss of magnetic material. They exhibited superparamagnetic behavior, confirmed from zero field cooled and field cooled profiles and showed high saturation magnetization (Ms) of 46.21 emu/g at 2.5 T and 300 K. Ms decreased with increasing precursor pectin concentrations, attributed to quenching of magnetic moments by formation of a magnetic dead layer on the MNPs.

  8. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  9. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  10. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  11. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip

  12. Nanostructured powders and their industrial application. Materials Research Society symposium proceedings Volume 520

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, G.; Mark, J.E.; Burns, G.T.; Hua, D.W. [eds.

    1998-07-01

    This new volume from the MRS brings together industrial and academic researchers involved in the synthesis and use of nanostructured powders such as fumed silica, pyrolytic titania and precipitated silica, as well as less conventional nanostructured powders such as exfoliated clays. Similarities and differences among these various fields of study and application are featured. In some ways, the volume is a continuation of the ``Better Ceramics Through Chemistry'' series. One main difference, however, is that this volume focused on the industrial use of these materials. Topics include: overview of nanopowder technology; physical aspects of nanostructured powders; synthesis of nanostructured powders; and applications of nanostructured powders.

  13. Development of sensors based on advanced micro- and nanostructured carbon materials

    Science.gov (United States)

    Mendoza Centeno, Frank Willi

    The thesis is focused on the development of sensors based on advanced micro- and nano-structured carbon materials. In particular, we developed prototype diamond-based ultraviolet photodetectors and carbon nanotubes-based gas sensors. We describe the method of preparation and characterization of the active carbon-based materials and their structural and compositional characterizations. This is followed by the corresponding device fabrication and testing. The thesis briefly gives an introduction to our current understanding about carbon materials, with emphasis on synthetic diamond and bamboo-like carbon nanotubes, and to the materials' properties that are useful for ultraviolet photodetectors and gas sensor applications. The thesis also give an overview of the experience gained through this research, and some suggestions for those who would like follow the research methods employ here. It provides experimental information learned through experience that may be helpful and avoid delays to the newer experimentalists.

  14. Quantum materials. Lateral semiconductor nanostructures, hybrid systems and nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Detlef (ed.) [Hamburg Univ. (Germany). Inst. fuer Angewandte Physik

    2010-07-01

    Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called ''Quantum Materials''.The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems. (orig.)

  15. Nanostructured diamond-TiC composites with high fracture toughness

    Science.gov (United States)

    Wang, Haikuo; He, Duanwei; Xu, Chao; Tang, Mingjun; Li, Yu; Dong, Haini; Meng, Chuanmin; Wang, Zhigang; Zhu, Wenjun

    2013-01-01

    We report the preparation of nanostructured diamond-TiC composites with high fracture toughness and high hardness starting from a ball-milled mixture of nano-sized Ti3SiC2 and submicron-sized diamond by simultaneously tuning the pressure-temperature conditions. The phase segregation of Ti3SiC2 at pressure of 5.5 GPa were investigated by X-ray diffraction and high resolution transmission electron microscopy, we found that the Ti3SiC2 could decompose into nanosized TiC and amorphous Ti-Si at 600-700 °C. The subsequent reaction between diamond and Ti-Si led to an amorphous Ti-Si-C matrix in which diamond and TiC crystals are embedded. With a loading force of 98 N, the measured fracture toughness KIC and Vicker's hardness HV of the synthesized composites reach up to 14 MPa m1/2 and 45.5 GPa, respectively. Our results demonstrate that the nanocrystalline/amorphous bonding matrix could largely enhance the toughness of the brittle composites.

  16. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  17. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    Science.gov (United States)

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  18. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  19. EPR and magnetism of the nanostructured natural carbonaceous material shungite

    Science.gov (United States)

    Augustyniak-Jabłokow, Maria Aldona; Yablokov, Yurii V.; Andrzejewski, Bartłomiej; Kempiński, Wojciech; Łoś, Szymon; Tadyszak, Krzysztof; Yablokov, Mikhail Y.; Zhikharev, Valentin A.

    2010-04-01

    The X-band EPR and magnetic susceptibility in the temperature range 4.2-300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ ( sp 2+ x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10-8 and 1.73 × 10-8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.

  20. Water-evaporation-induced electricity with nanostructured carbon materials.

    Science.gov (United States)

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-01-30

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  1. Water-evaporation-induced electricity with nanostructured carbon materials

    Science.gov (United States)

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  2. Tunable nanostructured composite with built-in metallic wire-grid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Davide, E-mail: davide.micheli@uniroma1.it; Pastore, Roberto; Marchetti, Mario [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy); Gradoni, Gabriele [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)

    2013-11-15

    In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ∼20 dB, and a “blueshift” of ∼600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

  3. Tunable nanostructured composite with built-in metallic wire-grid electrode

    Directory of Open Access Journals (Sweden)

    Davide Micheli

    2013-11-01

    Full Text Available In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ∼20 dB, and a “blueshift” of ∼600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

  4. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  5. Properties and rapid sintering of a nanostructured tetragonal zirconia composites

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-09-01

    4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.

  6. Multifunctional, flexible electronic systems based on engineered nanostructured materials.

    Science.gov (United States)

    Ko, Hyunhyub; Kapadia, Rehan; Takei, Kuniharu; Takahashi, Toshitake; Zhang, Xiaobo; Javey, Ali

    2012-08-31

    The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

  7. SIMULATION OF SYNTHESIS OF CLUSTER-ASSEMBLED NANOSTRUCTURED MATERIALS

    Directory of Open Access Journals (Sweden)

    M.S.Byshkin

    2003-01-01

    Full Text Available A model is described to simulate the formation of nanostructured materials by cluster beam deposition. Clusters are modelled by spherical balls with a given size distribution function, which fall to the substrate and stick to the growing structure. The mobility of clusters along the film surface is modelled by introduction of a critical angle at which a falling ball meets a ball that belongs to the structure. When the falling ball touches one of the balls in the structure at an angle smaller than the critical one, it sticks to the film; otherwise the ball rolls along the surface till it meets other balls. It is shown that a variety of structures similar to those observed experimentally can be produced. The density of the model structures, percolation thresholds and the surface roughness are analyzed.

  8. Protein-based composite materials

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2012-05-01

    Full Text Available Protein-based composite biomaterials have been actively pursued as they can encompass a range of physical properties to accommodate a broader spectrum of functional requirements, such as elasticity to support diverse tissues. By optimizing molecular interfaces between structural proteins, useful composite materials can be fabricated as films, gels, particles, and fibers, as well as for electrical and optical devices. Such systems provide analogies to more traditional synthetic polymers yet with expanded utility due to the material's tunability, mechanical properties, degradability, biocompatibility, and functionalization, such as for drug delivery, biosensors, and tissue regeneration.

  9. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    Science.gov (United States)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  10. Dielectric Spectroscopy of Nanostructured Polypyrrole-NiO Composites

    Directory of Open Access Journals (Sweden)

    Syeda Seema

    2014-01-01

    Full Text Available Conducting polypyrrole-nickel oxide (polypyrrole-NiO composites were synthesized by in situ deposition technique by placing different weight percentages of NiO powder (10, 20, 30, 40, and 50% during the polymerisation of pyrrole. The polypyrrole-NiO composites were later characterised with Fourier transform infrared spectroscopy (FTIR which confirms the presence of polypyrrole in the composite. AC conductivity was studied in the frequency range from 102 to 107 Hz. From these studies it is found that AC conductivity remains constant at low frequency and increases rapidly at higher frequency, which is the characteristic behavior of disordered materials. The dielectric behavior of these composites was also investigated in the frequency range 102–107 Hz. It is observed from these studies that the dielectric constant and dielectric tangent loss decrease exponentially with frequency. The composites exhibit a low value of dielectric loss at higher frequency.

  11. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    Science.gov (United States)

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials.

  12. Non-equilibrium grain boundaries in titanium nanostructured by severe plastic deformation: Computational study of sources of material strengthening

    DEFF Research Database (Denmark)

    Liu, Hongsheng; Mishnaevsky, Leon; Pantleon, Wolfgang

    2014-01-01

    A computational model of ultrafine grained (UFG) or nanostructured titanium (Ti), based on a finite element (FE) unit cell model of the material and a dislocation density based model of plastic deformation has been developed. FE simulations of tensile deformation of UFG Ti with different fractions...... and properties of the grain boundary (GB) phase have been carried out. The effect of different degrees of deviation from the equilibrium state of the grain boundaries (GBs) on the mechanical behaviour of nanostructured Ti have been investigated using the combined composite/dislocation dynamics based model....... In particular, the effects of different diffusion coefficients in the GB phase, of a high initial dislocation density in the grain boundaries, as well as of atomic scale precipitates are investigated for affecting the deformation behaviour of UFG or nanostructured Ti. © 2013 Elsevier B.V. All rights reserved....

  13. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions to the cr......Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  14. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    Science.gov (United States)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.

  15. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  16. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  17. Synchrotron SAXS Studies of Nanostructured Materials and Colloidal Solutions: A Review

    Directory of Open Access Journals (Sweden)

    Craievich A.F.

    2002-01-01

    Full Text Available Structural characterisations using the SAXS technique in a number of nanoheterogeneous materials and liquid solutions are reviewed. The studied systems are protein (lysozyme/water solutions, colloidal ZnO particles/water sols, nanoporous NiO-based xerogels, hybrid organic-inorganic siloxane-PEG and PPG nanocomposites and PbTe semiconductor nanocrystals embedded in a glass matrix. These investigations also focus on the transformations of time-varying structures and on structural changes related to variations in temperature and composition. The reviewed investigations aim at explaining the unusual and often interesting properties of nanostructured materials and solutions. Most of the reported studies were carried out using the SAXS beamline at the National Synchrotron Light Laboratory (LNLS, Campinas, Brazil.

  18. Nanostructured materials with biomimetic recognition abilities for chemical sensing

    Science.gov (United States)

    Bajwa, Sadia Zafar; Mustafa, Ghulam; Samardzic, Renata; Wangchareansak, Thipvaree; Lieberzeit, Peter A.

    2012-06-01

    Binding features found in biological systems can be implemented into man-made materials to design nanostructured artificial receptor matrices which are suitable, e.g., for chemical sensing applications. A range of different non-covalent interactions can be utilized based on the chemical properties of the respective analyte. One example is the formation of coordinative bonds between a polymerizable ligand (e.g., N-vinyl-2-pyrrolidone) and a metal ion (e.g., Cu(II)). Optimized molecularly imprinted sensor layers lead to selectivity factors of at least 2 compared to other bivalent ions. In the same way, H-bonds can be utilized for such sensing purposes, as shown in the case of Escherichia coli. The respective molecularly imprinted polymer leads to the selectivity factor of more than 5 between the W and B strains, respectively. Furthermore, nanoparticles with optimized Pearson hardness allow for designing sensors to detect organic thiols in air. The `harder' MoS2 yields only about 40% of the signals towards octane thiol as compared to the `softer' Cu2S. However, both materials strongly prefer molecules with -SH functionality over others, such as hydrocarbon chains. Finally, selectivity studies with wheat germ agglutinin (WGA) reveal that artificial receptors yield selectivities between WGA and bovine serum albumin that are only about a factor of 2 which is smaller than natural ligands.

  19. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, Rajendra [Univ. of Washington, Seattle, WA (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States); Henager, Chuck [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  20. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  1. Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material

    Institute of Scientific and Technical Information of China (English)

    Li Han; Tang Xin-Feng; Cao Wei-Qiang; Zhang Qing-Jie

    2009-01-01

    This paper reports that the nanostructured β-FeSi2 bulk materials are prepared by a new synthesis process by combining melt spinning (MS) and subsequent spark plasma sintering (SPS). It investigates the influence of linear speed of the rolling copper wheel, injection pressure and SPS regime on microstructure and phase composition of the rapidly solidified ribbons after MS and bulk production respectively, and discusses the effects of the microstructure on Sis2 and ε-FeSi) in the rapidly solidified ribbons;thermal transport properties. There are two crystalline phases (α-Fe the crystal grains become smaller when the cooling rate increases (the 20 nm minimum crystal of ε-FeSi is obtained). Having been sintered for 1 min above 1123K and annealed for 5min at 923K, the single-phase nanostructured β- FeSi2 bulk materials with 200-500 nm grain size and 98% relative density are obtained. The microstructure of β-FeSi2has great effect on thermal transport properties. With decreasing sintering temperature, the grain size decreases, the thermal conductivity of β-FeSi2is reduced remarkably. The thermal conductivity of β-FeSi decreases notably (reduced 72% at room temperature) in comparison with the β-FeSi2prepared by traditional casting method.

  2. Nanostructured Multilayer Composite Films of Manganese Dioxide/Nickel/Copper Sulfide Deposited on Polyethylene Terephthalate Supporting Substrate

    Directory of Open Access Journals (Sweden)

    Awangku Nabil Syafiq Bin Awangku Metosen

    2015-01-01

    Full Text Available Nanostructured multilayer manganese dioxide/nickel/copper sulfide (MnO2/Ni/CuS composite films were successfully deposited onto supporting polyethylene terephthalate (PET substrate through the sequential deposition of CuS, Ni, and MnO2 thin films by chemical bath deposition, electrodeposition, and horizontal submersion deposition techniques, respectively. Deposition of each thin-film layer was optimized by varying deposition parameters and conditions associated with specific deposition technique. Both CuS and Ni thin films were optimized for their electrical conductivity whereas MnO2 thin film was optimized for its microstructure and charge capacity. The electrochemical properties of nanostructured multilayer MnO2/Ni/CuS composite films were evaluated by cyclic voltammetry as electrode materials of an electrochemical capacitor prototype in a dual-planar device configuration. Cyclic voltammogram in mild Na2SO4 aqueous electrolyte exhibited a featureless and almost rectangular shape which was indicative of the ideal capacitive behavior and high cycling reversibility of the electrochemical capacitor prototype. Nanostructured multilayer MnO2/Ni/CuS composite films on supporting polyethylene terephthalate (PET substrate could potentially be utilized as electrode materials for the fabrication of high performance electrochemical capacitors.

  3. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the

  4. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    Science.gov (United States)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  5. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  6. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  7. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    Science.gov (United States)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  8. Composition, nanostructure, and optical properties of silver and silver-copper lusters

    Energy Technology Data Exchange (ETDEWEB)

    Pradell, Trinitat; Pavlov, Radostin S. [Center for Research in NanoEngineering, Universitat Politecnica de Catalunya and Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Baix Llobregat, ESAB, Esteva Terrades 8, 08860 Castelldefels, Barcelona (Spain); Carolina Gutierrez, Patricia; Climent-Font, Aurelio [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid, Spain and Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Molera, Judit [GRTD, Escola Politecnica Superior, Universitat de Vic. C. de la Laura, 13, 08500 Vic (Spain)

    2012-09-01

    Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.

  9. The development of biopolymer-based nanostructured materials : plastics, gels, IPNs and nanofoams

    NARCIS (Netherlands)

    Soest, van J.J.G.

    2006-01-01

    The ability to design products with structural features on a nanometric scale is a major technology driver in materials research Nanostructured materials are defined as materials with structural features on a sub-micron scale determining specific properties They consist of materials such as metals,

  10. The development of biopolymer-based nanostructured materials : plastics, gels, IPNs and nanofoams

    NARCIS (Netherlands)

    Soest, van J.J.G.

    2006-01-01

    The ability to design products with structural features on a nanometric scale is a major technology driver in materials research Nanostructured materials are defined as materials with structural features on a sub-micron scale determining specific properties They consist of materials such as metals,

  11. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  12. Nanostructures formed on carbon-based materials with different levels of crystallinity using oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Matter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Jo, Wonjin; Lee, Heon Ju [Institute for Multidisciplinary Convergence of Matter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Moon, Myoung-Woon, E-mail: mwmoon@kist.re.kr [Institute for Multidisciplinary Convergence of Matter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-09-01

    Nanostructure formation was explored for various carbon-based materials, such as diamond, carbon fiber, polyethylene terephthalate and poly (methyl methacrylate), which have different levels of crystallinity, ranging from perfect crystal to polymeric amorphous. After treatment of oxygen plasma glow discharge, the nanostructures on these carbon-based materials were found to evolve via preferential etching due to the co-deposition of metal elements sputtered from the metal cathode plate. Local islands or clusters formed by the metal co-deposition have a low etching rate compared to pristine regions on each material, resulting in anisotropic patterns on the carbon-based materials. This pattern formation mechanism was confirmed by covering the cathode or preventing the co-deposition of metallic sources with a polymeric material. Regardless of the level of crystallinity of the carbon-based materials, no patterns were observed on the surfaces covered with the polymeric material, and the surfaces were uniformly etched. It was found that the materials with low crystallinity had a high etching rate due to low carbon atom density, which thus easily formed high-aspect-ratio nanostructures for the same plasma treatment duration. - Highlight: • Reactive ion etching & metal deposition were occurred in oxygen plasma treatment. • High-aspect-ratio nanostructures can be fabricated on carbon-based materials. • Materials with low crystallinity easily formed high-aspect-ratio nanostructure. • Amount of etching inhibitors affects the pattern formation and configuration.

  13. Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol.

    Science.gov (United States)

    Teixeira, Ana Paula C; Purceno, Aluir D; de Paula, Camila C A; da Silva, Julio César C; Ardisson, José D; Lago, Rochel M

    2013-03-15

    In this work, chrysotile was used as support to grow carbon nanotubes and nanofibers to produce fibrous amphiphilic magnetic nanostructured composites. Iron impregnated on the chrysotile surface at 1, 5 and 15 wt% was used as catalyst to grow carbon nanostructures by CVD (chemical vapor deposition) with ethanol at 800°C. Raman, TG/DTA, Mössbauer, XRD, BET, SEM, TEM, elemental analyses and contact angle measurements suggested the formation of a complex amphiphilic material containing up to 21% of nanostructured hydrophobic carbon supported on hydrophilic Mg silicate fibers with magnetic Fe cores protected by carbon coating. Adsorption tests for the hormone ethynilestradiol (EE), a hazardous water contaminant, showed remarkable adsorption capacities even compared to high surface area activated carbon and multiwall carbon nanotubes. These results are discussed in terms of the hydrophobic surface of the carbon nanotubes and nanofibers completely exposed and accessible for the adsorption of the EE molecules combined with the hydrophilic Mg silicate surface which allows good dispersion in water. The composites are magnetic and after adsorption the dispersed particles can be removed by a simple magnetic process. Moreover, the fibrous composites can be conformed as threads, screens and pellets to produce different filtering media.

  14. Nanostructured energetic materials using sol-gel methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Tillotson, T M; Simpson, R L; Hrubesh, L W; Gash, A E; Thomas, I M; Poco, J F

    2000-09-27

    The fundamental differences between energetic composites and energetic materials made from a monomolecular approach are the energy density attainable and the energy release rates. For the past 4 years, we have been exploiting sol-gel chemistry as a route to process energetic materials on a microstructural scale. At the last ISA conference, we described four specific sol-gel approaches to fabricating energetic materials and presented our early work and results on two methods - solution crystallization and powder addition. Here, we detail our work on a third approach, energetic nanocomposites. Synthesis of thermitic types of energetic nanocomposites are presented using transition and main group metal-oxide skeletons. Results on characterization of structure and performance will also be given.

  15. Composite materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  16. Sorptive removal of trinitroglycerin (TNG) from water using nanostructured silica-based materials.

    Science.gov (United States)

    Saad, Rabih; Thibutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2010-01-01

    Trinitroglycerin (TNG), a nitrate ester, is widely used in the pharmaceutical industry for the treatment of angina pectoris (chest pain) and by the military for the manufacturing of dynamite and propellants. Currently, TNG is considered as a key environmental contaminant due to the discharge of wastewater tainted with the chemical from various military and pharmaceutical industries. The present study describes the use of a nanostructured silica material (Mobil Composite Material no. 48 [MCM-48]) prepared by mixing tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) to remove TNG from water. The sorption of TNG onto MCM-48 rapidly reached equilibrium within 1 h. Sorption kinetics were best described using a pseudo-second order model, whereas sorption isotherms were best interpreted using the Langmuir model. The latter gave a maximum sorption capacity of 55.2 mg g(-1) at 40 degrees C. The enthalpy and entropy of TNG sorption onto MCM-48 were 1.89 kJ mol(-1) and 79.0 J mol(-1).K(-1), indicating the endothermic nature of the TNG sorption onto MCM-48. When MCM-48 was heated at 540 degrees C for 5 h, the resulting calcined material (absence of the surfactant) did not sorb TNG, suggesting that the surfactant component of the nanomaterial was responsible for TNG sorption. Finally, we found that MCM-48 lost approximately 30% of its original sorption capacity after five sorption-desorption cycles. In conclusion, the nanostructured silica based sorbent, with high sorption capacity and remarkable reusability, should constitute the basis for the development of an effective technology for the removal of TNG from contaminated water.

  17. Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-03-01

    Full Text Available The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a “space-holder” sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthesized by mechanical alloying and annealing mixed with 1.0 mm diameter of saccharose crystals was finally compacted in the form of pellets. In the next step, the saccharose crystals were dissolved in water, leaving open spaces surrounded by metallic-bioceramic scaffold. The sintering of the scaffold leads to foam formation. It was found that 1:1 Ti-10 wt% 45S5 Bioglass-1 wt% Ag/sugar ratio leads to porosities of about 70% with pore diameter of about 0.3–1.1 mm. The microstructure, corrosion resistance in Ringer’s solution of the produced foams were investigated. The value of the compression strength for the Ti-10 wt% 45S5 Bioglass-1 wt% Ag foam with 70% porosity was 1.5 MPa and the Young’s modulus was 34 MPa. Silver modified Ti-10 wt% 45S5 Bioglass composites possess excellent antibacterial activities against Staphylococcus aureus. Porous Ti-10 wt% 45S5 Bioglass-1 wt% foam could be a possible candidate for medical implants applications.

  18. High resolution backscattering studies of nanostructured magnetic and semiconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal)]. E-mail: afonseca@itn.pt; Franco, N. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Alves, E. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Barradas, N.P. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Leitao, J.P. [Departamento de Fisica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Sobolev, N.A. [Departamento de Fisica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Banhart, D.F. [Z. E. Elektronenmikroskopie, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); Presting, H. [Daimler-Chrysler Forschungszentrum, 89081 Ulm (Germany); Ulyanov, V.V. [Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Nikiforov, A.I. [Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation)

    2005-12-15

    Low dimension structures raises inevitably new technological challenges in materials science. The new structures must fulfill stringent requirements in composition, crystalline quality and interface sharpness among others. We present and discuss the results of Si/Ge quantum structures and FePt/C multilayer structures deposited at different temperatures by ion beam sputtering. Evidence for the presence of FePt nanoparticles embedded in the C matrix and Ge islands in Ge/Si multilayers structures was found. Size and stoichiometry of the nanoparticles and the multilayer periodicity was obtained using Rutherford backscattering at grazing angles of incidence. The strain state of the single crystalline layers was determined by tilt axis channelling.

  19. Carbon/Clay nanostructured composite obtained by hydrothermal method; Compositos nanoestruturados carbono/argila obtidos por metodo hidotermico

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S., E-mail: gabriela.borin@gmail.co [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Souza Filho, A.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm{sup -1} in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  20. Carbon/Clay nanostructured composite obtained by hydrothermal method; Compositos nanoestruturados carbono/argila obtidos por metodo hidotermico

    Energy Technology Data Exchange (ETDEWEB)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S., E-mail: gabriela.borin@gmail.co [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Souza Filho, A.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm{sup -1} in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  1. Effect of Nanostructure Changes on Stress Corrosion Cracking of Proton Irradiated Nuclear Energy Structural Materials

    Directory of Open Access Journals (Sweden)

    M.N. Lunika

    2011-01-01

    Full Text Available Austenitic stainless alloys are used extensively as structural materials in the internal components of light water reactor (LWR pressure vessels because of their relatively high strength, ductility, and fracture toughness. Irradiation-assisted stress corrosion cracking (IASCC is main degradation process that affects LWR internal components exposed to radiation. The existing data on proton irradiated austenitic alloys were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose on IASCC susceptibility of these materials in LWR environments. The significance of deformation nanostructure and stacking fault energy (SFE changes in the material on IASCC susceptibility is also discussed. Results show that the IASCC susceptibility of the alloys increases with increasing irradiation dose and decreasing stacking fault energy. IASCC tends to initiate at locations where slip dislocation channels intersect grain boundaries. Localized deformation in the form of grain boundary sliding due to the interaction of slip channels and grain boundaries is likely the primary cause of the observed cracking initiation. It may play a key role in the underlying mechanism of IASCC in light water reactor core components.

  2. Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: From an atomistic description to a continuum approach

    Science.gov (United States)

    Dingreville, Remi

    the effects of surface free energy on the effective modulus of nano-particles, nano-wires and nano-films as well as nanostructured crystalline materials and propose a general framework valid for any shape of nanostructural elements/nano-inclusions (integral forms) that characterizes the size-dependency of the elastic properties. This approach bridges the gap between discrete systems (atomic level interactions) and continuum mechanics. Finally this continuum outline is used to understand the effects of surfaces on the overall behavior of nano-size structural elements (particles, films, fibers, etc.) and nanostructured materials. More specifically we will discuss the impact of surface relaxation, surface elasticity and non-linearity of the underlying bulk on the properties nanostructured materials. In terms of engineering applications, this approach proves to be a useful tool for multi-scale modeling of heterogeneous materials with nanometer scale microstructures and provides insights on surface properties for several material systems; these will be very useful in many fields including surface science, tribology, fracture mechanics, adhesion science and engineering, and more. It will accelerate the insertion of nano-size structural elements, nano-composite and nanocrystalline materials into engineering applications.

  3. Fabrication and characterization of nanostructured titanate materials by the hydrothermal treatment method.

    Science.gov (United States)

    Doong, Ruey-an; Kao, I-ling

    2008-01-01

    The synthesis and characterization of one-dimensional (1-D) tubular and fibrous nanostructured materials have recently received highly attention. Various morphologies of 1-D nanostructured titanate materials including nanosheets, nanotubes, nanowires, and nanoribbons have recently been successfully synthesized using the alkaline hydrothermal method. In spite of the controversy of the chemical structures and formation mechanisms, titanate nanostructures have attracted much attention on applications of dye-sensitized solar cell, hydrogen sensing, lithium storage and photocatalysis because of their unique features of high specific surface area, ion-exchange capacity and aspect ratio, and unique optical and electrochemical properties. The morphology and microstructure of titanate nanostructures are highly dependent on the preparation conditions. In this review, we highlight the synthesis of TiO(2)-derived nanomaterials under various hydrothermal conditions. The patents for fabrication of various morphologies of nanostructures are also introduced. Effects of preparation parameters including hydrothermal temperature, duration, alkaline concentration, starting materials, and post-treatment on the morphology and microstructure of titanate nanomaterials are reviewered. In addition, the microwave-assisted method for fabrication of 1-D titanate nanostructures is discussed and compared. The applications of titanate nanomaterials in photocatalysis, ion-exchange, and lithium storages are also introduced.

  4. Synthesis of branched metal nanostructures with controlled architecture and composition

    Science.gov (United States)

    Ortiz, Nancy

    On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental

  5. Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures.

    Science.gov (United States)

    2007-11-02

    syntheses can be accomplished within the pores of the alumina templates to make semiconductor tubules (27). Figure 5 shows that Ti02 tubules prepared...surface area forms have higher photo efficiencies (28). Ti02 /conductor nanocomposites may prove to be useful photocatalysts because the template...synthesized Ti02 nanostructures have very high surface areas (27). Furthermore, as discussed previously, each outer tubular Ti02 catalyst particle has

  6. Structure-Interaction Effects In Novel Nanostructured Materials

    Science.gov (United States)

    Le, Nam B.

    Recent advances in experimental and computational methods have opened up new directions in graphene fundamental studies. In addition to understanding the basic properties of this material and its quasi-one dimensional structures, significant efforts are devoted to describing their long ranged dispersive interactions. Other two-dimensional materials, such as silicene, germanene, and transition metal dichalcogenides, are also being investigated aiming at finding complementary to graphene systems with other "wonder" properties. The focus of this work is to utilize first principles simulations methods to build our basic knowledge of structure-interaction relations in two-dimensional materials and design their properties. In particular, mechanical folding and extended defects in zigzag and armchair graphene nanoribbons can be used to modulate their electronic and spin polarization characteristics and achieve different stacking patterns. Our simulations concerning zigzag silicene nanoribbons show width-dependent antiferromagnetic-ferromagnetic transitions unlike the case of zigzag graphene nanoribbons, which are always antiferromagnetic. Heterostructures, build by stacking graphene, silicene, and MoS2, are also investigated. It is found that hybridization alters the electronic properties of the individual layers and new flexural and breathing phonon modes display unique behaviors in the heterostructure compositions. Anchored to SiC substrate graphene nanoribbons are also proposed as possible systems to be used in graphene electronics. Our findings are of importance not only for fundamental science, but they could also be used for future experimental developments.

  7. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States); Bai, Zhaojun [Univ. of California, Davis, CA (United States); Ceperley, David [Univ. of Illinois, Urbana, IL (United States); Cai, Wei [Stanford Univ., CA (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Marzari, Nicola [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pickett, Warren [Univ. of California, Davis, CA (United States); Spaldin, Nicola [Univ. of California, Santa Barbara, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  8. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  9. Nanostructured metal-polyaniline composites and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  10. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    Science.gov (United States)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  11. The Effects of Surface Properties of Nanostructured Bone Repair Materials on Their Performances

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-01-01

    Full Text Available Nanotechnology has been expected to be an extraordinarily promising method for bone repair. Meanwhile, the promise of nanobiomaterials for therapeutic applications has been widely reported, and a lot of studies have been made in terms of repairing bone using nanomaterials accompanied by rapid development of nanotechnology. Compared with conventional biomaterials, nanostructured implants have been shown to possess positive effects on cellular functions because of their unique surface properties, such as nanotopography, increased wettability, larger surface area, and microenvironment similar to extracellular matrix. Moreover, many positive cellular responses have been found to take place at the interface between nanostructured implants and host bone. In this paper, we will give a review about the effects of surface properties of nanostructured bone repair materials on their performances in terms of several aspects and a detailed interpretation or introduction on the specific cellular recognitions at the interface between nanostructured implants and host bone.

  12. Bioenvironmental Engineering Guide for Composite Materials

    Science.gov (United States)

    2014-03-31

    materials but may often have hybrid blends of composite materials. Therefore, referencing the specific aircraft’s composite material makeup and...Health Risk Analysis; 2001 Aug. Report No. IERA-RS-BR-TR-2001-0009. 8. Martin Marietta Corporation. Dust control handbook for minerals processing

  13. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  14. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex nanostructu

  15. Assembly and Characterization of Coordination Polymer Nanostructural Materials at Interfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Molecular self-assembly of one-/two-dimensional (1D/2D) nanostructures has recently received great interest because the specific structures of crystals determine their unique physical and chemical properties. Coordination polymers contain two central components, connectors and linkers. Transition metal ions are often used as versatile connectors, with coordination numbers ranging from 2 to 7 dependant on the oxidation states of the metal ions. Multidentate ligands are often used as linkers, wh...

  16. Nanostructured complex cobalt oxides as potential materials for solar thermoelectric power generators

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Romer, S.; Weidenkaff, A. [Laboratory of Solid State Chemistry and Analyses, Empa Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Dubendorf (Switzerland); Reller, A. [Solid State Chemistry, University of Augsburg, Universitaetsstrasse 1, D-86150 Augsburg (Germany)

    2005-05-01

    Thermoelectrically active and stable perovskite-type materials e.g. La{sub 1-x}Ca{sub x}CoO{sub 3} (0composition from 1% level to 50% substitution. Accordingly the Co valency and therefore the transport properties of the product phases can be controlled. It has been found that the pH of the precursor solution results in a pronounced influence on the morphology of the products. The thermoelectric values measured of the nanostructured ''misfit cobaltite Ca{sub 3}Co{sub 4}O{sub 9}'' shows a Seebeck coefficient of S{sub 300K} {proportional_to} + 123 {mu}VK{sup -1}, and a resistivity of {rho} {proportional_to} 1.9 m{omega} cm at room temperature, which is comparable to the reported value for single crystals. Ca- and Ti-substituted LaCoO{sub 3} reveal thermopower values in the range from S{sub 300K} {proportional_to} + 70 to + 180 {mu}VK{sup -1}. The electrical conductivity of the nanostructured compounds is high in spite of the fact that the grain boundary influence is increasing. The Seebeck coefficient values of the products are positive in the whole temperature range indicating p-type conduction. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Nanostructured multilayered thin film barriers for Mg2Si thermoelectric materials

    Science.gov (United States)

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-01

    The Mg2Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg2Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg2Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  18. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2012-07-01

    Full Text Available Tests were done on the compressive behaviour of different metal matrix composite materials. These extremely hard engineering materials consist of ceramic particles embedded in a metal alloy binder. Due to the high stiffness and brittle nature...

  19. Composite materials for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  20. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru; Somov, P. A.; Terukov, E. I. [St. Petersburg Electrotechnical University LETI (Russian Federation)

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  1. Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites

    Science.gov (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming

    2014-01-01

    Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

  2. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Campos, R., E-mail: ruben.flores@itesm.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Tecnologico de Monterrey Campus Saltillo, Departamento de Ingenieria, Prol. Juan de la Barrera No. 1241 Ote., Col. Cumbres, CP 25270, Saltillo, Coah., Mexico (Mexico); Estrada-Guel, I., E-mail: ivanovich.estrada@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Herrera-Ramirez, J.M., E-mail: martin.herrera@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico)

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  3. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  4. Clues for biomimetics from natural composite materials

    Science.gov (United States)

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  5. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  6. Wave dynamics and composite mechanics for microstructured materials and metamaterials

    CERN Document Server

    2017-01-01

    This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...

  7. Effect of interface structure on mechanical properties of advanced composite materials.

    Science.gov (United States)

    Gan, Yong X

    2009-11-25

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown.

  8. Composite Dielectric Materials for Electrical Switching

    Energy Technology Data Exchange (ETDEWEB)

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  9. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  10. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  11. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Suchea, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Tudose, I.V. [Chemistry and Physics, “Al.I. Cuza” University of Iasi, Iasi (Romania); Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Tzagkarakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Kenanakis, G. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology (FORTH) Hellas, Heraklion (Greece); Katharakis, M. [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Drakakis, E. [Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Koudoumas, E., E-mail: koudoumas@staff.teicrete.gr [Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece); Electrical Engineering Department, School of Engineering, Technological Educational Institute of Crete, Heraklion (Greece)

    2015-10-15

    Graphical abstract: - Highlights: • Paint-like nanocomposite layers consisting of graphene nanoplatelets, PANI:HCl and PEDOT:PSS present very effective attenuation of electromagnetic radiation in the frequency range 4–20 GHz. • The shielding performance is based mostly on the graphene nanoplatelets and supported by PANI:HCl. In contrast, PEDOT:PSS plays mainly the role of the binder. • Increasing resistivity was observed to reduce the shielding effect, while increasing thickness to favor it. - Abstract: We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4–20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  12. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    Science.gov (United States)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  13. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    Science.gov (United States)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed. PMID:28067334

  14. Composition-dependent nanostructure of Cu(In,Ga)Se{sub 2} powders and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C.S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Kämmer, H.; Steinbach, T.; Gnauck, M. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Rissom, T.; Kaufmann, C.A.; Stephan, C. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Schorr, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)

    2015-05-01

    Atomic-scale structural parameters of Cu(In,Ga)Se{sub 2} powders and polycrystalline thin films were determined as a function of the In and Cu contents using X-ray absorption spectroscopy. No difference in the two sample types is observed for the average bond lengths demonstrating the strong tendency towards bond length conservation typical for tetrahedrally coordinated semiconductors. In contrast, the bond length variation is significantly smaller in the thin films than in the powders, particularly for Cu-poor material. This difference in the nanostructure is proposed to originate from differences in the preparation conditions, most prominently from the different history of Cu composition. - Highlights: • Cu(In,Ga)Se{sub 2} powders and thin films are studied with X-ray absorption spectroscopy. • Structural parameters are determined as a function of the In and Cu contents. • The element-specific average bond lengths are identical for powders and thin films. • The Ga-Se/In-Se bond length variation is smaller for thin films than for powders. • The differences are believed to stem from the different history of the Cu content.

  15. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2014-01-01

    Full Text Available Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.

  16. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    Science.gov (United States)

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  17. Novel applications exploiting the thermal properties of nanostructured materials.

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  18. MPS/CAS Partner Group on Nanostructured Materials

    Institute of Scientific and Technical Information of China (English)

    Lu Ke; Manfred Rühle

    2004-01-01

    @@ As one of the first Partner Groups which were initiated to foster scientific exchange and interaction between the Max Pianck Society (MPS) and the Chinese Academy of Sciences (CAS), the Partner Group led by Lu Ke was established on April 1, 1999.During the past five years, the group has received substantial support from the CAS for equipment and from the MPS for personnel and travel expenses. Extensive and productive collaborations between the research staff and students of the Partner Group with several professors (departments) in the Max Planck Institute for Metals Research (MPI-MF) have led to significant advances in synthesis,mechanical properties, melting and superheating of nanostructured metals. The research is well recognized internationally and a substantial number of publications in high quality, peer-reviewed journals (including Science and Physical Review Letters) have resulted.

  19. Electrospray-assisted synthesis methods of nanostructured materials for Li-ion batteries

    NARCIS (Netherlands)

    Valvo, M.

    2010-01-01

    This PhD thesis focuses on the synthesis of nanostructured materials via an aerosol-assisted route based on electrospraying of liquid precursors. Electrospraying is a powerful technique for the production of nearly-monodispersed, highly-charged droplets. The possibility of tailoring the droplet

  20. Electrospray-assisted synthesis methods of nanostructured materials for Li-ion batteries

    NARCIS (Netherlands)

    Valvo, M.

    2010-01-01

    This PhD thesis focuses on the synthesis of nanostructured materials via an aerosol-assisted route based on electrospraying of liquid precursors. Electrospraying is a powerful technique for the production of nearly-monodispersed, highly-charged droplets. The possibility of tailoring the droplet size

  1. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Science.gov (United States)

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  2. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    Science.gov (United States)

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents.

  3. Thermal Properties of Polyimide Composites with Nanostructured Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Alyona Igorevna Wozniak

    2016-12-01

    Full Text Available A series of polyimide composites reinforced with different loadings of silicon carbide (SiC nanoparticles are prepared by in-situ polymerization technique. The polyimide (PI matrix resin is derived from 4,4’-oxydianiline (4,4’-ODA and pyromelliticdianhydride (PMDA. The dispersions of SiC nanoparticles are prepared via ultrasonic irradiation or mechanical homogenization. In this method, the SiC nanoparticles are dispersed in diamine solution followed by polymerization with dianhydride. The composites obtained under sonication were found to have lower thermal properties than composites prepared under homogenization.

  4. Polymer Matrix Composite Material Oxygen Compatibility

    Science.gov (United States)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  5. Synthesizing Smart Polymeric and Composite Materials

    OpenAIRE

    2013-01-01

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have...

  6. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  7. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  8. Natural Composite Systems for Bioinspired Materials.

    Science.gov (United States)

    Frezzo, Joseph A; Montclare, Jin Kim

    From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

  9. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures.

    Science.gov (United States)

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-01-01

    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  10. Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive materials

    Institute of Scientific and Technical Information of China (English)

    Huajun Zhou; Z. Ryan Tian

    2013-01-01

    Constructing simply nanostructured zero-, one-, and two-dimensional crystallites into three-dimensional multifunctional assemblies and systems at low-cost is essential and highly challenging in materials science and engineering. Compared to the simply nanostructured components, a three-dimensional (3D) complex made with a precisely controlled spatial organization of all structural nanocomponents can enable us to concert functionalities from all the nanocomponents. Methodologically, so doing in nm-scales via a solution chemistry route may be much easier and less expensive than via other mechanisms. Hence, we discuss herein some recent advances in multistep solution syntheses of nanostructured 3D complexes of semiconductors with a focus mainly on their synthetic strategies and detailed mechanisms.

  11. Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review.

    Science.gov (United States)

    Guduru, Deepak; Niepel, Marcus; Vogel, Jürgen; Groth, Thomas

    2011-10-01

    Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.

  12. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  13. Nanostructured calcium-silver phosphate composite powder, method for obtaining same, and bactericidal and fungicidal uses thereof

    OpenAIRE

    Díaz Muñoz, Marcos; Moya, J. S.; Barba Martín-Sonseca, María Flora; Malpartida Romero, Francisco; Miranda Fernández, Miriam; Fernández, Adolfo

    2008-01-01

    [EN] The invention relates to a nanostructured calcium-silver phosphate composite powder which can be used as a bactericide and/or fungicide, with similar effectiveness to that of commercial products and with low toxicity. The invention also relates to a method for obtaining said nanostructured calcium-silver phosphate composite powders, which comprises preparing nanometric calcium phosphate by means of a sol-gel process and subsequently depositing silver nanoparticles on the surface thereof....

  14. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  15. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    Science.gov (United States)

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  16. Decomposition kinetic study of nanostructured composites of poly (phenylene sulfide) reinforced with carbon nanotubes

    OpenAIRE

    Bruno Ribeiro; Edson C. Botelho; Michelle L. Costa

    2014-01-01

    The aim of this work is to obtain nanostructured composites of poly (phenylene sulfide), PPS, reinforced with multiwalled carbon nanotubes, MWCNT, by melt mixing technique and further characterization of their morphological and thermal properties. Transmission Electron Microscopy analysis was carried out to evaluate the quality of MWCNT dispersion throughout the PPS matrix. Thermogravimetry shows an increase in the maximum degradation temperature by the addition of the nanofiller to the polym...

  17. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes.

    Science.gov (United States)

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S

    2012-07-31

    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  18. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  19. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    . Computational methods of nanostructure properties simulation and various approaches to the computational, "virtual" testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis...... of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented. (C) 2014 Elsevier B.V. All rights reserved....

  20. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  1. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  2. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  3. Crustacean-derived biomimetic components and nanostructured composites.

    Science.gov (United States)

    Grunenfelder, Lessa Kay; Herrera, Steven; Kisailus, David

    2014-08-27

    Over millions of years, the crustacean exoskeleton has evolved into a rigid, tough, and complex cuticle that is used for structural support, mobility, protection of vital organs, and defense against predation. The crustacean cuticle is characterized by a hierarchically arranged chitin fiber scaffold, mineralized predominately by calcium carbonate and/or calcium phosphate. The structural organization of the mineral and organic within the cuticle occurs over multiple length scales, resulting in a strong and tough biological composite. Here, the ultrastructural details observed in three species of crustacean are reviewed: the American lobster (Homarus americanus), the edible crab (Cancer pagurus), and the peacock mantis shrimp (Odontodactylus scyllarus). The Review concludes with a discussion of recent advances in the development of biomimetics with controlled organic scaffolding, mineralization, and the construction of nanoscale composites, inspired by the organization and formation of the crustacean cuticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    Directory of Open Access Journals (Sweden)

    Siyuan Feng Chen

    2015-10-01

    Full Text Available We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability.

  5. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    Science.gov (United States)

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  6. Multiphysicsbased Condition Monitoring of Composite Materials

    OpenAIRE

    Xue, Hui; Sharma, Puneet; Khawaja, Hassan Abbas

    2015-01-01

    Composites are increasingly being used in products such as: automobiles, bridges, boats, drillships, offshore platforms, aircrafts and satellites. The increased usage of these composite materials and the fact that the conditions pertaining to their failure are not fully understood makes it imperative to develop condition monitoring systems for composite structures. In this work, we present a theoretical framework for the development of a condition monitoring system. For this, we plan...

  7. Cumulative Damage Model for Advanced Composite Materials.

    Science.gov (United States)

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  8. Synthesis and Characterization of ZnO Nanowire–CdO Composite Nanostructures

    OpenAIRE

    Tak Youngjo; Seol Minsu; Yong Kijung; Senthil Karuppanan

    2009-01-01

    Abstract ZnO nanowire–CdO composite nanostructures were fabricated by a simple two-step process involving ammonia solution method and thermal evaporation. First, ZnO nanowires (NWs) were grown on Si substrate by aqueous ammonia solution method and then CdO was deposited on these ZnO NWs by thermal evaporation of cadmium chloride powder. The surface morphology and structure of the synthesized composite structures were analyzed by scanning electron microscopy, X-ray diffraction and transm...

  9. Method of making a composite refractory material

    Science.gov (United States)

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  10. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications.

    Science.gov (United States)

    Li, Hui; Lee, Taek; Dziubla, Thomas; Pi, Fengmei; Guo, Sijin; Xu, Jing; Li, Chan; Haque, Farzin; Liang, Xing-Jie; Guo, Peixuan

    2015-10-01

    The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.

  11. [The application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum].

    Science.gov (United States)

    Grigor'eva, M V; Akimov, A V; Bagautdinov, A A

    2014-01-01

    The objective of the present work was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum. A total of 80 patients were recruited for the study. Half of them underwent plastic reconstruction of perforations in the nasal septum with the application of the nanostructured bioplastic material. Forty patients were treated using no biotransplants. The functional state of nasal cavity mucosa was evaluated before and after surgery. It is concluded that the nanostructured bioplastic material used in the present study ensures efficacious reconstruction of nasal septum integrity after plastic correction of septal perforations.

  12. The effect of mixed mode I/II on the fracture toughness and fracture behavior of nano-structured metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Hala A., E-mail: halah70@yahoo.com [Dept. of Design and Prod. Eng., Faculty of Eng., Ain Shams University, Cairo (Egypt); Dept. of Mat. Sci. and Eng., Case Western Reserve University, Cleveland, OH (United States); El-Shabasy, Adel B. [Dept. of Design and Prod. Eng., Faculty of Eng., Ain Shams University, Cairo (Egypt); Dept. of Mat. Sci. and Eng., Case Western Reserve University, Cleveland, OH (United States); Lewandowski, John J. [Dept. of Mat. Sci. and Eng., Case Western Reserve University, Cleveland, OH (United States)

    2013-01-01

    A nano-structured Al{sub 89}Gd{sub 7}Ni{sub 3}Fe{sub 1} composite alloy was made from extruding its atomized amorphous powder at different extrusion ratios (ER). The effects of changing the notch radius from fatigue pre-crack to 100 {mu}m on mode I fracture toughness were studied at different test temperatures (e.g., 298 K and 498 K). The effects of mixed mode (I/II) loading using different offset ratios were also studied at these temperatures. Increasing the test temperature showed a significant effect on the fracture toughness for mode I and mixed mode I/II conditions. Fracture surfaces were examined to reveal the nature of failure of such nano-structured Al composite materials at these loading conditions.

  13. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  14. Breakthroughs in Mesoporous Composite Materials

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Mesoporous materials have attracted a great deal of attention due to their extremely high surface area, uniform and tunable pore structure (2-50nm in diameter), and have been investigated extensively since its invention. Unfortunately,their catalytic properties are far away from the expectation due to their amorphous and inert framework and poor stability. This research project is aimed at the design and synthesis of mesoporous-

  15. Synthesis and characterization of inorganic nanostructured materials for advanced energy storage

    Science.gov (United States)

    Xie, Jin

    The performance of advanced energy storage devices is intimately connected to the designs of electrodes. To enable significant developments in this research field, we need detailed information and knowledge about how the functions and performances of the electrodes depend on their chemical compositions, dimensions, morphologies, and surface properties. This thesis presents my successes in synthesizing and characterizing electrode materials for advanced electrochemical energy storage devices, with much attention given to understanding the operation and fading mechanism of battery electrodes, as well as methods to improve their performances and stabilities. This dissertation is presented within the framework of two energy storage technologies: lithium ion batteries and lithium oxygen batteries. The energy density of lithium ion batteries is determined by the density of electrode materials and their lithium storage capabilities. To improve the overall energy densities of lithium ion batteries, silicon has been proposed to replace lithium intercalation compounds in the battery anodes. However, with a ~400% volume expansion upon fully lithiation, silicon-based anodes face serious capacity degradation in battery operation. To overcome this challenge, heteronanostructure-based Si/TiSi2 were designed and synthesized as anode materials for lithium ion batteries with long cycling life. The performance and morphology relationship was also carefully studied through comparing one-dimensional and two-dimensional heteronanostructure-based silicon anodes. Lithium oxygen batteries, on the other hand, are devices based on lithium conversion chemistries and they offer higher energy densities compared to lithium ion batteries. However, existing carbon based electrodes in lithium oxygen batteries only allow for battery operation with limited capacity, poor stability and low round-trip efficiency. The degradation of electrolytes and carbon electrodes have been found to both contribute

  16. GaN nanostructures-poly(vinyl alcohol) composite based hydrostatic pressure sensor device

    CSIR Research Space (South Africa)

    Linganiso, EC

    2013-12-01

    Full Text Available b, e, Ivo A. Hümmelgen c, ** a National Centre for Nano-structured Materials, CSIR, PO Box 359, Pretoria 0001, South Africa b Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, Wits 2050..., Johannesburg, South Africa c Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Brazil d Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa e...

  17. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  18. Multifunctional Laminated Composite Materials for Protective Clothing

    Directory of Open Access Journals (Sweden)

    Nermin M. Aly

    2014-10-01

    Full Text Available Protective clothing performs a vital role in maintaining the safety of human in workplace. The developments in this field are proceeding to fulfill the needs with multifunctional materials at competitive costs. Recently, the protective clothing field introduces the usage of composite materials taking advantage of their outstanding properties. In this paper, the multifunctional performance of hybrid laminated composites (HLC was investigated aiming to be utilized in protective clothing. The influences of reinforcement and resin properties on the physical properties of the laminated composites and their resistance to puncture load and UV transmittance were studied. ANOVA test was used for the statistical analysis of the results. The results showed that, the reinforcement material and structure and the fiber/matrix interface have major influences on the laminated composites performance. It was revealed that, the HLC fabricated from (polyester/glass fabric with satin 4 structure and nonwoven glass fiber mat exhibited the best functional performance.

  19. The role of film composition and nanostructuration on the polyphenol sensor performance

    Directory of Open Access Journals (Sweden)

    Cibely Silva Martin

    2016-12-01

    Full Text Available The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2 and a metallic phthalocyanine (FePc, using Langmuir-Blodgett (LB and physical vapor deposition (PVD techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin-Ciocalteu standard method for polyphenol detection.

  20. Synthesis and characterization of large specific surface area nanostructured amorphous silica materials.

    Science.gov (United States)

    Marquez-Linares, Francisco; Roque-Malherbe, Rolando M A

    2006-04-01

    Large specific surface area materials attract wide attention because of their applications in adsorption, catalysis, and nanotechnology. In the present study, we describe the synthesis and characterization of nanostructured amorphous silica materials. These materials were obtained by means of a modification of the Stobe-Fink-Bohn (SFB) method. The morphology and essential features of the synthesized materials have been studied using an automated surface area and pore size analyzer and scanning electron microscopy. The existence of a micro/mesoporous structure in the obtained materials has been established. It was also found that the obtained particle packing materials show large specific surface area up to 1,600 m2/g. (To our best knowledge, there is no any reported amorphous silica material with such a higher specific surface area.) The obtained materials could be useful in the manufacture of adsorbents, catalyst supports, and other nanotechnological applications.

  1. Synthesis and microwave absorption properties of graphene/nickel composite materials

    Science.gov (United States)

    Wang, Xiaoxia; Yu, Mingxun; Zhang, Wei; Zhang, Baoqin; Dong, Lifeng

    2015-03-01

    Graphene/nickel composite materials were successfully prepared via a one-step in situ reduction from nickel chloride, graphene oxide, and hydrazine at 80 °C for 3 h. Face-centered cubic Ni nanostructures with uniform size and high dispersion assembled on graphene sheets. Through the measurement of complex relative permittivity and permeability, their microwave absorption properties were evaluated. In comparison with pure Ni nanoparticles and graphene, the composite materials demonstrated much better characteristics of microwave absorption. The lowest reflection loss value of the composites with a thickness of 3 mm can reach -23.3 dB at 7.5 GHz. Our research reveals that graphene/Ni composites are promising microwave absorption materials with desirable absorption properties and reduced material weight.

  2. Nanostructured silicon for photonics from materials to devices

    CERN Document Server

    Gaburro, Z; Daldosso, N

    2006-01-01

    The use of light to channel signals around electronic chips could solve several current problems in microelectronic evolution including: power dissipation, interconnect bottlenecks, input/output from/to optical communication channels, poor signal bandwidth, etc. It is unfortunate that silicon is not a good photonic material: it has a poor light-emission efficiency and exhibits a negligible electro-optical effect. Silicon photonics is a field having the objective of improving the physical properties of silicon; thus turning it into a photonic material and permitting the full convergence of elec

  3. Thermal radiative properties of metamaterials and other nanostructured materials: A review

    Institute of Scientific and Technical Information of China (English)

    Ceji FU; Zhuomin M. ZHANG

    2009-01-01

    The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modem technologies, including microelec-tronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials-manmade mate-rials with exotic optical properties, and other nanostruc-tured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

  4. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    Science.gov (United States)

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  5. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Huang, Shiqiang; Cheong, Ling-Zhi; Wang, Deyu; Shen, Cai

    2017-07-19

    Silicon as the potential anode material for lithium-ion batteries suffers from huge volume change (up to 400%) during charging/discharging processes. Poor electrical conductivity of silicon also hinders its long-term cycling performance. Herein, we report a two-step ball milling method to prepare nanostructured P-doped Si/graphite composite. Both P-doped Si and coated graphite improved the conductivity by providing significant transport channels for lithium ions and electrons. The graphite skin is able to depress the volume expansion of Si by forming a stable SEI film. The as-prepared composite anode having 50% P-doped Si and 50% graphite exhibits outstanding cyclability with a specific capacity of 883.4 mAh/g after 200 cycles at the current density of 200 mA/g. The cost-effective materials and scalable preparation method make it feasible for large-scale application of the P-doped Si/graphite composite as anode for Li-ion batteries.

  6. A Direct Route towards Assembly of Nanoparticle-Carbon Nanotube Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Li; Wu, Wendy; Kirk, F.L.; Luo, Jin; Maye, Mathew M.; Kariuki, Nancy N.; Lin, Yuehe; Wang, Chong M.; Zhong, Chuan-Jian

    2004-07-06

    The exploration of nanoparticle-structured thin films as sensing materials desires maximum accessibility of analytes and effective mass transport within the nanostructure. This paper explores the viability of creating nanoparticle-carbon nanotube (CNTs) as composite interfacial materials to enhance such properties. We report findings of an investigation of the assembly of monolayer-protected gold nanoparticles on multi-walled CNTs. A simple and effective route has been demonstrated for assembling nanoparticles of 2-5 nm core sizes onto CNTs with controllable coverage and interparticle spatial properties. The composite nanomaterials can be dispersed in organic solvent and cast on interdigitated microelectrode surface. The skeleton-like nanocomposite materials have been examined for chemiresistor sensing of volatile organic compounds. The response profiles and sensitivities of the nanocomposites determined for the sorption of a series of vapors have been shown to exhibit different or enhanced sensing properties in comparison with similar but nanotube-free nanoparticle assemblies. The observation of these results can be attributed to a combination of three factors, the increased accessibility of analytes to the nanostructure, the enhanced mass transport characteristics, and the unique electronic properties of the nanocomposite materials. Implications of the findings to the design of nanostructured sensing materials are also discussed.

  7. SOME PROGRESS IN NANOSTRUCTURED LUMINESCENT MATERIALS%纳米发光材料研究的若干进展

    Institute of Scientific and Technical Information of China (English)

    周永慧; 林君; 张洪杰

    2001-01-01

    本文综述了纳米发光材料的研究进展情况,着重总结了(稀土)掺杂型纳米发光材料的制备方法和表征手段,同时介绍了这些纳米发光材料的性质和应用,并对其未来发展趋势进行了展望。%The progress in nanostructured luminescent materials has been reviewed in this paper.Emphases are laid on the synthesis and characterization methods of (rare earth) doped nanostructured luminescent materials.In the meanwhile,the properties and applications of the nanostructured luminescent materials are introduced,and the future development trends for the nanostructured luminescent materials are forecasted in brief.

  8. Color stability of different composite resin materials.

    Science.gov (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Nanostructured materials for biological imaging and chemical sensing

    OpenAIRE

    Yıldırım, Adem

    2014-01-01

    Cataloged from PDF version of thesis. Includes bibliographical references (leaves 116-139). Thesis (Ph. D.): Bilkent University, Materials Science and Nanotechnology Program, İhsan Doğramacı Bilkent University, 2014. In the recent years, the design and synthesis of fluorescent nanoparticles for biological and chemical sensing applications have received considerable attention due to the excellent photostability and emission intensity of fluorescent nanoparticles and the intri...

  10. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  11. Advanced composite materials for optomechanical systems

    Science.gov (United States)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  12. Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries

    Science.gov (United States)

    Edison, Eldho; Satish, Rohit; Ling, Wong Chui; Bucher, Nicolas; Aravindan, Vanchiappan; Madhavi, Srinivasan

    2017-03-01

    The commercialization of Na-ion batteries demands the development of technologically feasible and economically viable electrodes, in particular anodes. Herein, we report the facile synthesis of nanostructured FeSn2 by a hydrothermal route and the formulation of composites with different carbonaceous materials like Super P, graphite, and graphene via high-throughput ball-milling. The influence of the carbonaceous matrix on the electrochemical performance of the alloy anode is investigated in half-cell assembly. Amongst, FeSn2-Graphite composite exhibits excellent cycling stability with a reversible capacity of 333 mAh g-1 obtained after 100 cycles at a specific current of 100 mA g-1. The composite also displayed a good rate performance even at high current rates of 1 A g-1 which is a desirable feature for high power applications such as hybrid electric vehicles. The outstanding electrochemical performance of the composite anodes is ascribed to the effective encapsulation of the alloy particles in the carbonaceous matrix, which sustains the volume change and facilitates excellent Na-storage capability.

  13. Nanostructured and nanolayer coatings based on nitrides of the metals structure study and structure and composition standard samples set development

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2014-01-01

    Full Text Available Researches by methods of analytical microscopy and the x-ray analysis have allowed to develop a set of standard samples of composition and structure of the strengthening nanostructured and nanolayer coatings for control of the strengthening nanostructured and nanolayer coatings based on nitrides of the metals used to protect critical parts of the compressor of the gas turbine engine from dust erosion, corrosion and oxidation.

  14. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    Science.gov (United States)

    2007-12-01

    a clear relation between strain and nip gap can be observed. The use of LAT on calendering of isothermal flow, a problem analogous to the...Chemical Engineering Science, 57, (2002) 643-650. 9. Sofou S, Mitsoulis E. Calendering of Pseudoplastic and Viscoplastic Sheets of Finite Thickness

  15. Synthesis of PbTe-SnTe particles by thermal decomposition of salts to create nano-structured thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, V.G.; Ivanova, L.D. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskii prospect, 49, 119991 Moscow (Russian Federation); Bente, K. [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Gremenok, V.F. [State Scientific and Production Association ' ' Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus' ' , P. Brovka str. 19, 220072 Minsk (Belarus)

    2012-05-15

    Micro- and nanocrystalline particles of Pb-Sn-Te mixed crystals were synthesized using thermal decomposition and chemical interaction of lead acetate, tin oxalate and tellurium powder mixture in H{sub 2} atmosphere. For the process parameter optimization data of thermal gravimetry (TG), X-ray diffraction (XRD), electronic microscopy (TEM, SEM) and measurements of the specific surface of particles were used. Additionally the influence of gas phases on the decomposition kinetics, crystal structure, size, specific surface of the particles, gains composition and the physical properties were analyzed. Seebeck coefficient values increased and conductivity decreased with decreasing tin concentration. The presented method for preparing PbTe-SnTe polydisperse particles is developed to create nano-structured thermoelectric materials with high figure of merit. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...... the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out...... in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems.This manuscript presents a review of the main achievements of this Action. © 2016 Hydrogen Energy...

  17. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  18. Nano-structured carbon materials for improved biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Razumiene, J., E-mail: julija.razumiene@bchi.vu.lt [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Sakinyte, I. [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Barkauskas, J. [Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania); Baronas, R. [Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania)

    2015-04-15

    Graphical abstract: - Highlights: • Novel protocols of graphite oxidation were used for successful synthesis of GOPs. • Newly synthesized GOPs were applicable for electrode design in reagentless bioelectrocatalytic systems operating on direct electron transfer. • We show that bioelectrocatalytic processes strongly depend on functionalities, morphology and structural features of GOPs. - Abstract: A set of oxidized graphite samples have been newly synthesized using different protocols. Atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis and Brunauer–Emmett–Teller analysis revealed the changes in structure and functionalities of obtained graphite oxidation products (GOPs) compared to pristine graphite. The substances have been tested as electrode materials applicable for bioelectrocatalytic systems using pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The application of GOPs allowed achieving the direct electron transfer (DET) from active site of PQQ-GDH to the electrode surface. Needless of additional electron transfer (ET) mediating compounds highly improved features of the biosensors. The efficiency of the biosensors has been evaluated for all types of biosensors varied from 32 μA/cm{sup 2} to 64 μA/cm{sup 2} using as electrode materials GOP1 and thermally reduced graphite oxide (TRGO), respectively. TRGO containing function groups (according TGA, ∼6% of the weight loss) and smallest particles (average diameter was ∼11 nm and the average height was ∼0.5 nm) exhibited the higher efficiency for ET acceleration in the biosensor acting on principle of DET.

  19. Thermoelectric and thermospintronic transport in Dirac material-based nanostructures

    Science.gov (United States)

    Chang, Po-Hao

    The growing need for power due to the rapid developments of the technologies has urged both engineers and scientists to study more sustainable types of energy. On the other hand, the improvement of our abilities although enable us, for example, to double the number of transistors in a dense integrated circuit approximately every two years (Moore's law), comes with side effect due to overheating. Taking advantage of thermoelectric effect has thus become one of the obvious solutions for the problems. But due to the poor efficiency of electricity-heat conversion, there are still challenges to be overcome in order to fully utilize the idea. In the past few years, the realization of graphene along with the discoveries of topological insulators (TI) which are both considered as Dirac material (DM) have offer alternative routs for improving the energy conversion efficiency through different approaches as well as novel quantum effects of materials themselves for investigation. The aim of this thesis is to present contributions to improving the efficiency of thermoelectric conversion as well as analyzing spin transport phenomena that occur in nano-devices. This thesis spans the areas of thermoelectric (TE) effect, spin-Seebeck effect (SSE) and the spin transport on the 3D topological insulator (TI). The different methods have been applied ranging from tight-binding (TB) approximation to density function theory (DFT) combined with non-equilibrium function (NEGF) techniques.

  20. Scalability of Phase Change Materials in Nanostructure Template

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available The scalability of In2Se3, one of the phase change materials, is investigated. By depositing the material onto a nanopatterned substrate, individual In2Se3 nanoclusters are confined in the nanosize pits with well-defined shape and dimension permitting the systematic study of the ultimate scaling limit of its use as a phase change memory element. In2Se3 of progressively smaller volume is heated inside a transmission electron microscope operating in diffraction mode. The volume at which the amorphous-crystalline transition can no longer be observed is taken as the ultimate scaling limit, which is approximately 5 nm3 for In2Se3. The physics for the existence of scaling limit is discussed. Using phase change memory elements in memory hierarchy is believed to reduce its energy consumption because they consume zero leakage power in memory cells. Therefore, the phase change memory applications are of great importance in terms of energy saving.

  1. Life of structures of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Koznetsov, N.D.; Stepanenko, N.D.

    1986-06-01

    The introduction of composite materials in gas turbine engines is rationally done in stages. It is desirable to concentrate efforts on the use of them for production of vanes, sound deadening panes, the reverse rod, and other elements of the stator. The authors use compressor blades as an example of the basic principles of design, the selection of the reinforcing structure, and inspection of the quality of structures of composite materials. A method of determination of the elastodamping properties of polymer composite materials on specimens with free ends in high frequency flexural vibrations excited by a modulated jet of compressed air has been developed and standardized. With the use of this method such defects as separations, cracks, disorientation of the reinforcing, deviations in the order of alternation and the angular orientation of the layers are revealed.

  2. New composite materials for optoelectronic applications

    Science.gov (United States)

    Iovu, M. S.; Buzurniuc, S. A.; Verlan, V. I.; Culeac, I. P.; Nistor, Yu. H.

    2009-01-01

    The problem of obtaining low cost but efficient luminescent materials is still actually. Data concerning fabrication and luminescent properties of new composite materials on the base of thenoyltrifluoroacetone (TTA) of Europium(III) (Eu(TTA)3) and chalcogenide glasses doped with rare earth ions and polymers are presented. The visible emission spectra of the composites on the base of Eu(TTA)3 structured with phenantroline (Eu(TTA)3Phen) and copolymer from styrene and butylmethacrylate (1:1)(SBMA) under the excitation with N2-laser (λ=337 nm) contain sharp emission bands located at 354, 415, 580, 587, 590, 596, 611.4, 616.5, 621, 652, 690, 700, 713 nm. The nature of the observed emission bands and the possible mechanisms of the radiative electron transition in the investigated composite materials are discussed.

  3. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogale, Amod A

    2012-04-27

    consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  4. Composite Materials and Sandwich Structures - A Primer

    Science.gov (United States)

    2010-05-01

    quality and protects prepreg from handling damage. Non - woven unidirectional tapes can otherwise split between fibers. Clean, white lint-free cotton ...applications and S glass fibers are used in strength critical situations. S glass fibers are sometimes woven in composite materials to increase toughness...A woven form of the reinforcements (Figure 1b) is also used in certain cases, depending on the application of the composite. Figure 1a- Fiber

  5. Research on Composite Materials for Structural Design.

    Science.gov (United States)

    1984-04-01

    Residual Stresses in Composite Laminates", (August 1983); the M.Sc. thesis of E.J. Porth , titled "Effect of an External Stress on Moisture Diffusion in...Rates in OUnidirectional Double Cantilevered Beam Fracture Toughness Specimens", December 1982. 4. Porth , E.J., "Effect of an External Stress on...Composite Materials (December 1983) Edward John Porth , B.S., University of Colorado Chairman of Advisory Committee: Dr. Y. Weitsman This work concerns

  6. Photocatalytic degradation of sunscreen active ingredients mediated by nanostructured materials

    Science.gov (United States)

    Soto-Vazquez, Loraine

    Water scarcity and pollution are environmental issues with terrible consequences. In recent years several pharmaceutical and personal care products, such as sunscreen active ingredients, have been detected in different water matrices. Its recalcitrant behavior in the environment has caused controversies and generated countless questions about its safety. During this research, we employed an advanced oxidation process (photocatalysis) to degrade sunscreen active ingredients. For this study, we used a 3x3 system, evaluating three photocatalysts and three different contaminants. From the three catalysts employed, two of them were synthesized. ZnO nanoparticles were obtained using zinc acetate dihydrated as the precursor, and TiO2 nanowires were synthesized from titanium tetrachloride precursor. The third catalyst employed (namely, P25) was obtained commercially. The synthesized photocatalysts were characterized in terms of the morphology, elemental composition, crystalline structure, elemental oxidation states, vibrational modes and surface area, using SEM-EDS, XRD, XPS, Raman spectroscopy and BET measurements, respectively. The photocatalysts were employed during the study of the degradation of p-aminobenzoic acid, phenylbenzimidazole sulfonic acid, and benzophenone-4. In all the cases, at least 50% degradation was achieved. P25 showed degradation efficiencies above 90%, and from the nine systems, 7 of them degraded at least 86%.

  7. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications.

    Science.gov (United States)

    Bhatt, M P; Magurudeniya, H D; Rainbolt, E A; Huang, P; Dissanayake, D S; Biewer, M C; Stefan, M C

    2014-02-01

    Semiconducting polymers have been developed during the last few decades and are currently used in various organic electronics applications. Regioregular poly(3-hexylthiophene) (P3HT) is the most employed semiconducting polymer for organic electronics applications. The development of living Grignard metathesis polymerization (GRIM) allowed the synthesis of P3HT with well-defined molecular weights and functional end groups. A large number of block copolymers containing P3HT have been reported, and their opto-electronic properties have been investigated. The performance of P3HT homopolymer and block copolymers in field-effect transistors and bulk heterojunction solar cells are discussed in this review. The morphology of the P3HT materials is also discussed.

  8. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  9. Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

    Science.gov (United States)

    Biagiotti, Giacomo; Langè, Vittoria; Ligi, Cristina; Caporali, Stefano; Muniz-Miranda, Maurizio; Flis, Anna; Pietrusiewicz, K Michał; Ghini, Giacomo; Brandi, Alberto

    2017-01-01

    A new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C–C triple bond). All the adducts were characterized by FTIR, Raman spectroscopy, TEM, XPS, elemental analysis and ICP-AES. The cycloaddition of nitrene provided the higher loading on ox-MWCNTs and GPs as well, while the Tour approach gave best results with nanotubes (CNTs). Finally, we investigated the possibility to reduce the TPPO functionalized CNMs to the corresponding phosphine derivatives and applied one of the materials produced as heterogeneous organocatalyst in a Staudinger ligation reaction.

  10. Nanostructure multilayer dielectric materials for capacitors and insulators

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  11. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  12. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  13. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  14. Physical Delivery of Macromolecules using High-Aspect Ratio Nanostructured Materials.

    Science.gov (United States)

    Lee, Kunwoo; Lingampalli, Nithya; Pisano, Albert P; Murthy, Niren; So, Hongyun

    2015-10-28

    There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.

  15. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    OpenAIRE

    2015-01-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase....

  16. An investigation into carbon nanostructured materials as catalyst support in proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune

    black support materials for low platinum containing electrocatalyst. This is partly due to their high electronic conductivity. Partly due to their high surface area needed for the dispersion of nanoparticulate metal-clusters. In addition carbon nano-structures (CNF, SWCNT, MWCNT etc.) are more durable...... dispersion methods as the weak Van der Waals forces prevent the solvatisation and dispersion carbon nano structured materials. As the dispersion of SWCNT, MWCNT and CNF exhibit colloidal dispersion behaviour, the usual methods of consist solvatisation in organic solvents, mixture of water and an organic...

  17. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications

    Science.gov (United States)

    Escudero, Alberto; Becerro, Ana I.; Carrillo-Carrión, Carolina; Núñez, Nuria O.; Zyuzin, Mikhail V.; Laguna, Mariano; González-Mancebo, Daniel; Ocaña, Manuel; Parak, Wolfgang J.

    2017-06-01

    Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.

  18. Nanostructured membrane material designed for carbon dioxide separation

    KAUST Repository

    Yave, Wilfredo

    2010-03-15

    In this work carbon dioxide selective membrane materials from a commercially available poly(amide-b-ethylene oxide) (Pebax (R), Arkema) blended with polyethylene glycol ethers are presented. The preferred PEG-ether was PEG-dimethylether (PEG-DME). PEG-DME is well known as a physical solvent for acid gas absorption. It is used under the trade name Genosorb (R) in the Selexol (R) process (UOP) for acid gas removal from natural gas and synthesis gas. The combination of the liquid absorbent with the multiblock copolymer resulted in mechanically stable films with superior CO(2) separation properties. The addition of 50 wt.% PEG-DME to the copolymer resulted in a 8-fold increase of the carbon dioxide permeability; the CO(2)/H(2)-selectivity increased simultaneously from 9.1 to 14.9. It is shown that diffusivity as well as solubility of carbon dioxide is strongly increased by the blending of the copolymer with PEG-ethers. (c) 2009 Elsevier B.V. All rights reserved.

  19. Amorphous titania/carbon composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.

    2017-05-09

    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  20. New generation photoelectric converter structure optimization using nano-structured materials

    Science.gov (United States)

    Dronov, A.; Gavrilin, I.; Zheleznyakova, A.

    2014-12-01

    In present work the influence of anodizing process parameters on PAOT geometric parameters for optimizing and increasing ETA-cell efficiency was studied. During the calculations optimal geometrical parameters were obtained. Parameters such as anodizing current density, electrolyte composition and temperature, as well as the anodic oxidation process time were selected for this investigation. Using the optimized TiO2 photoelectrode layer with 3,6 μm porous layer thickness and pore diameter more than 80 nm the ETA-cell efficiency has been increased by 3 times comparing to not nanostructured TiO2 photoelectrode.

  1. Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures

    Science.gov (United States)

    Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

    2014-01-01

    We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

  2. Processing Nanostructured Structural Ceramics

    Science.gov (United States)

    2006-08-01

    aspects of the processing of nanostructured ceramics, viz. • • • The production of a flowable and compactable dry nanopowder suitable for use in... composition due to the different synthesis routes used. Therefore, ‘industry-standard’ dispersants can cause flocculation rather than dispersion...stabilised zirconia (3-YSZ) were no higher than for conventional, micron-sized material of the same composition . However, detailed crystallographic

  3. Structural changes during synthesizing of nanostructured W-20 wt% Cu composite powder by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Maneshian, M.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)]. E-mail: simchi@sharif.edu; Hesabi, Z. Razavi [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)

    2007-02-15

    Nanostructured W-20 wt% Cu composite powder was synthesized by mechanical alloying (MA) in an Attritor ball mill. The morphological changes and structural evolution of the composite powder during MA was studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), laser particle size analyzer (LPS), inductively coupled plasma (ICP) spectrometry, atomic absorption spectrophotometery (AAS), and the bulk powder density measurement. The results were compared with those obtained from attrition milling of monolithic W and Cu powders processed at the same condition. Whereas the milling mechanism of the monolithic powders follow the ductile (for Cu) and semi-brittle (for W) systems, the W/Cu powder mixture exhibits different behavior. At the early stage of milling, the copper particles are fragmented and incorporated into the W matrix, resulting in the formation of W/Cu composite with laminar structure. With increasing milling time and due to continuous fracturing, the laminar structure is refined and a homogenous distribution of fine Cu particles (0.3-0.6 {mu}m) in the W matrix is formed. The analysis of XRD patterns indicated that the composite powder composes of nanostructured grains with the size of 49 nm for Cu and 23 nm for W. A faster grain refinement in the composite powder compared to the monolithic particles was noticed. The XRD peak intensity also revealed that partial mutual solubility of the constituent elements ({approx}4-7 at% for Cu in W and {approx}2-3 at% for W in Cu) was induced by prolonged mechanical milling.

  4. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    Science.gov (United States)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  5. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    Science.gov (United States)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  6. Synthesis of nanostructured manganese oxides based materials and application for supercapacitor

    Science.gov (United States)

    Dung Dang, Trung; Le, Thi Thu Hang; Bich Thuy Hoang, Thi; Mai, Thanh Tung

    2015-01-01

    Manganese oxides are important materials with a variety of applications in different fields such as chemical sensing devices, magnetic devices, field-emission devices, catalysis, ion-sieves, rechargeable batteries, hydrogen storage media and microelectronics. To open up new applications of manganese oxides, novel morphologies or nanostructures are required to be developed. Via sol—gel and anodic electrodeposition methods, M (Co, Fe) doped manganese oxides were prepared. On the other hand, nanostructured (nanoparticles, nanorods and hollow nanotubes) manganese oxides were synthesized via a process including a chemical reaction with carbon nanotubes (CNTs) templates followed by heat treatment. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used for characterization of the prepared materials. The influence of chemical reaction conditions, heat treatment and template present on the morphology, structure, chemical and electrochemical properties of the prepared materials were investigated. Chronopotentiometry (CP) and CV results show high specific capacitance of 186.2 to 298.4 F g-1 and the charge/discharge stability of the prepared materials and the ideal pseudocapacitive behaviors were observed. These results give an opening and promising application of these materials in advanced energy storage applications.

  7. Multiaxial analysis of dental composite materials.

    Science.gov (United States)

    Kotche, Miiri; Drummond, James L; Sun, Kang; Vural, Murat; DeCarlo, Francesco

    2009-02-01

    Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo. The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light-cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (sigma(c)) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high-resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three-dimensional evaluation of dental composite fracture surfaces.

  8. Composite materials for rail transit systems

    Science.gov (United States)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  9. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

  10. Failure Analysis of Composite Structure Materials.

    Science.gov (United States)

    1986-05-01

    8MATERIAL STRUCTURES DISCONTINUITY T•R PLY DROPOFF i 7ARC LAP/GAP . PRPAATION A, ,OM LY , 1e, ’ •INS ERVICE MAINTENANCE DAMAGE SVv , S IMPACT \\\\ CHESIE ...composite joints such as box beam members, for example, are difficult to inspect by ultrasonic techniques, and the X-ray attenuation coefficients of

  11. ECODESIGN CRITERIA FOR COMPOSITE MATERIALS AND ...

    African Journals Online (AJOL)

    sustainable design of new generation of composite products through the .... stress relations for an orthotropic material in the principal coordinate system (1,2) .... 4.1 Example 1: Eco-bonded structures with a single-lap adhesive joint ... The effect of the eco-factor λi on the plate first natural frequency is represented in Table 2,.

  12. Candida albicans adhesion to composite resin materials.

    Science.gov (United States)

    Bürgers, Ralf; Schneider-Brachert, Wulf; Rosentritt, Martin; Handel, Gerhard; Hahnel, Sebastian

    2009-09-01

    The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane, and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be related to surface roughness, hydrophobicity, and the type of matrix. Cylindrical specimens of each material were made according to the manufacturers' instructions. Surface roughness R (a) was assessed by perthometer measurements and the degree of hydrophobicity by computerized contact angle analysis. Specimens were incubated with a reference strain of C. albicans (DMSZ 1386), and adhering fungi were quantified by using a bioluminometric assay in combination with an automated plate reader. Statistical differences were analyzed by the Kruskal-Wallis test and Mann-Whitney U test. Spearman's rank correlation coefficients were calculated to assess correlations. Median R (a) of the tested composite resin materials ranged between 0.04 and 0.23 microm, median contact angles between 69.2 degrees and 86.9 degrees . The two compomers and the ormocer showed lower luminescence intensities indicating less adhesion of fungi than all tested conventional hybrid composites. No conclusive correlation was found between surface roughness, hydrophobicity, and the amount of adhering C. albicans.

  13. On gain in homogenized composite materials

    Science.gov (United States)

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-09-01

    Three theoretical studies were undertaken, each based on the Bruggeman homogenization formalism and each involving homogenized composite materials (HCMs) comprising active component materials. It was found that: (i) HCMs can exhibit higher degrees of amplification than are exhibited by the HCM's component materials; (ii) anisotropic HCMs can simultaneously exhibit plane-wave amplification for certain propagation directions and plane-wave attenuation for other propagation directions; and (iii) for isotropic chiral HCMs, left-circularly polarized fields may be amplified while right-circularly polarized fields may be simultaneously attenuated (or vice versa) in any propagation direction.

  14. Nanostructured MoS2/BiVO4 Composites for Energy Storage Applications

    Science.gov (United States)

    Arora, Yukti; Shah, Amit P.; Battu, Shateesh; Maliakkal, Carina B.; Haram, Santosh; Bhattacharya, Arnab; Khushalani, Deepa

    2016-11-01

    We report the optimized synthesis and electrochemical characterization of a composite of few-layered nanostructured MoS2 along with an electroactive metal oxide BiVO4. In comparison to pristine BiVO4, and a composite of graphene/BiVO4, the MoS2/BiVO4 nanocomposite provides impressive values of charge storage with longer discharge times and improved cycling stability. Specific capacitance values of 610 Fg‑1 (170 mAhg‑1) at 1 Ag‑1 and 166 Fg‑1 (46 mAhg‑1) at 10 Ag‑1 were obtained for just 2.5 wt% MoS2 loaded BiVO4. The results suggest that the explicitly synthesized small lateral-dimensioned MoS2 particles provide a notable capacitive component that helps augment the specific capacitance. We discuss the optimized synthesis of monoclinic BiVO4, and few-layered nanostructured MoS2. We report the discharge capacities and cycling performance of the MoS2/BiVO4 nanocomposite using an aqueous electrolyte. The data obtained shows the MoS2/BiVO4 nanocomposite to be a promising candidate for supercapacitor energy storage applications.

  15. Accelerated aging of polymer composite bridge materials

    Science.gov (United States)

    Carlson, Nancy M.; Blackwood, Larry G.; Torres, Lucinda L.; Rodriguez, Julio G.; Yoder, Timothy S.

    1999-05-01

    Accelerated aging research on samples of composite materials and candidate UV protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory. Durability results and sensor data form test with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  16. Accelerated Aging of Polymer Composite Bridge Materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  17. Investigation of Coating Capability of Composite Materials

    Directory of Open Access Journals (Sweden)

    Yelda Akçin

    2013-07-01

    Full Text Available Nowadays, composite materials are widely used in the sectors that are overrated high strength / density and high elasticity modulus / density ratios such as defense industry, marine transportation, automotive and aerospace industry. However, because of the surface properties such as tribological behavior and low wear resistance their application areas are limited. Coating is the prominent process in order to improve these properties of the materials. In this study, hard ceramic powders (Al2O3 + TiO2 and CrO3 are coated to surface of glass fiber and carbon fiber reinforced epoxy matrix composite materials with plasma spray coating method started to be widely used todays and physical, mechanical and metallographic properties of obtained coatings were examined.

  18. Thermoelectric properties of LaFe3CoSb12 skutterudite materials with different nanostructures

    Institute of Scientific and Technical Information of China (English)

    LU Pengxian; WANG Chunhua; YAN Guojin; ZOU Wenjun; HU Xing

    2011-01-01

    Nanostructures with different morphologies could profoundly influence the electron and phonon transport in thermoelectric materials and thus their properties could be improved by tuning the nanostructures.The LaFe3CoSb12 skutterudite nano powders with different morphologies were fabricated via a hydro/solvo thermal route.The microstructures of the hot-pressed LaFe3CoSb12 bulks were characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the effects of the nanostructures on the thermoelectric properties were investigated by measuring the electrical conductivity,the Seebeck coefficient and the thermal conductivity.The results suggested that the mixed morphology of nanorods and nanospheres could enhance the electrical conductivity largely although the Seebeck coefficient was decreased and the themal conductivity was increased slightly.Differently,a higher Seebeck coefficient,a lower thermal conductivity and a lower electrical conductivity could be obtained for the LaFe3CoSb12 bulk with a single morphology of nanospheres.Consequently,the figure of merit of LaFe3CoSb12 bulk with a mixed morphology of nanorods and nanospheres could be increased by about 59% as compared to that with a single morphology of nanospheres.

  19. Synthesis of nanostructured metal–, semiconductor–, and metal/semiconductor–mordenite composites from geothermal waste

    Directory of Open Access Journals (Sweden)

    Oscar E. Jaime-Acuña

    2016-08-01

    Full Text Available Successful synthesis of metal–, semiconductor–, and metal/semiconductor–mordenite nanocomposites, using geothermal solid waste as precursor is reported. Powders of nanostructured composites, consisting of metal and/or semiconductor nanoparticles grown on a mordenite-type zeolitic matrix surface, were synthesized by a one-step solvent-free and organic template-free process. The developed methodology is capable of controlling and tuning the final properties of composites from their synthesis and is also reproducible and repeatable. For comparison and demonstration of the application of the final products, dye photocatalysis degradation tests were done using commercial TiO2 as reference (degradation reached ∼75% in 215 min, k = 0.004 min−1, [M]–S–MOR samples revealed better performance (≥95% in 100 min, k = 0.009 min−1.

  20. A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations.

    Science.gov (United States)

    Cao, Jun; Chen, Chen; Zhao, Qing; Zhang, Ning; Lu, Qiongqiong; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun

    2016-11-01

    Flexible nanostructured reduced graphene oxide-sulfur (rGO-S) composite films are fabricated by synchronously reducing and assembling GO sheets with S nanoparticles on a metal surface. The nanostructured architecture in such composite films not only provides effective pathways for electron transport, but also suppresses the diffusion of polysulfides. Furthermore, they can serve as the cathodes of flexible Li-S batteries.

  1. Nanostructured Carbon Materials as Supports in the Preparation of Direct Methanol Fuel Cell Electrocatalysts

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2013-08-01

    Full Text Available Different advanced nanostructured carbon materials, such as carbon nanocoils, carbon nanofibers, graphitized ordered mesoporous carbons and carbon xerogels, presenting interesting features such as high electrical conductivity and extensively developed porous structure were synthesized and used as supports in the preparation of electrocatalysts for direct methanol fuel cells (DMFCs. The main advantage of these supports is that their physical properties and surface chemistry can be tailored to adapt the carbonaceous material to the catalytic requirements. Moreover, all of them present a highly mesoporous structure, diminishing diffusion problems, and both graphitic character and surface area can be conveniently modified. In the present work, the influence of the particular features of each material on the catalytic activity and stability was analyzed. Results have been compared with those obtained for commercial catalysts supported on Vulcan XC-72R, Pt/C and PtRu/C (ETEK. Both a highly ordered graphitic and mesopore-enriched structure of these advanced nanostructured materials resulted in an improved electrochemical performance in comparison to the commercial catalysts assayed, both towards CO and alcohol oxidation.

  2. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    Science.gov (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  3. Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

    Directory of Open Access Journals (Sweden)

    Paul Chesler

    2016-12-01

    Full Text Available A series of SnO2–ZnO composite nanostructured (thin films with different amounts of SnO2 (from 0 to 50 wt % was prepared and deposited on a miniaturized porous alumina transducer using the sol–gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8 were tested under lab conditions (carrier gas was dry air using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210–300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %–SnO2 (2 wt % composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (RS = 1.21 to low amounts of CO (5 ppm was reported for the sensor containing a composite sensitive film with ZnO (98 wt %–SnO2 (2 wt %. This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.

  4. Compression Testing of Textile Composite Materials

    Science.gov (United States)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  5. Compressibility of nanostructured Fe-Cu materials prepared by mechanical milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J.S.; Gerward, Leif

    1999-01-01

    The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...... ferromagnetic fcc-FeCu solid solution prepared by mechanical alloying has a bulk modulus of about 85 GPa, which is much smaller than the corresponding values for bulk fcc-Cu and bcc-Fe....

  6. Nanostructured Functional Thermoplastic Polymeric Materials Based on the Molecular Control of the Blending

    Institute of Scientific and Technical Information of China (English)

    E.Passaglia; M.Bertoldo; S.Coiai; S.Augier; F.Ciardelli

    2007-01-01

    1 Results The development of the concepts of nanotechnology has given an important impact on the design of new polymer based materials which are in most cases characterized by a multiphase morphology. When at least one phase has nanometric dimension(s) the system can be considered as a nanocomposite where the interface is not only determining for the adhesion but also may play a role in some bulk properties. Indeed in nanostructured multiphase solids the interface is significant as a bulk component. The...

  7. Probe beam deflection studies of nanostructured catalyst materials for fuel cells.

    Science.gov (United States)

    García, G; Bruno, M M; Planes, G A; Rodriguez, J L; Barbero, C A; Pastor, E

    2008-11-28

    Probe beam deflection (PBD) techniques, both as cyclic voltadeflectometry (CVD) and chronodeflectometry (CD), were applied for the first time to the study of the electrochemistry of nanostructured Pt materials which are commonly used as electrocatalysts in fuel cells. The electrochemical surface reactions, including faradaic processes, double layer charging and specific anion adsorption were easily detected. Quantitative analysis of the chronodeflectometric data made possible to elucidate the dynamics of double layer charging in such materials and to determine the potential of zero charge (pzc) of the metal present either as a monolithic mesoporous material or as metal nanoparticles supported on carbon. The electro-oxidation of CO, adsorbed on nanostructured Pt, was also studied by CVD and CD being able to detect the formation of CO2 and H3O+ related with the nucleation and growth process which controls the rate of CO stripping. The interplay of Pt oxide formation and COad electrooxidation, both in potential and time, was detected indicating possible application of the technique to other electrocatalysts.

  8. Composites materials for friction and braking application

    Science.gov (United States)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  9. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  10. Vertically Aligned Nanostructured Arrays of Inorganic Materials: Synthesis, Distinctive Physical Phenomena, and Device Integration

    Science.gov (United States)

    Velazquez, Jesus Manuel

    The manifestation of novel physical phenomena upon scaling materials to finite size has inspired new device concepts that take advantage of the distinctive electrical, mechanical, and optical, properties of nanostructures. The development of fabrication approaches for the preparation of their 1D nanostructured form, such as nanowires and nanotubes, has contributed greatly to advancing fundamental understanding of these systems, and has spurred the integration of these materials in novel electronics, photonic devices, power sources, and energy scavenging constructs. Significant progress has been achieved over the last decade in the preparation of ordered arrays of carbon nanotubes, II---VI and III---V semiconductors, and some binary oxides such as ZnO. In contrast, relatively less attention has been focused on layered materials with potential for electrochemical energy storage. Here, we describe the catalyzed vapor transport growth of vertical arrays of orthorhombic V2O 5 nanowires. In addition, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to precisely probe the alignment, uniformity in crystal growth direction, and electronic structure of single-crystalline V2O5 nanowire arrays prepared by a cobalt-catalyzed vapor transport process. The dipole selection rules operational for core-level electron spectroscopy enable angle-dependant NEXAFS spectroscopy to be used as a sensitive probe of the anisotropy of these systems and provides detailed insight into bond orientation and the symmetry of the frontier orbital states. The experimental spectra are matched to previous theoretical predictions and allow experimental verification of features such as the origin of the split-off conduction band responsible for the n-type conductivity of V2O5 and the strongly anisotropic nature of vanadyl-oxygen-derived (V=O) states thought to be involved in catalysis. We have also invested substantial effort in obtaining shape and size control of metal oxide

  11. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  12. Synthesis and functional properties of nanostructured ceria materials; Synthese und funktionelle Eigenschaften nanostrukturierter Ceroxidmaterialien

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, Meike

    2014-06-02

    Nanostructured ceria tubes have been synthesised using electro spun polymer fibers as templating material. These polymer mats are produced by electro spinning starting with a polymer solution. In a next step polymer fibers are decorated with cer containing sol, which is then dried. To receive ceria tubes the polymer is removed on the one hand by thermal decomposition of the polymer or on the other hand by oxygen plasma treatment of ceria/polymer hybrid material. The resulting ceria tubes have a specific surface area of 98 m2 g-1. TEM, XRD, SAED and Raman investigations show a fully nanostructured crystallinity with cubic fluorine type structure. This obtained material shows a photo catalytic activity within decomposition of methylene blue in the Vis part of the electromagnetic spectrum. This photo catalytic activity can be increased using doping ions of transition and rare earth elements that are introduced in the sol-gel synthesis. Also here XRD and TEM investigations show a fully nano crystalline structure of ceria. Raman spectroscopy verifies the doping of ceria by transition and rare earth elements up to 22% of doping. No phase separation can be observed. The photo catalytic activity can be increased using these doped materials. Additionally a catalytic activity of pure ceria and mixed ceria/zirconia materials have been investigated synthesis of dimethylcarboxilate without water addition. Here a direct dependence between turn over and doping cannot be detected. The dependence can be deduced to the synthesis process of the catalyst. Terminal sensoric properties of doped and undoped ceria (n-type semiconductor) are investigated. The prepared materials are used as chemiresistors against oxygen at temperatures of 700 C. These investigations show a reversible increase of the electrical resistance against oxygen.

  13. Chlorhexidine-releasing methacrylate dental composite materials.

    Science.gov (United States)

    Leung, Danny; Spratt, David A; Pratten, Jonathan; Gulabivala, Kishor; Mordan, Nicola J; Young, Anne M

    2005-12-01

    Light curable antibacterial, dental composite restoration materials, consisting of 80 wt% of a strontium fluoroaluminosilicate glass dispersed in methacrylate monomers have been produced. The monomers contained 40-100 wt% of a 10 wt% chlorhexidine diacetate (CHXA) in hydroxyethylmethacrylate (HEMA) solution and 60-0 wt% of a 50/50 mix of urethane dimethacrylate (UDMA) and triethyleneglycol dimethacrylate (TEGDMA). On raising HEMA content, light cure polymerisation rates decreased. Conversely, water sorption induced swelling and rates of diffusion controlled CHXA release from the set materials increased. Experimental composites with 50 and 90 wt% of the CHXA in HEMA solution in the monomer were shown, within a constant depth film fermentor (CDFF), to have slower rates of biofilm growth on their surfaces between 1 and 7 days than the commercial dental composite Z250 or fluoride-releasing dental cements, Fuji II LC and Fuji IX. When an excavated bovine dentine cylinder re-filled with Z250 was placed for 10 weeks in the CDFF, both bacteria and polymers from the artificial saliva penetrated between the material and dentine. With the 50 wt% experimental HEMA/CHXA formulation, this bacterial microleakage was substantially reduced. Polymer leakage, however, still occurred. Both polymer and bacterial microleakage were prevented with a 90 wt% HEMA/CHXA restoration in the bovine dentine due to swelling compensation for polymerisation shrinkage in combination with antibacterial release.

  14. Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition

    Science.gov (United States)

    Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed

    2016-12-01

    Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.

  15. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  16. Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Fang, Shan; Tong, Zhenkun; Nie, Ping; Liu, Gao; Zhang, Xiaogang

    2017-06-07

    Adjusting the particle size and nanostructure or applying carbon materials as the coating layers is a promising method to hold the volume expansion of Si for its practical application in lithium-ion batteries (LIBs). Herein, the mild carbon coating combined with a molten salt reduction is precisely designed to synthesize raspberry-like hollow silicon spheres coated with carbon shells (HSi@C) as the anode materials for LIBs. The HSi@C exhibits a remarkable electrochemical performance; a high reversible specific capacity of 886.2 mAh g(-1) at a current density of 0.5 A g(-1) after 200 cycles is achieved. Moreover, even after 500 cycles at a current density of 2.0 A g(-1), a stable capacity of 516.7 mAh g(-1) still can be obtained.

  17. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Abel, B.; Aslan, K. [Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 (United States)

    2012-11-15

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Simultaneous measurement of orientational and spectral dynamics of single molecules in nanostructured host-guest materials.

    Science.gov (United States)

    Jung, Christophe; Hellriegel, Christian; Platschek, Barbara; Wöhrle, Dieter; Bein, Thomas; Michaelis, Jens; Bräuchle, Christoph

    2007-05-02

    Nanostructured host-guest materials are important for various applications in nanoscience, and therefore, a thorough understanding of the dynamics of the guest molecules within the host matrix is needed. To this aim we used single-molecule fluorescence techniques to simultaneously examine the spectral and the orientational behavior of single molecules in nanostructured porous host materials. Two types of host-guest systems have been investigated. First, oxazine-1 dye molecules were fixed rigidly in the channels of microporous AlPO4-5 crystals. Second, it was shown that terrylenediimide (TDI) dye molecules move in the mesoporous network of an uncalcined M41S thin film. In the first sample both spectral fluctuations ( approximately 5 nm) and rare spectral jumps (>10 nm) of the emission maximum were observed. However, the orientation of the emission dipole of the dye molecules remained constant. In contrast, the second system showed orientational dynamics as well as substantially more spectral dynamics. In this system the molecules were found to move between different regions in the host. The typical motion of the TDI molecules in the pores of M41S was not continuous but characterized by jumps between specific sites. Moreover, the spectral and orientational dynamics were correlated and arose directly from the different environments that were being explored by the mobile molecule.

  19. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.

    Science.gov (United States)

    Chaudhari, Nitin K; Jin, Haneul; Kim, Byeongyoon; Lee, Kwangyeol

    2017-08-31

    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

  20. Environment Friendly Composite Materials: Biocomposites and Green Composites

    Directory of Open Access Journals (Sweden)

    B. C. Mitra

    2014-05-01

    Full Text Available Biocomposites can supplement and eventually replace petroleum-based composite materials in several applications. Several critical issues related to bio-fiber surface treatments is to make it a more suitable matrix for composite application and promising techniques need to be solved to design biocomposite of interest. The main motivation for developing biocomposites has been and still is to create a new generation of fiber reinforced plastics material competitive with glass fiber reinforced ones which are environmentally compatible in terms of products, use and renewal. There is an immense opportunity in developing new biobased products, but the real challenge isto design suitable bio-based products through innovation ideas. Green materials are the wave of the future. Bionanocomposites have very strong future prospects, though the present low level of production, some deficiency intechnology and high cost restrict them from a wide range of applications.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 244-261, DOI:http://dx.doi.org/10.14429/dsj.64.7323

  1. Nanostructured exchange coupled hard/soft composites: From the local magnetization profile to an extended 3d simple model

    Energy Technology Data Exchange (ETDEWEB)

    Russier, V., E-mail: russier@glvt-cnrs.fr [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Younsi, K.; Bessais, L. [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France)

    2012-03-15

    In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field,remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard/soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression/depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix. - Highlights: Black-Right-Pointing-Pointer Exchange coupling between hard and soft components of a magnetic nanocomposite. Black-Right-Pointing-Pointer Connection between one dimensional stratified media and three dimensional model. Black-Right-Pointing-Pointer Investigation of the compression behavior of the local magnetization profile at the interface.

  2. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  3. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  4. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  5. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires.

    Science.gov (United States)

    Hohenwarter, A; Völker, B; Kapp, M W; Li, Y; Goto, S; Raabe, D; Pippan, R

    2016-09-14

    Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today's strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material's strength.

  6. Composite material systems for hydrogen management

    Science.gov (United States)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    Science.gov (United States)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  10. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    Science.gov (United States)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  11. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation.

    Science.gov (United States)

    Zhang, Wang; Zhou, Kun

    2017-08-01

    Water oxidation, also known as the oxygen evolution reaction (OER), is a crucial process in energy conversion and storage, especially in water electrolysis. The critical challenge of the electrochemical water splitting technology is to explore alternative precious-metal-free catalysts for the promotion of the kinetically sluggish OER. Recently, emerging two-dimensional (2D) ultrathin materials with abundant accessible active sites and improved electrical conductivity provide an ideal platform for the synthesis of promising OER catalysts. This Review focuses on the most recent advances in ultrathin 2D nanostructured materials for enhanced electrochemical activity of the OER. The design, synthesis and performance of such ultrathin 2D nanomaterials-based OER catalysts and their property-structure relationships are discussed, providing valuable insights to the exploration of novel OER catalysts with high efficiency and low overpotential. The potential research directions are also proposed in the research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration

    Science.gov (United States)

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2010-01-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol−1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm−1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

  13. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  14. Removal of Organic Dyes by Nanostructure ZnO-Bamboo Charcoal Composites with Photocatalysis Function

    Directory of Open Access Journals (Sweden)

    Xinliang Yu

    2015-01-01

    Full Text Available Composites of nanostructure zinc oxide (nano-ZnO and bamboo charcoal (BC were successfully prepared via impregnation-precipitation method. The products were characterized by XRD, SEM, and EDS. Rhodamine B (RhB and acid fuchsin (AF were selected as the organic dyes of photocatalysis degradation under the irradiation of ultraviolet light (UV. The influence of particle size of BC, irradiation time, pH value of the solution, and additive amount of H2O2 on removal of the dyes has been studied. The results show that smaller particle size of BC in the composites has a better removal effect. The composites possess the highest removal capacity for RhB and AF under the conditions of pH = 2 and pH = 5.4, respectively. The optimum additive amount of H2O2 for 5 mL RhB and AF was 0.050 mL and 0.1 mL, with a removal rate of 93% and 99%, respectively.

  15. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials.

    Science.gov (United States)

    Leventis, Nicholas; Chandrasekaran, Naveen; Sadekar, Anand G; Sotiriou-Leventis, Chariklia; Lu, Hongbing

    2009-04-01

    For many applications ranging from catalysis to sensors to energetic materials, it is desirable to produce intimate mixtures of nanoparticles. For instance, to improve the reaction rates of energetic materials, the oxidizing agent and the fuel need to be mixed as intimately as possible, ideally at the nanoscopic level. In this context, the acidity of a hydrated CuCl(2) solution reacting toward a network of CuO nanoparticles (a good oxidant) is used to induce one-pot cogelation of a nanostructured network of a resorcinol-formaldehyde resin (RF, the fuel). The resulting wet gels are dried to aerogels, and upon pyrolysis under Ar, the interpenetrating CuO/RF network undergoes a smelting reaction toward metallic Cu. Upon ignition in the open air, pure RF aerogels do not burn, while CuO/RF composites, even with substoichiometric CuO, sustain combustion, burning completely leaving only a solid residue of CuO whose role then has been that of a redox mediator through the smelting reaction.

  16. A hierarchically nanostructured composite of MnO{sub 2}/conjugated polymer/graphene for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun Xian; Chen, Tao; Li, Chang Ming [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore); Wang, Min; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore)

    2011-10-15

    A hierarchically nanostructured composite of MnO{sub 2}/conjugated polymer/graphene is designed and fabricated for lithium ion batteries. The composite can produce a reversible capacity more than ten times that of plain MnO{sub 2}-based devices. The described approach can be used to create desired hierarchically nanostructured composite electrodes for broad applications in energy conversion/storage systems. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Combustion synthesis of advanced composite materials

    Science.gov (United States)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  18. Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires

    Science.gov (United States)

    Hohenwarter, A.; Völker, B.; Kapp, M. W.; Li, Y.; Goto, S.; Raabe, D.; Pippan, R.

    2016-09-01

    Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today’s strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material’s strength.

  19. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  20. Subsecond annealing of advanced materials annealing by lasers, flash lamps and swift heavy ions

    CERN Document Server

    Skorupa, Wolfgang

    2014-01-01

    This book examines thermal processing of elemental semiconductors and materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Covers compound semiconductors, dielectric composites and organic materials.

  1. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...

  2. Mechanics of Composite Materials for Spacecraft

    Science.gov (United States)

    1992-08-01

    localization problems. Technical report, January 1987. Report ONR-N00014-86-K-0235/1. [33] Z. P. Bazant and G. Pijauder-Cabot. Nonlocal damage: continuum model...Shephard and Jerry Lin. Dr. Jan L. Teply. and graduate students.R Shah and J. F Wu. contributed to the recent work on plasticity of composite materials...Fracture. 16. 585 (1980). 94. G J Dvorak and E. C. J. Wung. in Strain Localization and Size Effect Due to Cracking and Damage" 0. MJazars and Z. P Bazant

  3. Controllable preparation of CeO2 nanostructure materials and their catalytic activity

    Institute of Scientific and Technical Information of China (English)

    Shan Wenjuan; Guo Hongjuan; Liu Chang; Wang Xiaonan

    2012-01-01

    Well-crystalline CeO2 nanostructures with the morphology ofnanorods and nanocubes were synthesized by a template-free hydrothermal method.X-ray diffraction (XRD),transmission electron microscopy (TEM),Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption measurements were employed to characterize the synthesized materials.The reducibility and catalytic activity of nanostructured CeO2 were examined by hydrogen temperature-programmed reduction (H2-TPR) and CO oxidation.The results showed that CeO2 nanorods could be converted into CeO2 nanocubes with the increasing of the reaction time and the hydrothermal temperature,CeO2 nanorods became longer gradually with the increasing of the concentrations of NaOH.H2-TPR characterization demonstrated that the intense low-temperature reduction peak in the CeO2 nanorods indicated the amount of hydrogen consumed is larger than CeO2 nanocubes.Meantime the CeO2 nanorods enhanced catalytic activity for CO oxidation,the total conversion temperature was 340 ℃.The reasons were that CeO2 nanorods have much smaller crystalline sizes and higher surface areas than CeO2 nanocubes.

  4. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Science.gov (United States)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  5. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    Science.gov (United States)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  6. Efficient dual mode multicolor luminescence in a lanthanide doped hybrid nanostructure: a multifunctional material.

    Science.gov (United States)

    Singh, S K; Singh, A K; Rai, S B

    2011-07-08

    The present work deals with inorganic-organic hybrid nanostructures capable of producing intense visible emission via upconversion (UC), downconversion (DC), and energy transfer (ET) processes which show the potential of the material as a luminescent solar collector (LSC), particularly to improve the efficiency of silicon solar cells. To achieve this, Gd2O3:Yb3+/Er3+ phosphor (average particle size∼35 nm) and a Eu(DBM)3Phen organic complex have been synthesized separately and then the hybrid structure has been developed using a simple mixing procedure. Intense UC emission (in the red, green, and blue regions) due to Er3+ is observed on near infrared (976 nm) excitation which shows color tunability with input pump power. In contrast, intense red emission of Eu3+ is observed on ultaviolet (UV) (355 nm) excitation. The feasibility of energy transfer from Er3+ ions to Eu3+ ions has also been noted. These excellent optical properties are retained even if the particles of the hybrid nanostructure are dispersed in liquid medium, which also makes it suitable for security ink purposes.

  7. Shape controlled synthesis and characterization of Cu{sub 2}O nanostructures assisted by composite surfactants system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Asar [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (India); Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh (India); Joshi, Amish G. [Physics of Energy Harvesting Division, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2011-10-03

    Highlights: {yields} Simple and inexpensive one pot synthesis of various Cu{sub 2}O nanostructures is demonstrated by manipulating the composite surfactant system. {yields} Surface properties are studied by the X-ray photoelectron spectroscopy. {yields} The prepared materials were also used for photocatalysis has in the degradation of organic dye Rhodamine B. - Abstract: A simple methodology has been demonstrated to synthesize various nanocrystalline Cu{sub 2}O materials assisted by composite surfactant system, SDS and Tween 80 using the polyol method. Glycolaldehyde prepared in situ by heating ethylene glycol solvent at 160 deg. C for 2 h, was utilized as the reducing agent. The relative ratio of the two surfactants was manipulated to achieve different Cu{sub 2}O morphologies, e.g. nanocrystalline Cu{sub 2}O flowers, hollow spheres consisting of holes and ring type structure. The FT-IR spectroscopy confirmed that the SDS and Tween 80 moieties were indeed present on the surface as capping agents in order to stabilize the surface nanocrystallites by the co-ordinative interactions between the oxygen atoms of Tween 80 and SDS and the Cu atoms at the surface of the synthesized Cu{sub 2}O particles. These oxygen atoms eventually encourage the oxidation of the surface Cu atoms to form a thin CuO layer, presence of which on the surface was corroborated by the XPS measurements. Sputtering of the samples was also carried out to remove the surface CuO thin layer and expose the inner Cu{sub 2}O. These nanomaterials were then investigated for their potential applications in photocatalytic degradation of Rhodamine B dye.

  8. ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-03-01

    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.

  9. Development of Micro and Nanostructured Materials for Interfacial Self-Healing

    Science.gov (United States)

    Blaiszik, Benjamin James

    2009-01-01

    Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…

  10. Core-shell nanostructured hybrid composites for volatile organic compound detection

    Directory of Open Access Journals (Sweden)

    Tung TT

    2015-08-01

    Full Text Available Tran Thanh Tung,1,2 Dusan Losic,1 Seung Jun Park,3 Jean-Francois Feller,2 TaeYoung Kim3 1School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia; 2Smart Plastics Group, European University of Brittany (UEB, LIMATB-UBS, Lorient, France; 3Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea Abstract: We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs and poly(3,4-ethylenedioxythiophene (PEDOT-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs, which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. Keywords: hybrid nanomaterials, nanoparticle, conducting polymer, electronic nose, lung cancer detection

  11. Theory of light propagation in nano-structured materials and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaarschmidt, M.

    2006-05-03

    This work presents a theory for the propagation of intense electromagnetic radiation in nano-structures materials and semiconductors. One main area is the modelling and simulation of the microscopic material dynamics of low dimensional semiconductors, both structured and bulk, and of a laser induced plasma. The ultrafast microscopic dynamics of these electronic many particle systems under the influence of light fields and scattering mechanisms like electron-electron interaction or interaction with lattice vibrations is described in the density matrix formalism. This description in second quantization yields the temporal nonlocal and nonlinear response of the material to electromagnetic fields. Laser induced plasma in quantum wells will be shown to be a possible new semiconductor source for terahertz-emission (wavelength mm to micrometer). The second focus of interest of this work lies in the simulation of the propagation of electromagnetic waves in different systems like photonic crystals, optical fibers and wave guides. The propagation in bulk semiconductors and waveguides is considered in both slowly varying envelope approximation (SVEA) and with the nonlinear Schroedinger equation. For complex systems like photonic band gap structures with high symmetry a matrix-transfer formalism is applied. For arbitrary structured systems (which may include local breaches of symmetry) a very flexible finite-differences algorithm is employed. The combination of microscopic material dynamics and light propagation enables the calculation of reflection and transmission properties of nano-structured materials not only in linear excitation but also for high intensities where nonlinear light-matter coupling dominates and novel effects arise. One used model system are Bragg-resonant multiple quantum wells. On this one dimensional resonant absorbing photonic crystal new nonlinear effects are studied. Some effect to mention are the possible application as an ultrafast optical switch

  12. Piezoelectric Nanoparticle-Polymer Composite Materials

    Science.gov (United States)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  13. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications

    Science.gov (United States)

    Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina

    2017-05-01

    In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.

  14. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  15. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy

    Science.gov (United States)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

    2006-01-01

    In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

  16. Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ye; Zhou, Xingyi; Zhang, Jun; Bruck, Andrea M; Bond, Andrew C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Yu, Guihua

    2017-03-08

    Controlling architecture of electrode composites is of particular importance to optimize both electronic and ionic conduction within the entire electrode and improve the dispersion of active particles, thus achieving the best energy delivery from a battery. Electrodes based on conventional binder systems that consist of carbon additives and nonconductive binder polymers suffer from aggregation of particles and poor physical connections, leading to decreased effective electronic and ionic conductivities. Here we developed a three-dimensional (3D) nanostructured hybrid inorganic-gel framework electrode by in situ polymerization of conductive polymer gel onto commercial lithium iron phosphate particles. This framework electrode exhibits greatly improved rate and cyclic performance because the highly conductive and hierarchically porous network of the hybrid gel framework promotes both electronic and ionic transport. In addition, both inorganic and organic components are uniformly distributed within the electrode because the polymer coating prevents active particles from aggregation, enabling full access to each particle. The robust framework further provides mechanical strength to support active electrode materials and improves the long-term electrochemical stability. The multifunctional conductive gel framework can be generalized for other high-capacity inorganic electrode materials to enable high-performance lithium ion batteries.

  17. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-03-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  18. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers.

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-12-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er (3+)-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er (3+) ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al (3+) or P (5+) ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er (3+)-doped alumina nanoparticles (NPs), as precursor of Er (3+) ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  19. Nanostructures, systems, and methods for photocatalysis

    Science.gov (United States)

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  20. Electrical conduction in composites containing copper core-copper oxide shell nanostructure in silica gel

    Indian Academy of Sciences (India)

    D Das; T K Kundu; M K Dey; S Chakraborty; D Chakravorty

    2003-10-01

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles dispersed in silica gel showed electrical resistivities several orders of magnitude lower than that of the precursor gel. Electrical resistivities of the different specimens were measured over the temperature range 30 to 300°C. Activation energies for the coreshell nanostructured composites were found to be a fraction of that of the precursor gel. Such dramatic changes are ascribed to the presence of an interfacial amorphous phase. The resistivity variation as a function of temperature was analysed on the basis of Mott’s small polaron hopping conduction model. The effective dielectric constant of the interfacial phase as extracted from the data analysis was found to be much higher than that of the precursor glass. This has been explained as arising from the generation of very high pressure at the interface due to the oxidation step to which the copper nanoparticles are subjected.

  1. Magnetic properties of ferrite-titanate nanostructured composites synthesized by the polyol method and consolidated by spark plasma sintering

    Science.gov (United States)

    Acevedo, Ulises; Gaudisson, Thomas; Ortega-Zempoalteca, Raul; Nowak, Sophie; Ammar, Souad; Valenzuela, Raul

    2013-05-01

    Multiferroic systems formed by a mixing of a ferroelectric phase and a ferrimagnetic phase are receiving significant attention because of their wide possibilities for tailoring properties. In this work, the magnetic properties of the cobalt ferrite-barium titanate system were investigated on samples prepared by an original combination of synthesis methods. Cobalt ferrite and barium titanate nanoparticles were synthesized separately by hydrolysis of the metal acetates in a polyol method. Both materials were mixed in a 1:1 ratio and consolidated by spark plasma sintering at 500 °C for 5 min. A high density nanostructured ceramic was obtained with grains smaller than 100 nm and a density about 80% of the theoretical value. Magnetic hysteresis loops showed a hard magnet behavior, with a coercive field larger than cobalt ferrite alone prepared under the same conditions. δM reversible magnetization plots exhibited dipolar interactions with a maximum at the coercive field. These results are interpreted in terms of an efficient mixing of the components, which strongly decreases the magnetic percolation in the composite by separating ferrite grains by titanate grains.

  2. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    Science.gov (United States)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2016-12-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  3. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    Directory of Open Access Journals (Sweden)

    Moguilnaya T.

    2017-01-01

    Full Text Available We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  4. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    Science.gov (United States)

    Beznosyuk, Sergey A.; Zhukovsky, Mark S.; Maslova, Olga A.

    2015-10-01

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru256, Rh256, Pd256) accumulate next storage energies: ERu = 2.27 eV/at, ERh = 1.67 eV/at, EPd = 3.02 eV/at.

  5. Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials.

    Science.gov (United States)

    Teixeira, J M; Lusche, R; Ventura, J; Fermento, R; Carpinteiro, F; Araujo, J P; Sousa, J B; Cardoso, S; Freitas, P P

    2011-04-01

    Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

  6. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    Science.gov (United States)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  7. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    Science.gov (United States)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  8. Engineering nanostructural routes for enhancing thermoelectric performance: bulk to nanoscale

    Directory of Open Access Journals (Sweden)

    Rajeshkumar eMohanraman

    2015-11-01

    Full Text Available Thermoelectricity is a very important physical property, especially its significance in heat-electricity conversion. If thermoelectric devices can be effectively applied to the recovery of the renewable energies, such as waste heat and solar energy, the energy shortage and global warming issues may be greatly relieved. This review focusses recent developments on the thermoelectric performance of a low-dimensional material, bulk nanostructured materials, conventional bulk materials etc. Particular emphasis is given on, how the nanostructure in nanostructured composites, confinement effects in one-dimensional nanowires and doping effects in conventional bulk composites plays an important role in ZT enhancement.

  9. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    Science.gov (United States)

    Anglin, Emily Jessica

    This thesis describes the fabrication, chemical modification, drug release, and toxicity studies of nanostructured porous silicon for the purposes of developing a smart drug delivery device. The first chapter is an introductory chapter, presenting the chemical and physical properties of porous silicon, the concepts and issues of current drug delivery devices and materials, and how porous silicon can address the issues regarding localized and controlled drug therapies. The second chapter discusses chemical modifications of nanostructured porous Si for stabilizing the material in biologically relevant media while providing an extended release of a therapeutic in vitro. This chapter also demonstrates the utility of the porous silicon optical signatures for effectively monitoring drug release from the system and its applications for development of a self-reporting drug delivery device. In chapter three, the concept of providing a triggered release of a therapeutic from porous silicon microparticles through initiation by an external stimulus is demonstrated. The microparticles are chemically modified, and the release is enhanced by a short application of ultrasound to the particulate system. The effect of ultrasound on the drug release and particle size is discussed. Chapter four presents a new method for sustaining the release of a monoclonal antibody from the porous matrix of porous SiO2. The therapeutic is incorporated into the films through electrostatic adsorption and a slow release is observed in vitro. A new method of quantifying the extent of drug loading is monitored with interferometry. The last chapter of the thesis provides a basic in vivo toxicity study of various porous Si microparticles for intraocular applications. Three types of porous Si particles are fabricated and studied in a rabbit eye model. The toxicity studies were conducted by collaborators at the Shiley Eye Center, La Jolla, CA. This work, demonstrates the feasibility of developing a self

  10. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    DEFF Research Database (Denmark)

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong;

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries...

  11. The influence of ZnO nanostructures on the structure, optical and photovoltaic properties of organic materials

    CSIR Research Space (South Africa)

    Malgas, GF

    2014-03-01

    Full Text Available Films Vol. 555 The influence of ZnO nanostructures on the structure, optical and photovoltaic properties of organic materials Gerald F. Malgas a,b,⁎, David E. Motaung a,⁎⁎, Gugu H. Mhlongo a, Steven S. Nkosi c, Bonex W. Mwakikunga a, Malcolm...

  12. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    Science.gov (United States)

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti

  13. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  14. STUDY AND FABRICATION OF SOYBEAN- KEVLAR HYBRID COMPOSITE MATERIAL

    OpenAIRE

    Dilip M R*, Dr. B R Narendra Babu

    2016-01-01

    The prerequisite for most outstanding and normal composite materials to be delivered or recognized, having eco-pleasing ascribes and have ability to acclimate to trademark changes happening on regular calendar, has passed on individuals to find new sources and variety of composite materials to be made. At the present age, trademark fiber composites having near properties, from renewable normal resources expect a vital part in course of action of composite material when diverged from man-made ...

  15. Synthesis and study of composite organic silica sorption materials

    Directory of Open Access Journals (Sweden)

    Anna Nikolaevna Shipulya

    2016-03-01

    Full Text Available Currently, one of the promising areas of applied chemistry is research and development of composite absorption materials used as sorbents with a wide range of action, as well as media for biologic preparations and drugs. We have performed research on the development of composite organic silica chitosan-silica based materials with certain composition and biochemical action. Silica was used as the main component, and chitosan - as bio-compatible polymer in the composition of the composite sorbent.

  16. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications.

    Science.gov (United States)

    Zhu, Qing; Qian, Jieshu; Pan, Hao; Tu, Luo; Zhou, Xingfu

    2011-09-30

    The construction of nanocrystals with controllable composition and desirable micro-nanostructures is a well-known challenge. A combination of favorable composition and optimized micro-nanostructures can enhance the performance of a material significantly. Using TiO(2) as an example, we demonstrate here a facile approach to prepare anatase/rutile mixed-phase TiO(2) hollow micro-nanospheres with hierarchical mesopores. Our strategy relies on polymer-assisted assembly of ∼ 5 nm nano-building blocks into three-dimensional hierarchical hollow micro-nanospheres in a mixed alcohol-water solution. This superior micro-nanostructure endows the sample with hierarchical mesopores and a high surface area of 106 m(2) g(-1). We also show that, due to the synergetic effects of the mixed-phase composition and the micro-nanostructures, the sample exhibited significantly improved photovoltaic performance and similar photocatalytic performance compared with the commercial Degussa P25. These results suggested that our sample has great potential for future photovoltaic and photocatalytic applications.

  17. Materials and electromagnetism. The modeling of composite materials; Materiaux en electromagnetisme. Modelisation des materiaux composites

    Energy Technology Data Exchange (ETDEWEB)

    Priou, A. [Institut Universitaire de Technologie, 92 - Ville-d' Avray (France)

    1999-01-01

    Maxwell laws are briefly described and the different types of electromagnetic materials are presented. Composite materials are made up of at least 2 phases: a host phase and an inclusion. The inclusion is a discontinuous phase coming from a conducting material (metal, carbon based material, semi-conductor, solid electrolytes or conducting polymers) and is spread within the host phase either in an aleatory or organized way. The modeling of such media can be made by 3 different approaches. In the multi-diffusion approach, the size of the particles enclosed in the host material and their mutual interactions are taken into account. The quasi-static approach allows the definition of an equivalent medium in order to describe percolation phenomena. The approach based on cluster theory gives a complete mathematical description of composite materials. The modeling of dielectric-conducting multilayer is also presented. The last part of the article is dedicated to the characteristics and applications of chiral media and of last generation electromagnetic materials. (A.C.)

  18. High capacity and high rate capability of nanostructured CuFeO 2 anode materials for lithium-ion batteries

    Science.gov (United States)

    Lu, Lin; Wang, Jia-Zhao; Zhu, Xue-Bin; Gao, Xuan-Wen; Liu, Hua-Kun

    Non-toxic, cheap, nanostructured ternary transition metal oxide CuFeO 2 was synthesised using a simple sol-gel method at different temperatures. The effects of the processing temperature on the particle size and electrochemical performance of the nanostructured CuFeO 2 were investigated. The electrochemical results show that the sample synthesised at 650 °C shows the best cycling performance, retaining a specific capacity of 475 mAh g -1 beyond 100 cycles, with a capacity fading of less than 0.33% per cycle. The electrode also exhibits good rate capability in the range of 0.5 C-4 C. At the high rate of 4 C, the reversible capacity of CuFeO 2 is around 170 mAh g -1. It is believed that the ternary transition metal oxide CuFeO 2 is quite acceptable compared with other high performance nanostructured anode materials.

  19. Recent progress on nanostructured 4 V cathode materials for Li-ion batteries for mobile electronics

    Directory of Open Access Journals (Sweden)

    Xiaodong Xu

    2013-12-01

    Full Text Available Mobile electronics have developed so rapidly that battery technology has hardly been able to keep pace. The increasing desire for lighter and thinner Li-ion batteries with higher capacities is a continuing and constant goal for in research. Achieving higher energy densities, which is mainly dependent on cathode materials, has become a critical issue in the development of new Li-ion batteries. In this review, we will outline the progress on nanostructured 4 V cathode materials of Li-ion batteries for mobile electronics, covering LiCoO2, LiNixCoyMn1−x−yO2, LiMn2O4, LiNi0.5Mn1.5O4 and Li-rich layered oxide materials. We aim to provide some scientific insights into the development of superior cathode materials by discussing the advantages of nanostructure, surface-coating, and other key properties.

  20. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tercjak, A; Garcia, I; Mondragon, I [Materials-Technologies Group, Departamento IngenierIa Quimica y M Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: scptesza@sc.ehu.es, E-mail: inaki.mondragon@ehu.es

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  1. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Science.gov (United States)

    Tercjak, A.; Garcia, I.; Mondragon, I.

    2008-07-01

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  2. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    Science.gov (United States)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material properties were most desirable based on experimental results. Strategies to improve material design for second-generation materials are suggested based on promising reaction results coupled with pre and post reaction characterization analysis.

  3. Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells

    Directory of Open Access Journals (Sweden)

    Yaovi Holade

    2017-01-01

    Full Text Available The future of analytical devices, namely (biosensors, which are currently impacting our everyday life, relies on several metrics such as low cost, high sensitivity, good selectivity, rapid response, real-time monitoring, high-throughput, easy-to-make and easy-to-handle properties. Fortunately, they can be readily fulfilled by electrochemical methods. For decades, electrochemical sensors and biofuel cells operating in physiological conditions have concerned biomolecular science where enzymes act as biocatalysts. However, immobilizing them on a conducting substrate is tedious and the resulting bioelectrodes suffer from stability. In this contribution, we provide a comprehensive, authoritative, critical, and readable review of general interest that surveys interdisciplinary research involving materials science and (bioelectrocatalysis. Specifically, it recounts recent developments focused on the introduction of nanostructured metallic and carbon-based materials as robust “abiotic catalysts” or scaffolds in bioelectrochemistry to boost and increase the current and readout signals as well as the lifetime. Compared to biocatalysts, abiotic catalysts are in a better position to efficiently cope with fluctuations of temperature and pH since they possess high intrinsic thermal stability, exceptional chemical resistance and long-term stability, already highlighted in classical electrocatalysis. We also diagnosed their intrinsic bottlenecks and highlighted opportunities of unifying the materials science and bioelectrochemistry fields to design hybrid platforms with improved performance.

  4. Nanostructured Multilayer Composite Coatings on Ceramic Cutting Tools for Finishing Treatment of High-Hardness Quenched Steels

    Science.gov (United States)

    Vereshchaka, A. A.; Batako, A. D.; Sotova, E. S.; Vereshchaka, A. S.

    2016-01-01

    The functional role of nanostructured multilayer composite coatings (NMCC) deposited on the operating surfaces of replaceable faceted cutting inserts (CI) from cutting ceramics based on aluminum oxides with additives of titanium carbides is studied. It is shown that the developed NMCC not only raise substantially the endurance of the ceramic tools under high-speed dry treatment of quenched steels but also improve the quality and accuracy of processing of the parts and the ecological parameters of the cutting process.

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  6. Development of Nano-structured Electrode Materials for High Performance Energy Storage System

    Science.gov (United States)

    Huang, Zhendong

    Systematic studies have been done to develop a low cost, environmental-friendly facile fabrication process for the preparation of high performance nanostructured electrode materials and to fully understand the influence factors on the electrochemical performance in the application of lithium ion batteries (LIBs) or supercapacitors. For LIBs, LiNi1/3Co1/3Mn1/3O2 (NCM) with a 1D porous structure has been developed as cathode material. The tube-like 1D structure consists of inter-linked, multi-facet nanoparticles of approximately 100-500nm in diameter. The microscopically porous structure originates from the honeycomb-shaped precursor foaming gel, which serves as self-template during the stepwise calcination process. The 1D NCM presents specific capacities of 153, 140, 130 and 118mAh·g-1 at current densities of 0.1C, 0.5C, 1C and 2C, respectively. Subsequently, a novel stepwise crystallization process consisting of a higher crystallization temperature and longer period for grain growth is employed to prepare single crystal NCM nanoparticles. The modified sol-gel process followed by optimized crystallization process results in significant improvements in chemical and physical characteristics of the NCM particles. They include a fully-developed single crystal NCM with uniform composition and a porous NCM architecture with a reduced degree of fusion and a large specific surface area. The NCM cathode material with these structural modifications in turn presents significantly enhanced specific capacities of 173.9, 166.9, 158.3 and 142.3mAh·g -1 at 0.1C, 0.5C, 1C and 2C, respectively. Carbon nanotube (CNT) is used to improve the relative low power capability and poor cyclic stability of NCM caused by its poor electrical conductivity. The NCM/CNT nanocomposites cathodes are prepared through simply mixing of the two component materials followed by a thermal treatment. The CNTs were functionalized to obtain uniformly-dispersed MWCNTs in the NCM matrix. The electrochemical

  7. A Tremella-Like Nanostructure of Silicon@void@graphene-Like Nanosheets Composite as an Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Mi, Hongwei; Li, Fang; Xu, Shuxian; Li, Ziang; Chai, Xiaoyan; He, Chuanxin; Li, Yongliang; Liu, Jianhong

    2016-12-01

    Graphene coating is receiving discernable attention to overcome the significant challenges associated with large volume changes and poor conductivity of silicon nanoparticles as anodes for lithium-ion batteries. In this work, a tremella-like nanostructure of silicon@void@graphene-like nanosheets (Si@void@G) composite was successfully synthesized and employed as a high-performance anode material with high capacity, cycling stability, and rate capacity. The Si nanoparticles were first coated with a sacrificial SiO2 layer; then, the nitrogen-doped (N-doped) graphene-like nanosheets were formed on the surface of Si@SiO2 through a one-step carbon-thermal method, and the SiO2 layer was removed subsequently to obtain the Si@void@G composite. The performance improvement is mainly attributed to the good conductivity of N-doped graphene-like nanosheets and the unique design of tremella nanostructure, which provides a void space to allow for the Si nanoparticles expanding upon lithiation. The resulting electrode delivers a capacity of 1497.3 mAh g(-1) at the current density of 0.2 A g(-1) after 100 cycles.

  8. Oxidation resistance of Al2O3-nanostructured/CSZ composite compared to conventional CSZ and YSZ thermal barrier coatings

    Science.gov (United States)

    Keyvani, A.; Bahamirian, M.

    2016-10-01

    Thermal barrier coatings are widely used in combustion sections of turbine engines, however, their main disadvantage is the spallation from the bond coat, occurring due to oxidation and formation of thermally grown oxide (TGO). In this paper, the oxidation resistance of yttria stabilized zirconia (YSZ), ceria stabilized zirconia (CSZ), and Al2O3-nanostructured/CSZ composite coatings have been studied and compared with each other. Samples were heated in air at 1100 °C using an electrical furnace. Three types of the top coats were applied by thermal spray technique on IN738LC base metal. Scanning electron microscopy was used to study the microstructure of the coatings before and after the oxidation. The experimental results showed that Al2O3-nanostructured/CSZ composite coating exhibits considerably better oxidation resistance compared to conventional YSZ and CSZ coatings. The microstructural analysis indicated a smaller growth of TGO in the Al2O3-nanostructured/CSZ composite coating, improving the oxidation resistance of the coating.

  9. On the machinability of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Caprino, G.; De Iorio, I.; Santo, L.; Nele, L. [Univ. of Naples Federico II, Naples (Italy)

    1996-12-31

    Orthogonal cutting tests were carried out on a unidirectional Carbon Fibre Reinforced Plastic (CFRP), a unidirectional Glass Fibre Reinforced Plastic (GFRP), and a Sheet Moulding Compound (SMC) R50, using high speed steel tools. The force data were interpreted in the light of the usual force scheme adopted in metal cutting, disregarding the forces developing at the tool flank. It was found that, similarly to metals, the unit cutting force depends on the depth of cut t, decreasing with increasing the latter (size effect). The same trend was followed by the coefficient of friction. A new force scheme, previously proposed for composites, together with a different definition of {open_quotes}specific energy{close_quotes}, was then applied. Irrespective of the material considered, the new model results in a coefficient of friction independent of the cutting parameters, and in a specific energy X unaffected by the depth of cut. Nevertheless, X strongly decreases with increasing the rake angle, following different trends for CFRP and GFRP. Amongst the materials tested, the poorest machinability pertains to SMC.

  10. Thermodynamics of the formation of mesostructures in nanodispersed composite materials

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2009-01-01

    Full Text Available Two models of the formation of mesostructures in nanodispersed composite materials are considered. According to the first model, a mesoelement is formed of coarsely dispersed compositions as an inclusion in a nanodispersed composite body. The second model considers a mesoelement being formed from nanoparticles as an inclusion in the volume of a coarsely dispersed composite body. Depending on the class of composite materials used to produce mesoelements and a composite body, their composition and structure are defined by the liquid phase migration (or absence of the migration as well as diffusion flows of the components.

  11. Neutron scattering—The key characterization tool for nanostructured magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, M.R., E-mail: fitz@lanl.gov [Los Alamos National Laboratory (United States); Schuller, Ivan K. [University of California, San Diego (United States)

    2014-01-15

    The novel properties of materials produced using nanoscale manufacturing processes often arise from interactions across interfaces between dissimilar materials. Thus, to characterize the structure and magnetism of nanoscale materials demands tools with interface specificity. Neutron scattering has long been known to provide unique and quantitative information about nuclear and magnetic structures of bulk materials. Moreover, the specialty techniques of polarized neutron reflectometry and small angle neutron scattering (SANS) with polarized neutron beams and polarization analysis, are ideally and often uniquely suited to studies of nanostructured magnetic materials. Since neutron scattering is a weakly interacting probe, it gives quantifiable and easily-interpreted information on properties of statistically representative quantities of bulk, thin film and interfacial materials. In addition, neutron scattering can provide information to complement that obtained with bulk probes (magnetization, Kerr effect) or surface measurements obtained with scanning probe microscopy or resonant soft x-ray scattering. The straightforward interpretation and the simultaneous availability of structural information, make neutron scattering the technique of choice for the structural and physical characterization of many novel materials, especially those with buried interfaces, ones allowing for isotopic substitutions to decorate buried interfaces, or cases where the magnetic response to an external stimulus can be measured. We describe recent applications of neutron scattering to important thin film materials systems and future opportunities. Unquestionably, neutron scattering has played a decisive role in the development and study of new emergent phenomena. We argue with the advent of new techniques in neutron scattering and sample environment, neutron scattering's role in such studies will become even more dominant. In particular, neutron scattering will clarify and distinguish

  12. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Science.gov (United States)

    Bayer, I. S.; Steele, A.; Martorana, P. J.; Loth, E.

    2010-11-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5), dodecamethylcyclohexasiloxane (D 6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  13. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  14. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

    Science.gov (United States)

    Batanov, German M.; Borzosekov, Valentin D.; Golberg, Dmitri; Iskhakova, Ludmila D.; Kolik, Leonid V.; Konchekov, Evgeny M.; Kharchev, Nikolai K.; Letunov, Alexander A.; Malakhov, Dmitry V.; Milovich, Filipp O.; Obraztsova, Ekaterina A.; Petrov, Alexander E.; Ryabikina, Irina G.; Sarksian, Karen A.; Stepakhin, Vladimir D.; Skvortsova, Nina N.

    2016-01-01

    We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal-dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal-dielectric powder mixtures of titanium-boron, molybdenum-boron, titanium-silicon-boron, molybdenum-boron nitride, molybdenum-tungsten-boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

  15. Lectures on Composite Materials for Aircraft Structures,

    Science.gov (United States)

    1982-10-01

    lectures are related to structural applications of composites . In Lecture 7, the basic theory that is needed for composite structural analysis is...which composites have been taken up for aeronautical applications. Several specific applications of composites in aircraft structures am described in

  16. Sonoelectrochemical Approach Towards Nanostructures

    Science.gov (United States)

    Burda, Clemens; Qiu, Xiaofeng

    2006-03-01

    We will report on the sonoelectrochemical synthesis of nanostructured semiconductor materials. The talk will focus on the control of the nanostructure size, shape, and composition using sonolectrochemistry as a versatile synthesis tool. The synthesis of targeted nanostructures requires thorough control of the redox chemistry during the growth process. The composition of the product can be controlled by changing the initial metal-ligand concentration. Futhermore, the properties of the novel materials will be discussed. Powder X-ray diffraction of the products confirmed the compositional change in the nanomaterials. Control of the involved sonoelectrochemistry also allows for the formation of highly monodispersed 1-D Nanorods. Qiu, Xiaofeng; Lou, Yongbing; Samia, Anna C. S.; Devadoss, Anando; Burgess, James D.; Dayal, Smita; Burda, Clemens. PbTe nanorods by sonoelectrochemistry. Angewandte Chemie, International Edition (2005), 44(36), 5855-5857. Qiu, Xiaofeng; Burda, Clemens; Fu, Ruiling; Pu, Lin; Chen, Hongyuan; Zhu, Junjie. Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society (2004), 126(50), 16276-16277.

  17. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  18. Alternative materials and processing techniques for optimized nanostructures in dye-sensitized solar cells.

    Science.gov (United States)

    Hart, Judy N; Cheng, Yi-Bing; Simon, George P; Spiccia, Leone

    2008-05-01

    Dye-sensitized solar cells (DSSCs) represent an exciting application of nanotechnology and offer an appealing alternative to conventional solar cells based on photovoltaic devices, with significantly reduced production and material costs. However, further improvements are required to enhance the commercial viability of these solar cells. These improvements may be achieved through the careful manipulation of the structure at the nanoscale and the application of novel processing techniques, which may help to increase the efficiency of these solar cells, improve the ease of manufacture and allow the production of flexible, solid-state solar cells. For example, the use of a nanometre-thick coating of an insulating oxide over the semiconducting film in these solar cells may reduce recombination losses. Also, selective heating techniques such as microwave heating may assist in the production of efficient solar cells on polymer, rather than glass, substrates, by allowing a rapid heat treatment to be applied to the titanium dioxide film at a higher temperature than would be possible with conventional heating. Some novel approaches to the production of semiconducting thin films for dye-sensitized solar cells, as well as the use of alternative materials and nanostructures, are reviewed.

  19. X-ray transmission through nanostructured and microstructured CuO materials

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, M.Z. [Area de Ciencias Tecnologicas, Centro Universitario Franciscano, Rua dos Andradas, 1614, CEP 97010-032 Santa Maria, RS (Brazil); Kuenzel, R., E-mail: roselikunzel@gmail.co [Universidade de Sao Paulo, Instituto de Fisica, Departamento de Fisica Nuclear, Cidade Universitaria, CEP 05508-090 Sao Paulo, SP (Brazil); Okuno, E. [Universidade de Sao Paulo, Instituto de Fisica, Departamento de Fisica Nuclear, Cidade Universitaria, CEP 05508-090 Sao Paulo, SP (Brazil); Levenhagen, R.S. [Universidade Federal de Sao Paulo, Departamento de Ciencias Exatas e da Terra, Rua Arthur Ridel, 275, Jardim Eldorado, CEP 09941-510 Diadema, SP (Brazil); Basegio, T.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Materiais, Avenida Osvaldo Aranha, 99, CEP 90035-190 Porto Alegre, RS (Brazil)

    2011-02-15

    This study presents a comparison of the X-ray transmission through microsized and nanosized materials. For this purpose CuO nanoparticles, with 13.4 nm average grain size, and CuO microparticles, with a mean particle size of 56{mu}m, were incorporated separately to beeswax in a concentration of 5%. Results show that the transmission through the above material plates with microsized and nanosized CuO was almost the same for X-ray beams generated at 60 and 102 kV tube voltages. However, for the radiation beams generated at 26 and 30 kV tube voltages the X-rays are more attenuated by the nanostructured CuO plates by a factor of at least 14%. Results suggest that the difference in the low energy range may be due to the higher number of particles/gram in the plates designed with CuO nanoparticles and due to the grain size effect on the X-ray transmission.

  20. Optimized Design of an ECAP Die Using the Finite Element Method for Obtaining Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Patricia Ponce-Peña

    2015-01-01

    Full Text Available An alloy type A16060 was exposed to severe plastic deformation to study its reaction using the finite element method (FEM. To perform this, six different configurations were used in the design of the die’s channel for ECAP (equal channel angular pressing to obtain nanostructure materials and to optimize the process. Thanks to simulation performed with FEM, it is possible to study the homogeneity in the deformation due to the variation of conditions affecting directly the material being processed using the ECAP technique, such as the friction coefficient, extrusion speed, and mainly the die’s channel geometry being utilized in the ECAP process. Due to the tensile strain area being located mainly in the upper part of the deformed test cylinder (plastic deformation area which increases the fracture and cracking tendency preventing the processing through ECAP the die being utilized was modified to eliminate the tensile strain area favoring the appearance of compressive stress which reduces the cracking tendency and the fracture of the sample being processed. The FEM analysis demonstrated that the strain state changed significantly from tension to compression when the modified die was used, facilitating the processing of the piece by ECAP.