WorldWideScience

Sample records for nanostructured al-powder alloys

  1. Effect of Mg as sintering additive on the consolidation of mechanically alloyed Al powder

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, J.J. [UNET, Dept. de Ingenieria Mecanica, San Cristobal (Venezuela); Rodriguez, J.A.; Herrera, E.J. [Grupo de Metalurgia e Ingenieria de los Materiales, Escuela Superior de Ingenieros, Univ. de Sevilla, Camino de los Descubrimientos, Sevilla (Spain)

    2003-07-01

    Mechanically alloyed aluminium, MA Al, powder particles are hard and covered by surface oxide layers. This gives problems in consolidation processing. Consolidation is often carried out by hot extrusion, as the main processing step. An alternative consolidation method consisting in a press-and-sinter process has been developed at the University of Seville. MA Al powder was prepared by attrition milling. To improve the sinterability of MA Al powder, small amounts of magnesium, ranging from 0.0 to 1.2 wt% Mg, were added after milling. The mixed powder was consolidated by cold pressing (1120 MPa) and vacuum sintering (650 C, 1 h). Different mechanical and structural studies have been carried out. It has been observed that the addition of magnesium improves the mechanical properties of sintered MA Al. This is attributed to the reducing action of Mg on the Al sesquioxide layer and to the formation of liquid phases during sintering. (orig.)

  2. Structural Characterization and Ordering Transformation of Mechanically Alloyed Nanocrystalline Fe-28Al Powder

    Directory of Open Access Journals (Sweden)

    Lima Amiri Talischi

    2016-12-01

    Full Text Available The synthesis of nanocrystalline Fe3Al powder by mechanical alloying as well as the structural ordering of the synthesized Fe3Al particles during the subsequent thermal analysis were investigated. Mechanical alloying was performed up to 100 hours using a planetary ball mill apparatus with rotational speed of 300 rpm under argon atmosphere at ambient temperature. The synthesized powders were characterized using X-ray diffraction, SEM observations and differential scanning calorimetry (DSC. The results show that the A2-type Fe3Al with disordered bcc structure is only formed after 70 hours milling. The corresponding lattice strain, mean crystallite and particle sizes for the 70 hours milled Fe3Al powder were determined as 2.5%, 10 and 500 nm, respectively. The subsequent heating during DSC causes a DO3-type Fe3Al ordering in 70 and 100 hours milled powders, however in 40 hours milled powder it only assists for the formation of disordered solid solution. Longer milling time induces a large amount of lattice strain in Fe3Al powder particles and consequently facilitates the atomic diffusion thus decreases the activation energy of ordering. The activation energy for ordering transformation of 100 hours Fe3Al milled powder was calculated as 152.1 kJ/mole which is about 4 kJ/mole lower than that for 70 hours milled powder.

  3. Effect of TiN-Coated Al Powders on the Microstructure and Mechanical Properties of A356 Alloy

    Science.gov (United States)

    Hu, Jiaoyu; Liu, Jun; Wang, Chunxia; Tang, Xin

    2017-01-01

    The core/shell nano-TiN-coated Al powders (TiN/Al) were prepared and added into A356 alloy by ultrasonic-assisted casting method in this work. The results show that TiN/Al has a better dispersion in A356 matrix and a stronger strengthening effect than TiN without the core/shell structure. With the addition of TiN/Al, most of the coarse primary α-Al dendrites of A356 turn into equiaxial. After T6 heat treatment, it is found that eutectic silicon in A356 with TiN/Al becomes columnar or globular in shape and smaller in size, which causes a greatly enhanced elongation of 11.7%. The results also suggest that the addition of nanoparticles can affect the precipitation behaviors and change the shapes and sizes of the precipitation.

  4. Study of Oxidation Behaviour of Bond Coating Nanocomposites Ni-20Cr-6Al Powder Synthesized by Mechanical Alloying

    OpenAIRE

    Akbar Salarvand; Vahid Shafi pour

    2011-01-01

    In this study, nano crystalline Ni-20Cr-6Al composite powder was produced using a high energy planetary ball milling and a two-stage process. Then the oxidation behavior of coating of that superalloy at different temperatures considered. Nanostructured Ni-20Cr-6Al coating was deposited by cold spray for application as a bond coat to thermal barrier coating on industrial gas turbine components. The paper samples synthesized were characterized by scanning electron microscopy (SEM) and transmiss...

  5. Study of Oxidation Behaviour of Bond Coating Nanocomposites Ni-20Cr-6Al Powder Synthesized by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Akbar Salarvand

    2011-08-01

    Full Text Available In this study, nano crystalline Ni-20Cr-6Al composite powder was produced using a high energy planetary ball milling and a two-stage process. Then the oxidation behavior of coating of that superalloy at different temperatures considered. Nanostructured Ni-20Cr-6Al coating was deposited by cold spray for application as a bond coat to thermal barrier coating on industrial gas turbine components. The paper samples synthesized were characterized by scanning electron microscopy (SEM and transmission microscope (TEM. The crystallite size was found to be less than 18 nm. XRD pattern of the nanostructured Ni-20Cr-6Al milled powder consisted of two phases (Ni,Cr rich and (Ni3Al and so pure metals of Ni,Cr and Al that transferred into the coating. XRD pattern of the oxidized coating revealed that α-Al2O3 oxide was the main phase of the oxide and so Ni(Cr,Al 2O4 spinel phases despite the formation of α- Al2O3 oxide.

  6. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Dudina, Dina V.; Lomovsky, Oleg I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128 (Russian Federation); Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation); Andreev, Andrey S. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation); Soft Matter Sciences and Engineering Laboratory, UMR 7615 CNRS UPMC, ESPCI ParisTech, 10 rue Vauquelin, Paris 75005 (France); Lapina, Olga B.; Sadykov, Vladislav A. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation)

    2015-04-25

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl{sub 2}(+Cu) → Cu{sub 9}Al{sub 4} + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites.

  7. Magnetic properties of nanostructural γ-Ni-28Fe alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Yin; QIN Xiao-ying; QIU Tai

    2006-01-01

    Nanostructural γ-Ni-28Fe alloy (nano γ-Ni-28Fe) was successfully prepared by mechanochemical alloying(MCA). The relationship between the microstructure and the synthesis conditions was investigated by using XRD, TEM, SEM as well as BET analyzer. The results show that nano γ-Ni-28Fe alloy is composed ora gamma phase (FCC structure). Its grain size is about 20 nm at reduction temperature below 600 ℃. The magnetic measurements indicate that the saturation magnetization ofnano γ-Ni-28Fe alloy to its decrease of the grain size and chemical composition in nano γ-Ni-28Fe alloy.

  8. Nanostructural hierarchy increases the strength of aluminium alloys.

    Science.gov (United States)

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  9. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder

    Indian Academy of Sciences (India)

    V Usoltsev; S Tikhov; A Salanov; V Sadykov; G Golubkova; O Lomovskii

    2013-12-01

    Porous ceramic matrix composites FeAlO/FeAl with incorporated metal inclusions (cermets) were synthesized by pressureless method, which includes hydrothermal treatment of mechanically alloyed FeAl powder followed by calcination. Their main structural, textural and mechanical features are described. Variation of FeAl powder alloying time results in non-monotonous changes of the porosity and mechanical strength. Details of the cermet microstructure and its relation to the mechanical properties are discussed.

  10. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, Z. [CANMET' s Materials Technology Laboratory, Natural Resources Canada, Ottawa (Canada) and Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada)]. E-mail: zwronski@nrcan.gc.ca; Varin, R.A. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Chiu, C. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Czujko, T. [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (Canada); Calka, A. [Department of Materials Science and Engineering, University of Wollongong, NSW 2518 (Australia)

    2007-05-31

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg{sub 2}FeH{sub 6} in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H{sub 2} in a thermally programmed desorption experiment at the range 285-295 {sup o}C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the {beta}-MgH{sub 2} hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H{sub 2} in the temperature range 329-340 {sup o}C in the differential scanning calorimetry experiment. The formation of MgH{sub 2} was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H {sub x}, was formed in a mixture with nanometric MgB{sub 2}. Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB{sub 2}.

  11. Nanostructured Alloys as an Alternative to Copper-Beryllium

    Science.gov (United States)

    2014-11-19

    bushing applications;  2) Nanometal/composite for high specific strength/stiffness components; and  3) Nanometal cobalt / copper enabled...performance of Integran’s Nanovate cobalt -based and nickel- cobalt metals is superior to copper beryllium (peak hardness); Mechanical Property Summary...Nanostructured Cobalt Alloy 285 ksi (1967 MPa) 225 ksi (1550 MPa) 290 ksi (2000 MPa) 18855 ksi (130 GPa) Copper Beryllium (C17200-TH04) 142 ksi

  12. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  13. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  14. Superplasticity of Ti2448 Alloy with Nanostructured Grains

    Institute of Scientific and Technical Information of China (English)

    M.J. Xiao; Y.X. Tian; G.W. Mao; S.J. Li; Y.L. Hao; R. Yang

    2011-01-01

    Ti-24Nb-4Zr-8Sn, abbreviated as Ti2448 from its chemical composition in weight percent, is a multifunctional β type titanium alloy with body centered cubic (bcc) crystal structure, and its highly localized plastic deformation behavior contributes significantly to grain refinement during conventional cold processing. In the paper, the nanostructured (NS) alloy with grain size less than 50 nm produced by cold rolling has been used to investigate its superplastic deformation behavior by uniaxial tensile tests at initial strain rates of 1.5×10-2, 1.5×10-3 and 1.6×10-4 s-1 and temperatures of 600, 650 and 700℃. The results show that, in comparison with the coarse-grained alloy with size of 50 μm, the NS alloy has better superplasticity with elongation up to ~275% and ultimate strength of 50-100 Mpa. Strain rate sensitivity (m) of the NS alloy is 0.21, 0.30 and 0.29 for 600, 650 and 700℃, respectively. These results demonstrate that grain refinement is a valid way to enhance the superplasticity of Ti2448 alloy.

  15. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  16. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, Ronald O. [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atoms and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not

  17. The origins of strengthening in nanostructured metals and alloys

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2010-04-01

    Full Text Available Nanostructured metals and alloys have a variety of chemical and physical properties that are greatly modified by the nano-scale of their microstructure. At the same time, these materials generally show very high strength, although ductility or toughness may not be good. Strength increases as the microstructure scale reduces from the macro-micro level and even finer, but sometimes the strength appears to fall as the structure scale approaches the nano level. These strength variations are examined here, and the mechanisms responsible for both strengthening and weakening are discussed. The fall in ductility and toughness as materials become nanostructured is a complex topic that requires extensive analysis, but this will not be treated in the present overview.

    Los metales y aleaciones nanoestructuradas muestran una serie de propiedades químicas y físicas fuertemente modificadas cuando su microestructura entra en la escala nano. A la vez, estos materiales muestran generalmente alta resistencia pero mediocre ductilidad o tenacidad. La resistencia aumenta cuando baja la escala de la microestructura desde el nivel micro hacia el nivel nano, pero a veces la resistencia parece reducir por las microestructuras mas finas. Se examinan aquí todas estas variaciones y se discuten los mecanismos responsables del endurecimiento y ablandamiento. Los cambios de ductilidad o tenacidad cuando la microestructura entra en la escala nano necesitan un análisis detallado que no se trata en este articulo.

  18. Effect of Second Phase Particles on the Tensile Instability of a Nanostructured Al-1%Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tian Lin; Wu, Gui Lin; Liu, Qing

    2014-01-01

    A nanostructured Al-1%Si alloy containing dispersed Si particles was produced by heavily cold-rolling to study the effect of second phase particles on the tensile instability of nanostructured metals. Tensile tests were conducted on the as-deformed sample and the samples after recovery annealing...

  19. Pd-Pt Alloy with Coral-Like Nanostructures Showing High Performance for Oxygen Electrocatalytic Reduction.

    Science.gov (United States)

    Liu, Xing-Quan; Chen, Xue-Song; Wu, Jian; Yao, Lei

    2016-03-01

    Three-dimensional (3D) Pd-Pt alloy with coral-like nanostructures were synthesized via bubble dynamic templated electrodeposition method at room temperature. The morphology of the as-prepared nanostructures was characterized using scanning electron microscopy (SEM), EDS, high-resolution transmission electron microscopy (HRTEM), respectively. Cyclic voltammetry method was adopted to evaluate the electrocatalytic activities of the synthesized electrodes toward oxygen reduction in KCl solution. The electrochemical results indicated that the Pd-Pt alloy with coral-like nanostructures hold the high performance for oxygen reduction.

  20. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Islamgaliev, R. K., E-mail: saturn@mail.rb.ru; Nesterov, K. M. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000 (Russian Federation); Bourgon, J.; Champion, Y. [ICMPE-CNRS, Université Paris 12, 6-8 rue Henri Dunant, 94320 Thiais, cedex (France); Valiev, R. Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000 (Russian Federation); Laboratory for Mechanics of Bulk Nanostructured Materials, Saint Petersburg State University, 198504 Peterhof, Saint Petersburg (Russian Federation)

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  1. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  2. A low-cost hierarchical nanostructured beta-titanium alloy with high strength.

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  3. Corrosion of Mechanically Alloyed Nanostructured FeAl Intermetallic Powders

    Directory of Open Access Journals (Sweden)

    A. Torres-Islas

    2012-01-01

    Full Text Available The corrosion behavior of the Fe40Al60 nanostructured intermetallic composition was studied using electrochemical impedance spectroscopy (EIS and linear polarization resistance (LPR techniques with an innovative electrochemical cell arrangement. The Fe40Al60 (% at intermetallic composition was obtained by mechanical alloying using elemental powders of Fe (99.99% and Al (99.99%. All electrochemical testing was carried out in Fe40Al60 particles that were in water with different pH values. Temperature and test time were also varied. The experimental data was analyzed as an indicator of the monitoring of the particle corrosion current density icorr. Different oxide types that were formed at surface particle were found. These oxides promote two types of surface corrosion mechanisms: (i diffusion and (ii charge transfer mechanisms, which are a function of icorr behavior of the solution, pH, temperature, and test time. The intermetallic was characterized before and after each test by transmission electron microscopy. Furthermore, the results show that at the surface particles uniform corrosion takes place. These results confirm that it is possible to sense the nanoparticle corrosion behavior by EIS and LPR conventional electrochemical techniques.

  4. Effect of Ni content on microwave absorbing properties of MnAl powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-zhong; Lin, Pei-hao, E-mail: gllph2002@163.com; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al{sub 8}Mn{sub 5} alloy. The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder with a coating thickness (d) of 1.8 mm was about −40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave. - Highlights: • The grain size and cell volume of Al{sub 8}Mn{sub 5} alloy phase were decreased with the increasing of Ni. • ε″ and μ″ of powder moves toward low frequency region at the beginning then moves high. • The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder was −40.8 dB with 1.8 mm thickness. • The lowest reflection loss peak of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} was −46.3 dB with 2.2 mm thickness.

  5. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  6. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Science.gov (United States)

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  7. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  8. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Science.gov (United States)

    Miller, M. K.; Reinhard, D.; Larson, D. J.

    2015-07-01

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m-3 and 1.2 × 1024 m-3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O- clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  9. Nano-structured alloy and composite coatings for high temperature applications

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2004-03-01

    Full Text Available Nano-structured materials often possess special properties that materials with identical compositions but ordinary grain size do not have. This paper reports our work on the surface nano-crystallisation and nano-structured alloy and composite coatings. A number of processing methods including magnetron sputtering, thermal spray and pulse electro-spark deposition have been used to produce surface nano-crystalline structure. The compositions and microstructures can be well controlled by using different targets or electrodes, nano-structured composites and adjusting processing parameters. Surface nano-structured coatings can provide special chemical, mechanical and electronic properties such as high temperature corrosion and corrosive wear resistance. It has potential applications such as turbine blades, engine parts for petrochemical, aerospace and electronic device industries. This paper is focused on the study of the interrelations between processing, microstructure and properties. Physical models have been established to explain the effects of nano-crystalline structure on the properties.

  10. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-08-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi{sub 2}O{sub 6}) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants. - Highlights: • The diopside coating was applied on Mg alloy using the combined MAO and EPD methods. • The corrosion resistance of the diopside coated Mg alloy was noticeably improved. • The in vitro bioactivity of the diopside coated Mg alloy was considerably increased. • The mechanical stability of biodegradable Mg alloy was enhanced by diopside coating. • The cytocompatibility of the Mg alloy was improved employing diopside coating.

  11. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    Science.gov (United States)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  12. Synthesis and Characterization of Nanostructured Fe-Ni Alloy Whisker

    Institute of Scientific and Technical Information of China (English)

    DONG Guo-jun; WANG Gui-xiang; ZHANG Mi-lin; LI Ru-Min; WANG Jun

    2002-01-01

    The nanocrystalline γ-(Fe,Ni) alloy whiskers have been prepared by chemical reduction of Fe2+ and Ni2+ ions with potassium borohydride under the function of a dispersant agent PE followed by heat treatment at 600℃ under the protection of nitrogen.Conditions, such as quantity of NaOH, concentration of salts, and species of surfactants, of preparation of Fe-Ni alloy have been discussed. X-ray diffraction(XRD), transmission electron microscopy(TEM) and vibrating sample magnetometer(VSM) characterized the synthesized Fe-Ni alloy. Character, capability and use of the materials have been summarized.

  13. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  14. Particle stabilization of plastic flow in nanostructured Al-1 %Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tianlin; Li, Chao; Wu, Guilin

    2014-01-01

    A nanostructured Al-1 %Si alloy containing a dispersion of Si particles in ultrapure aluminum (99.9996 %) was produced by heavy cold rolling to study the effect of second-phase particles on the occurrence of plastic instability during tensile testing of a nanostructured metal. Tensile tests were...... conducted on the as-deformed sample and on samples after recovery annealing treatments. Work hardening and strain rate sensitivity were studied by tensile test at different strain rates, and deformed and annealed samples were characterized by transmission electron microscopy. By comparing the observed...

  15. Morphology Evolution on the Fracture Surface and Fracture Mechanisms of Multiphase Nanostructured ZrCu-Base Alloys

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-03-01

    Full Text Available A multiphase nanostructured ZrCu-base bulk alloy which showed a unique microstructure consisting of sub-micrometer scale Zr2Cu solid solution, nano-sized twinned plate-like ZrCu martensite (ZrCu (M, and retained ZrCu (B2 austenite was fabricated by copper mold casting. The observation of periodic morphology evolution on the fracture surface of the multiphase nanostructured ZrCu-base alloys has been reported, which suggested a fluctuant local stress intensity along the crack propagation. It is necessary to investigate the compressive deformation behavior and the fracture mechanism of the multiphase alloy and the relation to the unique microstructures. The results obtained in this study provide a better understanding of the deformation and fracture mechanisms of multiphase hybrid nanostructured ZrCu-based alloys and give guidance on how to improve the ductility/toughness of bulk ZrCu-based alloys.

  16. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants.

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2014-08-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi2O6) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants.

  17. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

    Science.gov (United States)

    Dhote, R. P.; Gomez, H.; Melnik, R. N. V.; Zu, J.

    2015-07-01

    Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperatures and deformations' distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures.

  18. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  19. Alloy multilayers and ternary nanostructures by direct-write approach

    Science.gov (United States)

    Porrati, F.; Sachser, R.; Gazzadi, G. C.; Frabboni, S.; Terfort, A.; Huth, M.

    2017-10-01

    The fabrication of nanopatterned multilayers, as used in optical and magnetic applications, is usually achieved by two independent steps, which consist in the preparation of multilayer films and in the successive patterning by means of lithography and etching processes. Here we show that multilayer nanostructures can be fabricated by using focused electron beam induced deposition (FEBID), which allows the direct writing of nanostructures of any desired shape with nanoscale resolution. In particular, {[{{{Co}}}2{{Fe}}/{{Si}}]}n multilayers are prepared by the alternating deposition from the metal carbonyl precursors, {{{HFeCo}}}3{({{CO}})}12 and {{Fe}}{({{CO}})}5, and neopentasilane, {{{Si}}}5{{{H}}}12. The ability to fabricate nanopatterned multilayers by FEBID is of interest for the realization of hyperbolic metamaterials and related nanodevices. In a second experiment, we treated the multilayers by low-energy electron irradiation in order to induce atomic species intermixing with the purpose to obtain ternary nanostructured compounds. Transmission electron microscopy and electrical transport measurements indicate that in thick multilayers, (n = 12), the intermixing is only partial, taking place mainly in the upper part of the structures. However, for thin multilayers, (n = 2), the intermixing is such that a transformation into the L21 phase of the Co2FeSi Heusler compound takes place over the whole sample volume.

  20. Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357

    CSIR Research Space (South Africa)

    Sha, G

    2012-01-01

    Full Text Available The solute nanostructures formed in the primary a-Al grains of a semi-solid metal cast Al–7Si–0.6Mg alloy (F357) during ageing at 180°C, and the age-hardening response of the alloy, have been systematically investigated by transmission electron...

  1. The Synthesis of Nanostructured WC-Based Hardmetals Using Mechanical Alloying and Their Direct Consolidation

    Directory of Open Access Journals (Sweden)

    N. Al-Aqeeli

    2014-01-01

    Full Text Available Tungsten carbide- (WC- based hardmetals or cemented carbides represent an important class of materials used in a wide range of industrial applications which primarily include cutting/drilling tools and wear resistant components. The introduction and processing of nanostructured WC-based cemented carbides and their subsequent consolidation to produce dense components have been the subject of several investigations. One of the attractive means of producing this class of materials is by mechanical alloying technique. However, one of the challenging issues in obtaining the right end-product is the possible loss of the nanocrystallite sizes due to the undesirable grain growth during powder sintering step. Many research groups have engaged in multiple projects aiming at exploring the right path of consolidating the nanostructured WC-based powders without substantially loosing the attained nanostructure. The present paper highlights some key issues related to powder synthesis and sintering of WC-based nanostructured materials using mechanical alloying. The path of directly consolidating the powders using nonconventional consolidation techniques will be addressed and some light will be shed on the advantageous use of such techniques. Cobalt-bonded hardmetals will be principally covered in this work along with an additional exposure of the use of other binders in the WC-based hardmetals.

  2. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    Science.gov (United States)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  3. Nanostructure and corrosion behaviors of nanotube formed Ti-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Won-Gi KIM; Han-Cheol CHOE

    2009-01-01

    In order to investigate the nanostructures and corrosion behaviors of Ti-Zr alloys, nanotube formed Ti-Zr(10%, 20%, 30% and 40% in mass fraction) alloys were prepared by arc melting and the condition of controlling nanostructure was at 1 000 ℃ for 24 h in argon atmosphere; formation of nanotubes was conducted by anodizing a Ti-Zr alloy in H3PO4 electrolyte with a small amount of fluoride ions at room temperature. The corrosion properties of specimens were examined through potentiodynamic test (potential range of -1 500-2 000 mV) in 0.9% NaCl solution by using potentiostat. Microstructures of the alloys were observed by optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). Diameter of nanotube does not depend on Zr content, but interspace of nanotube predominantly depends on Zr content, which confirms that ZrO2 oxides play a role to increase the interspace of nanotube formed on the surface.

  4. Laser Nanostructurization of the Metal and Alloy Surfaces

    Science.gov (United States)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  5. System and method of forming nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  6. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  7. Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution.

    Science.gov (United States)

    Li, J; Li, S J; Hao, Y L; Huang, H H; Bai, Y; Hao, Y Q; Guo, Z; Xue, J Q; Yang, R

    2014-06-01

    The use of nanostructuring to improve the stability of passive thin films on biomaterials can enhance their effectiveness in corrosion resistance and reduce the release of ions. The thickness of the ultrathin films that cover Ti and Ti alloys (only several nanometers) has prevented researchers from establishing systematic methods for their characterization. This study employed a multifunctional biomedical titanium alloy Ti-24Nb-4Zr-8Sn (wt.%) as a model material. Coarse-grained (CG) and nanostructured (NS) alloys were analyzed in 0.9% NaCl solution at 37°C. To reveal the details of the passive film, a method of sample preparation producing a passive layer suitable for transmission electron microscope analysis was developed. Electrochemical corrosion behavior was evaluated by potentiodynamic polarization tests and Mott-Schottky measurements. Surface depth chemical profile and morphology evolution were performed by X-ray photoelectron spectroscopy and in situ atomic force microscopy, respectively. A mechanism was proposed on the basis of the point defect model to compare the corrosion resistance of the passive film on NS and CG alloys. Results showed that the protective amorphous film on NS alloy is thicker, denser and more homogeneous with fewer defects than that on CG alloy. The film on NS alloy contains more oxygen and corrosion-resistant elements (Ti and Nb), as well as their suboxides, compared with the film on CG alloy. These characteristics can be attributed to the rapid, uniform growth of the passive film facilitated by nanostructuring.

  8. PRODUCTION OF FeAl NANOSTRUCTURED ALLOY BY MECHANICAL ALLOYING AND ITS MICROSTRUCTURAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Roberto. A. Rodríguez-Díaz

    2013-12-01

    Full Text Available In this work, a Fe40Al alloy was produced by the mechanical alloying technique, from a mixture of elemental powders constituted by Fe and Al, using different milling times. The evolution of size and morphology of powders depending on the milling time was characterized by scanning electron microscopy. The X-Ray Diffraction technique was utilized in order to characterize the crystalline structure evolution depending on the milling time. The Fe40Al alloy with a body centered cubic crystal structure was formed at 20 h of milling time. Besides, this alloy acquired a disordered crystal structure with a Nano metric grain size. The Nano metric grain size of disordered Fe40Al alloy was decreased at the same time as the milling time transcurred, while its lattice parameter was increased.

  9. Sb–Te alloy nanostructures produced on a graphite surface by a simple annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Masashi, E-mail: kuwaco-kuwahara@aist.go.jp [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Uratsuji, Hideaki [Shibaura Eletec Co., Yokohama 247-0006 (Japan); Abe, Maho [Research Institute of Electrical Communication, Tohoku Univ., Sendai 980-8577 (Japan); Sone, Hayato; Hosaka, Sumio [Department of Electronic Engineering, Gunma Univ., Kiryu, Gunma 376-8515 (Japan); Sakai, Joe [Groupe de Recherche en Matériaux, Microélectronique, Acoustique et Nanotechnologies (GREMAN), UMR 7347 CNRS/Université François Rabelais de Tours, Tours 37200 (France); Uehara, Yoichi [Research Institute of Electrical Communication, Tohoku Univ., Sendai 980-8577 (Japan); Endo, Rie [Department of Metallurgy and Ceramics Science Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Tsuruoka, Tohru [International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    We have produced Sb–Te alloy nanostructures from a thin Sb{sub 2}Te{sub 3} layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb{sub 2}Te{sub 3}, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.

  10. Structure and phase transformations in Fe-Ni-Mn alloys nanostructured by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pustov, L.Yu., E-mail: pustov@mail.r [Moscow State Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Tcherdyntsev, V.V.; Abdulhalikov, Sh.M.; Kaloshkin, S.D.; Shelekhov, E.V. [Moscow State Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Estrin, E.I. [Central Research Inst. of Ferrous Metallurgy, 2nd Baumanskaya st, 9/23, Moscow 107005 (Russian Federation); Baldokhin, Yu.V. [Institute of Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, Moscow 117334 (Russian Federation)

    2009-08-26

    Ternary Fe{sub 86}Ni{sub x}Mn{sub 14-x} alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Moessbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc alpha-Fe and fcc gamma-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.

  11. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    OpenAIRE

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical na...

  12. Nanostructure Changes in Iron-Carbon Alloys as a Result of Impulse Deformation Wave Action

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2013-12-01

    Full Text Available The paper discusses possibilities and conditions needed to obtain a super small grain and nanocrystal structures by means of deformation shock waves that are displaced in relation to each other in time and space. Investigations demonstrated that with shock wave loading plastic deformation can spread over a bigger material volume as compared with other hardening methods and can be classified as an intensive plastic deformation method and as a gradient hardening method that are both applied to homogeneous metals and alloys to obtain micro- and nanocrystal structures characterized by improved mechanical properties. Deformation shock wave hardening used to create super small grain and nanocrystal structures in metal alloys is able to facilitate a wider introduction of nanostructured materials into industry.

  13. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  14. Solving the nanostructure problem: exemplified on metallic alloy nanoparticles

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Ren, Yang; Shan, Shiyao; Luo, Jin; Joseph, Pharrah; Zhong, Chuan-Jian

    2014-08-01

    With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.With current technology moving rapidly toward smaller scales

  15. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  16. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  17. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    Science.gov (United States)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  18. Thermal conductivities of nanostructured magnesium oxide coatings deposited on magnesium alloys by plasma electrolytic oxidation.

    Science.gov (United States)

    Shen, Xinwei; Nie, Xueyuan; Hu, Henry

    2014-10-01

    The resistances of magnesium alloys to wear, friction and corrosion can be effectively improved by depositing coatings on their surfaces. However, the coatings can also reduce the heat transfer from the coated components to the surroundings (e.g., coated cylinder bores for internal combustion of engine blocks). In this paper, nanostructured magnesium oxides were produced by plasma electrolytic oxidation (PEO) process on the magnesium alloy AJ62 under different current densities. The guarded comparative heat flow method was adopted to measure the thermal conductivities of such coatings which possess gradient nanoscale grain sizes. The aim of the paper is to explore how the current density in the PEO process affects the thermal conductivity of the nanostructured magnesium coatings. The experimental results show that, as the current density rises from 4 to 20 A/mm2, the thermal conductivity has a slight increase from 0.94 to 1.21 W/m x K, which is significantly smaller than that of the corresponding bulk magnesium oxide materials (29.4 W/m x K). This mostly attributed to the variation of the nanoscale grain sizes of the PEO coatings.

  19. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness.

    Science.gov (United States)

    Ayyıldız, Simel; Soylu, Elif Hilal; Ide, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-11-01

    The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic substructures. The dentists should be familiar with the materials that are used in clinic for prosthodontics treatments.

  20. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  1. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    Science.gov (United States)

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS- on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS- and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS- than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis.

  2. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness

    Science.gov (United States)

    Soylu, Elif Hilal; İde, Semra; Kılıç, Selim; Sipahi, Cumhur; Pişkin, Bulent; Gökçe, Hasan Suat

    2013-01-01

    PURPOSE The aim of the study was to evaluate the effect of annealing on the nanostructure and hardness of Co-Cr metal ceramic samples that were fabricated with a direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS Five groups of Co-Cr dental alloy samples were manufactured in a rectangular form measuring 4 × 2 × 2 mm. Samples fabricated by a conventional casting technique (Group I) and prefabricated milling blanks (Group II) were examined as conventional technique groups. The DMLS samples were randomly divided into three groups as not annealed (Group III), annealed in argon atmosphere (Group IV), or annealed in oxygen atmosphere (Group V). The nanostructure was examined with the small-angle X-ray scattering method. The Rockwell hardness test was used to measure the hardness changes in each group, and the means and standard deviations were statistically analyzed by one-way ANOVA for comparison of continuous variables and Tukey's HSD test was used for post hoc analysis. P values of <.05 were accepted as statistically significant. RESULTS The general nanostructures of the samples were composed of small spherical entities stacked atop one another in dendritic form. All groups also displayed different hardness values depending on the manufacturing technique. The annealing procedure and environment directly affected both the nanostructure and hardness of the Co-Cr alloy. Group III exhibited a non-homogeneous structure and increased hardness (48.16 ± 3.02 HRC) because the annealing process was incomplete and the inner stress was not relieved. Annealing in argon atmosphere of Group IV not only relieved the inner stresses but also decreased the hardness (27.40 ± 3.98 HRC). The results of fitting function presented that Group IV was the most homogeneous product as the minimum bilayer thickness was measured (7.11 Å). CONCLUSION After the manufacturing with DMLS technique, annealing in argon atmosphere is an essential process for Co-Cr metal ceramic

  3. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  4. Study of structural, optical and thermal properties of nanostructured SnSe{sub 2} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Z.V. [Faculdade de Tecnologia, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Poffo, C.M., E-mail: claudio.poffo@ufsc.br [Universidade Federal de Santa Catarina, Campus de Araranguá, 88900-000, Santa Catarina (Brazil); Lima, J.C. de [Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Souza, S.M. de; Trichês, D.M.; Nogueira, T.P.O. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Manzato, L. [Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, 1672, 69075-351 Manaus, Amazonas (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro (Brazil)

    2016-02-01

    A nanostructured SnSe{sub 2} phase was successfully produced by mechanical alloying. The influence of defect centers on the structural, optical and photoacoustic properties of the alloy was investigated by annealing the as-milled SnSe{sub 2} powder. From optical absorbance and photoacoustic absorption measurements, the energy band gap, E{sub g}, and the thermal diffusivity, α, values were determined for as-milled and annealed samples. The thermal conductivity values for the as-milled and annealed samples were estimated by using the α values obtained from the photoacoustic measurements, the density values obtained from the Rietveld refinement of the X-ray diffraction patterns and the specific heat value for the bulk SnSe{sub 2} phase. These values were used to estimate the dimensionless figure of merit ZT. It was evidenced that the ZT parameter of the as-milled nanostructured SnSe{sub 2} sample is almost twice larger than the ZT of the annealed sample. - Highlights: • Nanostructured SnSe{sub 2} was produced using Mechanical Alloying technique. • As milled sample has a high fraction of interfacial component (80%). • Thermal diffusivity value for nanostructured SnSe{sub 2} was a new report in literature.

  5. Nanostructured Hypoeutectic Fe-B Alloy Prepared by a Self-propagating High Temperature Synthesis Combining a Rapid Cooling Technique

    Directory of Open Access Journals (Sweden)

    Fu Licai

    2008-01-01

    Full Text Available Abstract We have successfully synthesized bulk nanostructured Fe94.3B5.7 alloy using the one-step approach of a self-propagating high temperature synthesis (SHS combining a rapid cooling technique. This method is convenient, low in cost, and capable of being scaled up for processing the bulk nanostructured materials. The solidification microstructure is composed of a relatively coarse, uniformly distributed dendriteto a nanostructured eutectic matrix with α-Fe(B and t-Fe2B phases. The fine eutectic structure is disorganized, and the precipitation Fe2B is found in the α-Fe(B phase of the eutectic. The dendrite phase has the t-Fe2B structure rather than α-Fe(B in the Fe94.3B5.7 alloy, because the growth velocity of t-Fe2B is faster than that of the α-Fe with the deeply super-cooling degree. The coercivity (Hc and saturation magnetization (Ms values of the Fe94.3B5.7 alloy are 11 A/m and 1.74T, respectively. Moreover, the Fe94.3B5.7 alloy yields at 1430 MPa and fractures at 1710 MPa with a large ductility of 19.8% at compressive test.

  6. Preparation and Photocatalytic Activity of Potassium- Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys

    Directory of Open Access Journals (Sweden)

    So Yoon Lee

    2015-08-01

    Full Text Available Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV, Ti–Ni (TN alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications.

  7. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  8. Optical analysis of lens-like Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Odeh, Ali Abu; Ayub, R.M. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Al-Douri, Y. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); University of Sidi-Bel-Abbes, Physics Department, Faculty of Science, Sidi-Bel-Abbes (Algeria); Ameri, M. [Universite Djilali Liabes de Sidi Bel- Abbes, Laboratoire Physico-Chimie des Materiaux Avances (LPCMA), Sidi-Bel-Abbes (Algeria); Bouhemadou, A. [University of Setif 1, Laboratory for Developing New Materials and Their Characterization, Setif (Algeria); Prakash, Deo [SMVD University, Faculty of Engineering, School of Computer Science and Engineering, Kakryal, Katra, J and K (India); Verma, K.D. [S.V. College, Material Science Research Laboratory, Department of Physics, Aligarh, U.P. (India)

    2016-10-15

    Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures with different copper concentrations (0.2, 0.4, 0.6, 0.8 and 1.0 M) were successfully synthesized on n-type silicon substrates using spin coating technique with annealing temperature at 300 C. Optical properties were analyzed through UV-Vis and Photoluminescence spectroscopies, and thus, there is a change in energy band gap with increasing Cu concentration from 0.2 to 1.0 M. The structural properties of Cu{sub 2}CdSnS{sub 4} quaternary alloy nanostructures were investigated by X-ray diffraction. The particles size and shape have a direct relationship with copper concentration. Morphological and topographical studies were carried out by using scanning electron microscopy and atomic force microscopy. The obtained results are investigated to be available in the literature for future studies. (orig.)

  9. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  10. Surface functionalized Cu2Zn1- x Cd x SnS4 quinternary alloyed nanostructure for DNA sensing

    Science.gov (United States)

    Ibraheam, A. S.; Al-Douri, Y.; Voon, C. H.; Foo, K. L.; Azizah, N.; Gopinath, S. C. B.; Ameri, M.; Ibrahim, Sattar S.

    2017-03-01

    A sensing plate of extended Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV ( x = 0) to 1.72 eV ( x = 1). The resulting Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage ( I- V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications.

  11. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Science.gov (United States)

    Amanov, Auezhan; Cho, In-Sik; Pyun, Young-Sik

    2016-12-01

    A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  12. Structural changes during synthesizing of nanostructured W-20 wt% Cu composite powder by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Maneshian, M.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)]. E-mail: simchi@sharif.edu; Hesabi, Z. Razavi [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of)

    2007-02-15

    Nanostructured W-20 wt% Cu composite powder was synthesized by mechanical alloying (MA) in an Attritor ball mill. The morphological changes and structural evolution of the composite powder during MA was studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), laser particle size analyzer (LPS), inductively coupled plasma (ICP) spectrometry, atomic absorption spectrophotometery (AAS), and the bulk powder density measurement. The results were compared with those obtained from attrition milling of monolithic W and Cu powders processed at the same condition. Whereas the milling mechanism of the monolithic powders follow the ductile (for Cu) and semi-brittle (for W) systems, the W/Cu powder mixture exhibits different behavior. At the early stage of milling, the copper particles are fragmented and incorporated into the W matrix, resulting in the formation of W/Cu composite with laminar structure. With increasing milling time and due to continuous fracturing, the laminar structure is refined and a homogenous distribution of fine Cu particles (0.3-0.6 {mu}m) in the W matrix is formed. The analysis of XRD patterns indicated that the composite powder composes of nanostructured grains with the size of 49 nm for Cu and 23 nm for W. A faster grain refinement in the composite powder compared to the monolithic particles was noticed. The XRD peak intensity also revealed that partial mutual solubility of the constituent elements ({approx}4-7 at% for Cu in W and {approx}2-3 at% for W in Cu) was induced by prolonged mechanical milling.

  13. Growth and Characterization of Multisegment Chalcogenide Alloy Nanostructures for Photonic Applications in a Wide Spectral Range

    Science.gov (United States)

    Turkdogan, Sunay

    In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system. In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study in growing two-segment axial nanowires and radial nanobelts/sheets using the ternary CdSxSe1-x alloys. I demonstrated simultaneous red (from CdSe-rich) and green (from CdS-rich) light emission from a single monolithic heterostructure with a maximum wavelength separation of 160 nm. I also demonstrated the first simultaneous two-color lasing from a single nanosheet heterostructure with a wavelength separation of 91 nm under sufficiently strong pumping power. In the second part, I considered several combinations of source materials with different growth methods in order to extend the spectral coverage of previously demonstrated structures towards shorter wavelengths to achieve full-color emissions. I achieved this with the growth of multisegment heterostructure nanosheets (MSHNs), using ZnS and CdSe chalcogenides, via our novel growth method. By utilizing this method, I demonstrated the first growth of ZnCdSSe MSHNs with an overall lattice mismatch of 6.6%, emitting red, green and blue light simultaneously, in a single furnace run using a simple CVD system. The key to this growth method is the dual ion exchange process which converts nanosheets rich in CdSe to nanosheets rich in ZnS, demonstrated for the first time in this work. Tri-chromatic white light emission with different correlated color temperature values was achieved under different growth conditions. We demonstrated multicolor (191 nm total wavelength separation) laser from a single monolithic semiconductor nanostructure for the first time. Due to the difficulties associated with growing semiconductor materials of differing composition on a given substrate using traditional planar

  14. Electrodeposition, Characterization, and Corrosion Stability of Nanostructured Anodic Oxides on New Ti-15Zr-5Nb Alloy Surface

    Directory of Open Access Journals (Sweden)

    Jose M. Calderon Moreno

    2013-01-01

    Full Text Available A new Ti-15Zr-5Nb alloy with suitable microstructure and mechanical properties was processed by galvanostatic anodization in 0.3 M H3PO4 solution and a continuous nanostructured layer of protective TiO2 oxide was electrodeposited. The obtained anatase oxide layer has a nanotubes-like porosity (SEM observations and contains significant amount of phosphorus in phosphotitanate compound embedded in the oxide lattice (Raman, FT-IR, SEM, and EDX analysis. This layer composition can stimulate the formation of the bone and its porosity can offer a good scaffold for bone cell adhesion. The electrochemical behaviour, corrosion stability, and variations of the open circuit potentials, Eoc, and corresponding open circuit potential gradients, ΔEoc, for 1500 soaking hours in Ringer solutions of 3.21, 7.58, and 8.91 pH values were studied. The anodized layer was more resistant, stable (from EIS spectra, and was formed from an inner barrier insulating layer that assures the very good alloy corrosion resistance and an outer porous layer that provides the good conditions for cell development. The nanostructured alloy has higher corrosion stability, namely, a more reduced quantity of ions released and a lower toxicity than that of the bare one. The monitoring of Eoc and ΔEoc showed the enhancement and stabilizing of the long-term passive state of the anodized alloy and, respectively, no possibility at galvanic corrosion.

  15. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    Science.gov (United States)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  16. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2013-04-01

    Our previous studies indicate that nitrogen addition suppresses the athermal γ (face-centered cubic, fcc)→ε (hexagonal close-packed, hcp) martensitic transformation of biomedical Co-Cr-Mo alloys and ultimately offers large elongation to failure while maintaining high strength. In the present study, structural evolution and dislocation slip as an elementary process in the martensitic transformation in Co-Cr-Mo alloys were investigated to reveal the origin of their enhanced γ phase stability due to nitrogen addition. Alloy specimens with and without nitrogen addition were prepared. The N-doped alloys had a single-phase γ matrix, whereas the N-free alloys had a γ/ε duplex microstructure. Irrespective of the nitrogen content, dislocations frequently dissociated into Shockley partial dislocations with stacking faults. This indicates that nitrogen has little effect on the stability of the γ phase, which is also predicted by thermodynamic calculations. We discovered short-range ordering (SRO) or nanoscale Cr2N precipitates in the γ matrix of the N-containing alloy specimens, and it was revealed that both SRO and nanoprecipitates function as obstacles to the glide of partial dislocations and consequently significantly affect the kinetics of the γ→ε martensitic transformation. Since the formation of ε martensite plays a crucial role in plastic deformation and wear behavior, the developed nanostructural modification associated with nitrogen addition must be a promising strategy for highly durable orthopedic implants.

  17. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-10-15

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg{sup 2+} ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg{sup 2+} ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg{sup 2+} ions. • The coating improved the stabilization of Mg alkalization behavior.

  18. Consecutive magnetic and magnetocaloric transitions in herringbone nanostructured Heusler Mn50Ni41Sn9 alloy.

    Science.gov (United States)

    Prasanna, A A; Ram, S; Fecht, H J

    2013-08-01

    A herringbone nanostructured Mn-rich Heusler Mn50Ni50-Sndelta (8 - 9) alloy exhibits tailored magnetocaloric properties in the martensite and ferro paramagnetic transitions concur in a narrow temperature window. In a Sn --> Ni substitution 8 - 9, the martensite (M) A approximately equal to 282 mJ/g (deltaC(P)(M A) approximately equal to 0.025 mJ/g-K in the heat capacity), i.e., the M A transition process lacks a complete reversibility. Warming a zero-field cooled sample retains lower magnetization (sigma) at low fields B, e.g., by 58% over the field cooled value at 5 mT, wherein merely low field magnetic susceptibility imparts the magnetization process. A reversible thermal hysteresis thus the transition traces in cooling and heating. The field diminishes difference in two sigma-values progressively, e.g., only - 12% lasts at 5 T. The two curves bifurcate below 160 K (B-5 mT) and the gap grows exponentially over lower temperatures before sigma(M or = 250 K) before a ferromagnetic A-state lines-up the successive transitions. Temperature and frequency dependence ac and dc susceptibilities describe the surface spins dynamics.

  19. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.

    Science.gov (United States)

    Hong, Jong Wook; Kang, Shin Wook; Choi, Bu-Seo; Kim, Dongheun; Lee, Sang Bok; Han, Sang Woo

    2012-03-27

    Pd-Pt alloy nanocrystals (NCs) with hollow structures such as nanocages with porous walls and dendritic hollow structures and Pd@Pt core-shell dendritic NCs could be selectively synthesized by a galvanic replacement method with uniform Pd octahedral and cubic NCs as sacrificial templates. Fine control over the degree of galvanic replacement of Pd with Pt allowed the production of Pd-Pt NCs with distinctly different morphologies. The synthesized hollow NCs exhibited considerably enhanced oxygen reduction activities compared to those of Pd@Pt core-shell NCs and a commercial Pt/C catalyst, and their electrocatalytic activities were highly dependent on their morphologies. The Pd-Pt nanocages prepared from octahedral Pd NC templates exhibited the largest improvement in catalytic performance. We expect that the present work will provide a promising strategy for the development of efficient oxygen reduction electrocatalysts and can also be extended to the preparation of other hybrid or hetero-nanostructures with desirable morphologies and functions. © 2012 American Chemical Society

  20. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials

    Indian Academy of Sciences (India)

    Srilakshmi P Bhaskar; Balaji R Jagirdar

    2012-11-01

    The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMADreactor maintained at 77 K.Warming of the matrix results in a slurry ofmetal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

  1. Thermodynamic Aspects of Nanostructured CoAl Intermetallic Compound during Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    S.N. Hosseini; T. Mousavi; F. Karimzadeh; M.H. Enayati

    2011-01-01

    The nanostructured CoAl intermetallic compound was produced by mechanical alloying (MA) of the Co50Al50 elemental powder mixture in a planetary high energy ball mill. The ordered B2-CoAl structure with the grain size of about 6 nm was formed via a gradual reaction after 10 h of MA. A thermodynamic analysis of the process was also done. The results showed that the intermetallic compound of CoAl had the minimum Gibbs free energy compared to solid solution and amorphous states indicating the initial MA product was the most stable phase in the Co-Al system which was changed to a partially disordered structure with a steady long-range order of 0.82 at further milling. This amount of disordering caused the enthalpy of final product to show an increase of about 5.1 kJ·mol-1. Calculation of enthalpy related to the triple defect formation revealed that the enthalpy required for Al anti-sites formation was about 3 times greater than that for Co anti-sites formation.

  2. Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2013-01-01

    Full Text Available The manufacturing of a functional hollow mechanical element or ring of the AA5083 alloy previously equal channel angular extrusion (ECAE processed, which presents a submicrometric microstructure, is dealt with. For this purpose, the design of two isothermal forging dies (preform and final shape is carried out using the design of experiments (DOE methodology. Moreover, after manufacturing the dies and carrying out tests so as to achieve real rings, the mechanical properties of these rings are analysed as well as their microstructure. Furthermore, a comparison between the different forged rings is made from ECAE-processed material subjected to different heat treatments, previous to the forging stage. On the other hand, the ring forging process is modelled through the use of finite element simulation in order to improve the die design and to study the force required for the isothermal forging, the damage value, and the strain the material predeformed by ECAE has undergone. With this present research work, it is intended to improve the knowledge about the mechanical properties of nanostructured material and the applicability of this material to industrial processes that allow the manufacturing of functional parts.

  3. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Science.gov (United States)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  4. Rapid Growth of Nanostructured Diamond Film on Silicon and Ti–6Al–4V Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2014-01-01

    Full Text Available Nanostructured diamond (NSD films were grown on silicon and Ti–6Al–4V alloy substrates by microwave plasma chemical vapor deposition (MPCVD. NSD Growth rates of 5 µm/h on silicon, and 4 µm/h on Ti–6Al–4V were achieved. In a chemistry of H2/CH4/N2, varying ratios of CH4/H2 and N2/CH4 were employed in this research and their effect on the resulting diamond films were studied by X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. As a result of modifying the stock cooling stage of CVD system, we were able to utilize plasma with high power densities in our NSD growth experiments, enabling us to achieve high growth rates. Substrate temperature and N2/CH4 ratio have been found to be key factors in determining the diamond film quality. NSD films grown as part of this study were shown to contain 85% to 90% sp3 bonded carbon.

  5. Morphology, stresses, and surface reactivity of nanoporous gold synthesized from nanostructured precursor alloys

    Science.gov (United States)

    Rouya, Eric

    Nanoporous metallic materials (NMMs) are generally synthesized using dealloying, whereby the more reactive component is dissolved from a homogeneous alloy in a suitable electrolyte, and the more noble metal atoms simultaneously diffuse into 3-D clusters, forming a bi-continuous network of interconnected ligaments. Nanoporous gold (NPG) in particular is a well-known NMM; it is inert, bio-compatible, and capable of developing large surface areas with 1--100nm pores. While several studies have demonstrated its potential usefulness in fuel cell and sensing devices, its structural, mechanical, and electrocatalytic properties still require further investigation, particularly if NPG is synthesized from precursor alloy films exhibiting metastable nanostructures. In this dissertation, the electrodeposition (ECD) process, microstrucural characteristics, and metatstability of Au-Ni precursor alloys are investigated. The stresses evolved during Au-Ni alloy nucleation and growth are investigated in situ and correlated with microstructural and electrochemical data in order to identify the various stress-inducing mechanisms. In situ stresses generated during Au-Ni and Au-Ag dealloying were investigated, and additionally correlated with the growth stresses. Finally, the surface area and electrocatalytic properties of NPG are characterized using a variety of electrochemical techniques. Potentiostatically electrodeposited Au1-x-Nix (x: 0--90at%) films form a continuous series of metastable solid solutions and exhibit a nanocrystalline morphology, with ˜10--20 nm grains, the size of which decreases with increasing Ni content. The formation of a metastable structure was interpreted in terms of the limited surface diffusivities of adatoms at the growing interface and atomic volume differences (˜15%). Internal stresses generated during ECD of Ni-rich films can be explained assuming a 3-D Volmer-Weber growth mode, where the stress is initially compressive, then transitions into tension

  6. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Mohri, Tomoyoshi; Hanawa, Takao

    2014-03-01

    Anodic oxide nanostructures (nanopores and nanotubes) were fabricated on a biomedical β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), by anodization in order to improve the adhesive strength of a medical polymer, segmented polyurethane (SPU), to TNTZ. TNTZ was anodized in 1.0M H3PO4 solution with 0.5 mass% NaF using a direct-current power supply at a voltage of 20V. A nanoporous structure is formed on TNTZ in the first stage of anodization, and the formation of a nanotube structure occurs subsequently beneath the nanoporous structure. The nanostructures formed on TNTZ by anodization for less than 3,600s exhibit higher adhesive strengths than those formed at longer anodization times. The adhesive strength of the SPU coating on the nanoporous structure formed on top of TNTZ by anodization for 1,200s improves by 144% compared to that of the SPU coating on as-polished TNTZ with a mirror surface. The adhesive strength of the SPU coating on the nanotube structure formed on TNTZ by anodization for 3,600s increases by 50%. These improvements in the adhesive strength of SPU are the result of an anchor effect introduced by the nanostructures formed by anodization. Fracture occurs at the interface of the nanoporous structure and the SPU coating layer. In contrast, in the case that SPU coating has been performed on the nanotube structure, fracture occurs inside the nanotubes.

  7. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    Science.gov (United States)

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-01-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical labyrinth-like microstructures and dendritic nanostructures. The as-prepared surface is also found with good chemical stability and mechanical durability. Furthermore, superior anticorrosion behaviors of the resultant samples in seawater are investigated by electrochemical measurements. Due to trapped air in micro/nanostructures, the newly presented solid-air-liquid contacting interface can help to resist the seawater penetration by greatly reducing the interface interaction between corrosive ions and the superamphiphobic surface. Finally, an optimized two-layer perceptron artificial neural network is set up to model and predict the cause-and-effect relationship between preparation conditions and the anticorrosion parameters. This work provides a great potential to extend the applications of aluminum alloys especially in marine engineering fields. PMID:27775053

  8. Effect of al content on reaction laser sintering of Ni-Al powder

    Directory of Open Access Journals (Sweden)

    Qin L.

    2008-01-01

    Full Text Available Laser reactive sintering, i.e., laser-induced self-propagating reaction sintering synthesis was used for the preparation of nickel aluminide intermetallic compounds. The experimental parameters controlling the ignition step such as ignition time and adiabatic temperature were calculated as a function of initial stoichiometry. Al mole ratio in initial powder mixture was varied from 25% to 50% for controlling adiabatic temperature. The increase in Al powder content resulted in the rise in adiabatic temperature and the morphology change of nickel aluminide compounds from needle-like to blocky.

  9. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy

    Science.gov (United States)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

    2006-01-01

    In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

  10. Giant Peltier Effect in Self-Organized Quasi-One-Dimensional Nano-Structure in Cu-Ni Alloy

    Science.gov (United States)

    Dang Vu, Nguyen; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2011-01-01

    Based upon ab initio electronic structure calculations by the Korringa-Kohn-Rostoker coherent potential approximation and Monte Carlo simulation of the two-dimensional spinodal nano-decomposition, we simulate the formation of a self-organized quasi-one-dimensional nano-structure (Konbu-Phase) under a layer-by-layer crystal growth condition of Cu-Ni alloy. We propose a new mechanism of the giant Peltier coefficient dramatically enhanced by the one-dimensional singular density of states in the Konbu-Phase in addition to the conventional Peltier cooling and the spin-entropy expansion cooling.

  11. Giant Peltier Effect in Self-Organized Quasi-One-Dimensional Nano-Structure in Cu--Ni Alloy

    Science.gov (United States)

    Vu, Nguyen Dang; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2011-01-01

    Based upon ab initio electronic structure calculations by the Korringa--Kohn--Rostoker coherent potential approximation and Monte Carlo simulation of the two-dimensional spinodal nano-decomposition, we simulate the formation of a self-organized quasi-one-dimensional nano-structure (Konbu-Phase) under a layer-by-layer crystal growth condition of Cu--Ni alloy. We propose a new mechanism of the giant Peltier coefficient dramatically enhanced by the one-dimensional singular density of states in the Konbu-Phase in addition to the conventional Peltier cooling and the spin-entropy expansion cooling.

  12. Cadmium effect on structural properties of Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloys nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheam, A. S.; Al-Douri, Y., E-mail: yaldouri@yahoo.com; Hashim, U. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia)

    2016-07-06

    The study report novel sensing plat of extended quinternart materials, Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures were fabricated onto oxidized silicon substrate by sol-gel method and characterized were synthesized by X-ray diffraction (XRD). The XRD peaks were shifted towered the lower angle side with increasing cadmium content. The practical size average of the Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures between 34.55 to 63.30 nm.

  13. Effects of load ratio, R, and test temperature on high cycle fatigue behavior of nano-structured Al-4Y-4Ni-X alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    El-Shabasy, Adel B., E-mail: ashabasy@hotmail.com [Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo 11517 (Egypt); Hassan, Hala A. [Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo 11517 (Egypt); Lewandowski, John J. [Department of Material' s Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2012-12-15

    Nanostructured Al-4Y-4Ni-X composites created by extruding atomized amorphous powders at different extrusion ratios were tested under high cycle bending fatigue at load ratios, R=0.1, 0.33 and -1 at room temperature, 149 Degree-Sign C and 260 Degree-Sign C. Increasing the extrusion ratio generally improved the fatigue life and the fatigue limits were well in excess of that obtained on conventional aluminum alloys at all temperatures tested. The fatigue limits obtained in this work were also compared to previously reported values for a nanostructured composite Al-Gd-Ni-Fe alloy produced via similar means.

  14. Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: An object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d' Ascq Cedex (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d' Ascq Cedex (France)

    2015-10-15

    Self-interstitial cluster diffusivity in Fe–Cr alloys, model materials for high-Cr ferritic/martensitic steels, is known to be reduced in a non-monotonic way as a function of Cr concentration: it first decreases, then increases. This non-monotonic behaviour is caused by a relatively long-ranged attractive interaction between Cr atoms and crowdions and correlates well with the experimentally observed swelling in these alloys under neutron irradiation, also seen to first decrease and then increase with increasing Cr content, under comparable irradiation conditions. Moreover, recent studies reveal that C atoms dispersed in the Fe matrix form under irradiation complexes with vacancies which, in turn, act as trap for one-dimensionally migrating self-interstitial clusters. The mobility of one-dimensional migrating clusters is considered key to determine swelling susceptibility. However, no model has ever been built that quantitatively describes the dependence of swelling on Cr content, allowing for the presence of C in the matrix. In this work we developed physically-based sets of parameters for object kinetic Monte Carlo (OKMC) simulations intended to study the nanostructure evolution under irradiation in Fe–Cr–C alloys. The nanostructural evolution in Fe–C and in four Fe–Cr–C alloys (containing 2.5, 5, 9 and 12 wt.% Cr) neutron irradiated up to ∼0.6 dpa at 563 K was simulated according to the model and reference experiments were reproduced. Our model shows that the SIA cluster reduced mobility has a major influence on the nanostructural evolution: it increases the number of vacancy-SIA recombinations and thus leads to the suppression of voids formation. This provides a clear framework to interpret the non-monotonic dependence of swelling in Fe–Cr alloys versus Cr content. Our model also suggests that the amount of C in the matrix has an equally important role: high amounts of it may counteract the beneficial effect that Cr has in reducing swelling.

  15. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at significantly lower strength region. It appeared that at high temperatures ≥ 600 ºC the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. It is reviewed, however, that the NFAs has much stronger radiation resistance at high temperatures, such as lower radiation-induced swelling, finer helium bubble formation and lower irradiation creep rate.

  16. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Science.gov (United States)

    Chiapetto, M.; Becquart, C. S.; Domain, C.; Malerba, L.

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a "grey alloy" approach that extends the already existing OKMC model for neutron irradiated Fe-C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe-C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  17. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Science.gov (United States)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  18. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Campos, R., E-mail: ruben.flores@itesm.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Tecnologico de Monterrey Campus Saltillo, Departamento de Ingenieria, Prol. Juan de la Barrera No. 1241 Ote., Col. Cumbres, CP 25270, Saltillo, Coah., Mexico (Mexico); Estrada-Guel, I., E-mail: ivanovich.estrada@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Herrera-Ramirez, J.M., E-mail: martin.herrera@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico)

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  19. Preparation of multifunctional Al-Mg alloy surface with hierarchical micro/nanostructures by selective chemical etching processes

    Science.gov (United States)

    Shi, Tian; Kong, Jianyi; Wang, Xingdong; Li, Xuewu

    2016-12-01

    A superamphiphobic aluminum magnesium alloy surface with enhanced anticorrosion behavior has been prepared in this work via a simple and low-cost method. By successively polishing, etching and boiling treatments, the multifunctional hierarchical binary structures composed of the labyrinth-like concave-convex microstructures and twisty nanoflakes have been prepared. Results indicate that a superhydrophobic contact angle of 160.5° and superoleophobic contact angle larger than 150° as well as low adhesive property to liquids are achieved after such structures being modified with fluoroalkyl-silane. Furthermore, the anticorrosion behaviors in seawater of as-prepared samples are characterized by electrochemical tests including the impedance spectroscopies, equivalent circuits fittings and polarization curves. It is found that the hierarchical micro/nanostructures accompanying with the modified coating are proved to possess the maximal coating coverage rate of 90.0% larger than microstructures of 85.9%, nanostructures of 83.8% and bare polished surface of 67.1% suggesting the optimal anticorrosion. Finally, a great potential application in concentrators for surface-enhanced Raman scattering (SERS) analysis of toxic and pollutive ions on the superamphiphobic surface is also confirmed. This work has wider significance in extending further applications of alloys in engineering and environmental detecting fields.

  20. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    Science.gov (United States)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  1. Nanostructure evolution under irradiation in FeMnNi alloys: A “grey alloy” object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France)

    2015-07-15

    This work extends the object kinetic Monte Carlo model for neutron irradiation-induced nanostructure evolution in Fe–C binary alloys developed in [1], introducing the effects of substitutional solutes like Mn and Ni. The objective is to develop a model able to describe the nanostructural evolution of both vacancy and self-interstitial atom (SIA) defect cluster populations in Fe(C)MnNi neutron-irradiated model alloys at the operational temperature of light water reactors (∼300 °C), by simulating specific reference irradiation experiments. To do this, the effects of the substitutional solutes of interest are introduced, under simplifying assumptions, using a “grey alloy” scheme. Mn and Ni solute atoms are not explicitly introduced in the model, which therefore cannot describe their redistribution under irradiation, but their effect is introduced by modifying the parameters that govern the mobility of both SIA and vacancy clusters. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proved to be key to explain the experimentally observed disappearance of detectable defect clusters with increasing solute content. Solute concentration is explicitly taken into account in the model as a variable determining the slowing down of self-interstitial clusters; small vacancy clusters, on the other hand, are assumed to be significantly slowed down by the presence of solutes, while for clusters bigger than 10 vacancies their complete immobility is postulated. The model, which is fully based on physical considerations and only uses a few parameters for calibration, is found to be capable of reproducing the experimental trends in terms of density and size distribution of the irradiation-induced defect populations with dose, as compared to the reference experiment, thereby providing insight into the physical mechanisms that influence the nanostructural evolution undergone by this material during irradiation.

  2. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  3. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  4. Unexpected Au Alloying in Tailoring In-Doped SnTe Nanostructures with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Samuel Atherton

    2017-03-01

    Full Text Available Materials with strong spin-orbit interaction and superconductivity are candidates for topological superconductors that may host Majorana fermions (MFs at the edges/surfaces/vortex cores. Bulk-superconducting carrier-doped topological crystalline insulator, indium-doped tin telluride (In-SnTe is one of the promising materials. Robust superconductivity of In-SnTe nanostructures has been demonstrated recently. Intriguingly, not only 3-dimensional (3D nanostructures but also ultra-thin quasi-2D and quasi-1D systems can be grown by the vapor transport method. In particular, nanostructures with a controlled dimension will give us a chance to understand the dimensionality and the quantum confinement effects on the superconductivity of the In-SnTe and may help us work on braiding MFs in various dimensional systems for future topological quantum computation technology. With this in mind, we employed gold nanoparticles (GNPs with well-identified sizes to tailor In-SnTe nanostructures grown by vapor transport. However, we could not see clear evidence that the presence of the GNPs is necessary or sufficient to control the size of the nanostructures. Nevertheless, it should be noted that a weak correlation between the diameter of GNPs and the dimensions of the smallest nanostructures has been found so far. To our surprise, the ones grown under the vapor–liquid–solid mechanism, with the use of the GNPs, contained gold that is widely and inhomogeneously distributed over the whole body.

  5. Structure and mechanical properties of nanostructured Al-0.3%Cu alloy

    DEFF Research Database (Denmark)

    Wakeel, Aneela; Huang, Tianlin; Wu, Guilin;

    2014-01-01

    An Al-0.3%Cu alloy has been produced using extremely high purity (99.9996%) Al and OFHC Cu.The alloy was cold rolled to 98% thickness reduction, forming a stable lamellar structure that has a lamellar boundary spacing of about 200nm and a tensile strength of 225MPa. During recovery annealing...

  6. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  7. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating.

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-10-01

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg(2+) ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol-gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg(2+) ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications.

  8. Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials.

    Science.gov (United States)

    Cherepanov, Pavel V; Andreeva, Daria V

    2017-03-01

    High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Study on the characteristics and thermal stability of nanostructures in adiabatic shear band of 2195 Al-Li alloy

    Science.gov (United States)

    Yang, Yang; Chen, Yadong; Jiang, Lihong; Li, Meng; Zhang, Qingming; Tang, Tiegang

    2015-11-01

    Adiabatic shear bands (ASB) were obtained by dynamic shearing with a split Hopkinson pressure bar in the hat-shaped specimens of 2195-T6 Al-Li alloy. TEM observations reveal that grains in ASB are mainly equiaxed with the grain size from 50 to 100 nm. The kinetics possibility of instant refinement of grains can well be explained with the rotation dynamic recrystallization mechanism. EBSD is used to investigate microstructure evolution in ASB after annealed at 100-400 °C for 1 h. Results show that grain size increases rapidly at higher annealing temperature, and grains grow from 0.22 μm at 300 °C to 1.77 μm at 400 °C. Microhardness measurement indicated that the microhardness value rises slowly with temperature increases and then drops quickly at 300 °C. The study indicates that the nanostructure in ASB is thermally stable below 300 °C.

  10. Study of bipolar pulsed plasma electrolytic carbonitriding on nanostructure of compound layer for a gamma Ti-Al alloy

    Institute of Scientific and Technical Information of China (English)

    Mahmood ALIOFKHAZRAEI; Alireza SABOUR ROUHAGHDAM; Mohsen ROOHZENDEH

    2008-01-01

    The surface hardening of a gamma Ti-Al alloy by using bipolar pulsed nanocrystalline plasma electro-lytic carbonitriding has been studied in this investigation. Coating process was performed on a triethanolamine-based electrolyte by a cooling bath. The nanostructure of the obtained compound layer was examined with the figure analysis of the scanning electron microscopy (SEM) nanographs. The effects of the process variables, i.e., fre-quency, temperature of the electrolyte, applied voltage and treatment time, have been experimentally studied. Statistical methods were used to achieve the optimum size of the nanocrystals. Finally, the contribution percentage of the effective factors of the pulsed current was revealed, and the confirmation run showed the validity of the obtained results.

  11. In situ synthesis of nanostructured titania film on NiTi shape memory alloy by Fenton's oxidation method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fenton's oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton's oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton's oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.

  12. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

    Institute of Scientific and Technical Information of China (English)

    Gheorghe Gurau; Carmela Gurau; Vedamanickam Sampath; Leandru Gheorghe Bujoreanu

    2016-01-01

    Low-costiron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure tor-sion (HSHPT) process on the microstructural evolution of an Fe–Mn–Si–Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations charac-teristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence ofε-martensite with an HCP crystal structure andγ-phase with an FCC structure.

  13. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

    Science.gov (United States)

    Gurau, Gheorghe; Gurau, Carmela; Sampath, Vedamanickam; Bujoreanu, Leandru Gheorghe

    2016-11-01

    Low-cost iron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion (HSHPT) process on the microstructural evolution of an Fe-Mn-Si-Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ɛ-martensite with an HCP crystal structure and γ-phase with an FCC structure.

  14. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    Science.gov (United States)

    2015-02-01

    times for cleanliness . The tank was then refilled, allowing the temperature to stabilize at the operating temperature (–196 °C), after which the...Ortalan V, Li WF, Zhang Z, Vogt R, Browning ND, Lavernia EJ, Schoenung JM. HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C

  15. Optimizing the electric field around solid and core-shell alloy nanostructures for near-field applications

    Science.gov (United States)

    Montaño-Priede, Luis; Peña-Rodríguez, Ovidio; Rivera, Antonio; Guerrero-Martínez, Andrés; Pal, Umapada

    2016-08-01

    The near electric field enhancement around plasmonic nanoparticles (NPs) is very important for applications like surface enhanced spectroscopies, plasmonic dye-sensitized solar cells and plasmon-enhanced OLEDs, where the interactions occur close to the surface of the NPs. In this work we have calculated the near-field enhancement around solid and core-shell alloy NPs as a function of their geometrical parameters and composition. We have found that the field enhancement is lower in the AuxAg1-x alloys with respect to pure Ag NPs, but it is still high enough for most near-field applications. The higher order modes have a stronger influence over the near-field due to a sharper spatial decay of the near electric field with the increase of the order of multipolar modes. For the same reason, in AuxAg1-x@SiO2 core-shell structures, the quadrupolar mode is dominant around the core, whereas the dipolar mode is predominant around the shell. The LSPR modes can have different behaviours in the near- and the far-field, particularly for larger particles with high Ag contents, which indicates that caution must be exercised for designing plasmonic nanostructures for near-field applications, as the variations of the LSPR in the near-field cannot be inferred from those observed in the far-field. These results have important implications for the application of gold-silver alloy NPs in surface enhanced spectroscopies and in the fabrication of plasmon-based optoelectronic devices, like dye-sensitized solar cells and plasmon-enhanced organic light-emitting diodes.

  16. Modifying structure and properties of nickel alloys by nanostructured composite powders

    Science.gov (United States)

    Cherepanov, A. N.; Ovcharenko, V. E.; Liu, G.; Cao, L.

    2015-01-01

    The article presents the results of an experimental study of the influence of powder nanomodifiers of refractory compounds on the mechanical properties, macro- and microstructure of heat-resistant alloys ZhS-6K and Inconel 718. It is shown that the introduction of nanomodifiers into the melt leads to the refinement of the alloy structure: the average grain size decreases 1.5-2 times, and their morphology becomes similar to equiaxial at significant reduction of the particle size in the carbide phase. The service life of ZhS-6K alloy under cyclic loading at 600°C increases 2.7 times, and at 975 °C by 40 %, and relative elongation increases more than twice. The mechanical properties of Inconel 718 significantly increase: long-term strength at 650 °C increases 1.5-2 times, and the number of cycles before the collapse at 482 °C grows more than three times. It has been found out that addition of nanomodifiers to the melt, in alloys, forms clusters of particles of refractory compounds at borders and joints of the formed grain structure that may help slowing down the processes of recrystallization (prevents the increase in the size of the contacting grains by their associations) and stabilizes the strength properties of the alloys at higher temperatures.

  17. Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Anna Hynowska

    2013-10-01

    Full Text Available The synthesis and characterization of Ti40Zr20Hf20Fe20 (atom % alloy, in the form of rods (f = 2 mm, prepared by arc-melting, and subsequent Cu mold suction casting, is presented. The microstructure, mechanical and corrosion properties, as well as in vitro biocompatibility of this alloy, are investigated. This material consists of a mixture of several nanocrystalline phases. It exhibits excellent mechanical behavior, dominated by high strength and relatively low Young’s modulus, and also good corrosion resistance, as evidenced by the passive behavior in a wide potential window and the low corrosion current densities values. In terms of biocompatibility, this alloy is not cytotoxic and preosteoblast cells can easily adhere onto its surface and differentiate into osteoblasts.

  18. Development of nanostructured CoFe-based alloys for high temperature magnetic applications.

    Science.gov (United States)

    Panda, A K; Mohanta, O; Ghosh, M; Mitra, A

    2009-09-01

    The effect of substituting Fe by Co on the crystallization, structural and magnetic behaviour of Fe(72-x)Co(x)Si4B20Nb4 (X = 10, 20, 36, 50 at%) and Co36Fe36Si(4-Y)Al(y)B20Nb4 (Y = 0, 1 at%) alloys prepared in the form of melt spun ribbons has been discussed. Alloys containing optimum content of cobalt = 36 at% showed consistent coercivity at elevated temperatures. This soft magnetic property was further improved with aluminium incorporation. Transmission electron microscopy (TEM) indicated that such enhancement in the properties was due to finer dispersions of (CoFe)SiAl nanoparticles in amorphous matrix. Nanocrystallisation also raised the Curie temperature of the aluminium contained alloy.

  19. Embedded binary eutectic alloy nanostructures: a new class of phase change materials.

    Science.gov (United States)

    Shin, S J; Guzman, J; Yuan, C-W; Liao, Christopher Y; Boswell-Koller, Cosima N; Stone, P R; Dubon, O D; Minor, A M; Watanabe, Masashi; Beeman, Jeffrey W; Yu, K M; Ager, J W; Chrzan, D C; Haller, E E

    2010-08-11

    Phase change materials are essential to a number of technologies ranging from optical data storage to energy storage and transport applications. This widespread interest has given rise to a substantial effort to develop bulk phase change materials well suited for desired applications. Here, we suggest a novel and complementary approach, the use of binary eutectic alloy nanoparticles embedded within a matrix. Using GeSn nanoparticles embedded in silica as an example, we establish that the presence of a nanoparticle/matrix interface enables one to stabilize both nanobicrystal and homogeneous alloy morphologies. Further, the kinetics of switching between the two morphologies can be tuned simply by altering the composition.

  20. Microstructure of Ni-Al powder and Ni-Al composite coatings prepared by twin-wire arc spraying

    Institute of Scientific and Technical Information of China (English)

    Ji-xiao Wang; Gui-xian Wang; Jing-shun Liu; Lun-yong Zhang; Wei Wang; Ze Li; Qi-xiang Wang; Jian-fei Sun

    2016-01-01

    Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spec-troscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni–Al phase and a small amount of Al2O3 parti-cles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermet-allic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 pre-cipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.

  1. Surface functionalized Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloyed nanostructure for DNA sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheam, A.S.; Voon, C.H.; Foo, K.L.; Azizah, N. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Al-Douri, Y. [University of Sidi-Bel-Abbes, Physics Department, Faculty of Science, Sidi Bel-Abbes (Algeria); Gopinath, S.C.B. [University Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis (Malaysia); Universiti Malaysia Perlis, School of Bioprocess Engineering, Arau, Perlis (Malaysia); Ameri, M. [Universite Djilali Liabes de Sidi Bel-Abbes, Laboratoire Physico-Chimie des Materiaux Avances (LPCMA), Sidi Bel-Abbes (Algeria); Ibrahim, Sattar S. [University of Anbar, Chemisty Department, College of Science, Al Rumadi (Iraq)

    2017-03-15

    A sensing plate of extended Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV (x = 0) to 1.72 eV (x = 1). The resulting Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage (I-V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications. (orig.)

  2. Improvement of the functional properties of nanostructured Ti-Ni shape memory alloys by means of thermomechanical processing

    Science.gov (United States)

    Kreitcberg, Alena

    Severe plastic deformation (SPD) is commonly used for nanostructure formation in Ti-Ni shape memory alloys (SMAs), but it increases the risk of damage during processing and, consequently, negatively affects functional fatigue resistance of these materials. The principal objective of this project is, therefore, to study the interrelations between the processing conditions, damageability during processing, microstructure and the functional properties of Ti-Ni SMAs with the aim of improving long-term functional performances of these materials by optimizing their processing conditions. First, microstructure and fatigue properties of Ti-Ni SMAs were studied after thermomechanical treatment (TMT) with different combinations of severe cold and warm rolling (CR and WR), as well as intermediate and post-deformation annealing (IA and PDA) technological steps. It was shown that either when WR and IA were introduced into the TMT schedule, or CR intensity was decreased, the fatigue life was improved as a consequence of less processing-induced damage and higher density of the favorable B2-austenite texture. This improvement was reached, however, at a price of a lower multi-cycle functional stability of these materials, the latter being a direct consequence of the microstructure coarsening after higher-temperature lower-intensity processing. At the end of this study, however, it was not possible to distinguish between contributions to the functional performances of Ti-Ni SMAs from different processing-related features: a) grain/subgrain size; b) texture; and c) level of rolling-induced defects. To be capable of separating contributions to the functional properties of Ti-Ni alloys from grain/subgrain size and from texture, the theoretical crystallographic resource of recovery strain after different TMTs and, therefore, different textures, were calculated and compared with the experiment. The comparative analysis showed that the structural factors (grain/subgrain size) strongly

  3. Real-Time Atomic Scale Imaging of Nanostructural Evolution in Aluminum Alloys

    NARCIS (Netherlands)

    Malladi, S.K.; Xu, X.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yücelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W.

    2014-01-01

    We present a new approach to study the three- dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM).

  4. Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides

    Science.gov (United States)

    Martin, Joshua

    The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for the first time, dense dimensional nanocomposites prepared by densifying nanocrystals synthesized employing a solution-phase reaction. Furthermore, the carrier concentration of the PbTe nanocomposites can be adjusted by directly doping the nanocrystals, necessary for power factor optimization. These materials were fully characterized using a low temperature TE transport

  5. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    Directory of Open Access Journals (Sweden)

    W. Y. Zhang

    2016-05-01

    Full Text Available Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5−0.5xB14 (x = 0, 4 and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  6. Structural, thermal, optical and photoacoustic study of nanostructured FeSb{sub 2} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Souza, S.M.; Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Grandi, T.A. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-03-15

    Mechanical alloying of elemental Fe and Sb powders yielded nanostructured FeSb{sub 2}, an amorphous phase, along with unreacted Sb. The volume fractions of FeSb{sub 2}, Sb nanocrystals and interfacial/amorphous components were estimated from the X-ray diffraction pattern of the as-miller powder. The thermal stability of FeSb{sub 2} was investigated by heating the powder at 250 °C and 400 °C. The XRD pattern of the sample annealed at 250 °C showed nucleation of Fe{sub 3}O{sub 4} and decomposition of FeSb{sub 2}. For an annealing temperature of 400 °C, besides crystallization of the amorphous phase, the volume fractions of Sb and Fe{sub 3}O{sub 4} increased and the volume fraction of FeSb{sub 2} decreased. The optical band gap energy for samples as-milled and annealed at 400 °C was measured, and a slight decrease in the band gap was observed in the annealed sample. Thermal diffusivity parameter of the as-milled sample and of the annealed sample at 400 °C was also measured, as well as other transport properties. We also studied the contribution of the thermal diffusivity of the interfacial/amorphous component to the thermal diffusivity of the as-milled sample.

  7. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  8. Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Chen; Qin-ying Fan; Kai Zhao

    2015-01-01

    The microstructural characteristics and microhardness of nanostructured Al−4.6Cu−Mn ribbons produced by melt spinning were investigated using field-emission gun scanning electron microscopy, transmission electron microscopy, and hardness testing, and the results were compared to those of similar ribbons manufactured by direct-chill casting. It is shown that the nanostructure of the as-melt-spun ribbons consists ofα-Al dendrites with a secondary dendrite arm spacing of approximately 0.55−0.80μm and ultrafine eutectic crystals of a nanosized scale of approximately 100−200 nm on dendritic boundaries. The solidification time and cooling rate of 46-μm-thick ribbons were estimated to be 1.3 × 10−6 s and 4.04 × 106 K·s−1, respectively. At an aging temperature of 190°C, thecoherentθ″ phase in aged ribbons gradually transforms into nanoscaleθ′-phase platelets as the aging time is extended from 2 to 8 h; the rod-like morphology of the T (Al20Cu2Mn3) dispersoid with 120−160-nm diameter also forms, which results in peak aging hardness. The precipitation behaviors of aged ribbons cannot be changed at the high cooling rates of as-cast ribbons. However, a finer and more uniformly distributed microstructure and a supersaturated solid solution at a high cooling rate can shorten the time required to obtain a certain aging hardness before peak hardness.

  9. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  10. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)]. E-mail: tsuchiya@pse.tut.ac.jp; Inuzuka, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Tomus, D. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Hosokawa, A. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Nakayama, H. [Department of Mechanical Engineering, University of Washington (United States); Morii, K. [Research and Development Laboratory, Daido Steel, Co., Ltd. (Japan); Todaka, Y. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)

    2006-11-25

    Martensitic transformation and mechanical behavior was investigated on TiNi shape memory alloy subjected to severe plastic deformation by cold rolling. Transmission electron microscopy revealed the sample to be a mixture of nanocrystalline and amorphous material after 40% cold rolling. Diffrential scaning calorimetry measurements and X-ray diffractometry suggested that the martensitic transformation was suppressed when the thickness reduction was over 25%. The pseudoelastic stress-strain curves of nanocrystalline/amorphous TiNi are characterized by the absence of a stress-plateau and by small hysteresis.

  11. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  12. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  13. Thermodynamic aspects of nanostructured Ti5Si3 formation during mechanical alloying and its characterization

    Indian Academy of Sciences (India)

    S Sabooni; F Karimzadeh; M H Abbasi

    2012-06-01

    Mechanical alloying (MA) was used to produce Ti5Si3 intermetallic compound with nanocrystalline structure from elemental powders. The structural changes and characterization of powder particles during milling were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle size analyser (PSA) and microhardness measurements. MA resulted in gradual formation of disordered Ti5Si3 intermetallic compound with crystallite size of about 15 nm after 45 h of milling. Also a thermodynamic analysis of the process was carried out using Miedema model. The results showed that in the nominal composition of Ti5Si3 intermetallic phase (Si = 0.375), formation of an intermetallic compound has the lowest Gibbs free energy rather than solid solution or amorphous phases. So the MA product is the most stable phase in nominal composition of Ti5Si3. This intermetallic compound exhibits high microhardness value of about 1235 HV.

  14. Microstructure and Tensile Behavior of a Nano-Structured Al-Fe Based Alloy

    Institute of Scientific and Technical Information of China (English)

    Won-Yong Kim; Jae-Sung Park; Mok-Soon Kim; Tae-Yeub Ra

    2004-01-01

    Room temperature deformation behavior of A1-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent warm-extrusion at 693 K and/or rolling at 423 K was investigated in terms of tensile test and microstructural observation.In the specimen processed by spray forming and warm extrusion, the microstructure consisting of equiaxed grains with the average grain size of 500 nm in the matrix phase and uniformly dispersed fine intermetallic A13(Fe, Mo, V, Zr) and A16(Fe, Mo, V, Zr) phases less than 100 nm was characterized. It was revealed that subsequent warm rolling after warm extrusion promotes precipitation of a fine dispersoid from the supersaturated matrix phase. Warm rolling was found to be effective to increase the yield and tensile strength in the high strain rate regime. Elongation of the warm rolled specimen showed highe r value than extruded specimen over the whole strain rate region studied.

  15. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  16. X-ray studies of nanostructured Ti{sub 2}NiCu shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ari-Gur, P., E-mail: pnina.ari-gur@wmich.edu [Western Michigan University, Kalamazoo, MI (United States); Madiligama, A.S.B.; Watza, S.G. [Western Michigan University, Kalamazoo, MI (United States); Shelyakov, A. [National Research Nuclear University, Moscow Engineering Physics Institute, Kashirskoesh., 31, Moscow 115409 (Russian Federation); Kuchin, D.; Koledov, V. [Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow 125009 (Russian Federation); Gao, W. [Department of Chemical and Materials Engineering, University of Auckland (New Zealand)

    2014-02-15

    Highlights: ► Factors affecting two-way shape memory effect of melt-spun Ti{sub 2}NiCu were studied. ► The melt-spinning process results in a mixed amorphous–crystalline structure. ► The austenite to martensite transformation takes place in one step. ► After most of the ribbon transforms to martensite, the TWSME performance is best. ► On the ribbons air-side both austenite and martensite are strongly textured. -- Abstract: Phase-mix, phase transformations and crystallographic texture of amorphous/nanostructure melt-spun ribbons of Ti{sub 2}NiCu were studied using X-ray diffraction and nano-indentation. Their peak two-way shape-memory effect occurs when most of the austenite (cubic, B2) phase has converted to martensite (orthorhombic, B19), but before grain growth takes place. The melt-spinning process imparts strong B2 {1 0 0} texture that is retained as B19 (1 0 0) and (0 1 1) after phase transition during subsequent annealing. Because the phase transformation and texture strongly depend on the annealing process, it should be possible to tailor them for further improving their performance.

  17. Crystallization kinetics of partially crystallized Ti-5 Al powders obtained by rotating electrode process

    Energy Technology Data Exchange (ETDEWEB)

    Susic, M.; Zdujic, M.; Uskokovic, D.; Karanovic, L.

    1989-07-01

    Crystallization kinetics of partially crystallized Ti-5 Al alloy powders obtained by the rotating electrode processes have been studied by differential thermal and X-ray diffraction analyses. It is shown that only powders not exceeding a particle size of 90 /mu/m are characterized by a sharp irreversible exothermal peak in the DTA curve which can be ascribed to the crystallization of a residual amorphous phase. The crystallization process starts at 893 K and is fully completed at 1008 K having activation energies of 297 and 604 kJ/mol, thus indicating a very stable disordered structure. (orig.).

  18. Surface nanostructures orienting self-protection of an orthodontic nickel-titanium shape memory alloys wire

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Shape memory alloys (SMA) have been applied to a wide variety of applications in a number of different fields such as aeronautical applications, sensors/actuators, medical sciences as well as orthodontics. It is a hot topic to enhance the anti-corrosion ability of orthodontic wires for clinical applications. In this letter, a very nice fractal structure, micro-domains with identical nanometer sized grooves, was obtained on the surfaces of the orthodontic wires with an oxygen plasma and acid corrosion. The concave parts of the grooves were dominated by titanium and convex parts were the same as the bulk wires. The micro-nano fractal structure generated a hydrophobic surface with the largest contact angle to water being about 157°. The titanium dominated nanolayer and the hydrophobicity of the surface resulted in jointly the great improvement of the anti-corrosion ability of the orthodontic wires. Because the fractal structures of the wires were formed automatically when they immersed in acidic environment, hence, the self-protection of the oxygen plasma-treated orthodontic wires in acidic environment indicates their potential applications in orthodontics, and should be also inspirable for other applications of SMA materials.

  19. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  20. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    with macroscopic reinforcements such as fiber, clay, glass mineral and other fillers. The nano-alloyed polymers are particularly useful for producing...applications, including space-sur- vivable materials and seals, gaskets, cosmetics , and personal care. 25 Claims, 10 Drawing Sheets B-3 U.S. Patent Mar...the incorporation of fluorinated nanostructured chemicals onto the surface of a secondary material (such as Ti02 , CaC03 , glass or mineral

  1. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.

  2. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    Science.gov (United States)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  3. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  4. Observation of resistivity minimum at low temperature in CoxCu1 -x (x ˜0.17 -0.76 ) nanostructured granular alloys

    Science.gov (United States)

    Dhara, S.; Chowdhury, R. Roy; Bandyopadhyay, B.

    2016-06-01

    Electrical resistivity of nanostructured granular alloys CoxCu1 -x (x ˜0.01 -0.76 ) prepared by the chemical reduction method is investigated in the temperature range 2-300 K. The samples with a low cobalt content of x ≤0.1 show a metallic resistivity behavior. For samples with a higher cobalt content, x ≥0.17 , the resistivity shows a minimum. The minimum becomes more pronounced as Co content (x ) increases and also as the temperature of minimum resistivity, Tmin, increases with x . The resistivity minimum is obtained in this magnetic alloy system even for a cobalt concentration as high as ˜76 % . Application of an external magnetic field has a negligible effect on the resistivity behavior. Detailed analysis suggests that the low-temperature upturn in resistivity most probably arises due to elastic electron-electron interaction (the quantum-interference effect). Magnetic measurements at 4 K on the same samples show the absence of long-range magnetic interaction and evidence of increasing magnetic disorder as x increases beyond ˜10 % . Combining the results of the two types of measurements, a model of formation of these alloy particles involving random clusters of Co atoms within the Cu matrix has been proposed.

  5. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  6. Characterization of Cu–Ni nanostructured alloys obtained by a chemical route. Influence of the complexing agent content in the starting solution

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola (IFEG), Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba—CONICET, Medina Allende s/n, Ciudad Universitaria, 5016 Córdoba (Argentina); Cangiano, María de los A.; Ojeda, Manuel W.; Ruiz, María del C. [Instituto de Investigaciones en Tecnología Qumica (INTEQUI), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis—CONICET, Chacabuco y Pedernera, 5700 San Luis (Argentina)

    2015-03-15

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. In the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.

  7. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  8. Effect of nanostructured composite powders on the structure and strength properties of the high-temperature inconel 718 alloy

    Science.gov (United States)

    Cherepanov, A. N.; Ovcharenko, V. E.

    2015-12-01

    The experimental results of the effect of powder nanomodifiers of refractory compounds on the strength properties, the macro- and microstructure of the high-temperature Inconel 718 alloy have been presented. It has been shown that the introduction of powder modifiers into the melt leads to a decrease in the average grain size by a factor of 1.5-2 in the alloy. The long-term tensile strength of the alloy at 650°C increases 1.5-2 times, and the number of cycles at 482°C before fracture grows by more than three times. The effect of nanoparticles on the grain structure and strength properties of the alloy is due to an increase in the number of generated crystallization centers and the formation of nanoparticle clusters of refractory compounds at boundaries and junctions in the formed grain structure, which hinder the development of recrystallization processes in the alloy.

  9. Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy.

    Science.gov (United States)

    Liu, Zhen; Cheng, Liang; Zhang, Lei; Yang, Zhongbo; Liu, Zhuang; Fang, Jixiang

    2014-04-01

    The 'sea urchin'-like nanostructures with particular small size (photothermal therapy (PTT). Here we report sub-100 nm hollow Au-Ag alloy nanourchins (HAAA-NUs) with ultrahigh density of nanotips synthesized via a facile seed-mediated growth. The HAAA-NUs exhibit a remarkably integrated high-quality photothermal feature including well-defined but tunable surface plasmon resonance peak, strong absorption (2.2 × 10(10) M(-1) cm(-1)) as well as high photothermal conversion efficiency (80.4%) in the near-infrared region. Importantly, the HAAA-NUs demonstrate improved photothermal stability verified via continuous exposition and cyclic irradiation of laser beam. The cell assay, in vitro cell ablation and in vivo breast cancer treatment verify that the HAAA-NUs are superior photothermal agent for photothermal tumor ablation therapy owing to low toxicity and high cell destruction capability.

  10. Simulation of nanostructural evolution under irradiation in Fe-9%CrC alloys: An object kinetic Monte Carlo study of the effect of temperature and dose-rate

    Directory of Open Access Journals (Sweden)

    M. Chiapetto

    2016-12-01

    Full Text Available This work explores the effects of both temperature and dose-rate on the nanostructural evolution under irradiation of the Fe-9%CrC alloy, model material for high-Cr ferritic/martensitic steels. Starting from an object kinetic Monte Carlo model validated at 563K, we investigate here the accumulation of radiation damage as a function of temperature and dose-rate, attempting to highlight its connection with low-temperature radiation-induced hardening. The results show that the defect cluster mobility becomes high enough to partially counteract the material hardening process only above ∼290°C, while high fluxes are responsible for higher densities of defects, so that an increase of the hardening process with increasing dose-rates may be expected.

  11. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

    Science.gov (United States)

    Gharsallah, Mouna; Serrano-Sanchez, Federico; Nemes, Norbert M.; Martinez, Jose Luis; Alonso, Jose Antonio

    2017-01-01

    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm-1K-1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K-1 at 400 K, which is also beneficial for improved thermoelectric efficiency.

  12. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  13. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  14. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  15. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  16. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  17. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys

    Science.gov (United States)

    Joshi, Giri; Poudel, Bed

    2016-12-01

    We report an efficient thermoelectric device with power density of 8.9 W/cm2 and efficiency of 8.9% at 678°C temperature difference using hot-pressed titanium metal contact layers on nanostructured half-Heusler materials. The high power density and efficiency are due to the efficient nanostructured materials and very low contact resistance of 1 μΩ cm2 between the titanium layer and half-Heusler material. Moreover, the bonding strength between the titanium and half-Heusler is more than 50 MPa, significantly higher compared with conventional contact metallization methods. The low contact resistance and high bonding strength are due to thin-layer diffusion of titanium (600°C). The low contact resistance and high bonding strength result in a stable and efficient power generation device with great potential for use in recovery of waste heat, e.g., in automotive and industrial applications.

  18. The effect of heat treatment on the structure and magnetic properties of mechanically alloyed Fe-45%Ni nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Oh, J.T. [School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz 7134851154 (Iran, Islamic Republic of)

    2011-01-21

    Research highlights: > In this study, nanocrystalline Fe-45%Ni alloy powders were prepared by mechanical alloying process using a planetary high-energy ball mill under argon atmosphere. The synthesized powders were heat treated at different temperatures using a vacuum furnace. The results showed that lattice strain decreases and crystallite size increases with annealing temperature. We also found that the variation of coercivity is dominated by the removal of residual stress at low annealing temperature whereas the value of coercivity depends on the crystallite size at higher annealing temperature. - Abstract: Magnetic iron-nickel alloys generally called permalloys are of great interest due to their magnetic properties. Fe-45%Ni alloy is one of the major iron-nickel compositions, well-known for high flux density, low coercivity and their responsiveness to the magnetic annealing. In this study, nanocrystalline Fe-45%Ni alloy powders were prepared by mechanical alloying process using a planetary high-energy ball mill under an argon atmosphere. The synthesized powders were heat treated at different temperatures using a vacuum furnace. The structural properties of the as-milled and the post-heat treated powders were studied by means of X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). The magnetic measurements on the powders were carried out using a vibrating sample magnetometer (VSM). The results showed that the lattice strain decreases and the crystallite size increases with annealing temperature. It was also found that the variation of coercivity is dominated by the removal of residual stress at low annealing temperatures, whereas the value of coercivity depends on the crystallite size at higher annealing temperatures.

  19. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  20. Characterization of crystallite size, dislocation characteristics and stacking faults in nanostructured mechanically alloyed Cu–Fe system using an advanced X-ray diffraction analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Soleimanian, V., E-mail: vishtasb@iust.ac.ir [Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Mojtahedi, M.; Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Farjam Street, Narmak Tehran 16846-13114 (Iran, Islamic Republic of)

    2014-03-25

    Highlights: • Various microstructural features of mechanically alloyed Cu–Fe are investigated simultaneously. • The crystallite size and size distribution are calculated via refinement of XRD profiles. • Using the eCMWP method, characteristics of dislocations are studied as a function of milling time and composition. • The probability of stacking faults are calculated. -- Abstract: Developments in the synthesis of nanostructured materials have expanded the need for appropriate characterization methods. The aim of this work is to apply new X-ray diffraction analysis methods for simultaneous investigation of various microstructural characteristics. For this purpose, the structure of mechanically alloyed Cu–Fe system with three compositions of 30 wt%, 50% and 70% of iron was studied. By applying the modified Williamson-Hall method, the type of dislocations in the FCC phase is distinguished. Afterwards by modification of previous XRD analysis methods, the proportion of edge/screw dislocations was characterized. Moreover, the outer cut-off radius, the density and energy of dislocations were calculated as a function of the composition and the milling time. On the other hand, using the extended convolutional multiple whole profile fitting procedure, the variations in the crystallite size and size distribution of FCC and BCC phases were studied. Finally, the stacking fault probability was calculated in different milled samples. It is revealed that smaller steady state crystallite size of samples with higher Fe content, is relevant to reduction of the outer cut-off radius of dislocation. On the other hand, the density of dislocations and stacking faults increased continuously up to 96 h of milling.

  1. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, M., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar [INIFTA-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cabrera, A. F., E-mail: mizrahi@fisica.unlp.edu.ar, E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Stewart, S. J. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas C.C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Av. Calchaquí No. 6200, Florencio Varela (Argentina)

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  2. Nanostructured Nickel-Cobalt-Titanium Alloy Grown on Titanium Substrate as Efficient Electrocatalyst for Alkaline Water Electrolysis.

    Science.gov (United States)

    Ganesan, Pandian; Sivanantham, Arumugam; Shanmugam, Sangaraju

    2017-04-12

    One of the important challenges in alkaline water electrolysis is to utilize a bifunctional catalyst for both hydrogen evolution (HER) and oxygen evolution (OER) reactions to increase the efficiency of water splitting devices for the long durable operations. Herein, nickel-cobalt-titanium (NCT) alloy is directly grown on a high corrosion resistance titanium foil by a simple, single, and rapid electrochemical deposition at room temperature. The electrocatalytic activity of NCT alloy electrodes is evaluated for both HER and OER in aqueous electrolyte. Our NCT electrocatalyst exhibits low overpotentials around 125 and 331 mV for HER and OER, respectively, in 1 M KOH. In addition to this outstanding activity, the bifunctional catalyst also exhibits excellent OER and HER electrode stability up to 150 h of continuous operation with a minimal loss in activity. Further, the NCT alloy directly grown on titanium foil is used to directly construct membrane electrode assembly (MEA) for alkaline electrolyte membrane (AEM) water electrolyzer, which make the practical applicability. This single-step electrodeposition reveals NCT on titanium foil with high activity and excellent electrode stability suitable for replacing alternative commercial viable catalyst for the alkaline water splitting.

  3. Effect of Aspect Ratio and Boundary Conditions in Modeling Shape Memory Alloy Nanostructures with 3D Coupled Dynamic Phase-Field Theories

    Directory of Open Access Journals (Sweden)

    R. Dhote

    2016-01-01

    Full Text Available The behavior of shape memory alloy (SMA nanostructures is influenced by strain rate and temperature evolution during dynamic loading. The coupling between temperature, strain, and strain rate is essential to capture inherent thermomechanical behavior in SMAs. In this paper, we propose a new 3D phase-field model that accounts for two-way coupling between mechanical and thermal physics. We use the strain-based Ginzburg-Landau potential for cubic-to-tetragonal phase transformations. The variational formulation of the developed model is implemented in the isogeometric analysis framework to overcome numerical challenges. We have observed a complete disappearance of the out-of-plane martensitic variant in a very high aspect ratio SMA domain as well as the presence of three variants in equal portions in a low aspect ratio SMA domain. The dependence of different boundary conditions on the microstructure morphology has been examined energetically. The tensile tests on rectangular prism nanowires, using the displacement based loading, demonstrate the shape memory effect and pseudoelastic behavior. We have also observed that higher strain rates, as well as the lower aspect ratio domains, resulting in high yield stress and phase transformations occur at higher stress during dynamic axial loading.

  4. Surface Oxidation and Fast 18O Implant Diffusion in Nanostructured Layers of Ti-6Al-4V Alloy

    OpenAIRE

    S.M. Duvanov; A.G. Balogh

    2015-01-01

    A formation of the near surface barrier composite oxide film and two-stage 18O implant diffusion in modified layers of Ti-6Al-4V alloy were observed in the present work. Fast and super fast regimes occur during second stage of the diffusion. Sample modification was performed using ion implantation and subsequent thermal annealing in ultra-high vacuum (UHV) atmosphere. Parameters of ion implantation are the following: 18O+ ion energy of 30 keV; fluence of 3 × 1017 ion/cm2; RT. Post-implantatio...

  5. Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys

    Science.gov (United States)

    Cunningham, Nicholas John

    This work advances the understanding of the Y-Ti-O nanofeatures (NFs) in nanostructured ferritic alloys (NFAs); a class of high temperature, oxide dispersion strengthened iron alloys with applications in both advanced fission and fusion reactors. NFAs exhibit high creep strength up to 800ºC and a remarkable radiation damage tolerance and He management. However, the NFs, which are responsible for these properties, are not fully understood. This work addresses key questions including: a) what is the NF structure and composition and how are they affected by alloy composition and processing; b) what is the NFA long-term thermal stability; c) and what alternative processing paths are available to reduce costs and produce more uniform NF distributions? A detailed study using small angle neutron scattering (SANS), transmission electron microscopy (TEM-group member Y. Wu), and atom probe tomography (APT) evaluated the NF average size (), number density (N), volume fraction (f), composition, and structure in two heats of the commercial NFA MA957. The and N were ≈2.6 nm and ≈5x1023 m-3 , respectively, for both heats, with TEM indicating the NF are Y 2Ti2O7. However, SANS indicates a mixture of NF compositions or atomic densities with a difference between the heats, while APT shows compositions with ≈ 10% Cr and a Y/Ti ratio long times at temperatures up to 900ºC. Notably, Ti in the matrix and some from the NFs migrates to large, Ti-rich phases. Aging at higher temperatures up to 1000ºC for 19.5 kh produced modest coarsening for ≈ 3.8 nm and ≈30% increase in grain size for a corresponding 13% reduction in microhardness. A coarsening model shows no significant NF coarsening will occur at temperatures less than 900ºC. A number of 14YWT NFAs with different Y, Ti, and O content showed that increases in Y and Ti produce higher N and f, but the and the compositions are fairly insensitive. The O content has a more dramatic affect with low O (0.065 wt.%) producing low

  6. Characterizing the nano-structure and defect structure of nano-scaled non-ferrous structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Samimi, Peyman; Liu, Yue [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States); Poorganji, Behrang; Vasudevan, Vijay K. [Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Peter C. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States)

    2016-03-15

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterization of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.

  7. Comparative study between melted and mechanically alloyed samples of the Fe{sub 50}Mn{sub 10}Al{sub 40} nanostructured system

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, C. [Universidad Pontificia Bolivariana, Departamento de Ciencias Basicas (Colombia); Perez Alcazar, G. A., E-mail: gperezalcazar@yahoo.com; Zamora, L. E. [Universidad del Valle, Departamento de Fisica (Colombia); Greneche, J. M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087 (France); Romero, J. J.; Martin-Blanco, E. [Universidad Complutense de Madrid, Instituto de Magnetismo Aplicado (Spain); Gonzalez, J. M. [Unidad Asociada ICMM-IMA (Spain); Marco, J. F. [Instituto de Quimica Fisica Rocasolano, CSIC (Spain)

    2008-06-15

    Nanostructured powders of melted and 48 h-mechanically alloyed (MA) samples of the Fe{sub 50}Mn{sub 10}Al{sub 40} system were studied by XRD, SEM and Moessbauer spectroscopy (MS), and their properties were compared. The samples present BCC structure with similar mean lattice parameter (near 2.92 A) and grain size (around 22 nm). The MA sample presents additionally the {alpha}-Fe phase. Moessbauer spectra of the samples present a hyperfine field distribution (HFD), a broad paramagnetic (P) site and a sextet showing that the BCC ternary phase is disordered with Fe sites in environments rich in Fe (HFD) and rich in Al and Mn (P), respectively. The mean hyperfine magnetic field vs. temperature curve of melted sample presents two kinks, one at 28 K and other at 210 K and a Curie temperature at 340 K. A similar curve is observed for the milled sample but the kinks occur at 65 and 265K. Moessbauer spectra at different temperatures with and without applied field permit to conclude that the low temperature anomaly corresponds to the freezing temperature of a re-entrant spin-glass phase (RSG) and that of the second one corresponds to a blocking temperature of a superparamagnetic (SP) phase. These phases are possible in the samples due to their disordered character induced by the preparation conditions and the competitive interactions of the Fe and Mn atoms. The enhancement of the magnetic behaviour of the MA sample is due its larger disorder induced by the preparation method that can also explain the increase of the RSG and SP transition temperatures.

  8. Nanostructured Ta{sub x}C interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Wolong; Hei, Hongjun; Zhong, Qiang; Shen, Yanyan; Liu, Xiaoping; Wang, Xin; Zhou, Bing; He, Zhiyong, E-mail: hezhiyong@tyut.edu.cn; Yu, Shengwang, E-mail: yushengwang@tyut.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Ta{sub x}C interlayer was creatively obtained on WC–Co by DG-PSA for diamond deposition. • The interlayer with a flower-shaped surface consisted of Ta{sub 2}C and TaC nanocrystal. • Ta{sub x}C interlayer had a superior adherence because of gradual element distributions. • The samples’ surface microhardness is increased caused by nanostructured interlayer. • Ta{sub x}C interlayer improved diamond adhesion on WC–Co by suppressing Co diffusion. - Abstract: The aim in this work was to improve the adhesion of diamond coating with pre-deposition of a Ta{sub x}C interlayer on cemented carbide (WC–Co) substrate by double glow plasma surface alloying technique. The following deposition of diamond coating on the interlayer was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor. Ta{sub x}C interlayer with an inner diffusion layer and an outer deposition layer was composed of Ta{sub 2}C and TaC nanocrystalline, and it exhibited a special compact surface morphology formed of flower-shaped pits. As the gradual element distributions existed in the diffusion layer, the interlayer displayed a superior adherence to the substrate with significantly enhanced surface microhardness to the original substrate. After CVD process, the preferred orientation of TaC changed from (2 2 2) to (2 0 0) plane, and a uniform and tense diamond coating with adhesion referred to class HF 2 at least (Verein Deutscher Ingenieure 3198 norm) was obtained on the interlayered substrate. It indicated that the diffusion of Co was effectively inhibited by the formation of Ta{sub x}C diffusion–deposition interlayer. The Ta{sub x}C interlayer is most likely to improve the performance of diamond coatings used in cutting tools.

  9. Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    Directory of Open Access Journals (Sweden)

    Felix Jiménez-Villacorta

    2014-01-01

    Full Text Available Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF ε-phase to the target ferromagnetic (FM L10 τ-phase are investigated. The as-solidified material exhibits a majority hexagonal ε-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature TB~95 K (Hex~13 kOe at 10 K, ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature Tanneal ≈ 568 K (295 °C promotes the nucleation of the metastable L10 τ-MnAl phase at the expense of the parent ε-phase, donating an increasingly hard ferromagnetic character. The onset of the ε→τ transformation occurs at a temperature that is ~100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.

  10. Finite size effects and spin transition in ball-milled γ-(FeMn) 30Cu 70 nanostructured alloys

    Science.gov (United States)

    Restrepo, J.; Greneche, J. M.; González, J. M.

    2004-12-01

    Fe 15Mn 15Cu 70 alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Mössbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 Å 3 at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.

  11. Nanostructured TaxC interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide

    Science.gov (United States)

    Rong, Wolong; Hei, Hongjun; Zhong, Qiang; Shen, Yanyan; Liu, Xiaoping; Wang, Xin; Zhou, Bing; He, Zhiyong; Yu, Shengwang

    2015-12-01

    The aim in this work was to improve the adhesion of diamond coating with pre-deposition of a TaxC interlayer on cemented carbide (WC-Co) substrate by double glow plasma surface alloying technique. The following deposition of diamond coating on the interlayer was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor. TaxC interlayer with an inner diffusion layer and an outer deposition layer was composed of Ta2C and TaC nanocrystalline, and it exhibited a special compact surface morphology formed of flower-shaped pits. As the gradual element distributions existed in the diffusion layer, the interlayer displayed a superior adherence to the substrate with significantly enhanced surface microhardness to the original substrate. After CVD process, the preferred orientation of TaC changed from (2 2 2) to (2 0 0) plane, and a uniform and tense diamond coating with adhesion referred to class HF 2 at least (Verein Deutscher Ingenieure 3198 norm) was obtained on the interlayered substrate. It indicated that the diffusion of Co was effectively inhibited by the formation of TaxC diffusion-deposition interlayer. The TaxC interlayer is most likely to improve the performance of diamond coatings used in cutting tools.

  12. METAL-CERAMIC INTERFACES IN LASER COATED ALUMINUM-ALLOYS

    NARCIS (Netherlands)

    ZHOU, XB; DEHOSSON, JTM

    1994-01-01

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with alpha-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product alpha-Al2O3 layer of a thickness of 100 mum was cre

  13. Metal-Ceramic Interfaces in Laser Coated Aluminium Alloys

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1994-01-01

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with α-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product α-Al2O3 layer of a thickness of 100 µm was created whic

  14. Electrical Breakdown Characteristic of Nanostructured W-Cu Contacts Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Junbo; CHEN Wen'ge; DING Bingjun

    2006-01-01

    Nanostructured (NS) W- Cu composite powder was prepared by mechanical alloying ( MA ), and nanostructured bulk of W- Cu contact material was fabricated by hot press sintering in an electrical vacuum furnace. The microstructure, electric conductivity, hardness and break down voltage of NS W-Cu alloys were measured and compared to those of conventional W- Cu alloys prepared by powder metallurgy. The experimental results show that microstructural refinement and uniformity can improve the breakdown behavior and the electric arc stability of nanostructured W- Cu contacts materials. Also, the nanostructured W- Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion.

  15. Superficies Nanoestructuradas de la Aleación Ti6Al4V: Influencia del Tiempo de Electropulido Nanostructured Surfaces alloy Ti6AI4V: Influence of Electropolishing Time

    Directory of Open Access Journals (Sweden)

    Caroline Pigatto

    2012-01-01

    Full Text Available El objetivo de este trabajo fue estudiar la influencia de los parámetros operacionales del proceso de electropulido de aleaciones de titanio, involucrando la obtención de superficies nanoestructuradas. Se sabe que los parámetros del proceso de electropulido ejercen una importante influencia sobre la formación de materiales nanoestructuradas, promoviendo la obtención de propiedades bien específicas. En este trabajo se realizó el electropulido de la aleación Ti6Al4V lijadas mecánicamente, variando el tiempo de pulido. Luego del electropulido la morfología de la superficie fue evaluada por microscopia de fuerza atómica y la hidrofobicidad fue determinada mediante el ángulo de contacto. Los resultados preliminares muestran que el control sobre el tamaño y la profundidad de las nanoestructuras en esas superficies es posible por la variación del tiempo.The aim of the present research was to study the influence of operational parameters in the electropolishing process of titanium alloys, involving nanostructured surfaces. The electropolishing operational parameters influence the formation of nanostructured materials, promoting the obtainment of specific properties. In this work, a variation time was studied to produce nanostructured surfaces by the electropolishing process. The surfaces obtained were evaluated by atomic force microscopy and surface hydrophobicity was determined by the measurement of the contact angle. Preliminary results showed that the control on the size and depth of nanostructures on these surfaces is possible by electropolishing time variation.

  16. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    Science.gov (United States)

    Norman, Andrew G.; Olson, Jerry M.

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  17. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  18. Effect of Excess Al in TiO2-Al Powder Mixture and Susceptor Material on Microwave Synthesis of TiAl/Al2O3 Composite

    Directory of Open Access Journals (Sweden)

    P. Radmehr

    2016-03-01

    Full Text Available In this research, TiAl/Al2O3 composite was synthesized from mechanically activated TiO2-Al powder mixtures using microwave heating.The initial powder mixtures were mechanically activated and pressed into cylindrical tablets and then heated in a microwave oven. The effect of different amounts of excess Al and microwave susceptor material (SiC or graphite on the ignition time and the resultant reaction products were evaluated. X-ray diffraction (XRD and scanning electron microscopy (SEM analysis were used for characterization of the synthesized samples. XRD patterns revealed that when there was no excess Al in the initial powder mixture, the main resulting intermetallic phase would be Ti3Al with negligible amounts of TiAl, while with 10 wt% excess Al, TiAl phase could be formed in the composite product.The results also showed that microwave synthesis took place faster and more reproducible when samples were packed in the graphite powder than when placed between two SiC blocks.

  19. In situ synchrotron X-ray diffraction experiments on Al-15%BN mechanically alloyed powder: Observation of AlN nanoparticles precipitation and enhanced thermal stability of nanostructured Al matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lonardelli, I., E-mail: ivan.lonardelli@ing.unitn.i [Department of Materials Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, Trento 38050 (Italy); Zadra, M.; Ischia, G. [Department of Materials Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, Trento 38050 (Italy); Barreiro, J. Gomez [Earth and Planetary Sciences Dept., University of California at Berkeley, CA 94720 (United States); Department of Geochemistry and Petrology, University of Madrid, Madrid 28040 (Spain); Bortolotti, M.; Molinari, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, Trento 38050 (Italy)

    2009-11-03

    Two different in situ experiments using high energy X-ray diffraction from synchrotron source were performed in order to understand carefully the phase transformation in nanostructured Al-15%BN mechanically alloyed powder. After milling at room temperature for 10 h, a solid solution of Al, B and N was achieved. During the heating, the formation and the evolution of the metastable trigonal Al{sub 2}B{sub 3} and a very fine precipitation of hexagonal AlN (d < 8 nm) within Al grains were detected quantitatively. We found a stabilization of Al{sub 2}B{sub 3} between 225 deg. C and 550 deg. C and, only around 600 deg. C the hexagonal AlB{sub 2} starts to form. A detectable decreasing of the Al crystallite size between 420 deg. C and 470 deg. C was attributed to the precipitation of AlN nanoparticles that reduce the Al volume fraction and, at the same time, hinder the grain boundary propagation. The powder loses the nanostructure above 600 deg. C exhibiting an exceptional thermal stability at temperatures close to 0.9T{sub m}.

  20. Low temperature magnetization behavior in Co{sub 36}Fe{sub 36}Si{sub 3}Al{sub 1}Nb{sub 4}B{sub 20} (at%) nanostructured alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panda, A.K., E-mail: akpanda@nmlindia.or [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Mohanta, Ojaswini [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Basumallick, A. [Bengal Engineering and Science University, Shibpur, West Bengal (India); Mitra, A. [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2010-12-15

    The investigation addresses low temperature magnetization behavior in Co{sub 36}Fe{sub 36}Si{sub 3}Al{sub 1}Nb{sub 4}B{sub 20} alloy ribbons in their as-spun as well as annealed state. Optimum heat treatment at 875 K led to nanocrystallization whereby bcc-(FeCo)SiAl nanoparticles were dispersed in an amorphous matrix as evidenced from transmission electron microscopy. Low temperature magnetization studies were carried out in the range 77-300 K. Using the method of mathematical fittings, magnetization extrapolated to 0 K was obtained. The dependence of the magnetization with respect to temperature of BT{sup 3/2} was used to determine the Bloch coefficient 'B' and spin wave stiffness constant 'D'. Magnetic softening revealed by lowering in the coercivity in the optimum nanostructured state was also the cause of a drop in the stiffness constant. The range of exchange interaction given by D/T{sub C} was higher in the nanostructured state compared to the as-spun amorphous state. The effect of nanocrystallization and the resulting ferromagnetic coupling was further evidenced by low temperature magnetization studies.

  1. Influence of milling time on the structural, microstructural and magnetic properties of mechanically alloyed Ni{sub 58}Fe{sub 12}Zr{sub 10}Hf{sub 10}B{sub 10} nanostructured/amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Besmel, R., E-mail: r.besmel@iauahvaz.ac.ir [Materials Science and Engineering Department, Islamic Azad University Ahvaz Branch, Ahvaz (Iran, Islamic Republic of); Ghaffari, M. [School of Electrical and Electronic Engineering, Sensor and Actuator Laboratory II, BLK S2.1, B6-02, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Shokrollahi, H., E-mail: shokrollahi@sutech.ac.ir [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, 71555-313, Shiraz (Iran, Islamic Republic of); Chitsazan, B.; Karimi, L. [Materials Science and Engineering Department, Islamic Azad University Ahvaz Branch, Ahvaz (Iran, Islamic Republic of)

    2011-11-15

    This paper investigates structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni{sub 58}Fe{sub 12}Zr{sub 10}Hf{sub 10}B{sub 10} powders prepared by high energy milling. Ball milling of Ni, Fe, Zr, Hf and B leads to alloying of the element powders at 120 h. The results show that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. The magnetic measurements reveal that the coercivity and the saturation magnetization reach about 20 Oe and 30 emu/g at 190 h and become approximately 5 Oe and 40 emu/g after a suitable heat treatment, respectively. - Highlights: > We investigated the influence of milling time on the structural and magnetic properties of mechanically alloyed Ni{sub 58}Fe{sub 12}Zr{sub 10}Hf{sub 10}B{sub 10} nanostructured/amorphous powders. > Results showed that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. > By obtaining the amorphous structure and applying a suitable heat treatment the magnetic properties were improved.

  2. Superhydrophilic nanostructure

    Science.gov (United States)

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  3. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    Science.gov (United States)

    Kim, Won-Gi; Choe, Han-Cheol

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  4. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Gi [Department of Dental Technology, Daegu Health College, Daegu (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 Degree-Sign C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H{sub 3}PO{sub 4} electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  5. Study on the sintered characteristics and properties of nanostructured WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co hard metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: changsh@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chang, Ming-Hung [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Huang, Kuo-Tsung [Department of Auto-Mechanics, National Kangshan Agricultural Industrial Senior High School, Kaohsiung 82049, Taiwan (China)

    2015-11-15

    In this work, four different vacuum sintering temperatures (1250 °C, 1300 °C, 1350 °C and 1400 °C) were studied to determine the optimal process parameters of nano WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co sintered hard metal alloys. Experimental results showed that the optimal sintering temperatures for nano WC–(Fe–Ni–Co) and WC–Co alloys were 1300 °C and 1350 °C for 1 h, respectively. The sintered nano WC–(Fe–Ni–Co) and WC–Co hard metal alloys showed a good contiguity of 0.44 and 0.42; hardness was enhanced to HRA 90.83 and 90.92; the transverse rupture strength (TRS) increased to 2567.97 and 2860.08 MPa; and K{sub IC} was 16.23 and 12.33 MPa√m, respectively. Although the nano WC–(Fe–Ni–Co) alloys possessed a slightly lower TRS value, they exhibited superior fracture toughness (K{sub IC}) and hardness similar to that of the nano WC–Co material. Significantly, nano WC–(Fe–Ni–Co) alloys could be sintered at a lower temperature and still retained their excellent mechanical properties. - Graphical abstract: The following figure shows the fracture morphology of the WC–(Fe–Ni–Co) and WC–Co specimens by means of high-magnification SEM after the K{sub IC} tests. Fig. a shows that numerous binder phases (Fe–Ni–Co) existed in the crack areas, which resisted the penetration and extension of the cracks. Due to the bridging effect of the binder phase, the stress concentration of the crack tip will be resolved through plastic deformation; thus, the cracks did not continue to extend. Once the deformation reaches a critical value, the crack propagation occurs. Meanwhile, the binder phase can link together the two crack faces through the bridging process. Although parts of the cracked areas also showed the bridging effect in the WC–Co specimens, as shown by the arrows (Fig. b), the crack propagation path was not obviously affected. This result corresponds to the tortuosity phenomenon. Consequently, the bridging process

  6. Femtosecond Laser Fabricate Wetting FunctionMicro-and Nanostructure on Aerial Aluminum Alloys Surface%飞秒激光制备航空用铝靶材表面润湿功能微纳结构的研究

    Institute of Scientific and Technical Information of China (English)

    吴先福; 白弋枫; 赵洪波; 周文彬; 陶海岩

    2016-01-01

    Over the years,aircraft's wetting function surface anti-icing technology receives much concern because of its many advantages such as not consuming energy and almost no additional volume and quality. Aluminum alloy has been used in civil aircraft widely, especially in shell and skeleton of aircraft. However, the wetting characteristics of original shell's surface don't have an excellent performance. It can effectively change the wetting properties of the surface by femtosecond laser-induced micro- and nanostructures preparation technology. In this paper, we prepared two kinds of typical micro- and nano-multiple structures. Experimental results show that, columnar micro- and nanostructures can achieve the super-hydrophobic surface property caused by the air provided by special double size multi-structure. More-over, trench like micro- and nanostructures make the surface show the super-hydrophilic properties powered by the open cavity capillary effect, and have orientation water delivery function. The realization of these wetting functions has important significance in application for the development of spacecraft anti-icing technology.%近年来,飞行器润湿功能外壳防冰技术以其不消耗能源、几乎不增加额外体积和质量等优点备受世界各国科学家及工程师的关注.铝合金材料一直广泛的应用于民用飞行器,特别是飞机外壳和骨架,然而原有外壳材料表面润湿特性表现中庸.通过飞秒激光微纳结构制备技术,可以有效改变其表面的润湿特性.利用飞秒激光在不同实验条件下,制备了两种典型的微纳复合结构,实验结果表明,柱型微纳结构以独特的双尺寸复合结构所提供的空气气模实现了表面超疏水特性.而沟槽型微纳结构以开放腔毛细管效应为原动力,使其展现了超亲水特性,并具备定向输水功能.这些润湿功能的实现对航空飞行器防冰技术的发展有着重要的应用意义.

  7. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    Science.gov (United States)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  8. The effect of temperature and strain rate on elongation to failure in nanostructured Al-0.2wt% Zr alloy fabricated by ARB process

    Directory of Open Access Journals (Sweden)

    Hanieh Solouki

    2015-12-01

    Full Text Available A nano/ultra-fine grain Al-0.2wt% Zr alloy was produced by accumulated roll bonding (ARB processafter 10 cycles. The fraction of high angle grain boundaries increased from 8% to 65.4% during 10passes during ARB process. This alloy was subjected to tensile test at different temperatures (523,573and 623 K and strain rates (0.1 and 0.01 s-1. The optimum condition of temperature and strain rate of623k and 0.01s-1 was achieved for maximum elongation to failure, leading to 100% elongation,although maximum elongation was achieved at higher strain rate and maximum chosen temperature.In fracture surfaces after the test, dimples in higher temperature were deeper, bigger, and longer thanlow temperature. Because of presenting the superplasticity character at elevated temperature andhigher strain rate, there was no evidence of necking after failure.

  9. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  10. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering.

    Science.gov (United States)

    Surmeneva, M A; Tyurin, A I; Mukhametkaliyev, T M; Pirozhkova, T S; Shuvarin, I A; Syrtanov, M S; Surmenev, R A

    2015-06-01

    The structure, composition and morphology of a radio-frequency (RF) magnetron sputter-deposited dense nano-hydroxyapatite (HA) coating that was deposited on the surface of an AZ31 magnesium alloy were characterized using AFM, SEM, EDX and XRD. The results obtained from SEM and XRD experiments revealed that the bias applied during the deposition of the HA coating resulted in a decrease in the grain and crystallite size of the film having a crucial role in enhancing the mechanical properties of the fabricated biocomposites. A maximum hardness of 9.04 GPa was found for the HA coating, which was prepared using a bias of -50 V. The hardness of the HA film deposited on the grounded substrate (GS) was found to be 4.9 GPa. The elastic strain to failure (H/E) and the plastic deformation resistance (H(3)/E(2)) for an indentation depth of 50 nm for the HA coating fabricated at a bias of -50 V was found to increase by ~30% and ~74%, respectively, compared with the coating deposited at the GS holder. The nanoindentation tests demonstrated that all of the HA coatings increased the surface hardness on both the microscale and the nanoscale. Therefore, the results revealed that the films deposited on the surface of the AZ31 magnesium alloy at a negative substrate bias can significantly enhance the wear resistance of this resorbable alloy.

  11. Structural Evolution and Phase Stability of Hume-Rothery Phase in a Mechanically Driven Nanostructured Ag-15 at. pct Sn Alloy

    Science.gov (United States)

    Chithra, S.; Malviya, K. D.; Chattopadhyay, K.

    2013-10-01

    The paper reports phase evolution in mechanically driven Ag-15 at. pct Sn alloy powder starting with elemental powders in order to establish the feasibility of designing nanocomposites of a Ag-Sn solid solution. This alloy lies in the phase field of the hexagonal ζ-phase which is a well-known Hume-Rothery electron compound with an electron-to-atom ratio of about 1.45 and hexagonal crystal structure (a = 0.2966 nm, c = 0.4782 nm). Through a systematic use of X-ray diffraction and transmission electron microscopy, the results establish the formation of the ζ-phase which co-exists with the Ag solid solution during the initial phase of milling. Mechanical milling for long duration (55 hours) destabilizes the ζ-phase. A complete solid solution of Ag with a grain size of ~8 nm could be achieved after 60 hours of milling. Additional milling can induce decomposition of the solid solution that results in a reappearance of ζ-phase. We present a detailed thermodynamic calculation which indicates that complete Ag solid solution of the present alloy composition would be possible if the crystallites size can be reduced below a certain critical size. In particular, we show that both Ag and ζ-phase grain sizes need to be taken into account for determining the metastable equilibrium and the phase change that has been experimentally observed. Finally, we argue that recrystallization processes set a limit to the achievable size of the nanoparticles with metastable Ag solid solution.

  12. Microstructure and magnetic properties of nanostructured (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} alloy produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, N. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Laggoun, A. [UR-MPE, M' hamed Bougara University, Boumerdes 35000 (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Souami, N. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399 Alger-Gare, Algiers (Algeria); Gorria, P. [Department of Physics and IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Bourzami, A. [Laboratoire d' Etudes des Surfaces et Interfaces des Matériaux Solides (LESIMS), Université Sétif1, 19000 Sétif (Algeria); Lenoble, O. [Institut Jean Lamour, CNRS-Université de Lorraine, Boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy (France)

    2015-07-01

    We report on how the microstructure and the silicon content of nanocrystalline ternary (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} powders (x=0, 5, 10, 15 and 20 at%) elaborated by high energy ball milling affect the magnetic properties of these alloys. The formation of a single-phase alloy with body centred cubic (bcc) crystal structure is completed after 72 h of milling time for all the compositions. This bcc phase is in fact a disordered Fe(Al,Si) solid solution with a lattice parameter that reduces its value almost linearly as the Si content is increased, from about 2.9 Å in the binary Fe{sub 80}Al{sub 20} alloy to 2.85 Å in the powder with x=20. The average nanocrystalline grain size also decreases linearly down to 10 nm for x=20, being roughly half of the value for the binary alloy, while the microstrain is somewhat enlarged. Mössbauer spectra show a sextet thus suggesting that the disordered Fe(Al,Si) solid solution is ferromagnetic at room temperature. However, the average hyperfine field diminishes from 27 T (x=0) to 16 T (x=20), and a paramagnetic doublet is observed for the powders with higher Si content. These results together with the evolution of both the saturation magnetization and the coercive field are discussed in terms of intrinsic and extrinsic properties. - Highlights: • Single-phase nanocrystalline (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} (x=0, 5, 10, 15 and 20 at%) powders were successfully fabricated by mechanical alloying for a milling time of 72 h. • The insertion of Si atoms leads to a unit-cell contraction and a decrease in the average crystallite size. • The hyperfine and magnetic properties of (Fe{sub 0.8}Al{sub 0.2}){sub 100–x}Si{sub x} were influenced by the Si content.

  13. Reaction mechanism in high Nb containing TiAl alloy by elemental powder metallurgy

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hang; LIN Jun-pin; HE Yue-hui; WANG Yan-li; LIN Zhi; CHEN Guo-liang

    2006-01-01

    High Nb containing TiAl alloy was fabricated in argon atmosphere by reactive hot pressing process. Reaction mechanism was investigated by means of microstructural analyses and thermodynamic calculations. The results show that it is feasible to prepare high Nb containing TiAl alloy with fine lamellar colonies by reactive hot pressing process. The reaction between Ti and Al powders is dominant in Ti-Al-Nb system. Nb powders dissolve into the Ti-Al matrix by diffusion. Pore nests are formed in situ after Nb powders diffusion. The hot pressing atmosphere is optimized by thermodynamic calculations. Vacuum or argon protective atmosphere should be adopted.

  14. Moessbauer and X-ray diffraction studies of nanostructured Fe{sub 70}Al{sub 30} powders elaborated by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Kezrane, M., E-mail: mohamedkezrane@yahoo.fr [LMP2M Laboratory, University of Medea, (26000) (Algeria); Guittoum, A. [Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, BP 399, Algiers (Algeria); Boukherroub, N.; Lamrani, S. [LMMC, M' hamed Bougara University, Boumerdes, 35000 (Algeria); Sahraoui, T. [Laboratory of Materials and Surface Treatments, LTSM, University of Saad Dahleb Blida, BP. 270 route de Soumaa, Blida (09000) (Algeria)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nanocrystalline Fe{sub 70}Al{sub 30} powders were successfully elaborated by mechanical alloying. Black-Right-Pointing-Pointer The Moessbauer spectra show that from 4 h of milling, a disordered ferromagnetic. Black-Right-Pointing-Pointer Fe{sub 70}Al{sub 30} starts to form and dominates after 36 h. - Abstract: We have studied the effect of milling time on the structural and hyperfine properties of Fe{sub 70}Al{sub 30} compound elaborated by mechanical alloying. The elaboration was performed with a vario-planetary ball mill P4 at different milling times. The milled powders were characterized by X-ray diffraction (XRD) and Moessbauer spectroscopy. From XRD diffraction spectra, we show that the bcc Fe(Al) solid solution was completely formed after 27 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases and the mean level of microstrains increases. The analysis of Moessbauer spectra shows that from 4 h of milling, a disordered ferromagnetic Fe{sub 70}Al{sub 30} starts to form and dominates after 36 h.

  15. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  16. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  17. Large adiabatic temperature change in magnetoelastic transition in Ni50Mn35Cr2Sn13 Heusler alloy of granular nanostructure

    Science.gov (United States)

    Prakash, H. R.; Sharma, S. K.; Ram, S.; Chatterjee, S.

    2016-05-01

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔSM←A = 4.428 J/kg-K (ΔSM→A = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1Oe coercivity.

  18. Metallic glass nanostructures of tunable shape and composition.

    Science.gov (United States)

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J; Schroers, Jan

    2015-04-22

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

  19. Application of Al Powder on High Burning-rate AP/CMDB Propellants%Al 粉在高燃速 AP/CMDB 推进剂中的应用

    Institute of Scientific and Technical Information of China (English)

    邓重清; 蔚红建; 张正中

    2015-01-01

    The heat of combustion,combustion performance and thermal decomposition characteristics of AP/CMDB propellants containing Al powder with different granularity and content were researched by using calorimeter, burning rate measurement and PDSC,respectively.The results indicate that the heat of detonation is proportional to the content of Al powder.The Al powder content in the rang of 0 - 8% (mass fraction)has less effect on the combustion performance of propellants.As the granularity of Al powder decreases from 14μm to 5μm,the heat of combustion decreases by 40J/g and the heat of exothermic decomposition increases by 107J/g,the burning rates in the pressure range of 7 - 10 MPa increase by 1 - 1.8 mm/s and the pressure exponent in the pressure range of 7-22 MPa decreases from 0.56 to 0.50.As the granularity of Al powder (mass fraction of 3% )decreases to 150nm,the heat of detonation decreases by 93 J/g and the heat of exothermic decomposition increases by 343 J/g,the burning rates in the pressure rang of 18-22 MPa increase by 2-3 mm/s.%采用量热仪、燃速仪、PDSC 分别研究了含不同粒度和含量 Al 粉的高燃速 AP/CMDB 推进剂的爆热、燃烧性能与热分解特性。结果表明,推进剂爆热与 Al 粉的含量成正比;Al 粉质量分数为0~8%时,对推进剂燃烧性能无明显影响;Al 粉粒度由14μm 减小至5μm 时,推进剂爆热降低40 J/g,热分解放热量增加107 J/g,7~10 MPa 压强下推进剂燃速提高1~1.8 mm/s,7~22 MPa 下压强指数由0.56降至0.50;当 Al 粉(质量分数3%)粒度减小为150 nm 时,推进剂的爆热降低93 J/g,热分解放热量增加343 J/g,18~22 MPa 压强下的燃速提高2~3 mm/s。

  20. Finite size effects and spin transition in ball-milled {gamma}-(FeMn){sub 30}Cu{sub 70} nanostructured alloys

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, J. [Grupo de Estado Solido, Instituto de Fisica, Universidad de Antioquia, A. A. 1226, Medellin (Colombia)]. E-mail: jrestre@fisica.udea.edu.co; Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, 72085 Le Mans, Cedex 9 (France); Gonzalez, J.M. [Instituto de Magnetismo Aplicado, P.O. Box 155. 28230 Las Rozas, Madrid (Spain)

    2004-12-31

    Fe{sub 15}Mn{sub 15}Cu{sub 70} alloys were prepared by high-energy ball milling over a wide range of grinding times from 15 min to 72 h. The corresponding magnetic properties were followed by means of vibrating sample magnetometry, magnetic susceptibility and Moessbauer spectroscopy. By using a Rietveld structural analysis of high-resolution X-ray diffraction data, lattice parameter and grain size correlations with magnetization and coercive force were carried out. Results revealed a strong microstructural dependence of the magnetic properties with the grain size, resembling a finite size-driven magnetic transition at a critical crystallite value of around 8.5 nm. This behavior is endorsed by a partial low- to high-spin transition according to isomer shift results, at a critical unit-cell volume of around 50 A{sup 3} at 77 K attributed to strong local variations of the interatomic spacing as a consequence of the employed ball-milling procedure. Finally, as concerns to temperature behavior, samples exhibited a freezing temperature at around 61 K and a wide distribution of relaxation times ascribed to the presence of interacting CuMn and FeMnCu clusters.

  1. Nanostructured photovoltaics

    Science.gov (United States)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  2. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  3. Nanostructured systems with GMR behaviour

    CERN Document Server

    Bergenti, I; Savini, L; Bonetti, E; Bosco, E; Baricco, M

    2002-01-01

    Fe/Fe-oxide core-shell systems obtained by inert-gas condensation and Au sub 8 sub 0 Fe sub 2 sub 0 nanostructured alloys prepared by fast-quenching techniques followed by thermal treatment have been studied by polarised small-angle neutron scattering (SANS). The particle-size distribution was derived from the fit of the scattering curves. In the core-shell samples, the results support the model of a magnetic iron core surrounded by a surface layer (oxide shell) with a reduced magnetisation. The SANS measurements on the Au sub 8 sub 0 Fe sub 2 sub 0 alloys do not show any appreciable magnetic signal, indicating that the iron precipitates have a superparamagnetic behaviour. Thermal treatment induces the formation of small precipitates of atomic size. (orig.)

  4. Nanostructured systems with GMR behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I.; Deriu, A. [Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita di Parma (Italy); Savini, L.; Bonetti, E. [Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universita di Bologna (Italy); Bosco, E.; Baricco, M. [Dipartimento di Chimica I.F.M. and Istituto Nazionale per la Fisica della Materia, Universita di Torino (Italy)

    2002-07-01

    Fe/Fe-oxide core-shell systems obtained by inert-gas condensation and Au{sub 80}Fe{sub 20} nanostructured alloys prepared by fast-quenching techniques followed by thermal treatment have been studied by polarised small-angle neutron scattering (SANS). The particle-size distribution was derived from the fit of the scattering curves. In the core-shell samples, the results support the model of a magnetic iron core surrounded by a surface layer (oxide shell) with a reduced magnetisation. The SANS measurements on the Au{sub 80}Fe{sub 20} alloys do not show any appreciable magnetic signal, indicating that the iron precipitates have a superparamagnetic behaviour. Thermal treatment induces the formation of small precipitates of atomic size. (orig.)

  5. Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures.

    Science.gov (United States)

    Borchers, C; Müller, S; Stichtenoth, D; Schwen, D; Ronning, C

    2006-02-02

    Vapor-liquid-solid is a well-established process in catalyst guided growth of 1-D nanostructures, i.e., nanobelts and nanowires. The catalyst particle is generally believed to be in the liquid state during growth, and is the site for impinging molecules. The crystalline structure of the catalyst may not have any influence on the structure of the grown nanostructures. In this work, using Au guided growth of ZnO, we show that the interfaces between the catalyst droplet and the nanostructure grow in well-defined mutual crystallographic relationships. The nanostructure defines the crystallographic orientation of the solidifying Au droplet. Possible alloy, intermetallic, or eutectic phase formation during catalysis are elucidated with the help of a proposed ternary Au-Zn-O phase diagram.

  6. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  7. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    Science.gov (United States)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  8. Review of effect of different substituting elements on the properties and nanostructures of FINEMET alloy%不同合金元素对FINEMET合金的性能和纳米结构的影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈智慧; 严彪

    2009-01-01

    随着世界范围内对高性能软磁材料的需求日益增加,添加不同合金元素的FINEMET合金的性能及其纳米结构的研究近年来引起了广大科研工作者的兴趣.本文回顾了不同合金元素对软磁合金材料的纳米结构和性能的影响的研究进展,并讨论了不同热处理工艺对合金软磁性能的影响.要更进一步的降低成本和提高材料性能,我们必须对合金成分,合金制备方法及热处理工艺进行优化.%The research on the properties and structures of FINEMET alloy with different addictive ele-ments has attracted a lot of interest worldwide due to the increased demand of high quality soft magnetic materials. The effect of the different substituting alloying elements on the properties and nanostructures of FINEMET alloy has been reviewed in this article. The influence of different heat treatment methods and varied additions of alloy elements on soft magnetic properties of F1NEMET alloy has also been discussed in the article. In order to further reduce the cost and improve the performance, properly designing of composition and heat treatment are required.

  9. DNA nanostructure meets nanofabrication.

    Science.gov (United States)

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  10. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    Science.gov (United States)

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  11. Effect of Applied Pressure on the Joining of Combustion Synthesized Ni3Al Intermetallics with Al Alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We focused on the surface reinforcement of ligth weight casting alloys with Ni-Al intermetallic compounds by in-situ combustion reaction to improve the surface properties of non-ferrous casting components. In our previous works, green compact of elemental Ni and Al powders were reacted to form Ni3Al intermetallic compound by SHS (Self-propagating high temperature synthesis) reaction with the heat of molten Al alloy and simultaneously bonded with Al casting alloy. But some defects such as tiny cracks and porosities were remained in the reacted compact. So we applied pressure to prevent thermal cracks and fill up the pores with liquid Al alloy by squeeze casting process. The compressed Al alloy bonded with the Ni3Al intermetallic compound was sectioned and observed by optical microscopy and scanning electron microscopy (SEM). The stoichiometric compositions of the intermetallics formed around the bonded interface and in the reacted compact were identified by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA).Si rich layer was formed on the Al alloy side near the bonded interface by the sequential solidification of Al alloy. The porosities observed in the reacted Ni3Al compact were filled up with the liquid Al alloy. The Si particles from the molten Al alloy were detected in the pores of reacted Ni3Al intermetallic compact. The Al casting alloy and Ni3Al intermetallic compound were joined very soundly by applying pressure to the liquid Al alloy.

  12. Synthesis of bulk nanostructured aluminum containing in situ crystallized amorphous particles

    Science.gov (United States)

    Zhang, Zhihui

    5083 Al containing in situ crystallized Al85Ni10La 5 amorphous particles (10% and 20% in volume fraction) was synthesized through a powder metallurgy route consisting of cold isostatic pressing, degassing and hot extrusion. The nanostructured 5083 Al powders (grain size ˜28 nm) were produced through mechanical milling in liquid nitrogen. The Al 85Ni10La5 powders were produced via gas atomization using helium gas and the fraction in the size range of compressive fracture strength of the as-extruded 10% and 20% Al85Ni10La5 composites were determined to be 1025 MPa and 837 MPa, respectively. The influence of secondary processing, i.e., swaging, following extrusion on the mechanical behavior was also studied. The coarse grain formation in cryomilled 5083 Al during the thermomechanical process was discussed and it was evident that grain rotation and coalescence played an important role in the overall mechanism.

  13. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  14. Positive effect of hydrogen-induced vacancies on mechanical alloying of Fe and Al

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Lukáč, F.; Procházka, I.; Vlček, M. [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Jirásková, Y. [Institute of Physics of Materials, AS CR, Žižkova 22, CZ-616 62 Brno (Czech Republic); Švec, P.; Janičkovič, D. [Institute of Physics, Slovak Academy of Science, Dúbravská cesta 9, 84511 Bratislava (Slovakia)

    2015-04-25

    Highlights: • Fe{sub 82}Al{sub 18} nano-powders were prepared by ball milling and mechanical alloying. • Full mechanical alloying of Fe–Al was achieved using hydrogen atmosphere. • Hydrogen segregating at vacancies enhances vacancy concentration in Fe–Al. • Hydrogen-induced vacancies facilitate diffusion of Al atoms into Fe grains. • Nitrogen inhibits Fe–Al alloying by formation of a nitride layer on Fe grains. - Abstract: Nanocrystalline Fe{sub 82}Al{sub 18} powders were prepared by high energy ball milling in various atmospheres. Two preparation techniques were compared: (i) mechanical milling of pre-alloyed Fe{sub 82}Al{sub 18} pieces and (ii) mechanical alloying of pure Fe and Al powders. Single phase Fe{sub 82}Al{sub 18} nano-powder was formed by mechanical alloying in H{sub 2} atmosphere while milling in N{sub 2} or air environment suppressed mechanical alloying due to passivation of Fe surfaces. Positron annihilation spectroscopy revealed that mechanical alloying of Fe and Al in H{sub 2} atmosphere is mediated by hydrogen-induced vacancies.

  15. Hydrogen electrosorption into Pd-Cd nanostructures.

    Science.gov (United States)

    Adams, Brian D; Ostrom, Cassandra K; Chen, Aicheng

    2010-05-18

    Hydrogen-absorbing materials are crucial for both the purification and storage of hydrogen. Pd and Pd-based alloys have been studied extensively for their use as both hydrogen dissociation catalysts and hydrogen selective membrane materials. It is known that incorporating metal atoms of different sizes into the Pd lattice has a major impact on the hydrogen absorption process. In this paper, hydrogen electrosorption into nanostructured Pd-Cd alloys has been studied for different compositions of Cd that varied from 0 to 15 at. %. The low cost of Cd makes it an attractive material to combine with Pd for hydrogen sorption. A combination of chronoamperometry and cyclic voltammetric experiments was used to determine the ratio of the H/(Pd + Cd) and the kinetics of hydrogen sorption into these Pd-Cd alloys at different potentials. It was found that the maximum H/(Pd + Cd) value was 0.66 for pure Pd, and this decreased with increasing the amount of Cd. Also, the alpha (solid solution) to beta phase (metal hydride) hydrogen transition was determined to be the slowest step in the absorption process and was practically eliminated when an optimum amount of Cd atoms was doped (i.e., Pd-Cd(15%)). With increasing the amount of Cd, more hydrogen was absorbed into the Pd-Cd nanostructures at the higher potentials (the alpha phase region). The faster kinetics, along with the decrease in the phase transition of hydrogen sorption into the Pd-Cd nanostructures when compared to pure Pd, makes the Pd-Cd nanostructures attractive for use as a hydrogen dissociation catalytic capping layer for other metal hydrides or as a hydrogen selective membrane.

  16. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  17. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  18. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.

    Science.gov (United States)

    Pan, Anlian; Liu, Ruibin; Sun, Minghua; Ning, Cun-Zheng

    2009-07-15

    We used an improved cothermal evaporation route for the first time to achieve quaternary semiconductor nanostructured alloys, using an example of Zn(x)Cd(1-x)S(y)Se(1-y) nanobelts. The PL (bandgap) of these as-grown nanostructured alloys can be continuously tunable across the entire visible spectrum through experimentally controlling their compositions. Such widely controlled alloy nanostructures via composition/light emission provide a new material platform for applications in wavelength-tunable lasers, multicolor detectors, full-spectrum solar cells, LEDs, and color displays.

  19. Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

    Science.gov (United States)

    Lee, Jin-Yeon; Kwak, Da-Hee; Lee, Young-Woo; Lee, Seul; Park, Kyung-Won

    2015-04-14

    The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases. The improved electrocatalytic activity for the electro-oxidation reactions of methanol and formic acid as chemical fuels might be attributed to the cubic alloy nanostructures. Furthermore, the cubic PtPd alloy nanoparticles as electrocatalysts exhibit excellent stability for electro-oxidation reactions.

  20. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  1. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  2. The effect of alloying method on the structure and properties of sintered stainless steel

    Directory of Open Access Journals (Sweden)

    Dudek A.

    2017-03-01

    Full Text Available Sintered duplex stainless steels (SDSSs appear to be very interesting and promising materials that can be used in many industrial sectors. Ferrite improves material strength while austenite increases hardness and corrosion resistance. This study proposes a method to improve functional properties (e.g. hardness and wear resistance by means of alloying the surface of the sintered duplex steel with Cr3C2 + 10% NiAl powder. The results of optical microscope metallography, SEM/EDX, XRD analysis and microhardness and wear resistance measurements are also presented. The surface alloying with Cr3C2 is a manufacturing method of surface layer hardening in sintered stainless steels and modification of surface layer properties such as hardness and coefficient of friction.

  3. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Materials and Metallurgical Engineering Department, NIFFT, Ranchi 834003 (India); Mahesh, B.V. [Department of Mechanical and Aerospace Engineering, Monash University (Australia); Atwater, M.A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Chan, T.E.; Scattergood, R.O.; Koch, C.C. [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-03-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models.

  4. Structure and magnetic properties of nanostructured Ni{sub 0.77}Fe{sub 0.16}Cu{sub 0.05}Cr{sub 0.02} (Mumetal) powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K.S. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue S639798 (Singapore); Gheisari, Kh. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)], E-mail: ahledel227@yahoo.com; Oh, J.T. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue S639798 (Singapore); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, 7134851154 (Iran, Islamic Republic of)

    2009-02-15

    Ni-Fe based alloy powders are interesting materials for their application as soft magnetic material with low coercivity and high permeability. In this study, nanocrystalline Ni{sub 0.77}Fe{sub 0.16}Cu{sub 0.05}Cr{sub 0.02} (Mumetal) alloy powders were synthesized by mechanical alloying process using planetary high-energy ball mill under argon atmosphere. The alloy formation and different physical properties were studied as a function of milling time (h), ranging from 0 h to 96 h, using X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and the vibrating sample magnetometer (VSM). The complete phase formation of {gamma}-(Fe, Ni, Cu, Cr) is observed after 12 h milling time. Powder morphology at different stages was examined by SEM and different particle shape was observed. Saturation magnetization and coercivity derived from the hysteresis curves are discussed as a function of milling time and showed that saturation magnetization increases and coercivity decreases with milling time. Increase in milling time, led to reduction in crystallite size and increase in lattice parameter , thus inducing a higher magnetization and lower coercitivity.

  5. Nanostructured zirconia layers as thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Radu Robert PITICESCU

    2011-09-01

    Full Text Available The coatings obtained by thermal spray are used both as antioxidant and connection materials (e.g. MCrAlY type alloys as well as thermal barrier coatings (e.g. partially stabilized zirconia oxide with yttria oxide. This paper studies the characteristics of the coatings obtained with nanostructured powders by thermal spraying and air plasma jet metallization. Testing of coatings is done against the most disturbing factor, thermal shock. Structural changes occurring after thermal shock tests are highlighted by investigations of optical and electronic microscopy. The results obtained after quick thermal shock show a good morphological and surface behavior of the developed coatings.

  6. CdTe nano-structures for photovoltaic devices

    OpenAIRE

    Corregidor, V.; Alves, L. C.; FRANCO, N.; Barreiros, Maria Alexandra; Sochinskii, N. V.; Alves, E

    2013-01-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orient...

  7. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    Science.gov (United States)

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  8. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Eiselt, Ch.Ch., E-mail: charles.eiselt@imf.fzk.de [Forschungszentrum Karlsruhe/IMF I, P.O. Box 3640, 72061 Karlsruhe (Germany); Klimenkov, M.; Lindau, R.; Moeslang, A. [Forschungszentrum Karlsruhe/IMF I, P.O. Box 3640, 72061 Karlsruhe (Germany); Odette, G.R., E-mail: odette@engineering.ucsb.edu [Materials Department University of California, Santa Barbara, CA 93106 (United States); Yamamoto, T.; Gragg, D. [Materials Department University of California, Santa Barbara, CA 93106 (United States)

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y{sub 2}O{sub 3} reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y{sub 2}0{sub 3} and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  9. Research Progress of Nanostructured Nickel-based Alloy Coatings Prepared by Pulsed Electrodeposition%脉冲电沉积纳米镍基合金镀层的研究现状

    Institute of Scientific and Technical Information of China (English)

    梁平; 张云霞; 史艳华

    2011-01-01

    概述了国内外近些年采用脉冲电沉积方法制备的纳米镍、纳米镍基二元和多元合金镀层、纳米镍基复合镀层的研究现状,并指出了今后脉冲电沉积纳米镀层的发展趋势.%The current status of nickel alloy coatings prepared by pulsed electrodeposition method,especially the research progress of nonoscaled nickel coating, nickel-based alloys and composite coating was reviewed. The further development tendency of the pulsed electrodeposition is also prospected.

  10. Thermal stability of nanostructured aluminum powder synthesized by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, Hamid, E-mail: habdoli@alum.sharif.edu [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ghanbari, Mohsen [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Baghshahi, Saeid [Department of Materials Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2011-08-25

    Highlights: {yields} Thermal stability of nanostructured Al was investigated using DSC curves. {yields} Three kinds of peaks were determined: strain relaxation, grain growth and melting. {yields} A temperature (T{sub c}) was defined at which grain size transformed to unstable status. {yields} Above T{sub c}, hardness was dropped significantly with respect to Hall-Petch relation. - Abstract: The thermal stability of nanostructured aluminum powder synthesized by high energy milling was studied through isothermal annealing at high temperatures for various times. Strain relaxation and grain growth of milled powders were studied at different milling times by differential scanning calorimetry (DSC). The results showed a high level of stored enthalpy due to milling procedure. After 25 h milling, powder particles reached a steady state with equiaxed morphology and 90 nm crystallite size in average. Isothermal grain growth kinetics of nanocrystalline Al powder was investigated using X-ray diffraction (XRD). A critical temperature ({approx}0.8 of melting point) was distinguished at which a considerable increase was observed in the grain size. At below this temperature, the mean grain size remains almost stable for long annealing times due to small amounts of interstitial and substitutional impurities. However, grain growth was pronounced significantly depending on settling time above it. Stability of powder hardness after annealing was evaluated by micro-indentation. The results revealed a down-shift of the hardness beyond the critical temperature.

  11. 大塑性变形纳米结构Al-Mg合金中的形变缺陷和电子辐照效应%Deformation defects and electron irradiation effect in nanostructured A1-Mg alloy processed by severe plastic deformation

    Institute of Scientific and Technical Information of China (English)

    刘满平; 孙少纯; Hans J.ROVEN; 于瀛大; 张桢; Maxim MURASHKIN; Ruslan Z.VALIEV

    2012-01-01

    为澄清大塑性变形纳米结构Al-Mg合金中形变缺陷形成的本质,采用高分辨透射电子显微镜(HRTEM)研究电子辐照对高压扭转合金中面缺陷形成的影响.结果表明:对已有高密度面缺陷的HRTEM图像,经电子束照射一段时间后,这些面缺陷会完全消失;而在没有缺陷的HRTEM图像区域进行电子辐照,即使电子束的照射提高到足以在该区域击出孔洞,整个过程均未观察到任何晶格缺陷.因此,高压扭转合金中的面缺陷主要来源于极度的塑性变形,而与HRTEM观察过程中的电子辐照效应无关.%In order to explore the exact nature of deformation defects previously observed in nanostructured A1-Mg alloys subjected to severe plastic deformation,a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM).The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time.At the same time,lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas.Therefore,it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.

  12. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  13. Present and future applications of magnetic nanostructures grown by FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Teresa, J.M. de [CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Aragon (ICMA), Saragossa (Spain); Universidad de Zaragoza, Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Saragossa (Spain); Fernandez-Pacheco, A. [University of Cambridge, TFM Group, Cavendish Laboratory, Cambridge (United Kingdom)

    2014-12-15

    Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems. (orig.)

  14. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  15. Stabilizing nanostructures in metals using grain and twin boundary architectures

    Science.gov (United States)

    Lu, K.

    2016-05-01

    Forming alloys with impurity elements is a routine method for modifying the properties of metals. An alternative approach involves the incorporation of interfaces into the crystalline lattice to enhance the metal's properties without changing its chemical composition. The introduction of high-density interfaces in nanostructured materials results in greatly improved strength and hardness; however, interfaces at the nanoscale show low stability. In this Review, I discuss recent developments in the stabilization of nanostructured metals by modifying the architectures of their interfaces. The amount, structure and distribution of several types of interfaces, such as high- and low-angle grain boundaries and twin boundaries, are discussed. I survey several examples of materials with nanotwinned and nanolaminated structures, as well as with gradient nanostructures, describing the techniques used to produce such samples and tracing their exceptional performances back to the nanoscale architectures of their interfaces.

  16. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    Science.gov (United States)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  17. Oxidation resistance of the nanostructured YSZ coating on the IN-738 superalloy

    Directory of Open Access Journals (Sweden)

    Ahmad Keyvani

    2014-12-01

    Full Text Available Conventional and nanostructured YSZ coatings were deposited on the IN-738 Ni super alloy by the atmospheric plasma spray technique. The oxidation was measured at 1100°C in an atmospheric electrical furnace. According to the experimental results the nanostructured coatings showed a better oxidation resistance than the conventional ones. The improved oxidation resistance of the nanocoating could be explained by the change in structure to a dense and more packed structure in this coating. The mechanical properties of the coatings were tested using the thermal cyclic, nanoindentation and bond strength tests, during which the nanostructured YSZ coating showed a better performance by structural stability.

  18. Dynamic Plastic Deformation (DPD): A Novel Technique for Synthesizing Bulk Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While some superior properties of nanostructured materials (with structural scales below 100 nm) have attracted numerous interests of material scientists, technique development for synthesizing nanostructured metals and alloys in 3-dimensional (3D) bulk forms is still challenging despite of extensive investigations over decades.Here we report a novel synthesis technique for bulk nanostructured metals based on plastic deformation at high Zener-Hollomon parameters (high strain rates or low temperatures), i.e., dynamic plastic deformation (DPD).The basic concept behind this approach will be addressed together with a few examples to demonstrate the capability and characteristics of this method. Perspectives and future developments of this technique will be highlighted.

  19. Nanostructured CNx (0

    NARCIS (Netherlands)

    Bongiorno, G; Blomqvist, M; Piseri, P; Milani, P; Lenardi, C; Ducati, C; Caruso, T; Rudolf, P; Wachtmeister, S; Csillag, S; Coronel, E

    2005-01-01

    Nanostructured CNx thin films were prepared by supersonic cluster beam deposition (SCBD) and systematically characterized by transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The incorporat

  20. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  1. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    Science.gov (United States)

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented.

  2. RESEARCH OF THE INFLUENCE NANOMODIFICATION ON THE STRUCTURE AND PROPERTIES OF ZINC ANTIFRICTION ALLOYS

    Directory of Open Access Journals (Sweden)

    F. Rudnicki

    2015-01-01

    Full Text Available This article describes technology of producing of antifriction alloys of zinc–aluminum–copper composition. The effect of modification by nanostructured materials in forming structures of antifriction alloys in the manufacture of heavy-duty plain bearing liners was examined.

  3. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R V Ramanujan

    2003-02-01

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic materials are provided. Advantages of nanocrystalline magnetic materials in the context of both materials and devices are discussed. Several high technology examples of the use of nanostructured magnetic materials are presented. Methods of processing nanostructured materials are described and the examples of sol gel, rapid solidification and powder injection moulding as potential processing methods for making nanostructured materials are outlined. Some opportunities and challenges are discussed.

  4. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation.

    Science.gov (United States)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Yu, Sijia; Chen, Junze; Liao, Yusen; Xue, Can

    2015-06-08

    Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems.

  5. Nanostructures having high performance thermoelectric properties

    Science.gov (United States)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  6. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    Science.gov (United States)

    Mukhtarov, Sh; Ermachenko, A.

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL® alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of γ-phase grains with disperse precipitations of γ"-phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of δ-phase, primarily along grain boundaries. In the duplex (γ+δ) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  7. Selective Functionalization of Tailored Nanostructures

    NARCIS (Netherlands)

    Slingenbergh, Winand; Boer, Sanne K. de; Cordes, Thorben; Browne, Wesley R.; Feringa, Ben L.; Hoogenboom, Jacob P.; Hosson, Jeff Th.M. De; Dorp, Willem F. van

    2012-01-01

    The controlled positioning of nanostructures with active molecular components is of importance throughout nanoscience and nanotechnology. We present a novel three-step method to produce nanostructures that are selectively decorated with functional molecules. We use fluorophores and nanoparticles to

  8. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  9. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  10. Nanostructured materials: A novel approach to enhanced performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others

    1996-05-01

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  11. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  12. Electrochemical hydriding and thermal dehydriding properties of nanostructured hydrogen storage MgNi26 alloy%纳米结构贮氢合金MgNi26的电化学氢化和热脱氢性能

    Institute of Scientific and Technical Information of China (English)

    V KNOTEK; O EKRT; M LHOTKA; D VOJTCH

    2016-01-01

    The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 °C for 240 min. The structures and phase compositions of the alloys were studied using optical microscopy and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. A temperature-programmed desorption technique was used to measure the absorbed hydrogen and study the dehydriding process. The content of hydrogen absorbed by the MgNi26-MA (approximately 1.3%, mass fraction) was 30 times higher than that of the MgNi26-GC. The MgNi26-RS sample absorbed only 0.1%of hydrogen. The lowest temperature for hydrogen evolution was exhibited by the MgNi26-MA. Compared with pure commercial MgH2, the decomposition temperature was reduced by more than 200 °C. The favourable phase and structural composition of the MgNi26-MA sample were the reasons for the best hydriding and dehydriding properties.%采用重力铸造(GC)、机械合金化(MA)和快速凝固(RS)3种工艺制备MgNi26合金。将所有样品在浓度为6 mol/L的KOH溶液中于80°C进行电化学氢化处理240 min。采用光学显微镜、扫描电镜、能量分散光谱及X射线衍射技术研究合金的组织和相组成。利用程序控温技术分析吸氢和脱氢过程。机械合金化法制备的MgNi26-MA合金样品所吸附的氢含量(约1.3%,质量分数)比重力铸造法制备的MgNi26-GC合金样品所吸附的氢含量高30倍。快速凝固法制备的MgNi26-RS合金样品所吸附的氢含量仅为0.1%。MgNi26-MA合金显示出最低的析氢温度。与工业纯MgH2相比,MgNi26-MA合金的分解温度至少降低了200°C。MgNi26-MA合金优异的氢化和脱氢性能归因于其有利的相组成和组织结构。

  13. Synthesis of porphyrin nanostructures

    Science.gov (United States)

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  14. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa [Yale Univ., New Haven, CT (United States); Fang, Fang [Yale Univ., New Haven, CT (United States); Iyyamperumal, Eswarmoorthi [Yale Univ., New Haven, CT (United States); Keskar, Gayatri [Yale Univ., New Haven, CT (United States)

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  15. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  16. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...... index of the nanostructured surfaces was estimated from atomic force micrographs and the theoretical reflectance was calculated using the transfer matrix method and effective medium theory. The measured reflectance shows good agreement with the theory of graded index antireflective nanostructures...

  17. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  18. Nanostructured Solar Cells.

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  19. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  20. A study on the effect of nano-precipitates on fracture behavior of nano-structured Al-2wt%Cu alloy fabricated by accumulative roll bonding (ARB process

    Directory of Open Access Journals (Sweden)

    Azad B.

    2016-01-01

    Full Text Available An Al-2wt%Cu alloy was subjected to accumulative roll bonding (ARB process up to a strain of 4.8. The two kinds of different microstructures, i.e, solution treated (ST one and 190°C pre-aged for 30 min (Aged, were prepared as the starting structures for the ARB process. The microstructures were studied by transmission electron microscope (TEM and electron backscattering diffraction (EBSD. The results showed that the fine precipitates having the average particle size of 16 nm were formed after aging process. On the other hand, the mean grain size of the ST-ARB and the Aged-ARB specimens reached to 650 nm and 420 nm, respectively. Study of the fracture surfaces were carried out by scanning electron microscope (SEM. The results indicated that at 0-cycle ARB, the specimens show dimples indicating the micro-void coalescence (MVC mechanism of ductile fracture. The average size of dimples was larger in the ST-ARB specimen compared to the Aged-ARB specimen. The fracture mode was transgranular cleavage fracture in the Aged-specimen. At 3- cycle and 6-cycle ARB, also the specimens showed cleavage facets and river lines, that the river lines or the stress lines are steps between cleavage or parallel planes, which are always converged in the direction of local crack propagation.

  1. Nanostructured intense-laser cleaner

    CERN Document Server

    Li, Xiao Feng; Kong, Qing; Wang, Ping Xiao; Yu, Qin; Gu, Yan Jan; Qu, Jun Fan

    2016-01-01

    A nanostructured target is proposed to enhance an intense-laser contrast: when a laser prepulse is injected on a nanostructured solid target surface, the prepulse is absorbed effectively by the nanostructured surface. The nanostructure size should be less than the laser wavelength. After the prepulse absorption, the front part of the main pulse destroys the microstructure and makes the surface a flat plasma mirror. The body of the main pulse is reflected almost perfectly. Compared with the plasma mirrors, the nanostructured surface is effective for the absorption of the intense laser prepulse, higher than 10^14 W/cm2. By the nanostructured laser cleaner, the laser pulse contrast increases about a hundredfold. The nanostructured laser cleaner works well for near-future intense lasers.

  2. Magnetic Nano-structures

    Institute of Scientific and Technical Information of China (English)

    姚永德

    2004-01-01

    Fabrication of magnetic nano-structures with dots array and wires has been paid attention recently due to the application of high-density magnetic recording. In this study, we fabricated the magnetic dots array and wires through several ways that ensure the arrangement of magnetic dots and wires to be the structures we designed. Their magnetic properties are studied experimentally.

  3. Atomically Traceable Nanostructure Fabrication.

    Science.gov (United States)

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  4. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was information (ESI) available. See DOI: 10.1039/c5nr06157a

  5. Complex WS 2 nanostructures

    Science.gov (United States)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  6. Langmuir Blodgett multilayers and related nanostructures

    Indian Academy of Sciences (India)

    S S Major; S S Talwar; R S Srinivasa

    2006-07-01

    Langmuir Blodgett (LB) process is an important route to the development of organized molecular layered structures of a variety of organic molecules with suitably designed architecture and functionality. LB multilayers have also been used as templates and precursors to develop nano-structured thin films. In this article, studies on the molecular packing and three-dimensional structure of prototypic cadmium arachidate (CdA), zinc arachidate (ZnA) and mixed CdA–ZnA LB multilayers are presented. The formation of semiconducting nano-clusters of CdS, ZnS and CdZn1−S alloys within the organic multilayer matrix, using arachidate LB multilayers as precursors is also discussed.

  7. Giant magnetoresistive nanostructured materials by electrodeposition

    Science.gov (United States)

    Myung, No Sang

    NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) electrodeposited by newly developed flow-through electrochemical reactor. Sub-micron (Ni)Cu and nano-size (CoFe)Cu granular alloys have been electrodeposited by magneto-electrodeposition method. These two methods eliminate the problems confronted by conventional methods and provide a new direction in fabrication of nanostructured materials by electrodeposition. Prior to fabrication of GMR materials, electrodeposition kinetics of individual metals (Co, NiFe, Cu) were studied. In Co electrodeposition and dissolution from sulfate bath, substrates have a great impact on the initial growth mode of film. On polycrystalline platinum metal, cobalt film grew in hemispherical shape (nodule) where it grew in right conical shape on amorphous glass carbon. In NiFe alloys electrodeposition, the effects of applied current density, solution composition, substrate and solution hydrodynamics on current efficiency, film composition, crystal structure, corrosion resistant, and magnetic properties of NiFe alloys from all-chloride and citrate-sulfate-chloride bath have been studied. Citrate ions enhance the anomalous codeposition phenomena in NiFe electrodeposition. In crystal structure studies on electrodeposited. NiFe, the narrow mixed phase solid region was noted around 50% Fe. In addition, the smallest grain size were also observed in that region. In corrosion studies, the maximum corrosion resistance was observed at 50% Fe in naturally aerated 0.5 M NaCl. In Ni/Cu and Co/Cu multilayers by single bath technique, the optimum deposition potential ranges of pure copper and nickel (cobalt) were determined to minimize copper codeposition during nickel (cobalt) deposition and to minimize cobalt dissolution during copper deposition. Well defined laminated NiFe/Cu and CoFe/Cu multilayers and NiFe compositional modulated alloys (CMA) were successfully electrodeposited by utilizing flow-through electrochemical

  8. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  9. Enabling factors toward production of nanostructured steel on an industrial scale

    Science.gov (United States)

    Branagan, D. J.

    2005-02-01

    Utilizing the existing properties of steel, a modern technological society has been constructed. While there are over 25,000 worldwide equivalent steels based on manipulating the eutectoid transformation, there exist only a handful of commercial nanostructured steel alloys based on manipulating the more complex glass devitrification transformation. Thus, research on nanostructured steels is in its infancy, and many further developments are expected with the demonstrated promise of developing new combinations of superior properties. In this article, seven enabling metallurgical factors are presented that ultimately allow a variety of nanostructured steel products to be produced in an ever-increasing array of industrial processing techniques. Additionally, a case example of the formation of nanostructured steel are given showing how these factors can be harnessed on an industrial scale.

  10. Self-catalytic crystal growth, formation mechanism, and optical properties of indium tin oxide nanostructures.

    Science.gov (United States)

    Liang, Yuan-Chang; Zhong, Hua

    2013-08-22

    In-Sn-O nanostructures with rectangular cross-sectional rod-like, sword-like, and bowling pin-like morphologies were successfully synthesized through self-catalytic growth. Mixed metallic In and Sn powders were used as source materials, and no catalyst layer was pre-coated on the substrates. The distance between the substrate and the source materials affected the size of the Sn-rich alloy particles during crystal growth in a quartz tube. This caused In-Sn-O nanostructures with various morphologies to form. An X-ray photoelectron spectroscope and a transmittance electron microscope with an energy-dispersive X-ray spectrometer were used to investigate the elemental binding states and compositions of the as-synthesized nanostructures. The Sn doping and oxygen vacancies in the In2O3 crystals corresponded to the blue-green and yellow-orange emission bands of the nanostructures, respectively.

  11. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    Science.gov (United States)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  12. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities

    Science.gov (United States)

    Zhang, Zhi-Cheng; Hui, Jun-Feng; Guo, Zhen-Guo; Yu, Qi-Yu; Xu, Biao; Zhang, Xin; Liu, Zhi-Chang; Xu, Chun-Ming; Gao, Jin-Sen; Wang, Xun

    2012-03-01

    Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts.Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr12135b

  13. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  14. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  15. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  16. Electrons in Nanostructures

    DEFF Research Database (Denmark)

    Flindt, Christian

    2007-01-01

    or a few electrons. Such few-electron devices are expected to form the building blocks of future electrical circuits and it is thus necessary to develop a thorough theoretical understanding of the physics of electrons in nanostructures. Re- garding applications there is a particular interest......-based communication. The statistical description of electron transport through nanostructures is based on rate equations, and the primary contribution of the thesis in that respect is the development of a method that allows for the calculation of the distribution of electrons passing through a device. The method......This thesis concerns theoretical aspects of electrons in man-made nanostruc- tures. Advances in nanofabrication technology during recent decades have made it possible to produce electrical devices on the nano-scale, whose func- tionality is determined by the quantum mechanical nature of a single...

  17. Hybrid phonons in nanostructures

    CERN Document Server

    Ridley, Brian K

    2017-01-01

    Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...

  18. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  19. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  20. 采用气雾化Zn-22%Al粉末挤压制造微型螺旋齿轮%Fabrication of miniature helical gears by powder extrusion using gas atomized Zn-22%Al powder

    Institute of Scientific and Technical Information of China (English)

    LEE Kyung-Hun; LEE Jung-Min; PARK Joon-Hong; KIM Byung-Min

    2012-01-01

    基于Zn-22%Al共析合金的超塑性,采用粉末挤压工艺制造微型螺旋齿轮,以减小成形压力和获得细小的显微组织.该螺旋齿轮的规格为:模数0.3,齿数1.2,螺旋角15°.将粉末压制坯通过烧结和固溶热处理进行致密化.致密化的坯料由层状和细晶状组织组成.在温度250°C,应变速率2.36×i0-3和1.18×10-1s-1的条件下对坯料进行挤压,并对挤压成形的螺旋齿轮的力学性能进行测试.%Powder extrusion,which is based on the superplastic behavior of Zn-22%A1 eutectoid alloy,was proposed to reduce the forming load and promises to provide fine microstructures in the manufacture of miniature helical gears.The specifications of the helical gears were as follows:module,0.3; number of teeth,12; and helix angle,15°.Compacted powders were consolidated by sintering and solution heat treatment.The consolidated billets consisted of lamellar and fine-grained microstructures.Extrusion experiments were carried out under the following conditions:temperature,250 °C; strain rates,2.36× 10ˉ3 sˉ1 and 1.18× 10-1 s- 1.The mechanical properties of the extruded helical gears were investigated by measurement of the Vickers hardness and extrusion load,and by scanning electron microscopy.

  1. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  2. Processing Nanostructured Structural Ceramics

    Science.gov (United States)

    2006-08-01

    aspects of the processing of nanostructured ceramics, viz. • • • The production of a flowable and compactable dry nanopowder suitable for use in... composition due to the different synthesis routes used. Therefore, ‘industry-standard’ dispersants can cause flocculation rather than dispersion...stabilised zirconia (3-YSZ) were no higher than for conventional, micron-sized material of the same composition . However, detailed crystallographic

  3. Characterization of Nanostructured Polymer Films

    Science.gov (United States)

    2014-12-23

    AFRL-OSR-VA-TR-2015-0059 Characterization of Nanostructured Polymer Films RODNEY PRIESTLEY TRUSTEES OF PRINCETON UNIVERSITY Final Report 12/23/2014...Report 3. DATES COVERED (From - To) 06/01/2012-08/31/2014 4. TITLE AND SUBTITLE Characterization of Nanostructured Polymer Films 5a. CONTRACT...properties is due to the film morphology, i.e., the films are nanostructured . The aim of this proposal was to understand the mechanism of film formation and

  4. Sonoelectrochemical Approach Towards Nanostructures

    Science.gov (United States)

    Burda, Clemens; Qiu, Xiaofeng

    2006-03-01

    We will report on the sonoelectrochemical synthesis of nanostructured semiconductor materials. The talk will focus on the control of the nanostructure size, shape, and composition using sonolectrochemistry as a versatile synthesis tool. The synthesis of targeted nanostructures requires thorough control of the redox chemistry during the growth process. The composition of the product can be controlled by changing the initial metal-ligand concentration. Futhermore, the properties of the novel materials will be discussed. Powder X-ray diffraction of the products confirmed the compositional change in the nanomaterials. Control of the involved sonoelectrochemistry also allows for the formation of highly monodispersed 1-D Nanorods. Qiu, Xiaofeng; Lou, Yongbing; Samia, Anna C. S.; Devadoss, Anando; Burgess, James D.; Dayal, Smita; Burda, Clemens. PbTe nanorods by sonoelectrochemistry. Angewandte Chemie, International Edition (2005), 44(36), 5855-5857. Qiu, Xiaofeng; Burda, Clemens; Fu, Ruiling; Pu, Lin; Chen, Hongyuan; Zhu, Junjie. Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society (2004), 126(50), 16276-16277.

  5. Thermoelectric nanostructures: from physical model systems towards nanograined composites

    Energy Technology Data Exchange (ETDEWEB)

    Nielsch, Kornelius; Bachmann, Julien; Kimling, Johannes [University of Hamburg, Institute of Applied Physics, Jungiusstr. 11, 20355 Hamburg (Germany); Boettner, Harald [Frauenhofer Institute for Physical Measurement Techniques IPM, Department of Thermoelectrics and Integrated Sensor Systems, Heidenhofstrasse 8, 79110 Freiburg (Germany)

    2011-10-15

    Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S{sup 2}{sigma}T)/{kappa} (S Seebeck coefficient, {sigma} electrical conductivity, {kappa} thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk-materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high-performance thermoelectrics for high-temperature applications is discussed at the end. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Coherent control near metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Ilya [Los Alamos National Laboratory; Efimov, Anatoly [Los Alamos National Laboratory

    2008-01-01

    We study coherent control in the vicinity of metallic nanostructures. Unlike in the case of control in gas or liquid phase, the collective response of electrons in a metallic nanostructure can significantly enhance different frequency components of the control field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local control field. The changes in the amplitude and phase of the control field near the nanostructure are studied using linear response theory. The inverse problem of finding the external electromagnetic field to generate the desired local control field is considered and solved.

  7. Mechanochemical method for producing iron-based nitrogen-containing nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Iron-based products account the main volume of powder metallurgy production. Nevertheless its strength and reliability are not enough in comparison with classical cast materials. So that is why making nanostructural powder materials allows to increase strength and extend the range of products. A principally new way of nanostructure production is possible by means of iron mechanical alloying with nitride-forming and nitrogen both at the same time.Unlike classical technology of internal nitrogenation, nitrogen saturation, in our case, occurs by whole volume at plastic deformation conditions. A review of experimental results of phase forming alloys in the Fe-Ni, Fe-Ni-Cr, Fe-Ni-N, Fe-Ni-Cr-N, Fe-Cr-Ni systems prepared by mechanical alloying are given. The influence of the technological parameters of mechanical alloying, atmosphere of mechanical activation on nitrogen content and phase composition of examined alloys has been studied. Experimental results of the influence of mechanical alloying technological parameters on degree of ammonia dissociation and nitrogen content in examined alloys are presented. Heat treatment influence of mechanically alloyed, nitrogen-containing alloys on theirphase composition and structure are investigated.It was shown that using mechanical alloying, it's possible to prepare high-alloyed iron-based alloys containing more than 1% of nitrogen. It was established that technology of mechanical alloying in ammonia atmosphere allows to prepare austenitic steels with nanocrystalline structure, which affords high value of yield stress. Physico-chemical patterns of interaction between the nitrogen-containing atmosphere and nitride-forming elements under their mutual mechanical activation conditions were established in consequence of theoretical and experimental researches. Some scientific principles of nanocrystalline materials were gained by quantitative description of correlation between the mechanical dose, nitrogen potertial, nitrogen content

  8. PREFACE: Nanostructured surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  9. Influence of Al on the microstructure and carburization performance of a Ni-based alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Cangue, Feliciano Jose Ricardo, E-mail: fcangue@yahoo.com [Federal University of Parana, Centro Politecnico, s/n - Bairro Jardim das Americas, Curitiba, Parana, Cx P. 19011, CEP: 81531-990 (Brazil); D' Oliveira, Ana Sofia Climaco Monteiro, E-mail: sofmat@ufpr.br [Mechanical Engineering Department, Federal University of Parana, Centro Politecnico, s/n - Bairro Jardim das Americas, Curitiba, Parana, Cx P. 19011, CEP: 81531-990 (Brazil)

    2010-04-15

    Carburization is a degradation mechanism involving the diffusion of carbon into a metal alloy and its accumulation on the surface. Coke forms on the internal walls of crude oil refining equipment and adversely affects its efficiency and service life. In an attempt to enhance the service life of materials exposed to these aggressive environments, this work investigated the development of a protective coating to reduce the diffusion of carbon into the surfaces of components. Coatings were tailored by mixing the atomized Ni alloy (Hastealloy C) with 5 wt% and 15 wt% Al powders and deposited by Plasma Transferred Arc hardfacing. Pack carburizing was carried out at 650 deg. C and 850 deg. C for 6 h, and temperature stability was tested in an air furnace to evaluate the performance of the coatings. Characterization included measurement of Vickers microhardness profiles and microstructure analysis by optical and scanning electron microscopy and X-ray diffraction. The good weldability of the original Ni-based alloy was not altered by the presence of Al. Richer Al coatings developed ordered aluminide compounds in a Ni matrix and exhibited increased hardness and dilution. Exposure to temperatures of 650 deg. C and 850 deg. C in an air furnace and to a carburizing environment neither compromised coating hardness nor produced a carburizing layer, although carbides were identified at the top surface. Our results will be of benefit in the development of an alternative solution for the protection of components operating in carburizing environments.

  10. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium.

    Science.gov (United States)

    Sun, Yugang; Xia, Younan

    2004-03-31

    The replacement reaction between silver nanostructures and an aqueous HAuCl(4) solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Two distinctive steps have been resolved through a combination of microscopic and spectroscopic methods. In the first step, silver nanostructure (i.e., the template) is dissolved to generate gold atoms that are deposited epitaxially on the surface of each template. Silver atoms also diffuse into the gold shell (or sheath) to form a seamless, hollow nanostructure with its wall made of Au-Ag alloys. The second step involves dealloying, a process that selectively removes silver atoms from the alloyed wall, induces morphological reconstruction, and finally leads to the formation of pinholes in the walls. Reaction temperature was found to play an important role in the replacement reaction because the solubility constant of AgCl and the diffusion coefficients of Ag and Au atoms were both strongly dependent on this parameter. This work has enabled us to prepare metal nanostructures with controllable geometric shapes and structures, and thus optical properties (for example, the surface plasmon resonance peaks could be readily shifted from 500 to 1200 nm by controlling the ratio between Ag and HAuCl(4)).

  11. Formation of ball-milled Fe-Mo nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, H. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria) and Departement de Physique, Faculte des Sciences et de l' Ingenierie, Universite de Guelma, B.P. 401, 24000 Guelma-Algerie (Algeria)]. E-mail: hmoumeni@yahoo.fr; Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Faculte des Sciences, F-72085, Le Mans Cedex 9 (France)

    2006-08-10

    Nanostructured Fe-6 wt.%Mo powders were prepared by mechanical alloying in a high-energy planetary ball-mill. The structural changes and the kinetics of Mo dissolution were studied by using X-ray diffraction. The crystallite size reduction down to about 11 nm is accompanied by the introduction of internal strains up to 1.1% (root-mean square strain, rms). After 24 h of milling, a bcc Fe(Mo) solid solution is formed. The kinetics of Mo dissolution into the Fe matrix during the milling process can be described by two regimes characterized by small values of Avrami parameter which do not exceed unit.

  12. Microstructure and Mechanical Properties of FeAl Intermetallics Prepared by Mechanical Alloying and Hot-Pressing

    Institute of Scientific and Technical Information of China (English)

    SONG Haixia; WU Yunxin; TANG Chuan'an; YUAN Shuai; GONG Qianming; LIANG Ji

    2009-01-01

    FeAl intermetallics were prepared by mechanical alloying and vacuum hot-pressing. The Fe-48 at.% Al powder was ball-milled for 3-12 h, producing a solid solution structure of Fe (Al) with trace Al (Fe). Subsequent vacuum annealing or hot-pressing introduced phase transformations into the FeAl (B2) inter-metallics and Al2O3 inclusions. The hot-pressed FeAl intermetallics possess a high flexural strength of 831 Mpa and a fairly good strain at break of 3.2%. The results show that the addition of 0.5 at,% B reduces the peak temperature for hot-pressing from 1180℃ to 1100℃, and increases the density of the compacts from 95% to 96.3%, but results in no significant improvement in the mechanical properties.

  13. Nanostructured graphite-induced destabilization of LiBH4 for reversible hydrogen storage

    CSIR Research Space (South Africa)

    Wang

    2016-11-01

    Full Text Available stream_source_info Wang_2016.pdf.txt stream_content_type text/plain stream_size 1205 Content-Encoding ISO-8859-1 stream_name Wang_2016.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Journal of Alloys and Compounds..., vol. 685: 242-247 Nanostructured graphite-induced destabilization of LiBH4 for reversible hydrogen storage Wang K Kang X Ren J Wang P ABSTRACT: In this study, nanostructured graphite (nano-G) was added to LiBH(sub4) and examined...

  14. Semiconductors and semimetals nanostructured systems

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Reed, Mark A

    1992-01-01

    This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D ele...

  15. Peroxidases in nanostructures

    Directory of Open Access Journals (Sweden)

    Ana Maria eCarmona-Ribeiro

    2015-09-01

    Full Text Available Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting and reusability.

  16. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  17. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  18. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  19. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  20. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    Science.gov (United States)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  1. Design of new titanium alloys for orthopaedic applications.

    Science.gov (United States)

    Guillemot, F; Prima, F; Bareille, R; Gordin, D; Gloriant, T; Porté-Durrieu, M C; Ansel, D; Baquey, Ch

    2004-01-01

    Parallel to the biofunctionalisation of existing materials, innovation in biomaterials engineering has led to the specific design of titanium alloys for medical applications. Studies of the biological behaviour of metallic elements have shown that the composition and structure of the material should be carefully tailored to minimise adverse body reactions and to enhance implant longevity, respectively. Consequently, interest has focused on a new family of titanium alloys: Ti-6Mo-3Fe-5Ta, Ti-4Mo-2Fe-5Ta and Ti-6Mo-3Fe-5Zr-5Hf alloys. The non-toxicity of the specially designed titanium alloys compared with osteoblastic cells has been ascertained using MTT and RN tests. In addition, phase transformations upon thermal processing have been investigated, with comparison with a well-defined beta titanium alloy. Optimum thermal processing windows (above 550 degrees C) have been designed to generate a stable and nanostructured alpha phase from the isothermal omega phase that precipitates in a low temperature range (150-350 degrees C). The generation of such nanostructured microstructures should provide a promising opportunity to investigate tissue-biomaterial interactions at the scale of biomolecules such as proteins.

  2. A high-specific-strength and corrosion-resistant magnesium alloy

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  3. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  4. Plasma Spray Forming of Nanostructured Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nanostructure composite coating is obtained via plasma spraying of Al2O3-13 wt pct TiO2 powder. Brittle and hard lamella results from melted nanostructured powder. Ductile nanostructured matrix forms from unmelted nanostructured particles. Through the adjustment of constituent and nanostructure, hardness/strength and toughness/ductility are balanced and overall properties of the structure composite are achieved.

  5. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fei [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  6. Mechanical design of DNA nanostructures.

    Science.gov (United States)

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  7. Modeling the deformation behavior of nanocrystalline alloy with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi; Zhou, Jianqiu, E-mail: zhouj@njtech.edu.cn [Nanjing Tech University, Department of Mechanical Engineering (China); Zhao, Yonghao, E-mail: yhzhao@njust.edu.cn [Nanjing University of Science and Technology, Nanostructural Materials Research Center, School of Materials Science and Engineering (China)

    2016-02-15

    A mechanism-based plasticity model based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress–strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed model can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present model provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.

  8. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    Science.gov (United States)

    2007-12-01

    a clear relation between strain and nip gap can be observed. The use of LAT on calendering of isothermal flow, a problem analogous to the...Chemical Engineering Science, 57, (2002) 643-650. 9. Sofou S, Mitsoulis E. Calendering of Pseudoplastic and Viscoplastic Sheets of Finite Thickness

  9. Structural, thermal and magnetic investigations on immiscible Ag–Co nanocrystalline alloy with addition of Mn

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chabri, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 Parganas 743610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2016-08-15

    50Ag–50Co (at%) and 40Ag–40Co–20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350–650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag–Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag–Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag–Co–Mn alloy obtained after annealing at 550 °C for 1 h. - Highlights: • A complete solid solution of Ag–Co–Mn alloy obtained after 50 h of milling. • A complete solid solution of milled Ag–Co alloy forms annealed at 350 {sup °}C for 1 h. • Precipitation of fcc Co are observed after annealing above 350 °C. • Enthalpy of mixing of the alloys increased with increase in milling time. • The superior magnetic properties achieved of Ag–Co–Mn alloy annealed at 550 °C.

  10. Alternative nanostructures for thermophones

    Science.gov (United States)

    Mayo, Nathanael; Aliev, Ali; Baughman, Ray

    2015-03-01

    There is a large promise for thermophones in high power sonar arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding aerogel-like carbon nanotube sheets demonstrate the best performance as a thermoacoustic heat source. However, the limited accessibility of large size freestanding carbon nanotube sheets and other even more exotic materials published recently, hampers the field. We present here new alternative materials for a thermoacoustic heat source with high energy conversion efficiency, additional functionalities, environmentally friendly and cost effective production technologies. We discuss the thermoacoustic performance of alternative nanoscale materials and compare their spectral and power dependencies of sound pressure in air. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  11. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  12. Magnetism in carbon nanostructures

    CERN Document Server

    Hagelberg, Frank

    2017-01-01

    Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic phenomena of quantum physics, and are thus of great interest for fundamental research. This comprehensive survey emphasizes both the fundamental nature of the field, and its groundbreaking nanotechnological applications, providing a one-stop reference for both the principles and the practice of this emerging area. With equal relevance to physics, chemistry, engineering and materials science, senior undergraduate and graduate students in any of these subjects, as well as all those interested in novel nanomaterials, will gain an in-depth understanding of the field from this concise and self-contained volume.

  13. Biogenic nanostructured silica

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon is by far the most abundant element in the earth crust and also is an essential element for higher plants, yet its biology and mechanisms in plant tolerance of biotic and abiotic stresses are poorly understood. Based on the molecular mechanisms of the biosilicification in marine organisms such as diatoms and sponges, the cell wall template-mediated self-assembly of nanostructured silica in marine organisms and higher plants as well as the related organic molecules are discussed. Understanding of the templating and structure-directed effects of silicon-processing organic molecules not only offers the clue for synthesizing silicon-based materials, but also helps to recognize the anomaly of silicon in plant biology.

  14. Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium.

    Science.gov (United States)

    Schimmel, H Gijs; Huot, Jacques; Chapon, Laurent C; Tichelaar, Frans D; Mulder, Fokko M

    2005-10-19

    The reaction of hydrogen gas with magnesium metal, which is important for hydrogen storage purposes, is enhanced significantly by the addition of catalysts such as Nb and V and by using nanostructured powders. In situ neutron diffraction on MgNb(0.05) and MgV(0.05) powders give a detailed insight on the magnesium and catalyst phases that exist during the various stages of hydrogen cycling. During the early stage of hydriding (and deuteriding), a MgH(1hydrogen diffusion coefficient, partly explaining the enhanced kinetics of nanostructured magnesium. It is shown that under relevant experimental conditions, the niobium catalyst is present as NbH(1). Second, a hitherto unknown Mg-Nb perovskite phase could be identified that has to result from mechanical alloying of Nb and the MgO layer of the particles. Vanadium is not visible in the diffraction patterns, but electron micrographs show that the V particle size becomes very small, 2-20 nm. Nanostructuring and catalyzing the Mg enhance the adsorption speed that much that now temperature variations effectively limit the absorption speed and not, as for bulk, the slow kinetics through bulk MgH(2) layers.

  15. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  16. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    Science.gov (United States)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  17. One-dimensional CdS nanostructures: a promising candidate for optoelectronics.

    Science.gov (United States)

    Li, Huiqiao; Wang, Xi; Xu, Junqi; Zhang, Qi; Bando, Yoshio; Golberg, Dmitri; Ma, Ying; Zhai, Tianyou

    2013-06-11

    As a promising candidate for optoelectronics, one-dimensional CdS nanostructures have drawn great scientific and technical interest due to their interesting fundamental properties and possibilities of utilization in novel promising optoelectronical devices with augmented performance and functionalities. This progress report highlights a selection of important topics pertinent to optoelectronical applications of one-dimensional CdS nanostructures over the last five years. This article begins with the description of rational design and controlled synthesis of CdS nanostructure arrays, alloyed nanostructucures and kinked nanowire superstructures, and then focuses on the optoelectronical properties, and applications including cathodoluminescence, lasers, light-emitting diodes, waveguides, field emitters, logic circuits, memory devices, photodetectors, gas sensors, photovoltaics and photoelectrochemistry. Finally, the general challenges and the potential future directions of this exciting area of research are highlighted.

  18. Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures

    CERN Document Server

    Harrison, Paul

    2016-01-01

    Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...

  19. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    Science.gov (United States)

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants.

  20. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.

  1. Magnetocaloric properties of metallic nanostructures

    Directory of Open Access Journals (Sweden)

    Khurram S. Khattak

    2015-12-01

    Full Text Available A compilation of magnetocaloric properties of metallic nanostructures with Curie temperature (TC between 260 and 340 K has been tabulated. The tabulated data show that nanostructure plays an important role in enhancing the magnetocaloric properties of a material, namely by reducing the peak of magnetic entropy, but broadening of the magnetocaloric effect curve with an average of 10 K sliding window for Curie temperature. A second table lists all bulk metallic and intermetallic materials, in which there is no nanostructural data, with an entropy change of at least 20 J/kg K and a Curie temperature between 260 and 340 K. We propose that further experiments should be made on the nanostructured form of these materials.

  2. Nanostructured materials and their applications

    CERN Document Server

    Logothetidis, Stergios

    2012-01-01

    This book applies nanostructures and nanomaterials to energy and organic electronics, offering advanced deposition and processing methods and theoretical and experimental aspects for nanoparticles, nanotubes and thin films for organic electronics applications.

  3. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  4. A Review on the Synthesis Methods of CdSeS-Based Nanostructures

    Directory of Open Access Journals (Sweden)

    Hong Li

    2015-01-01

    Full Text Available As typical II–VI ternary alloyed chalcogenides, CdSeS nanostructures have attracted intensive worldwide attention due to their excellent tunable optical properties based on quantum confinement effect and optical nonlinear phenomenon. Because CdSeS-based nanostructures have presented a great potential for applications in biomedicine and optoelectronic devices, different synthesis methods have been proposed to prepare CdSeS-based nanostructures with divergent optical properties to meet the needs of those applications, such as fluorescent labeling, in vivo imaging, waveguides, and solar cell. In this review, the tricks, advantages, and disadvantages of all these synthesis methods were discussed, including hot-injection synthesis, one-pot noninjection synthesis, microwave irradiation, solvothermal synthesis, template-assisted electrodeposition, thermal evaporation, and pulsed laser deposition. Special emphasis was put on those methods that are safe, economic, environment-friendly, and suitable for large-scale production of alloyed CdSeS nanostructures with high photoluminescence, high stability, and low/no cytotoxicity.

  5. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  6. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.R.; Zheng, M.H.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  7. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    Science.gov (United States)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  8. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  9. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    OpenAIRE

    2014-01-01

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN)1-x(C2)x alloys were synthesized by metal-organic chemical ...

  10. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  11. Synthesis of branched metal nanostructures with controlled architecture and composition

    Science.gov (United States)

    Ortiz, Nancy

    On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental

  12. Using two-pass friction stir processing to produce nanocrystalline microstructure in AZ61 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Despite their interesting properties,nanostructured materials have found limited use as a result of the cost of preparation and the difficulty in scaling up.Herein,a two-pass friction stir processing(FSP)technique is employed to refine grain sizes to a nanoscale.Nanocrystalline AZ61 Mg alloy with an av-erage grain size of less than 100nm was successfully obtained using FSP.Corresponding to this,the highest microhardness of the nano-grained region reached triple times that of AZ61 substrate.In prin-ciple,by applying multiple overlapping passes,it should be possible to produce any desired size thin sheet of nanostructure using this technique.We expect that the FSP technique may pave a way to large-scale structural applications of nanostructured metals and alloys.

  13. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  14. Chemically enabled nanostructure fabrication

    Science.gov (United States)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  15. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Wintermantel, Erich [Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway)

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium–zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p < 0.01) on the titanium–zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium. - Highlights: ► TiZr alloy showed increased hydrogen levels over Ti. ► The alloying element Zr appeared to catalyze hydrogen absorption in Ti. ► Surface roughness was significantly increased for the TiZr alloy over Ti. ► TiZr alloy revealed nanostructures not observed for Ti.

  16. Ultrahard magnetic nanostructures

    Science.gov (United States)

    Sahota, P. K.; Liu, Y.; Skomski, R.; Manchanda, P.; Zhang, R.; Franchin, M.; Fangohr, H.; Hadjipanayis, G. C.; Kashyap, A.; Sellmyer, D. J.

    2012-04-01

    The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to control on small length scales, as epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52 T. Our numerical and analytical calculations show that the feature size and geometry have a big effect on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional complication is provided by the physical properties of the hard phases. For a given soft phase, the performance of a hard-soft composite is determined by the parameter (Ms - Mh)/Kh.

  17. Magnetic anisotropy in nanostructures

    CERN Document Server

    Eisenbach, M

    2001-01-01

    method for solving the LDA Kohn-Sham equation. This extended code allows us to perform fully relativistic calculations to enable us to investigate the spin orbit coupling effects leading to anisotropies and potentially non collinear ordering of magnetic moments in these systems of magnetic inclusions in copper. With this approach we find that depending on the orientation of the atoms along the 100 or 110 direction in copper the ground state orientation of the magnetic moments in the chain is either perpendicular or parallel to the chain direction, when the magnetic dipolar interaction energy is added to the final ab initio result. In this thesis we investigate the effect of magnetic anisotropies in nanostructured materials. The main emphasis in our work presented here is on systems that have an underlying one dimensional structure, like nanowires or atomic chains. In a simple classical one dimensional model we show the rich ground state structure of magnetic orientations one might expect to find in such syste...

  18. Phonon engineering for nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  19. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, P.

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  20. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  1. Scientific and Technological Foundations for Scaling Production of Nanostructured Metals

    Science.gov (United States)

    Lowe, Terry C.; Davis, Casey F.; Rovira, Peter M.; Hayne, Mathew L.; Campbell, Gordon S.; Grzenia, Joel E.; Stock, Paige J.; Meagher, Rilee C.; Rack, Henry J.

    2017-05-01

    Severe Plastic Deformation (SPD) has been explored in a wide range of metals and alloys. However, there are only a few industrial scale implementations of SPD for commercial alloys. To demonstrate and evolve technology for producing ultrafine grain metals by SPD, a Nanostructured Metals Manufacturing Testbed (NMMT) has been established in Golden, Colorado. Machines for research scale and pilot scale Equal Channel Angular Pressing-Conform (ECAP-C) technology have been configured in the NMMT to systematically evaluate and evolve SPD processing and advance the foundational science and technology for manufacturing. We highlight the scientific and technological areas that are critical for scale up of continuous SPD of aluminum, copper, magnesium, titanium, and iron-based alloys. Key areas that we will address in this presentation include the need for comprehensive analysis of starting microstructures, data on operating deformation mechanisms, high pressure thermodynamics and phase transformation kinetics, tribological behaviors, temperature dependence of lubricant properties, adaptation of tolerances and shear intensity to match viscoplastic behaviors, real-time process monitoring, and mechanics of billet/tooling interactions.

  2. Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties

    Science.gov (United States)

    Sahoo, Pranati

    Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity. This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered

  3. Structural and Tribological Properties of Nanostructured Supersonic Cold Sprayed Ni-20 wt.% Sn Coatings

    Science.gov (United States)

    Georgiou, E. P.; Dosta, S.; Fernández, J.; Matteazzi, P.; Kowalski, K.; Kusinski, J.; Piticescu, R. R.; Celis, J.-P.

    2016-06-01

    80-μm-thick nanostructured coatings consisting of a Ni solid solution, Ni3Sn, Ni3Sn2, and metastable NiSn intermetallic phases were deposited via supersonic cold spraying onto inconel 718 alloy substrates. These coatings have complex nanostructured metallurgical phases as revealed by transition electron microscopy, scanning electron microscopy, and x-ray diffraction techniques. Their mechanical properties were determined by nanoindentation measurements. Furthermore, the wear behavior of these nanostructured sprayed coatings was compared to the one of the industrial bulk or sprayed coated benchmark materials. It was found that the nanostructured coatings exhibit higher wear resistance than the industrial benchmarks, thanks to an appropriate balance of hard intermetallic phases and soft Ni matrix, as well as to their nanostructuring. Their frictional characteristics under reciprocating sliding are mainly determined by the formation of an oxide-based tribo-layer, which was analyzed by x-ray photoelectron spectroscopy. The role of intermetallic phases in these coatings on the friction and wear is also discussed.

  4. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  5. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.

    Science.gov (United States)

    Balamurugan, B; Das, B; Zhang, W Y; Skomski, R; Sellmyer, D J

    2014-02-12

    The structural and magnetic properties of nanostructured Co-rich transition-metal alloys, Co(100-x)TMx (TM = Hf, Zr and 10 ≤ x ≤ 18), were investigated. The alloys were prepared under non-equilibrium conditions using cluster-deposition and/or melt-spinning methods. The high-anisotropy HfCo7 and Zr2Co11 structures were formed for a rather broad composition region as compared to the equilibrium bulk phase diagrams, and exhibit high Curie temperatures of above 750 K. The composition, crystal structure, particle size, and easy-axis distribution were precisely controlled to achieve a substantial coercivity and magnetization in the nanostructured alloys. This translates into high energy products in the range of about 4.3-12.6 MGOe, which are comparable to those of alnico.

  6. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  7. Free-standing palladium-nickel alloy wavy nanosheets

    Institute of Scientific and Technical Information of China (English)

    Weng-Chon Cheong; Chuhao Liu; Menglei Jiang; Haohong Duan; Dingsheng Wang; Chen Chen; Yadong Li

    2016-01-01

    Two-dimensional nanomaterials (2DNMs) have attracted increasing attention due to their unique properties and promising applications.Unlike 2DNMs with lamellar structures,metal ultrathin 2DNMs are difficult to synthesize and stabilize because they tend to form close-packed crystal structures.Most reported cases consist of monometallic and heterogeneous nanostructures.The synthesis of metal alloy 2DNMs has been rarely reported.Here,we report the synthesis of PdNi alloy wavy nanosheets (WNSs) using an enhanced CO-confinement strategy.This strategy is also suitable to the synthesis of other Pd-based alloy WNSs such as PdCu,PdFe,and even a trimetallic PdFeNi.

  8. Method of fabrication of anchored nanostructure materials

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  9. Nanostructured materials in electroanalysis of pharmaceuticals.

    Science.gov (United States)

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed.

  10. Fabrication of nanowires and nanostructures

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2009-01-01

    We report on different approaches that we have adopted and developed for the fabrication of nanowires and nanostructures. Methods based on template synthesis and on self organization seem to be the most promising for the fabrication of nanomaterials and nanostructures due to their easiness and low...... cost. The development of a supported nanoporous alumina template and the possibility of using this template to combine electrochemical synthesis with lithographic methods open new ways for the fabrication of complex nanostructures. The numerous advantages of the supported template and its compatibility...... with microelectronic processes make it an ideal candidate for further integration into large-scale fabrication of various nanowire-based devices. © 2009 Springer-Verlag....

  11. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  12. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2011-01-01

    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  13. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  14. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  15. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  16. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  17. Optical transitions in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions.

  18. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  19. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.

    Science.gov (United States)

    Sun, Yugang; Wiley, Benjamin; Li, Zhi-Yuan; Xia, Younan

    2004-08-04

    The galvanic replacement reaction between silver and chloroauric acid has been exploited as a powerful means for preparing metal nanostructures with hollow interiors. Here, the utility of this approach is further extended to produce complex core/shell nanostructures made of metals by combining the replacement reaction with electroless deposition of silver. We have fabricated nanorattles consisting of Au/Ag alloy cores and Au/Ag alloy shells by starting with Au/Ag alloy colloids as the initial template. We have also prepared multiple-walled nanoshells/nanotubes (or nanoscale Matrioshka) with a variety of shapes, compositions, and structures by controlling the morphology of the template and the precursor salt used in each step of the replacement reaction. There are a number of interesting optical features associated with these new core/shell metal nanostructures. For example, nanorattles made of Au/Ag alloys displayed two well-separated extinction peaks, a feature similar to that of gold or silver nanorods. The peak at approximately 510 nm could be attributed to the Au/Ag alloy cores, while the other peak was associated with the Au/Ag alloy shells and could be continuously tuned in the spectral range from red to near-infrared.

  20. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  1. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  2. Modification of Nanostructures via Laser Processing

    Science.gov (United States)

    Franzel, Louis Avery

    Modification of nanostructures via laser processing is of great interest for a wide range of applications such as aerospace and the storage of nuclear waste. The primary goal of this dissertation is to improve the understanding of nanostructures through two primary routes: the modification of aerogels and pulsed laser ablation in ethanol. A new class of materials, patterned aerogels, was fabricated by photopolymerizing selected regions of homogeneous aerogel monoliths using visible light. The characterization and fabrication of functionally graded, cellular and compositionally anisotropic aerogels and ceramics is discussed. Visible light was utilized due to it's minimal absorption and scattering by organic molecules and oxide nanoparticles within wet gels. This allowed for the fabrication of deeply penetrating, well resolved patterns. Similarly, nanoporous monoliths with a typical aerogel core and a mechanically robust exterior ceramic layer were synthesized from silica aerogels cross-linked with polyacrylonitrile. Simple variations of the exposure geometry allowed fabrication of a wide variety of anisotropic materials without requiring layering or bonding. Nanoparticle solutions were prepared by laser ablation of metal foils (Fe and Mo) in ethanol. Ablation of Fe generated Fe3O4 and Fe3C nanoparticles which were superparamagnetic with a saturation magnetization Ms = 124 emu/g. Zero field cooled (ZFC) measurements collected at an applied field of 50 Oe displayed a maximum magnetic susceptibility at 120 K with a broad distribution. Field cooled (FC) measurements showed a thermal hysteresis indicative of temperature dependent magnetic viscosity. Pulsed laser ablation of a Mo foil in ethanol generated inhomogeneous nanoparticles where Mo and MoC coexisted within the same aggregate. Formation of these unique nanoparticles is likely due to phase separation that occurs when a high temperature carbide phase cools after the laser pulse terminates. Similarly, magnetic

  3. Manufacturing and testing of self-passivating tungsten alloys of different composition

    Directory of Open Access Journals (Sweden)

    A. Calvo

    2016-12-01

    Bulk W-15Cr, W-10Cr-2Ti and W-12Cr-0.5Y alloys were manufactured by mechanical alloying followed by can encapsulation and HIP. This route resulted in fully dense materials with nano-structured grains. The ability of Ti and especially of Y to inhibit grain growth was observed in the W-10Cr-2Ti and W-12Cr-0.5Y alloys. Besides, Y formed Y-rich oxide nano-precipitates at the grain boundaries, and is thus expected to improve the mechanical behaviour of the Y-containing alloy. Isothermal oxidation tests at 800 ºC (1073K and oxidation tests under accident-like conditions revealed that the W-12Cr-0.5Y alloy exhibits the best oxidation behaviour of all alloys, especially in the accident-like scenario. Preliminary HHF tests performed at GLADIS indicated that the W-10Cr-2Ti alloy is able to withstand power densities of 2 MW/m2 without significant damage of the bulk structure. Thermo-shock tests at JUDITH-1 to simulate mitigated disruptions resulted in chipping of part of the surface of the as-HIPed W-10Cr-2Ti alloy. An additional thermal treatment at 1600 °C (1873K improves the thermo-shock resistance of the W-10Cr-2Ti alloy since only crack formation is observed.

  4. Controlled placement and orientation of nanostructures

    Science.gov (United States)

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  5. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, M.; Bauer, G.E.W.; Zhang, Q.; Kelly, P.J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  6. Some properties of electrochemical nanostructures

    Indian Academy of Sciences (India)

    E Santos; P Quaino; German Soldano; W Schmickler

    2009-09-01

    The physical and electronic properties of several platinum nanostructures have been investigated by density functional calculations. Particular attention has been paid to the structure of the -band. Our results predict, that nanowires and small platinum clusters supported on Au(111) should be excellent catalysts for the hydrogen evolution reaction; a monolayer of platinum on Au(111) should also be better than pure platinum.

  7. A transparent nanostructured optical biosensor.

    Science.gov (United States)

    He, Yuan; Li, Xiang; Que, Long

    2014-05-01

    Herein we report a new transparent nanostructured Fabry-Perot interferometer (FPI) device. The unique features of the nanostructured optical device can be summarized as the following: (i) optically transparent nanostructured optical device; (ii) simple and inexpensive for fabrication; (iii) easy to be fabricated and scaled up as an arrayed format. These features overcome the existing barriers for the current nanopore-based interferometric optical biosensors by measuring the transmitted optical signals rather than the reflected optical signals, thereby facilitating the optical testing significantly for the arrayed biosensors and thus paving the way for their potential for high throughput biodetection applications. The optically transparent nanostructures (i.e., anodic aluminum oxide nanopores) inside the FPI devices are fabricated from 2.2 microm thick lithographically patterned Al thin film on an indium tin oxide (ITO) glass substrate using a two-step anodization process. Utilizing the binding between Protein A and porcine immunoglobulin G (IgG) as a model, the detection of the bioreaction between biomolecules has been demonstrated successfully. Experiments found that the lowest detection concentration of proteins is in the range of picomolar level using current devices, which can be easily tuned into the range of femtomolar level by optimizing the performance of devices.

  8. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, M.; Bauer, G.E.W.; Zhang, Q.; Kelly, P.J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  9. Semiconductor nanostructures in biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexson, Dimitri [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Chen Hongfeng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Cho, Michael [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Dutta, Mitra [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Li Yang [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Shi, Peng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Raichura, Amit [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ramadurai, Dinakar [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Parikh, Shaunak [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Stroscio, Michael A [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Vasudev, Milana [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2005-07-06

    Semiconductor nanostructures in biological applications are discussed. Results are presented on the use of colloidal semiconductor quantum dots both as biological tags and as structures that interact with and influence biomolecules. Results are presented on the use of semiconducting carbon nanotubes in biological applications. (topical review)

  10. Thermal response of nanostructured tungsten

    NARCIS (Netherlands)

    Kajita, Shin; De Temmerman, G.; Morgan, Thomas; van Eden, Stein; de Kruif, Thijs; Ohno, Noriyasu

    2014-01-01

    The thermal response of nanostructured tungsten, which was fabricated in the linear divertor simulator NAGDIS-II, was investigated using pulsed plasma in the MAGNUM-PSI device and by using high powered laser pulses. The temperature evolution in response to the pulses was measured with an infrared fa

  11. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  12. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. Transient and self-limited nanostructures on patterned surfaces

    Science.gov (United States)

    Dimastrodonato, V.; Pelucchi, E.; Zestanakis, P. A.; Vvedensky, D. D.

    2013-05-01

    Site-controlled quantum dots formed during the deposition of (Al)GaAs layers by metal-organic vapor-phase epitaxy on GaAs(111)B substrates patterned with inverted pyramids result in geometric and compositional self-ordering along the vertical axis of the template. We describe a theoretical scheme that reproduces the experimentally observed time-dependent behavior of this process, including the evolution of the recess and the increase of Ga incorporation along the base of the template to stationary values determined by alloy composition and other growth parameters. Our work clarifies the interplay between kinetics and geometry for the development of self-ordered nanostructures on patterned surfaces, which is essential for the reliable on-demand design of confined systems for applications to quantum optics.

  14. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  15. Magnetic properties of ball-milled Fe{sub 0.6}Mn{sub 0.1}Al{sub 0.3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebolledo, A.F. [Insituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Madrid) (Spain); Romero, J.J. [Insituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Madrid) (Spain)]. E-mail: juanjromero@adif.es; Cuadrado, R. [Insituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Madrid) (Spain); Gonzalez, J.M. [Insituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Madrid) (Spain); Instittuo de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Pigazo, F. [Instittuo de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Palomares, F.J. [Instittuo de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz s/n, 28049 Madrid (Spain); Medina, M.H. [Departamento de Fisica, Universidad Tecnologica de Pereira, La Julita, A. A. 097, Pereira (Colombia); Perez Alcazar, G.A. [Insituto de Magnetismo Aplicado, P.O. Box 155, 28230 Las Rozas (Madrid) (Spain); Depto. de Fisica, edificio 230, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2007-09-15

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe{sub 0.6}Mn{sub 0.1}Al{sub 0.3} samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h.

  16. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  17. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  18. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  19. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  20. TiO2 nanostructured surfaces for biomedical applications developed by electrochemical anodization

    Science.gov (United States)

    Strnad, G.; Petrovan, C.; Russu, O.; Jakab-Farkas, L.

    2016-11-01

    Present research demonstrates the formation of self-ordered nanostructured oxide layer on the surface of two phase Ti6Al4V alloy by using electrochemical anodization in H3PO4/HF electrolytes. Our results show that the ordered oxide nanotubes grow on large areas on the samples surface, on both phases of (α+β) Ti6Al4V titanium alloy. We developed nanotubes of 70 nm (internal diameter) using 0.3 wt% HF and of 80 nm using 0.5 wt% HF additions to 1M H3PO4, at an anodization potential of 20 V, and an anodization time of 2 hours. We show that anodization potential has a strong influence on nanostructures morphology. Our results show that nanotubes’ internal diameter is ∼30 nm at 10 V potential, ∼40 nm at 15 V potential, and ∼70-80 nm at 20 V potential in anodization process performed in 1M H3PO4 + 0.5 wt% HF, 2 hours. The thickness of the developed nanostructured oxide layer is in 200-250 nm range.

  1. Review on recent progress of nanostructured anode materials for Li-ion batteries

    KAUST Repository

    Goriparti, Subrahmanyam

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  2. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Ye, Feng; Liu, Hui; Hu, Weiwei; Zhong, Junyu; Chen, Yingying; Cao, Hongbin; Yang, Jun

    2012-03-14

    Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.

  3. Fabrication of zein nanostructure

    Science.gov (United States)

    Luecha, Jarupat

    resins. The soft lithography technique was mainly used to fabricate micro and nanostructures on zein films. Zein material well-replicated small structures with the smallest size at sub micrometer scale that resulted in interesting photonic properties. The bonding method was also developed for assembling portable zein microfluidic devices with small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design with no leakage. Aside from the fabrication technique development, several potential applications of this environmentally friendly microfluidic device were investigated. The concentration gradient manipulation of Rhodamine B solution in zein-glass microfluidic devices was demonstrated. The diffusion of small molecules such as fluorescent dye into the wall of the zein microfluidic channels was observed. However, with this formulation, zein microfluidic devices were not suitable for cell culture applications. This pioneer study covered a wide spectrum of the implementation of the two nanotechnology approaches to advance zein biomaterial which provided proof of fundamental concepts as well as presenting some limitations. The findings in this study can lead to several innovative research opportunities of advanced zein biomaterials with broad applications. The information from the study of zein nanocomposite structure allows the packaging industry to develop the low cost biodegradable materials with physical property improvement. The information from the study of the zein microfluidic devices allows agro-industry to develop the nanotechnology-enabled microfluidic sensors fabricated entirely from biodegradable polymer for on-site disease or contaminant detection in the fields of food and agriculture.

  4. Growth method for chalcongenide phase-change nanostructures

    Science.gov (United States)

    Yu, Bin (Inventor); Sun, Xuhui (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    A method for growth of an alloy for use in a nanostructure, to provide a resulting nanostructure compound including at least one of Ge.sub.xTe.sub.y, In.sub.xSb.sub.y, In.sub.xSe.sub.y, Sb.sub.xTe.sub.y, Ga.sub.xSb.sub.y, Ge.sub.xSb.sub.y,Te.sub.z, In.sub.xSb.sub.yTe.sub.z, Ga.sub.xSe.sub.yTe.sub.z, Sn.sub.xSb.sub.yTe.sub.z, In.sub.xSb.sub.yGe.sub.z, Ge.sub.wSn.sub.xSb.sub.yTe.sub.z, Ge.sub.wSb.sub.xSe.sub.yTe.sub.z, and Te.sub.wGe.sub.xSb.sub.yS.sub.z, where w, x, y and z are numbers consistent with oxidization states (2, 3, 4, 5, 6) of the corresponding elements. The melt temperatures for some of the resulting compounds are in a range 330-420.degree. C., or even lower with some compounds.

  5. Effects of the Nanostructured Fe-V-Nb Modificators on the Microstructure and Mechanical Properties of Si-Mn Steel

    Directory of Open Access Journals (Sweden)

    Tiebao Wang

    2012-01-01

    Full Text Available The nanostructured Fe-V-Nb master alloy was prepared in vacuum rapid quenching furnace and then was added in the steel melts as modificators before casting. Next, the effects of the nanostructured Fe-V-Nb modificators on the microstructure and mechanical properties of the steel were studied. The results show that the grain size of the steel has been effectively refined, which is mainly because the dispersed nanoscale particles can produce more nucleation sites during the solidification of the liquid steel. Tensile properties and fracture morphology reveal that the yield strength and toughness of the steel modified by nanostructured Fe-V-Nb modificators are better than that of the microalloyed steel. TEM analysis shows that vanadium and niobium in the modificators exist in the form of (V, Nb C which effectively increases the nucleation rate and leads to better mechanical properties of the steel.

  6. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces

    Science.gov (United States)

    Hughes, Robert A.; Menumerov, Eredzhep; Neretina, Svetlana

    2017-07-01

    One of the foremost challenges in nanofabrication is the establishment of a processing science that integrates wafer-based materials, techniques, and devices with the extraordinary physicochemical properties accessible when materials are reduced to nanoscale dimensions. Such a merger would allow for exacting controls on nanostructure positioning, promote cooperative phenomenon between adjacent nanostructures and/or substrate materials, and allow for electrical contact to individual or groups of nanostructures. With neither self-assembly nor top-down lithographic processes being able to adequately meet this challenge, advancements have often relied on a hybrid strategy that utilizes lithographically-defined features to direct the assembly of nanostructures into organized patterns. While these so-called directed assembly techniques have proven viable, much of this effort has focused on the assembly of periodic arrays of spherical or near-spherical nanostructures comprised of a single element. Work directed toward the fabrication of more complex nanostructures, while still at a nascent stage, has nevertheless demonstrated the possibility of forming arrays of nanocubes, nanorods, nanoprisms, nanoshells, nanocages, nanoframes, core-shell structures, Janus structures, and various alloys on the substrate surface. In this topical review, we describe the progress made in the directed assembly of periodic arrays of these complex metal nanostructures on planar and textured substrates. The review is divided into three broad strategies reliant on: (i) the deterministic positioning of colloidal structures, (ii) the reorganization of deposited metal films at elevated temperatures, and (iii) liquid-phase chemistry practiced directly on the substrate surface. These strategies collectively utilize a broad range of techniques including capillary assembly, microcontact printing, chemical surface modulation, templated dewetting, nanoimprint lithography, and dip-pen nanolithography and

  8. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2015-01-01

    Full Text Available Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

  9. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2016-11-01

    Full Text Available In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  10. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    Science.gov (United States)

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  11. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  12. Raman Studies of Carbon Nanostructures

    Science.gov (United States)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes-anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  13. Dry release of suspended nanostructures

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Davis, Zachary James; Dong, M.;

    2004-01-01

    A dry release method for fabrication of suspended nanostructures is presented. The technique has been combined with an anti-stiction treatment for fabrication of nanocantilever based nanoelectromechanical systems (NEMS). The process combines a dry release method, using a supporting layer of photo......A dry release method for fabrication of suspended nanostructures is presented. The technique has been combined with an anti-stiction treatment for fabrication of nanocantilever based nanoelectromechanical systems (NEMS). The process combines a dry release method, using a supporting layer......, the technique enables long time storage and transportation of produced devices without the risk of stiction. By combining the dry release method with a plasma deposited anti-stiction coating both fabrication induced stiction, which is mainly caused by capillary forces originating from the dehydration...

  14. Nanostructured materials for thermoelectric applications.

    Science.gov (United States)

    Bux, Sabah K; Fleurial, Jean-Pierre; Kaner, Richard B

    2010-11-28

    Recent studies indicate that nanostructuring can be an effective method for increasing the dimensionless thermoelectric figure of merit (ZT) in materials. Most of the enhancement in ZT can be attributed to large reductions in the lattice thermal conductivity due to increased phonon scattering at interfaces. Although significant gains have been reported, much higher ZTs in practical, cost-effective and environmentally benign materials are needed in order for thermoelectrics to become effective for large-scale, wide-spread power and thermal management applications. This review discusses the various synthetic techniques that can be used in the production of bulk scale nanostructured materials. The advantages and disadvantages of each synthetic method are evaluated along with guidelines and goals presented for an ideal thermoelectric material. With proper optimization, some of these techniques hold promise for producing high efficiency devices.

  15. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...... implementation, a range of complementing characterization methods is needed to perform high-speed quality control of the nanostructures. This thesis concerns the development of a new method for fast in-line characterization of periodic nanostructures. The focus is on optical scatterometry, which uses inverse......, with trapezoidal profiles approximately ~200 nm high and with periods between 600 nm and 5000 nm. The heights and filling factors are determined with an accuracy of ~8 %, while the sidewall slopes have larger uncertainties due to a lower influence on the reflected light. The thesis also evaluates the use...

  16. Nanostructured Biomaterials and Their Applications

    Directory of Open Access Journals (Sweden)

    Kirsten Parratt

    2013-05-01

    Full Text Available Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.

  17. Nanostructured materials for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Humplik, T; Lee, J; O' Hern, S C; Fellman, B A; Karnik, R; Wang, E N [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T, E-mail: tlaoui@kfupm.edu.sa, E-mail: karnik@mit.edu, E-mail: enwang@mit.edu [Departments of Mechanical Engineering and Chemical Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  18. Nanostructured materials for water desalination

    Science.gov (United States)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  19. Nanostructured materials for water desalination.

    Science.gov (United States)

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  20. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... counterparts, due to the promising advantages, such as transparency, flexibility, ease of processing etc. But their efficiencies cannot be compared to the inorganic ones. Boosting the efficiency of OSCs by nanopatterning has thus been puzzling many researchers within the past years. Therefore various methods...... technique. Resist imprinted Al dimples drag the main focus showing increase in absorption and efficiency enhancement in poly(3-hexylthiophene-2,5-diyl) (P3HT) and Phenyl-C61-butyric acid methyl (PCBM) BHJ devices. Not limited to this, nanostructures by imprinting the organic layer of P3HT:PCBM and imprinted...

  1. Chiroplasmonic DNA-based nanostructures

    Science.gov (United States)

    Cecconello, Alessandro; Besteiro, Lucas V.; Govorov, Alexander O.; Willner, Itamar

    2017-09-01

    Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

  2. Nanostructured glass–ceramic coatings for orthopaedic applications

    Science.gov (United States)

    Wang, Guocheng; Lu, Zufu; Liu, Xuanyong; Zhou, Xiaming; Ding, Chuanxian; Zreiqat, Hala

    2011-01-01

    Glass–ceramics have attracted much attention in the biomedical field, as they provide great possibilities to manipulate their properties by post-treatments, including strength, degradation rate and coefficient of thermal expansion. In this work, hardystonite (HT; Ca2ZnSi2O7) and sphene (SP; CaTiSiO5) glass–ceramic coatings with nanostructures were prepared by a plasma spray technique using conventional powders. The bonding strength and Vickers hardness for HT and SP coatings are higher than the reported values for plasma-sprayed hydroxyapatite coatings. Both types of coatings release bioactive calcium (Ca) and silicon (Si) ions into the surrounding environment. Mineralization test in cell-free culture medium showed that many mushroom-like Ca and phosphorus compounds formed on the HT coatings after 5 h, suggesting its high acellular mineralization ability. Primary human osteoblasts attach, spread and proliferate well on both types of coatings. Higher proliferation rate was observed on the HT coatings compared with the SP coatings and uncoated Ti-6Al-4V alloy, probably due to the zinc ions released from the HT coatings. Higher expression levels of Runx2, osteopontin and type I collagen were observed on both types of coatings compared with Ti-6Al-4V alloy, possibly due to the Ca and Si released from the coatings. Results of this study point to the potential use of HT and SP coatings for orthopaedic applications. PMID:21292725

  3. Nanostructured Substrates for Optical Sensing

    OpenAIRE

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.; Suslick, Kenneth S

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolec...

  4. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  5. Dielectric nanostructures with high laser damage threshold

    Science.gov (United States)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  6. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors

    OpenAIRE

    Ansari, Anees A.; Alhoshan, M.; M. S. AlSalhi; Aldwayyan, A.S.

    2010-01-01

    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  7. Integration of Natural Polymers and Synthetic Nanostructures

    Science.gov (United States)

    2014-11-20

    11/2014 Final Report August 15 2011- August 15 2014 INTEGRATION OF NATURAL POLYMERS AND SYNTHETIC NANOSTRUCTURES FA9550-11-1-0233 Vladimir V. Tsukruk...inorganic nanostructures . We employ fabrication techniques including layer-by-layer (LbL) deposition, vacuum-assisted self-assembly, and spin-assisted...writing. U U U UU 1 Final Performance Report August 2011 - August 2014 FA9550-11-1-0233: INTEGRATION OF NATURAL POLYMERS AND SYNTHETIC NANOSTRUCTURES

  8. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  9. Application of smart nanostructures in medicine.

    Science.gov (United States)

    He, Jingjing; Qi, Xiaoxue; Miao, Yuqing; Wu, Hai-Long; He, Nongyue; Zhu, Jun-Jie

    2010-09-01

    Smart nanostructures are sensitive to various environmental or biological parameters. They offer great potential for numerous biomedical applications such as monitoring, diagnoses, repair and treatment of human biological systems. The present work introduces smart nanostructures for biomedical applications. In addition to drug delivery, which has been extensively reported and reviewed, increasing interest has been observed in using smart nanostructures to develop various novel techniques of sensing, imaging, tissue engineering, biofabrication, nanodevices and nanorobots for the improvement of healthcare.

  10. Structural characteristics and magnetic properties of bulk nanocrystalline Fe_(84)Zr_2Nb_4B_(10) alloy prepared by mechanical alloying and spark plasma sintering consolidation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Magnetic properties of Fe84Zr2Nb4B10 sample were investigated. The sample was produced from nanocrystalline powders made by the mechanical alloying (MA) and consolidation using the spark plasma sintering (SPS) technique. Effects of milling time on phase transformation, structural characteristics, and magnetic properties of powders were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and physical property measure system (PPMS), respectively. Results show that nanostructured α-Fe supe...

  11. In situ synchrotron study of Au-Pd nanoporous alloy formation by single-source precursor thermolysis.

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat

    2012-10-12

    We have successfully prepared a face-centered cubic Au-Pd nanoporous structure (NPS) in a one-pot reaction under thermal decomposition of single-source precursor [Pd(NH(3))(4)][AuCl(4)](2). The precursor employed contains both desired metals 'mixed' on the molecular level, thus providing its significant advantages for obtaining alloys. The observation using a high-resolution transmission electron microscope has shown that the nanostructure was composed of interconnected polycrystalline ligaments with an average diameter of 14 ± 3 nm. The measurements made by energy-dispersive x-ray analysis and powder x-ray diffraction (XRD) confirm that the nanostructure consists of Au(0.67)Pd(0.33) alloy. In situ real-time synchrotron XRD was used to study the formation mechanism for Au-Pd alloy NPS. We provide the correlation of control parameters (such as temperature, rate of increase of temperature and gas atmosphere) with the microstructure and phase behavior of bimetallic products. Under reducing conditions (H(2) atmosphere) the first step is the formation of alloy nanowires. Finally, bimetallic alloy 3D nanostructure is formed after the complete decomposition of the precursor (100 °C).

  12. The properties of high-energy milled pre-alloyed copper powders containing 1 wt. % Al

    Directory of Open Access Journals (Sweden)

    VISESLAVA RAJKOVIC

    2007-01-01

    Full Text Available The microstructural and morphological changes of inert gas atomized pre-alloyed Cu-1 wt. % Al powders subjected to hith-energy milling were studied. The microhardness of hot-pressed compacts was measured as a function of milling time. The thermal stability during exposure at 800 °C and the electrical conductivity of compacts were also examined. During the high-energy milling, severe deformation led to refinement of the powder particle grain size (from 550 nm to about 55 nm and a decrease in the lattice parameter (0.10 %, indicating precipitation of aluminium from the copper matrix. The microhardness of compacts obtained from 5 h-milled powders was 2160 MPa. After exposure at 800 °C for 5 h, these compacts still exhibited a high microhardness value (1325 MPa, indicating good thermal stability. The increase of microhardness and good thermal stability is attributed to the small grain size (270 and 390 nm before and after high temperature exposure, respectively. The room temperature electrical conductivity of compacts processed from 5 h-milled powder was 79 % IACS.

  13. Physical electrochemistry of nanostructured devices.

    Science.gov (United States)

    Bisquert, Juan

    2008-01-07

    This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.

  14. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    Science.gov (United States)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Schlabach, Sabine; Brand, Richard A.; Provenzano, Virgil; Hahn, Horst

    2017-01-01

    In this paper we introduce an innovative bottom-up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties.

  15. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures.

    Science.gov (United States)

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J

    2015-03-13

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron.

  16. Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3

    DEFF Research Database (Denmark)

    Khan, A.; Saleemi, M.; Johnsson, M.

    2014-01-01

    Nanostructured powders of thermoelectric (TE) CoSb3 compounds were synthesized using a chemical alloying method. This method involved co-precipitation of oxalate precursors in aqueous solution with controlled pH, followed by thermochemical treatments including calcination and reduction to produce...... stoichiometric nanostructured CoSb3. Moreover, CoSb 3 nanoparticles were consolidated by spark plasma sintering (SPS) with a very brief processing time. Very high compaction densities (>95%) were achieved and the grain growth was almost negligible during consolidation. An iterative procedure was developed...... to maintain pre-consolidation particle size and to compensate Sb evaporation during reduction. Significant changes in particle size and morphology were observed, and the post-reduction cooling was found to be an important stage in the process. The spark plasma sintering (SPS) parameters were optimized...

  17. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  18. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  19. Reduction in thermal conductivity of Bi–Te alloys through grain refinement method

    Indian Academy of Sciences (India)

    Soma Dutta; V Shubha; T G Ramesh

    2013-10-01

    Ternary alloys of thermoelectric materials Bi–Sb–Te and Bi–Se–Te of molecular formula, Bi0.5Sb1.5Te3 ( type) and Bi0.36Se0.064Te0.576 ( type), were prepared by mechanical alloying method. The preparation of materials by mechanical alloying method has effectively reduced the thermal conductivity by generating a large number of induced grain boundaries with required degree of disorder. The process of frequent milling was adapted for grain refinement. Substantial reduction in thermal conductivity was achieved due to nano-structuring of these alloys. Thermal conductivity values were found to be very low at room temperature, 0.5W/mK and 0.8W/mK, respectively for p and n type materials.

  20. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  1. Reactor and method for production of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  2. Anchored nanostructure materials and method of fabrication

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  3. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  4. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  5. Nanostructures for Electronic and Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will develop sensors and electronic components from metal oxide based nanotubes and nanowires. These nanostructured materials will be grown...

  6. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  7. Particle Lithography Enables Fabrication of Multicomponent Nanostructures

    Science.gov (United States)

    Lin, Wei-feng; Swartz, Logan A.; Li, Jie-Ren; Liu, Yang; Liu, Gang-yu

    2014-01-01

    Multicomponent nanostructures with individual geometries have attracted much attention because of their potential to carry out multiple functions synergistically. The current work reports a simple method using particle lithography to fabricate multicomponent nanostructures of metals, proteins, and organosiloxane molecules, each with its own geometry. Particle lithography is well-known for its capability to produce arrays of triangular-shaped nanostructures with novel optical properties. This paper extends the capability of particle lithography by combining a particle template in conjunction with surface chemistry to produce multicomponent nanostructures. The advantages and limitations of this approach will also be addressed. PMID:24707328

  8. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  9. Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation.

    Science.gov (United States)

    Yang, Nailiang; Zhang, Zhicheng; Chen, Bo; Huang, Ying; Chen, Junze; Lai, Zhuangchai; Chen, Ye; Sindoro, Melinda; Wang, An-Liang; Cheng, Hongfei; Fan, Zhanxi; Liu, Xiaozhi; Li, Bing; Zong, Yun; Gu, Lin; Zhang, Hua

    2017-08-01

    Inspired by the unique properties of ultrathin 2D nanomaterials and excellent catalytic activities of noble metal nanostructures for renewable fuel cells, a facile method is reported for the high-yield synthesis of ultrathin 2D PdCu alloy nanosheets under mild conditions. Impressively, the obtained PdCu alloy nanosheet after being treated with ethylenediamine can be used as a highly efficient electrocatalyst for formic acid oxidation. The study implicates that the rational design and controlled synthesis of an ultrathin 2D noble metal alloy may open up new opportunities for enhancing catalytic activities of noble metal nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Osteointegration of PLGA implants with nanostructured or microsized β-TCP particles in a minipig model.

    Science.gov (United States)

    Kulkova, Julia; Moritz, Niko; Suokas, Esa O; Strandberg, Niko; Leino, Kari A; Laitio, Timo T; Aro, Hannu T

    2014-12-01

    Bioresorbable suture anchors and interference screws have certain benefits over equivalent titanium-alloy implants. However, there is a need for compositional improvement of currently used bioresorbable implants. We hypothesized that implants made of poly(l-lactide-co-glycolide) (PLGA) compounded with nanostructured particles of beta-tricalcium phosphate (β-TCP) would induce stronger osteointegration than implants made of PLGA compounded with microsized β-TCP particles. The experimental nanostructured self-reinforced PLGA (85L:15G)/β-TCP composite was made by high-energy ball-milling. Self-reinforced microsized PLGA (95L:5G)/β-TCP composite was prepared by melt-compounding. The composites were characterized by gas chromatography, Ubbelohde viscometry, scanning electron microscopy, laser diffractometry, and standard mechanical tests. Four groups of implants were prepared for the controlled laboratory study employing a minipig animal model. Implants in the first two groups were prepared from nanostructured and microsized PLGA/β-TCP composites respectively. Microroughened titanium-alloy (Ti6Al4V) implants served as positive intra-animal control, and pure PLGA implants as negative control. Cone-shaped implants were inserted in a random order unilaterally in the anterior cortex of the femoral shaft. Eight weeks after surgery, the mechanical strength of osteointegration of the implants was measured by a push-out test. The quality of new bone surrounding the implant was assessed by microcomputed tomography and histology. Implants made of nanostructured PLGA/β-TCP composite did not show improved mechanical osteointegration compared with the implants made of microsized PLGA/β-TCP composite. In the intra-animal comparison, the push-out force of two PLGA/β-TCP composites was 35-60% of that obtained with Ti6Al4V implants. The implant materials did not result in distinct differences in quality of new bone surrounding the implant.

  11. Modeling energy transport in nanostructures

    Science.gov (United States)

    Pattamatta, Arvind

    Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the

  12. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  13. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Marc D; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL (United States)

    2002-10-21

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60{+-}5 GPa averaged over three samples. (rapid communication)

  14. RAPID COMMUNICATION: Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Science.gov (United States)

    Fries, Marc D.; Vohra, Yogesh K.

    2002-10-01

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60+/-5 GPa averaged over three samples.

  15. Compressibility of nanostructured Fe-Cu materials prepared by mechanical milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J.S.; Gerward, Leif

    1999-01-01

    The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...... ferromagnetic fcc-FeCu solid solution prepared by mechanical alloying has a bulk modulus of about 85 GPa, which is much smaller than the corresponding values for bulk fcc-Cu and bcc-Fe....

  16. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    Energy Technology Data Exchange (ETDEWEB)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana V N T; Shutthanandan, V.; Hoelzer, D. T.; Allen, T. R.

    2013-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  17. Electrochemical preparation and abnormal infrared effects of nanostructured Ni thin film

    Institute of Scientific and Technical Information of China (English)

    WANG Hanchun; ZHOU Zhiyou; TANG Wei; YAN Jiawei; SUN Shigang

    2004-01-01

    Nanometer-scale thin film of Ni supported on glassy carbon (nm-Ni/GC) was prepared by electrochemical deposition through cyclic voltammetry (CV). The properties of nm-Ni/GC were studied by electrochemical in situ FTIR reflection spectroscopy using CO adsorption as probe reaction. It has revealed that the nm-Ni/GC exhibits abnormal infrared effects (AIREs). The study has extended the investigation of the AIREs that we have discovered initially on nanostruetured film materials of platinum group metals and alloys to nanostructured film materials of iron group metals.

  18. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  19. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  20. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  1. Fabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2016-02-01

    Full Text Available The formation of low surface energy hybrid organic-inorganic micro-nanostructured zinc stearate electrodeposit transformed the anodic aluminum oxide (AAO surface to superhydrophobic, having a water contact angle of 160°. The corrosion current densities of the anodized and aluminum alloy surfaces are found to be 200 and 400 nA/cm2, respectively. In comparison, superhydrophobic anodic aluminum oxide (SHAAO shows a much lower value of 88 nA/cm2. Similarly, the charge transfer resistance, Rct, measured by electrochemical impedance spectroscopy shows that the SHAAO substrate was found to be 200-times larger than the as-received aluminum alloy substrate. These results proved that the superhydrophobic surfaces created on the anodized surface significantly improved the corrosion resistance property of the aluminum alloy.

  2. Using two-pass friction stir processing to produce nanocrystalline microstructure in AZ61 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    DU XingHao; WU BaoLin

    2009-01-01

    Despite their interesting properties, nanostructured materials have found limited use as a result of the cost of preparation and the difficulty in soaling up. Herein, a two-pass friotion stir processing (FSP) technique is employed to refine grain sizes to a nanoscale. Nanocrystalline AZ61 Mg alloy with an av-erage grain size of less than 100 nm was successfully obtained using FSP. Corresponding to this, the highest microhardness of the nano-grained region reached triple times that of AZ61 substrate. In prin-ciple, by applying multiple overlapping passes, it should be possible to produce any desired size thin sheet of nanostructure using this technique. We expect that the FSP technique may pave a way to large-scale structural applications of nanostruotured metals and alloys.

  3. Solar Cells Having a Nanostructured Antireflection Layer

    DEFF Research Database (Denmark)

    2013-01-01

    An solar cell having a surface in a first material is provided, the optical device having a non-periodic nanostructure formed in the surface, the nanostructure comprising a plurality of cone -haped structures wherein the cones are distributed non-periodically on the surface and have a random heig...

  4. Recent achievements in nanostructured photovoltaic devices.

    Science.gov (United States)

    Khlyap, Halyna M; Laptev, Viktor I

    2011-06-01

    This mini-review summarizes some key interesting applications and perspectives of nanostructured devices for future nanoelectronics, among them are photonic circuits, carbon nanostructures for chemisensors, unique Ag-Cu-nanocluster contacts for high-effective solar cells. Recent patents in the field are also discussed.

  5. Processing of Nanostructured Devices Using Microfabrication Techniques

    Science.gov (United States)

    Hunter, Gary W (Inventor); Xu, Jennifer C (Inventor); Evans, Laura J (Inventor); Kulis, Michael H (Inventor); Berger, Gordon M (Inventor); Vander Wal, Randall L (Inventor)

    2014-01-01

    Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.

  6. Multi-periodic nanostructures for photon control

    DEFF Research Database (Denmark)

    Kluge, Christian; Adam, Jost; Barié, Nicole;

    2014-01-01

    We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers...

  7. Vertically aligned nanostructure scanning probe microscope tips

    Science.gov (United States)

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  8. Metal oxide nanostructures with hierarchical morphology

    Science.gov (United States)

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  9. Nucleation theory and growth of nanostructures

    CERN Document Server

    Dubrovskii, Vladimir G

    2013-01-01

    Semiconductor nanostructures such as nanowires are promising building blocks of future nanoelectronic, nanophotonic and nanosensing devices. Their physical properties are primarily determined by the epitaxy process which is rather different from the conventional thin film growth. This book shows how the advanced nucleation theory can be used in modeling of growth properties, morphology and crystal phase of such nanostructures.

  10. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...

  11. Quantum Pumping and Adiabatic Transport in Nanostructures

    NARCIS (Netherlands)

    Wakker, G.M.M.

    2011-01-01

    This thesis consists of a theoretical exploration of quantum transport phenomena and quantum dynamics in nanostructures. Specifically, we investigate adiabatic quantum pumping of charge in several novel types of nanostructures involving open quantum dots or graphene. For a bilayer of graphene we fin

  12. Enhanced photochromism in nanostructured molybdenum trioxide films

    Science.gov (United States)

    Beydaghyan, Gisia; Doiron, Serge; Haché, Alain; Ashrit, P. V.

    2009-08-01

    We present evidence of enhancement of photochromism in nanostructured thin films of molybdenum oxide fabricated by glancing angle deposition. The strong correlation of coloration response with the internal surface area of the films provides evidence of the importance of nanostructuring on the photochromic effect and the vital role played by the availability of water in the photochromic mechanism.

  13. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  14. Energy transfer in nanostructured materials

    Science.gov (United States)

    Haughn, Chelsea

    Energy transport and loss are critical to the performance of optoelectronic devices such as photovoltaics and terahertz imaging devices. Nanostructured materials provide many opportunities to tailor transport and loss parameters for specific device applications. However, it has been very difficult to correlate specific nanoscale structural parameters with changes in these performance metrics. I report the development of new ways of using time-resolved photoluminescence (TRPL) to probe charge and energy transport and loss dynamics. These techniques are applied to several types of nanostructured materials, including bulk semiconductors with defects, self-assembled quantum dots and colloidal quantum dots. First, GaAs/InP double heterostructures grown via metal organic chemical vapor deposition (MOCVD) were characterized with TRPL. TRPL is typically used to extract minority carrier lifetimes, but we discovered that the measured lifetime depended critically on the intensity of the exciting laser. We developed a Shockley-Read-Hall model to extract trap state densities from intensity-dependent TRPL measurements. Second, we characterized energy and charge transfer between InAs quantum dots and ErAs nanoinclusions within III-V heterostructures. Using intensity- and temperature-dependent TRPL, we confirmed tunneling as the dominant mechanism of charge transport and characterized the electronic structure of the ErAs nanoparticles. Finally, we characterized energy transport in colloidal quantum dot cascade structures. These cascade structures utilize Forster Resonance Energy Transfer and trap state recycling to funnel excitons from donor layers to acceptor layers and suggest a promising method for avoiding losses associated with surface trap states. Collectively, the analysis of these disparate material types advances our understanding of energy dynamics in nanostructured materials and improves our ability to design the next generation of photovoltaic and optoelectronic

  15. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  16. Nanostructures, systems, and methods for photocatalysis

    Science.gov (United States)

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  17. Femtosecond laser nanostructuring of silver film

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ye; Ma, Guohong [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Laboratory for Microstructures, Shanghai (China); He, Min; Bian, Huadong; Yan, Xiaona [Shanghai University, Department of Physics, Shanghai (China); Lu, Bo [Shanghai University, Laboratory for Microstructures, Shanghai (China)

    2012-03-15

    In this paper, we report an evolution of surface morphology of silver film irradiated by a 1 kHz femtosecond laser. By SEM observations, it is noted that different nanostructures with respective surface features depend highly on the number of pulses and the laser fluence. Especially when the laser fluence is below the threshold fluence of film breakdown, a textured nanostructure including many nanobumps and nanocavities will appear on the surface of silver film. In order to determine an optimal regime for nanostructuring silver film and to further study the underlying mechanism, we perform a quantitative analysis of laser fluence and pulse number. The results show that this nanostructure formation should be due to a sequential process of laser melting, vapor bubbles bursting, heat stress confinement, and subsequent material redistribution. As a potential application, we find this nanostructured silver film can be used as the active substrate for surface enhanced Raman scattering effect. (orig.)

  18. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug...... of particle temperatures by simple detection of the phase boundary located far away from the particle. Two types of nanostructures were investigated using this assay: colloidal gold nanoparticles (rods and spheres) and e-beam printed metallic composite nanostructures. Chapter 5 presents the quantifications......-beam composite nanostructures, these including discs, triangles, stars and a dimer. The highest surface temperature elevation occurs on the nanostructure with the highest absorption efficiency at the laser irradiation wavelength, regardless of the size or the morphology. We also demonstrate that substantial heat...

  19. Covalent crosslinking of carbon nanostructures

    Indian Academy of Sciences (India)

    Urmimala Maitra; M Pandeeswar; T Govindaraju

    2012-05-01

    Covalent crosslinking of carbon nanostructures of different dimensionalities such as nanodiamond, single walled carbon nanotubes (SWNTs) and graphene can yield useful homo- and hetero-binary conjugates. Binary conjugation of the nanocarbons has been achieved by introducing symmetrical amide-linkages between acid (-COOH) functionalized nanocarbons and a diamine-linker. The binary conjugates have been characterized by using transmission electron microscopy as well as infrared, Raman and photoluminescence spectroscopies. Dispersions of covalently crosslinked binary conjugates of nanocarbons could be obtained in dimethyl formamide (DMF). Composites of the binary conjugates with polymer can be readily prepared by using the DMF suspensions.

  20. Wetting properties of nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Canut, S. [Laboratoire de Physique de la Matiere Condensee et Nanostructures (UMR CNRS 5586), Universite Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)]. E-mail: ramos@lpmcn.univ-lyon1.fr

    2006-04-15

    Swift heavy ion irradiation is a powerful tool to tailor surfaces under controlled conditions at a nanometric scale. The growing importance of nanostructured surfaces for a wide variety of applications and fundamental investigations is now well established. In this paper I will mainly discuss the interest of such surfaces for investigations concerning solid-liquid interfaces. The role played by topographical defects on wetting properties of solid surfaces, and both the dissipative and the confinement effects on the interface will be demonstrated by simple examples.

  1. Modeling of biological nanostructured surfaces

    Science.gov (United States)

    Cristea, P. D.; Tuduce, Rodica; Arsene, O.; Dinca, Alina; Fulga, F.; Nicolau, D. V.

    2010-02-01

    The paper presents a methodology using atom or amino acid hydrophobicities to describe the surface properties of proteins in order to predict their interactions with other proteins and with artificial nanostructured surfaces. A standardized pattern is built around each surface atom of the protein for a radius depending on the molecule type and size. The atom neighborhood is characterized in terms of the hydrophobicity surface density. A clustering algorithm is used to classify the resulting patterns and to identify the possible interactions. The methodology has been implemented in a software package based on Java technology deployed in a Linux environment.

  2. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    . Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...... be achieved, which allows us to resolve the second order reflection of graphene and to visualize the atomic structure in HRTEM. With this tool we tackle the challenge of imaging the introduced “defects” and their atomic structure....

  3. Group III-nitrides nanostructures

    Science.gov (United States)

    Pérez-Caro, M.; Ramírez-López, M.; Rojas-Ramírez, J. S.; Martínez-Velis, I.; Casallas-Moreno, Y.; Gallardo-Hernández, S.; Babu, B. J.; Velumani, S.; López-López, M.

    2012-02-01

    We report on the growth and characterization of self-assembled InGaN columnar nanostructures grown by gas source molecular beam epitaxy (GSMBE) on Si(111) substrates. At a zero concentration of Ga, InN nanocolumns (NCs) were successfully grown. In the case of InGaN, the surface morphology is dependent on composition; however, in general, InGaN samples exhibit columnar features. At concentrations near 50%, the samples show phase separation; this result is explained in terms of solid phase immiscibility.

  4. Effect of combined deformation on the structure and properties of copper and titanium alloys

    Science.gov (United States)

    Stolyarov, V. V.; Pashinskaya, E. G.; Beigel'Zimer, Ya. E.

    2010-10-01

    The effect of a combination scheme of severe plastic deformation and subsequent cold rolling or electroplastic rolling on the deformability, microstructural evolution, and mechanical properties of copper, titanium of various purities, and a titanium alloy of an equiatomic composition is studied. The combined deformation method is shown to create a number of new nanostructured and ultrafine-grained states with a high strength and ductility.

  5. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    OpenAIRE

    Tomiczek B.; Pawlyta M.; Adamiak M.; Dobrzański L.A.

    2015-01-01

    The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obta...

  6. Structural, thermal, and photoacoustic study of nanocrystalline Cr{sub 3}Ge produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Prates, P. B.; Maliska, A. M.; Ferreira, A. S. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C. M. [Universidade Federal de Santa Catarina, Campus de Araranguá, 88900-000 Araranguá, Santa Catarina (Brazil); Borges, Z. V. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Lima, J. C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R. S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro (Brazil)

    2015-10-21

    A thermodynamic analysis of the Cr-Ge system suggested that it was possible to produce a nanostructured Cr{sub 3}Ge phase by mechanical alloying. The same analysis showed that, due to low activation energies, Cr-poor crystalline and/or amorphous alloy could also be formed. In fact, when the experiment was performed, Cr{sub 11}Ge{sub 19} and amorphous phases were present for small milling times. For milling times larger than 15 h these additional phases decomposed and only the nanostructured Cr{sub 3}Ge phase remained up to the highest milling time used (32 h). From the differential scanning calorimetry measurements, the Avrami exponent n was obtained, indicating that the nucleation and growth of the nanostructured Cr{sub 3}Ge phase may be restricted to one or two dimensions, where the Cr and Ge atoms diffuse along the surface and grain boundaries. In addition, contributions from three-dimensional diffusion with a constant nucleation rate may be present. The thermal diffusivity of the nanostructured Cr{sub 3}Ge phase was determined by photoacoustic absorption spectroscopy measurements.

  7. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  8. Dispersion and separation of nanostructured carbon in organic solvents

    Science.gov (United States)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  9. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  10. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  11. SURFACE MELTING OF ALUMINIUM ALLOYS

    OpenAIRE

    Veit, S.; Albert, D; Mergen, R.

    1987-01-01

    The wear properties of aluminium base alloys are relatively poor. Laser surface melting and alloying has proved successful in many alloy systems as a means of significantly improving the surface properties. The present work describes experiments designed to establish the scope of laser treatment of aluminium alloys. Aluminium does not absorb CO2 laser light as well as other metals which necessitated first a general study of absorption caotings. Aluminium alloys offer fewer opportunities than ...

  12. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  13. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  14. Quantitative Characterization of Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  15. EDITORIAL: Nanostructures + Light = 'New Optics'

    Science.gov (United States)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  16. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  17. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity.

    Science.gov (United States)

    Liu, Xue; Du, Jing; Shao, Yang; Zhao, Shao-Fan; Yao, Ke-Fu

    2017-08-31

    Metallic core-shell nanostructures have inspired prominent research interests due to their better performances in catalytic, optical, electric, and magnetic applications as well as the less cost of noble metal than monometallic nanostructures, but limited by the complicated and expensive synthesis approaches. Development of one-pot and inexpensive method for metallic core-shell nanostructures' synthesis is therefore of great significance. A novel Cu network supported nanoporous Ag-Cu alloy with an Ag shell and an Ag-Cu core was successfully synthesized by one-pot chemical dealloying of Zr-Cu-Ag-Al-O amorphous/crystalline composite, which provides a new way to prepare metallic core-shell nanostructures by a simple method. The prepared nanoporous Ag-Cu@Ag core-shell alloy demonstrates excellent air-stability at room temperature and enhanced oxidative stability even compared with other reported Cu@Ag core-shell micro-particles. In addition, the nanoporous Ag-Cu@Ag core-shell alloy also possesses robust antibacterial activity against E. Coli DH5α. The simple and low-cost synthesis method as well as the excellent oxidative stability promises the nanoporous Ag-Cu@Ag core-shell alloy potentially wide applications.

  18. Analysis of niobium alloys.

    Science.gov (United States)

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  19. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  20. Sequence-specific recognition of DNA nanostructures.

    Science.gov (United States)

    Rusling, David A; Fox, Keith R

    2014-05-15

    DNA is the most exploited biopolymer for the programmed self-assembly of objects and devices that exhibit nanoscale-sized features. One of the most useful properties of DNA nanostructures is their ability to be functionalized with additional non-nucleic acid components. The introduction of such a component is often achieved by attaching it to an oligonucleotide that is part of the nanostructure, or hybridizing it to single-stranded overhangs that extend beyond or above the nanostructure surface. However, restrictions in nanostructure design and/or the self-assembly process can limit the suitability of these procedures. An alternative strategy is to couple the component to a DNA recognition agent that is capable of binding to duplex sequences within the nanostructure. This offers the advantage that it requires little, if any, alteration to the nanostructure and can be achieved after structure assembly. In addition, since the molecular recognition of DNA can be controlled by varying pH and ionic conditions, such systems offer tunable properties that are distinct from simple Watson-Crick hybridization. Here, we describe methodology that has been used to exploit and characterize the sequence-specific recognition of DNA nanostructures, with the aim of generating functional assemblies for bionanotechnology and synthetic biology applications.

  1. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  2. Engineering optical properties using plasmonic nanostructures

    Science.gov (United States)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  3. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  4. Nanostructured organic and hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Dunbar, Ricky B.; Hesse, Holger C.; Wiedemann, Wolfgang; Schmidt-Mende, Lukas [Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University (LMU) Munich, Amalienstr. 54, 80799 Munich (Germany)

    2011-04-26

    This progress report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Nanostructured transparent conducting oxide electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  6. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...... in science and concerns in toxicology. In the present work, EM methods for imaging nanostructure-cell interactions have been explored, and the complex interactions documented and ordered. In particular the usability of the focused ion beam scanning electron microscope (FIB-SEM) was explored. Using EM...

  7. Designing fractal nanostructured biointerfaces for biomedical applications.

    Science.gov (United States)

    Zhang, Pengchao; Wang, Shutao

    2014-06-06

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients.

  8. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  9. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  10. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  11. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the

  12. Alloy Selection System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  13. Strength of Hard Alloys,

    Science.gov (United States)

    Partial replacement of titanium carbide by tantalum carbide in three-phase WC-TiC-Co alloys tends to have a favorable effect on mechanical properties such as fatigue strength under bending and impact durability.

  14. First Everlasting Alloy

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    There′s new alloy that apparently just won′t give up. When a pin was scraped along it the equivalent of one million times, the alloy-made of zirconium, palladium, and ruthenium—displayed no net loss of surface material. When astonished researchers at the National Institute of Standards and Technology(NIST) persevered with a five-million-cycle wear test, they got the same result.

  15. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  16. Reconfigurable optical assembly of nanostructures

    Science.gov (United States)

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-06-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  17. Hybrid lipid-based nanostructures

    Science.gov (United States)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  18. Engineered nanoporous and nanostructured films

    Directory of Open Access Journals (Sweden)

    Joel L. Plawsky

    2009-06-01

    Full Text Available Nanoporous and nanostructured films have become increasingly important to the microelectronics and photonics industries. They provide a route to low dielectric constant materials that will enable future generations of powerful microprocessors. They are the only route to achieving materials with refractive indices less than 1.2, a key feature for the future development of photonic crystal devices, enhanced omni-directional reflectors, enhanced anti-reflection coatings and black-body absorbers. In addition, these films exhibit tremendous potential for separations, catalytic, biomedical and heat transfer applications. This article will review two primary techniques for manufacturing these films, evaporation induced self-assembly and oblique or glancing angle deposition, and will discuss some of the film properties critical to their use in the microelectronics and photonics industries.

  19. Dimensional crossover in semiconductor nanostructures

    Science.gov (United States)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  20. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.