WorldWideScience

Sample records for nanosized manganese zinc

  1. On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites.

    Science.gov (United States)

    Veena Gopalan, E; Malini, K A; Sakthi Kumar, D; Yoshida, Yasuhiko; Al-Omari, I A; Saravanan, S; Anantharaman, M R

    2009-04-01

    The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn(1-x)Zn(x)Fe(2)O(4) (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn(1-x)Zn(x)Fe(2)O(4). The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.

  2. Iron, zinc, and manganese distribution in mature soybean seeds

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Przybyłowicz, Wojciech J; Mesjasz-Przybyłowicz, Jolanta

    2009-01-01

    to reveal the distribution of iron, zinc, manganese and phosphorus within soybean seeds. We show that high concentrations of iron accumulate in the seed coats of mature soybean seeds. This iron accounted for 20 to 40% of the total seed iron. Furthermore, manganese and iron accumulated in close proximity...... to each other in the provascular tissue of the soybean radicle. No regions with increased accumulation of iron, zinc, or manganese were observed in the cotyledons. The concentrations of both phosphorus and zinc were higher in the radicle compared to the cotyledons, and zinc accumulated primarily near...

  3. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (2011), 19 (1): 151- 154. ISSN 0794-5698. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on Pulse ..... human microvasculature,. Hypertension. 36: 941-944. Piece, J.D, Cackler ...

  4. New generation of the zinc - manganese dioxide cell

    Energy Technology Data Exchange (ETDEWEB)

    Rogulski, Z.; Chotkowski, M.; Czerwinski, A. [Warsaw Univ., Warsaw (Poland). Dept. of Chemistry; Industrial Chemistry Research Inst., Warsaw (Poland)

    2006-10-15

    Zinc chloride and alkaline system cells are the 2 most popular types of zinc manganese dioxide cells. They offer excellent shelf life, high-temperature performance, low cost, and favourable charge density and electrode potential. They are also environmentally sound. However, zinc corrosion and the formation of electrochemically inactive products of manganese dioxide reduction are some of the main problems with the storage and operation of rechargeable alkaline manganese dioxide (RAM) batteries. Studies have shown that reticulated vitreous carbon (RVC) can be used as reactive mass carrier and the current collector in lead-acid batteries, zinc-carbon batteries, and secondary cells with NiOOH/Ni(OH){sub 2} cathodes. This paper demonstrated the behaviour of the primary zinc-carbon cell and a secondary battery system (Zn/ZnSO{sub 4}/MnO{sub 2}) with a new current collector. The commonly used graphic rod in the cell for the cathodic current collector was substituted by RVC. This modification enhanced all of the operational parameters of the cell, including voltage stability during discharge and electrical capacity of the cathode. In addition, the application of RVC as both anode and cathode active mass holders in the battery system made it possible to develop a new rechargeable battery system. 15 refs., 8 figs.

  5. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Science.gov (United States)

    Belardi, G; Lavecchia, R; Medici, F; Piga, L

    2012-10-01

    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

  6. Electromagnetic properties of manganese-zinc ferrite with lithium substitution

    Energy Technology Data Exchange (ETDEWEB)

    De Fazio, E. [LAFMACEL, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850 (1063), Buenos Aires (Argentina); Bercoff, P.G., E-mail: bercoff@famaf.unc.edu.ar [FAMAF, Universidad Nacional de Cordoba, IFEG-Conicet, Ciudad Universitaria, 5000 Cordoba (Argentina); Jacobo, S.E. [LAFMACEL, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850 (1063), Buenos Aires (Argentina)

    2011-11-15

    Polycrystalline manganese-zinc ferrite with lithium substitution of composition Li{sub 0.5x}Mn{sub 0.4}Zn{sub 0.6-x}Fe{sub 2+0.5x}O{sub 4} (0.0{<=}x{<=}0.4) was prepared by the usual ceramic method. X-ray diffraction analysis confirmed that the samples have a spinel structure and are of single phase for some values of Li content. Lithium doping considerably modifies saturation magnetization since its value increases from 57.5 emu/g for x=0.0 to 82.9 emu/g for x=0.4. Lithium inclusion increases the real permeability (over 1 MHz) while the natural resonance frequency shifts to lower values as the fraction of Li increases. These ferrites show good electromagnetic properties as absorbers in the microwave range of 1 MHz - 1 GHz. - Highlights: > Li-doped manganese-zinc ferrites were successfully prepared by the usual ceramic method. > Lithium doping enhances saturation magnetization and increases real permeability (over 1 MHz). > Natural resonance frequency shifts to lower values as fraction of Li increases. > These ferrites show good electromagnetic properties as absorbers in the microwave range of 1 MHz-1 GHz.

  7. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca(2+) decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.

  8. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    OpenAIRE

    Fernandes,Kirlene Salgado; Alvarenga,Evandro de Azevedo; Brandão, Paulo Roberto Gomes; Lins,Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electropainting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are i...

  9. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  10. A study of nanosized zinc oxide and its nanofluid

    Indian Academy of Sciences (India)

    D K Singh; D K Pandey; R R Yadav; Devraj Singh

    2012-05-01

    The synthesis and characterization of nanosized zinc oxide and its nanofluid in a polyvinyl alcohol (PVA) matrix have been done in the present investigation. Crystalline zinc oxide nanoparticles are synthesized using single-step chemical method while the nanofluids are prepared by the dispersion of nanoparticles in PVA solution using an ultrasonicator. The prepared nanoparticles are characterized using X-ray diffraction, SEM–EDX and UV–visible spectrum. The particle size distribution measurement is carried out by acoustic particle sizer. The ultrasonic velocities are measured in the synthesized nanofluid under different physical conditions using an ultrasonic interferometer. It is found that the degree of crystallinity of nanoparticles depends on the evaporation rate during its synthesis and ultrasonic velocity has non-linear relation with temperature for the present nanofluid.

  11. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  12. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc.

    Science.gov (United States)

    Pass, Rachel; Frudd, Karen; Barnett, James P; Blindauer, Claudia A; Brown, David R

    2015-09-01

    The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.

  13. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae.

    Science.gov (United States)

    Eijkelkamp, Bart A; Morey, Jacqueline R; Ween, Miranda P; Ong, Cheryl-lynn Y; McEwan, Alastair G; Paton, James C; McDevitt, Christopher A

    2014-01-01

    Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a 'toxic' effect on bacterial pathogens, such as S. pneumoniae.

  14. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Bart A Eijkelkamp

    Full Text Available Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA, a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a 'toxic' effect on bacterial pathogens, such as S. pneumoniae.

  15. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Emily Ann; Toroker, Maytal Caspary

    2017-08-15

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  16. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  17. Phosphates nanoparticles doped with zinc and manganese for sunscreens

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, T.S. de, E-mail: tatiana.araujo@ifs.edu.br [Departamento de Fisica, Universidade Federal de Sergipe, Sergipe (Brazil); Instituto Federal de Ciencias e Tecnologia de Sergipe, Sergipe (Brazil); Souza, S.O. de [Departamento de Fisica, Universidade Federal de Sergipe, Sergipe (Brazil); Miyakawa, W. [Divisao de Fotonica - Instituto de Estudos Avancados, Sao Jose dos Campos (Brazil); Sousa, E.M.B. de [Centro de Desenvolvimento de Tecnologia Nuclear - CDTN/CNEN, Minas Gerais (Brazil)

    2010-12-01

    The crescent number of skin cancer worldwide gives impulse to the development of sunscreen that can both prevent skin cancer and also permit gradual tanning. In this work, the synthesis of hydroxyapatite and tricalcium phosphate nanocrystalline powders was investigated in order to obtain materials with optical properties and appropriate size for sunscreen. Pure, Zn{sup 2+}-doped and Mn{sup 2+}-doped hydroxyapatite (HAP) and tricalcium phosphate ({beta}-TCP) were produced by the wet precipitation process using diammonium phosphate, calcium nitrate, ammonium hydroxide, zinc nitrate and manganese nitrate as reagents. The pure and doped HAP precipitates were calcined at 500 deg. C for 1 h, while the {beta}-TCP (pure and doped) were calcined at 800 deg. C for 2 h. The powder samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDX), atomic force microscopy (AFM) and ultraviolet (UV)-vis spectroscopy. XRD and EDX showed the formation of the expected materials (HAP and {beta}-TCP) without toxic components. AFM micrographs showed aggregated ellipsoidal particles with dimensions smaller than 120 nm. Optical absorption spectra showed that the calcium phosphate produced in this work absorbs in the UV region. The obtained materials presented structural, morphological and optical properties that allow their use as the active centers in sunscreens.

  18. Synthesis and photocatalytic applications of nano-sized zinc-doped mesoporous titanium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Muñoz, Sergio; Pérez-Quintanilla, Damián [Departamento de Química Inorgánica y Analítica, E.S.C.E.T., Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles (Madrid) (Spain); Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Departamento de Química Inorgánica y Analítica, E.S.C.E.T., Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles (Madrid) (Spain)

    2013-02-15

    Graphical abstract: Nano-sized mesoporous titanium oxide (T0) and zinc-doped nano-sized mesoporous titanium oxides (TA–TD) were synthesized by a simple method and characterized by different techniques. All materials have been studied in the photocatalytic degradation of methylene blue under UV light, observing that the decrease in the band gap of the materials seems to have a positive influence in the photocatalytic activity. Display Omitted Highlights: ► Nano-sized mesoporous TiO{sub 2} and Zn-doped TiO{sub 2} have been synthesized and characterized. ► Band gap of the Zn-doped TiO{sub 2} decreases when the Zn amount increases. ► Materials consist of porous particles (10–20 nm). ► The photocatalytic degradation of MB has been studied for these materials. ► A decrease in the band gap of the materials enhances the photocatalytic activity. -- Abstract: The synthesis of nano-sized mesoporous titanium oxide (T0) is described by an easy synthetic method which consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and the subsequent elimination of the volatiles by simple distillation. On the other hand, zinc-doped mesoporous titanium oxides (TA–TD) were synthesized using the same method but adding increasing amounts of Zn(NO{sub 3}){sub 2} to give materials which contain between 0.12 and 6.17 wt.% Zn. Upon the calcinations of all the obtained materials, characterization has been carried out by using N{sub 2} adsorption–desorption isotherms, powder X-ray diffraction, X-ray fluorescence, UV–vis spectrometry, solid state {sup 47,49}Ti NMR spectroscopy and transmission electronic microscopy (TEM). The results show that all these materials are mesoporous, with BET surfaces between 54 and 121 m{sup 2}/g and similar pore diameters between 6.4 and 9.1 nm. XRD studies show that these materials mainly consist of anatase and very small amounts of brookite. TEM technique shows the small particle sizes of the

  19. LOW TEMPERATURE VOC COMBUSTION OVER MANGANESE, COBALT AND ZINC ALPO4 MOLECULAR SIEVES

    Energy Technology Data Exchange (ETDEWEB)

    Rosemarie Szostak

    2003-03-06

    The objective of this project was to prepare microporous aluminophosphates containing magnesium, manganese, cobalt and zinc (MeAPOs) and to evaluate their performance as oxidation catalysts for the removal of low levels of volatile organic compounds (VOCs) from gas streams. The tasks to be accomplished were as follows: (1) To develop reliable synthesis methods for metal aluminophosphates containing manganese, cobalt and zinc in their framework; (2) To characterize these materials for crystallinity, phase purity, the location and nature of the incorporated metal in the framework; and (3) To evaluate the materials for their catalytic activities in the oxidation of volatile organic environmental pollutants.

  20. Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries

    Science.gov (United States)

    Veloso, Leonardo Roger Silva; Rodrigues, Luiz Eduardo Oliveira Carmo; Ferreira, Daniel Alvarenga; Magalhães, Fernando Silva; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed in this paper for the selective separation of zinc and manganese from spent alkaline batteries. The recycling route comprises the following steps: (1) batteries dismantling to separate the spent batteries dust from other components (iron scraps, plastic and paper), (2) grinding of the batteries dust to produce a black homogeneous powder, (3) leaching of the powder in two sequential steps, "neutral leaching with water" to separate potassium and produce a KOH solution, followed by an "acidic leaching with sulphuric acid" to remove zinc and manganese from the powder, and (4) selective precipitation of zinc and manganese using the KOH solution (pH around 11) produced in the neutral leaching step. For the acidic leaching step, two alternative routes have been investigated (selective leaching of zinc and total leaching) with regard to the following operational variables: temperature, time, sulphuric acid concentration, hydrogen peroxide concentration and solid/liquid ratio. The results obtained in this study have shown that the proposed route is technically simple, versatile and provides efficient separation of zinc and manganese.

  1. Effect of manganese and zinc on the growth of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.H.; Lustigman, B.; Dandorf, D. (Montclair State College, Upper Montclair, NJ (United States))

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  2. Effects of Cadmium, Lead, Manganese, and Zinc at WHO Safe Limits ...

    African Journals Online (AJOL)

    user

    ABSTRACT: In the present study, The in vitro availability of chloramphenicol was ... (Pb), cadmium (Cd), manganese (Mn) and zinc (Zn) at 0.01, 0.003, 0.5 and 3 ... It is used in treatment of human ..... World Health Organisation (WHO), (1993).

  3. zinc and manganese levels in subjects with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hossneara Eva

    2016-12-01

    Full Text Available Background: Serum level of several trace elements such as zinc (Zn and manganese (Mn levels are altered in type 2 DM and its deficiencies are associated with the development of microvascular and macrovascular complications. Objective: To assess the serum zinc (Zn and manganese (Mn levelsin subjects with type 2 diabetes mellitus. Methods: This cross sectional study was conducted in the Department of Physiology, Dhaka Medical College, Dhaka from July 2014 to June 2015. Fifty type 2diabetic subjects with age ranging from 40 to 55 years of both sexes were study group and 50 age, sex and BMI matched healthy subjects were control group. Patients were selected from Bangladesh Institute of Research for Diabetic Endocrine and Metabolic Disorders (BIRDEM General Hospital, Dhaka. Serum Zn and Mn levels were estimated by flame atomic absorption spectrophotometry. For statistical analysis, unpaired student’s‘t’ test and chi square test was performed. Results: In this study, mean serum zinc and manganese levels were significantly (P<0.001 lower in the study group than that of control group. In addition, hypozincemia in 36% and hypomanganesemia in 18% of diabetic patients were observed and which was significantly (p<0.001 higher than those of control. Conclusion:From this study, it may be concluded that serum zinc and manganese deficiencies may develop as diabetes related complications.

  4. Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly.

    Science.gov (United States)

    Aihara, K; Nishi, Y; Hatano, S; Kihara, M; Ohta, M; Sakoda, K; Uozumi, T; Usui, T

    1985-08-01

    This study was designed to evaluate trace metal metabolism in patients with known abnormalities of human growth hormone (hGH). The mean concentration of zinc in plasma and urine decreased in patients with hGH deficiency after hGH injection, whereas, after adenomectomy, in patients with acromegaly, zinc increased in plasma, remained the same in erythrocytes, and decreased in urine. There was a negative correlation between plasma zinc and serum hGH levels and a positive correlation between urinary zinc excretion and serum hGH levels in acromegaly. In hGH deficiency, the copper content remained unchanged in plasma and erythrocytes and rose in urine after treatment; however, in acromegaly, the copper content increased in plasma and remained unchanged in erythrocytes and urine after surgery. The mean concentration of erythrocyte manganese did not change significantly after treatment in patients with hGH deficiency or acromegaly, but the pre-hGH treatment level of erythrocyte manganese in hGH deficiency was lower than in the controls. Plasma selenium concentrations were decreased in hGH deficiency and increased in acromegaly patients after therapy. These results suggest that hGH affects the metabolism of zinc, copper, manganese, and selenium.

  5. Manganese

    Science.gov (United States)

    Manganese is a mineral that is found in several foods including nuts, legumes, seeds, tea, whole grains, ... body requires it to function properly. People use manganese as medicine. Manganese is used for prevention and ...

  6. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  7. Reactivity of nano-size zinc powder in the aqueous solution of [Fe(III)(edta)(H2O)]().

    Science.gov (United States)

    Augustyniak, Adam W; Suchecki, Tomasz T; Kumazawa, Hidehiro

    2017-01-01

    Nitrogen mono-oxide and sulfur dioxide can be removed by simultaneous absorption into aqueous mixed solutions of sulfite and [Fe(II)(edta)]H2O)](2-), ferrous ion coordinated to an anion of ethylene-diaminetetraacetic acid (EDTA or edta). In the industrial system with coexisting oxygen in the gas phase, [Fe(II)(edta)](H2O)](2-) complex is oxidized to [Fe(III)(edta)](H2O)](-) by molecular oxygen. Because the ferric complex has no capability for reaction with NO, the suppression of this undesired oxidation process is a very important technological problem to be overcome. In our preceding work, we discussed the reduction kinetics of ferric ion by metal powder on the basis of the kinetic data regarding the ferric ion reduction in aqueous solutions of [Fe(III)(edta)](H2O)](-) containing aluminum, tin or zinc powders. Zinc powder of normal size was recognized as an effective reducing agent. In the present work, augmentation of reducing capability of zinc powder was examined more. The rate of reduction of nano-size zinc powder was found to be about 11 times higher than that of normal-size zinc one.

  8. Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jeevan Job [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686 560 (India); Shinde, A.B.; Krishna, P.S.R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kalarikkal, Nandakumar, E-mail: nkkalarikkal@mgu.ac.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686 560 (India); Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560 (India)

    2013-01-05

    structural parameters, cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite.

  9. PIXE-STIM microtomography: Zinc and manganese concentrations in a scorpion stinger

    Science.gov (United States)

    Schofield, Robert M. S.; Lefevre, Harlan W.

    1992-10-01

    Microtomography using PIXE (proton induced X-ray emission) is developed and applied. Iterative algorithms for emission tomography (Donner algorithms) are modified for this purpose. STIM (scanning transmission ion microscopy) microtomography provides the required local X-ray attenuation factors and X-ray production cross sections (σ x's). The variation in σ x is treated along with X-ray attenuation in an effective attenuation factor. Several criteria for the optimal number of iterations are discussed. Element density values obtained from PIXE tomography are normalized with density values from STIM tomography to provide local concentration values. Three transverse sections of the sting of a scorpion, Hadrurus arizonensis, are reconstructed tomographically. Local zinc concentrations reaching as high as 25(± 3)% of dry mass are found. Manganese concentrations reaching 3.8(± 0.5)% of dry mass are also found. In the section manifesting high concentrations of both manganese and zinc, the zinc is found mainly in a band beneath the manganese-rich surface layer. Specimen damage during PIXE is found not to have significantly affected the results.

  10. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease.

    Science.gov (United States)

    Gorell, J M; Johnson, C C; Rybicki, B A; Peterson, E L; Kortsha, G X; Brown, G G; Richardson, R J

    1999-01-01

    A population-based case-control study was conducted in the Henry Ford Health System (HFHS) in metropolitan Detroit to assess occupational exposures to manganese, copper, lead, iron, mercury and zinc as risk factors for Parkinson's disease (PD). Non-demented men and women 50 years of age who were receiving primary medical care at HFHS were recruited, and concurrently enrolled cases (n = 144) and controls (n = 464) were frequency-matched for sex, race and age (+/- 5 years). A risk factor questionnaire, administered by trained interviewers, inquired about every job held by each subject for 6 months from age 18 onward, including a detailed assessment of actual job tasks, tools and environment. An experienced industrial hygienist, blinded to subjects' case-control status, used these data to rate every job as exposed or not exposed to one or more of the metals of interest. Adjusting for sex, race, age and smoking status, 20 years of occupational exposure to any metal was not associated with PD. However, more than 20 years exposure to manganese (Odds Ratio [OR] = 10.61, 95% Confidence Interval [CI] = 1.06, 105.83) or copper (OR = 2.49, 95% CI = 1.06,5.89) was associated with PD. Occupational exposure for > 20 years to combinations of lead-copper (OR = 5.24, 95% CI = 1.59, 17.21), lead-iron (OR = 2.83, 95% CI = 1.07,7.50), and iron-copper (OR = 3.69, 95% CI = 1.40,9.71) was also associated with the disease. No association of occupational exposure to iron, mercury or zinc with PD was found. A lack of statistical power precluded analyses of metal combinations for those with a low prevalence of exposure (i.e., manganese, mercury and zinc). Our findings suggest that chronic occupational exposure to manganese or copper, individually, or to dual combinations of lead, iron and copper, is associated with PD.

  11. Evaluation of interaction of Zinc, Aluminum, Copper and Manganese on Chromobacterium violaceum

    Directory of Open Access Journals (Sweden)

    Luis Carlos Laureano da Rosa

    2007-12-01

    Full Text Available The accumulation of metallic salts in the environment resulted from the explotation, mineralogy, industrial, and agro-industrial activities and urban residues affect the dynamic balance of ecosystems, generating environmental and economic problems. The aim of this study was to evaluate the interaction of Chromobacterium violaceum with four metallic salts: aluminum sulphate, copper sulphate, manganese sulphate and zinc sulphate at concentration of 100mg/L or the absence of them, as well as a possible 2nd order interaction effect, using a complete 24 factorial design. The 16 experimental tests were carried out in microplate culture. Suspension of microorganism was prepared in Nutrient Broth and added to the orifices. After incubation at 37ºC during 24 hours, the absorbance was carried out using a 410nm in Versamax reader. The results showed remarkable bacterial adaptability. Student t test analysis showed that manganese was the only metal that did not have significant effect on the population growth of C. violaceum while zinc was the most influent. Positive interactions involving zinc was observed, interaction between aluminum and copper was not relevant.

  12. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  13. Spectrophotometric Simultaneous Determination of Zinc(Ⅱ),Manganese(Ⅱ) and Iron(Ⅱ) in Pharmaceutical Preparations Using OSC-PLS

    Institute of Scientific and Technical Information of China (English)

    Ali NIAZI; Azadeh YAZDANIPOUR; Mohammad GOODARZI; Hamidreza KAMKAR; Ali RAFINEJAD

    2006-01-01

    This work reports the spectrophotometric simultaneous determination of zinc(Ⅱ),manganese(Ⅱ) and iron(Ⅱ) in pharmaceutical preparation, using orthogonal signal correctionpartial least squares (OSC-PLS). All the factors affecting on the sensitivity were optimized and the linear dynamic range for determination of these metals was found. The PLS modeling was used for the multivariate calibration of the spectrophotometric data. The OSC was used for preprocessing of data matrices and the prediction results of model. The experimental calibration matrix was designed by measuring the absorbance over the range 450-570 nm for 21 samples of The RMSEP for zinc(Ⅱ), manganese(Ⅱ) and iron(Ⅱ) using OSC-PLS were 0.0164, 0.0132, 0.0146,respectively. The proposed method was successfully applied the determination of zinc(Ⅱ),manganese(Ⅱ) and iron(Ⅱ) in pharmaceutical preparations.

  14. Anisotropic friction and wear of single-crystal manganese-zinc ferrite in contact with itself

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with manganese-zinc ferrite (100), (110), (111), and (211) planes in contact with themselves. Mating the highest-atomic-density directions, (110), of matched crystallographic planes resulted in the lowest coefficients of friction. Mating matched (same) high-atomic-density planes and matched (same)crystallographic directions resulted in low coefficients of friction. Mating dissimilar crystallographic planes, however, did not give significantly different friction results from those with matched planes. Sliding caused cracking and the formation of hexagonal- and rectangular-platelet wear debris on ferrite surfaces, primarily from cleavage of the (110) planes.

  15. Recycling of valuable metals from spent zinc-manganese batteries by vacuum metallurgy

    Institute of Scientific and Technical Information of China (English)

    陈为亮; 柴立元; 闵小波; 彭兵; 张传福; 戴永年

    2003-01-01

    At the total chamber pressure of 1.01×101 Pa, Hg, Cd and Zn were distilled at 773-973 K from spent zinc-manganese batteries, Pb was volatilized at 1 173-1 273 K while Mn, Cu, Fe and C were remained in the residual. MnO2 and ZnO were reduced by carbon in spent dry-batteries at 773-1 273 K. Pure metals including Zn, Cd, Hg and Pb were recovered respectively from their mixed vapor by fractional condensation.

  16. Relationship between lead, cadmium, zinc, manganese and iron in hair of environmentally exposed subjects

    OpenAIRE

    Rita Mehra; Amit Singh Thakur

    2016-01-01

    Trace level analysis of two toxic metals lead and cadmium and three essential metals zinc, manganese and iron was examined in hair of 25 workers of metals finishing units and metal recycling units of State of Rajasthan, India, as Exposed Group (EG). Twenty-five subjects as controls were selected from the office staff of the same units Control Group A (CGA) and 25 subjects selected from the population of State of Rajasthan, India, who were not exposed to metal pollution at their work place wer...

  17. Photocatalytic Decomposition of Methyl Red Dye by Using Nanosized Zinc Oxide Deposited on Glass Beads in Various pH and Various Atmosphere

    Directory of Open Access Journals (Sweden)

    H. R. Ebrahimi

    2013-01-01

    Full Text Available Photocatalytic decomposition of methyl red (MR as a pollutant in wastewater samples is investigated in this study. This photodegradation was investigated in water in neutral, alkaline, and acidic media under external UV light irradiation by zinc oxide nanosized catalysts on granule glass. The effect of four atmosphere types including air, nitrogen, oxygen, and argon was investigated. Finally, it was found that photodecomposition using nanosized ZnO layered on glass is a new alternative route for efficient wastewater treatment. The results showed that the titled dye is degraded by various rate under different atmosphere and pH.

  18. Reuse of Anode Slime Generated by the Zinc Industry to Obtain a Liquor for Manufacturing Electrolytic Manganese

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2013-08-01

    A hydrometallurgical process is proposed in this article to recover manganese from a zinc electrowinning residue. The article describes the digestion-leaching experiments, precipitation, and electrowinning assays to recover Mn from this residue. Anode slime is treated with sulfuric acidic in a furnace within a temperature range of 400-450°C, leached with water, and then filtered. The results show that the dissolution of manganese increases with increasing temperature in the digestion step. The recovery yield of manganese was higher than 90%. As manganese electrolysis requires an electrolyte free of Zn, Ni, Co, and Cu pollutants, the sulfuric acid liquor needs a purification step. Na2S is used to remove pollutants. The results obtained in this study have shown that the proposed process for the recovery of manganese from this type of residue is technically viable.

  19. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing

    Science.gov (United States)

    de Souza, Cleusa Cristina Bueno Martha; Tenório, Jorge Alberto Soares

    This paper describes the leaching experiments and the electrowinning tests to recover Zn and Mn from spent household alkaline batteries. After the dismantling of the batteries, the black powder was analyzed and found to contain 21 wt.% Zn and 45%wt. Mn. Therefore, it was considered that recovery of these metals would be interesting due to their relatively large amounts in this kind of waste. Batch laboratory experiments were carried out to develop an acid leaching procedure and to determine appropriate leaching conditions to maximize zinc extraction and to study the leaching behavior of Mn. An experimental study was undertaken to evaluate the feasibility of simultaneous recovery of zinc and particulate manganese dioxide using a laboratory cell. The results from these electrowinning experiments are also presented in this paper.

  20. The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

    2013-01-01

    Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ∼200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

  1. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Science.gov (United States)

    Historic emissions from two zinc smelters have damaged the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils. As little as 10% Palmerton soil mixed wi...

  2. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Science.gov (United States)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  3. 液相法合成纳米氧化锌的研究进展%Research progress in liquid-phase synthesis of nanosized zinc oxide

    Institute of Scientific and Technical Information of China (English)

    郑兴芳

    2009-01-01

    The synthesis methods of nanosized zinc oxide by liquid phase methods in recent years were reviewed. The synthesis methods include precipitation, hydrothermal, solvothermal, sol-gel and microemulsion method. The advan-tages and disadvantages of several liquid phase methods were analyzed and their research progress of synthesis in recent years were described. It also pointed out that some new techniques, such as microwave and ultrasonic et al have been intro-duced in the preparation of nanosized zinc oxide and the future development direction of nanosized zinc oxide synthesis was towards the comprehensiveness of technology.%综述了近年来合成纳米氧化锌的液相方法,包括沉淀法、水热法、溶剂热法、溶胶-凝胶法、微乳液法等.分析了这几种方法的优缺点和最新的研究进展.同时指出,微波、超声等新技术也引入到液相法纳米氧化锌的制备工艺中,纳米氧化锌合成的未来发展方向是合成技术综合化.

  4. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  5. Synthesis and properties of nanosized tin-zinc composite oxides as lithium storage materials

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhengyong; YUAN Liangjie; SUN Jutang

    2007-01-01

    After preparing the precursor by a liquid precipitation method,a series of tin-zinc composite oxides with different components and structures were synthesized as the anode materials for lithium ion batteries when the precursor was pyrolyzed at different temperatures.The products were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and electrochemical measurements.The reversible capacity of amorphous ZnSnO3 is 844 mA.h/g in the first cycle and the charge capacity is 695 mA-h/g in the tenth cycle.The reversible capacity of ZnO.SnO2 is 845 mA.h/g in the first cycle and the charge capacity is 508 mA.h/g in the tenth cycle.The reversible capacity of SnO2-Zn2SnO4 is 758 mA.h/g in the first cycle and the charge capacity is 455 mA.h/g in the tenth cycle.Results show that amorphous ZnSnO3 exhibits the best electrochemical property among all of the tin-zinc composite oxides.With the formation of crystallites in the samples,the electrochemical property of the tin-zinc composite oxides decreases.

  6. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Science.gov (United States)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  7. Friction and wear of single-crystal manganese-zinc ferrite

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  8. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Science.gov (United States)

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys.

  9. Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

    Directory of Open Access Journals (Sweden)

    M. A. Moghri Moazzen

    2012-09-01

    Full Text Available ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. The particle  size  and structure of the products have been confirmed by XRD. The FT-IR study  confirms  the  presence  of  functional  groups.  Also,  the morphology  and  size  distribution  of  ZnO  nanoparticles  was analyzed by TEM images. The optical properties were investigated by UV–Visible  spectroscopy. The XRD  results  show  that  the  size of  the prepared nanoparticles  is  in  the  range  of 20–40 nm, which this value  is  in good agreement with  the TEM  results. The FT-IR spectrum clearly indicates the formation of an interfacial chemical bond between Zn and O. Also  the UV absorption depends on  the particles  size  and morphology,  so  the  optical properties  enhances with  decreasing  nanoparticles  size.  Moreover  the  direct precipitation technique is a feasible method for production of ZnO nanopowders.

  10. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.

  11. Optical, structural and electrical properties of nanosized zinc oxide sintered films for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Kumar V.

    2013-01-01

    Full Text Available Zinc oxide films have been deposited on ultra-clean glass substrates by screenprinting method followed by sintering process. Optimum conditions for preparing good quality screen-printed films have been found. The optical band gap of the films has been studied using reflection spectra in wavelength range 325-600 nm by using double beam spectrophotometer. X-ray diffraction studies revealed that the films are polycrystalline in nature, single phase exhibiting wurtzite (hexagonal structure with strong preferential orientation of grains along the (101 direction. Surface morphology of films has been studied by scanning electron microscopy (SEM technique. The electrical resistivity of the films was measured in vacuum by two probe technique. PACS: 78.20.Ci; 78.50.Ge; 78.66.-w; 78.66.Hf.

  12. Influence of gaseous atmosphere during a thermal process for recovery of manganese and zinc from spent batteries

    Science.gov (United States)

    Belardi, G.; Medici, F.; Piga, L.

    2014-02-01

    The aim of the work is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, due to the different phase change temperatures of the metals. Activated charcoal, as a reductant of the zinc-bearing phases to metallic Zn, was added to the mixture that was heated in different atmospheres (air, nitrogen, carbon dioxide) at different temperatures and residence times. Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscope and X-ray diffraction and allowed to understand the mechanisms of reduction of zinc and to interpret the formation of different compounds during the process. Results show that recovery of 99% of Zn (grade 96%) at 1200 °C and 97% of Zn (grade 99%) at 1000 °C, are achieved in N2 at 30 min residence time. Recovery of Mn at 1200 °C and 30 min residence time was around 90-100% (90% grade). These products are suitable, after refining, for production of new batteries or higher value-added products. The residue of the treatment, enriched in manganese oxide, could be used in the production of iron-manganese alloys.

  13. Manganese zinc ferrite nanoparticles as efficient catalysts for wet peroxide oxidation of organic aqueous wastes

    Indian Academy of Sciences (India)

    Manju Kurian; Divya S Nair

    2015-03-01

    Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for wet peroxide oxidation of 4-chlorophenol. Complete degradation of the target pollutant occurred within 90 min at 70°C. Zinc substitution enhanced the catalytic efficiency and the unsubstituted ZnFe2O4 oxidized the target compound completely within 45 min. Studies on the effect of reaction variables revealed that only a small amount of the oxidant, H2O2 (3–4 mL) is required for complete degradation of 4-chlorophenol. More than 80% of 4-chlorophenol was removed at catalyst concentrations of 100 mg/L. Direct correlation between the amount of catalyst present and the extent of degradation of 4-chlorophenol was observed, ruling out hesterogeneous-homogeneous mechanism. The catalysts are reusable and complete degradation of target pollutant occurred after five successive runs. The extent of iron leaching was fairly low after five consecutive cycles indicating the mechanism to be heterogeneous.

  14. Nanosized manganese oxide as cathode material for lithium batteries: Influence of carbon mixing and grinding on cyclability

    Science.gov (United States)

    Ibarra-Palos, A.; Strobel, P.; Darie, C.; Bacia, M.; Soupart, J. B.

    New manganese oxi-iodides were prepared by redox reaction of sodium permanganate with lithium iodide in aqueous medium at room temperature. The effects of Li/Mn ratio, carbon incorporation at the synthesis stage and grinding were systematically studied. Structural characterization showed that these materials are nanocrystalline. Best electrochemical results were obtained either on samples with carbon mixed after synthesized, submitted to extensive grinding before electrode fabrication, or on samples for which carbon black was incorporated directly in the aqueous reaction medium at the synthesis stage. Typical capacities in the potential window 1.8-3.8 V are160 and 130 mAh g -1 at the 40th and 100th cycle, respectively.

  15. Effect of Dose-Response of Zinc and Manganese on Siderophores Production

    Directory of Open Access Journals (Sweden)

    Mehri Ines

    2012-01-01

    Full Text Available Problem statement: This study was conducted to find and determine whether the siderophores of the four environmental Pseudomonas spp. isolates possess a sequestering activity towards essential transition metals (Zn and Mn other than iron. Approach: Four fluorescent Pseudomonads isolated from various environments, were characterized analytically (Isoelectric focusing, biologically (pyoverdine-mediated uptake and genetically (16S rDNA sequencing. By means of spectrophotometric measurements, it was possible to establish and compare the levels of pyoverdine production, in two different nutrient-poor media. Results: The strains were assigned, by sequencing, to P. fluorescens, P. aeruginosa, P. putida and P. mosselii isolated, respectively from soil, compost, sea water and waste water treatment plant. These bacterial strains were recognized as producing diver’s yellow-green siderophores types, when grown under conditions of iron starvation. The highest metabolite concentration was obtained with PsC132 and PsTp171 strains isolated respectively from compost and waste water treatment plant, in CAA medium. Strains grown in CAA medium exhibit a higher PVD level compared to SM medium. Mn (II was found to promote pyoverdine biosynthesis, but rather, Zn (II had no significant effect on siderophore production when compared to control medium. For both strains PsS29 and PsC132, the increase of iron concentration quenched siderophore production especially above 20 μM. Pyoverdine level declined with the high concentration of zinc but increased with Manganese concentration ranging up to 70 μM (in case of PsC132 and 300 μM (in case of PsS29. Conclusion/Recommendations: The ability of fluorescent Pseudomonas, isolated from wastewater treatment plant and from compost, to sequester zinc, point to a unique advantage of these species for divers bioremediation applications.

  16. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    Science.gov (United States)

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  17. Manganese carbonate-zinc glycerolate, synthesis, characterization and application as catalyst for transesterification of soybean oil

    Directory of Open Access Journals (Sweden)

    Zhu Xiaochan

    2016-01-01

    Full Text Available In this study, mixed system containing manganese carbonate (MnCO3 and zinc glycerolate (ZnGly was synthesized, and tested as solid catalyst for transesterification of soybean oil and biodiesel production. The samples of MnCO3/ZnGly before and after usage for transesterification process were characterized using different techniques: determination of basic strength, determination of specific surface area according to Brunauer-Emmett-Teller (BET, measuring the mass change using thermal gravimetric analysis (TGA, investigating the solid phase content and presence of different specific elements and groups by X-Ray diffraction (XRD, the Fourier transform infrared (FT-IR spectroscopy, the scanning electron microscopy (SEM with energy dispersive spectroscopy (EDS. The effects of different working parameters of transesterification were also investigated: temperature (438-458K, duration of transesterification (0-3.5h, methanol to oil molar ratio (12:1-36:1 and used amounts of catalyst (1-5 mass%. The reusability and stability of MnCO3/ZnGly were analyzed and obtained results showed that MnCO3/ZnGly exhibited a good activity with 100% TG conversion and 81.5% FAME yield with fresh catalyst, and can give 95-100% TG conversion and 62-78% FAME yield after 13 repeated use of same amount of catalyst without regeneration processes. Content of Mn and Zn in biodiesel and glycerol was analyzed by ICP-AAS after each reuse of catalyst.

  18. Syntheses and structures of dinuclear double-stranded helicates of divalent manganese, iron, cobalt, and zinc.

    Science.gov (United States)

    Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Love, Jason B

    2006-01-23

    The syntheses and solid-state and solution structures of a series of unusually volatile, charge neutral, [4 + 4] double-stranded helical complexes of divalent manganese, iron, cobalt, and zinc are described. Deprotonation of the N4-donor iminopyrrole ligand H2L by KH cleanly generates the salt K2(THF)2L, which displays both sigma and pi interactions between K and iminopyrrolyl fragments in the X-ray crystal structure. Transamination, salt elimination, and protonolysis reactions were found to be versatile and, in general, high-yielding routes to the dinuclear double helicates [M2(L)2] (M = Mn, Fe, Co, and Zn). These compounds are isomorphous in the solid state by X-ray crystallography and adopt dinuclear cleft motifs as a result of pi stacking between opposing iminopyrrolyl fragments. This motif was also observed in the solution structures of [Fe2(L)2] and [Zn2(L)2] below 230 and 200 K, respectively (DeltaG++ = approximately 46 and 39.0 kJ mol(-1), respectively).

  19. Relationship between lead, cadmium, zinc, manganese and iron in hair of environmentally exposed subjects

    Directory of Open Access Journals (Sweden)

    Rita Mehra

    2016-11-01

    Full Text Available Trace level analysis of two toxic metals lead and cadmium and three essential metals zinc, manganese and iron was examined in hair of 25 workers of metals finishing units and metal recycling units of State of Rajasthan, India, as Exposed Group (EG. Twenty-five subjects as controls were selected from the office staff of the same units Control Group A (CGA and 25 subjects selected from the population of State of Rajasthan, India, who were not exposed to metal pollution at their work place were selected as another control group Control Group B (CGB. Head hair samples were collected, decontaminated and digested followed by analysis for trace levels of Pb, Cd, Zn, Mn and Fe by Atomic Absorption Spectrophotometer (AAS, ECIL Model-AAS4141 using air acetylene flame. The significant levels of metals in between EG, CGA and CGB have been computed by Student’s ‘t’ test. The Pearson rank correlation of the data of five metals revealed significant positive correlation between Mn/Cd, Mn/Pb, Mn/Fe, Cd/Pb, Cd/Fe and Pb/Fe in hair of Exposed Group (EG, Mn/Zn, Mn/Cd, Mn/Pb, Zn/Cd, Zn/Pb, Cd/Pb and Cd/Fe in hair of Control Group A (CGA and Mn/Cd in hair of Control Group B (CGB. Significant negative correlation was observed between Pb/Fe in hair of CGB.

  20. Growth, structure and spectral studies of a novel mixed crystal potassium zinc manganese sulphate.

    Science.gov (United States)

    Vijila Manonmoni, J; Bhagavannarayana, G; Ramasamy, G; Meenakshisundaram, Subbiah; Amutha, M

    2014-01-03

    Mixed crystals of K2Zn0.84 Mn0.16(SO4)2·6H2O were grown from an equimolar aqueous solution of Tutton's salt, K2 Zn(SO4)2·6H2O and MnSO4 by slow evaporation solution growth technique. The crystal composition as determined by single crystal XRD analysis reveals the co-existence of zinc and manganese in the mixed crystal. The surface morphological changes are observed by scanning electron microscopy. Small variations in cell parameter values, slight shifts in characteristic vibrational patterns in FT-IR and reduction in intensities observed in XRD confirm the crystal stress as a result of formation of mixed crystal. High resolution XRD diffraction estimates the crystalline perfection of the mixed crystal with predominantly vacancy type of defects. It belongs to P21/c space group with cell parameter values, a=6.1530 Å, b=12.2230 Å, c=9.0430 Å, α=β=ν=90°, V=657.56 Å(3), Z=4. High transmittance in the visible region is observed.

  1. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    Science.gov (United States)

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  2. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.

    Science.gov (United States)

    Claro da Silva, Tatiana; Hiller, Christian; Gai, Zhibo; Kullak-Ublick, Gerd A

    2016-10-01

    Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5μg vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence. In silico identification of potential vitamin D responsive elements (VDREs) in the 5'-flanking region of the SLC30A10 promoter and dual-luciferase reporter assay showed enhanced promoter activity in the presence of vitamin D receptor (VDR) and retinoid X receptor (RXR) constructs, as well as vitamin D3, but not when one of these factors was absent. Electrophoretic mobility shift assay (EMSA) and

  3. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    Science.gov (United States)

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  4. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    Science.gov (United States)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  5. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients.

    Science.gov (United States)

    Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Jamali, Mohammad Khan; Arain, Mohammad Bilal; Jalbani, Nussarat; Kandhro, Ghulam Abbas

    2008-04-01

    There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease. The aim of present study was to compare the level of essential trace elements, chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn) in biological samples (whole blood, urine, and scalp hair) of patients who have diabetes mellitus type 2 (n = 257), with those of nondiabetic control subjects (n = 166), age ranged (45-75) of both genders. The element concentrations were measured by means of an atomic absorption spectrophotometer after microwave-induced acid digestion. The validity and accuracy was checked by conventional wet-acid-digestion method and using certified reference materials. The overall recoveries of all elements were found in the range of (97.60-99.49%) of certified values. The results of this study showed that the mean values of Zn, Mn, and Cr were significantly reduced in blood and scalp-hair samples of diabetic patients as compared to control subjects of both genders (p < 0.001). The urinary levels of these elements were found to be higher in the diabetic patients than in the age-matched healthy controls. In contrast, high mean values of Cu and Fe were detected in scalp hair and blood from patients versus the nondiabetic subjects, but the differences found in blood samples was not significant (p < 0.05). These results are consistent with those obtained in other studies, confirming that deficiency and efficiency of some essential trace metals may play a role in the development of diabetes mellitus.

  6. Nickel-substituted Lithium-Zinc-Manganese Ferritefor the Suppression of Radiated Emission Noise

    Directory of Open Access Journals (Sweden)

    N. C. Joshi

    2007-07-01

    Full Text Available Nickel-substituted lithium-zinc-manganese ferrite of the composition,  Li0.25-x/4 Zn0.5-x/2NixMn 0.1Fe2.15-x/4O4 where x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 have been investigated for electromagnetic interference(EMI  suppression to meet the EMI standards. Various compositions were prepared by theconventional ceramic technique using mixed oxides. The ferrites were characterised for theirstructural, electrical, and magnetic, properties. The ferrites were found to posses high saturationmagnetisation, permeability, Curie temperature and resistivity, which are the desirablecharacteristics for noise-suppression application. The operating frequency of the ferrite rangedfrom 1 MHz–700 MHz, which is high enough for absorbing the electrical fast transients andradiated emission noise suppression as shown for three devices–currency counting machine,energy meter and dc-dc converter where the radiated emission noise  is suppressed from 10 dBto 20 dB. In energy meter where the electrical fast transients (EFTs are suppressed up to 5.5kV, 4.5 kV, 3.5 kV, 2.8 kV, 1.6 kV, and 1.2 kV with composition x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, respectively.This material has tremendous scope of application in military equipment  to comply the EMIrequirements of the military standards.

  7. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice

    Science.gov (United States)

    Yamaguchi, Noriko; Ishikawa, Satoru; Abe, Tadashi; Baba, Koji; Terada, Yasuko

    2012-01-01

    Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa ‘Koshihikari’ were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected. PMID:22291135

  8. Preparation and properties of nanosize MnZn ferrite from δ-FeOOH

    Institute of Scientific and Technical Information of China (English)

    HAO Shunli; WANG Xin; WEI Yu; Wang Yongming; Liu Chunjing

    2006-01-01

    Ferrous ion was transformed into feroxyhyte (δ-FeOOH) by oxidation. Then, manganese sulfate and zinc sulfate in some ratio were added to the feroxyhyte solution. The co-precipitation was boiling reflux conditions sometime under constant stirring. The nanosize MnZn ferrite powder was formed. The mechanism of preparation of the nanosize MnZn ferrite was discussed, and the formation of feroxyhyte which was playing a key role during the process was mentioned. The properties of powder was tested by means of X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results show that the samples of spherical particles about 20 nm, which have characteristics of ferrimagnetism, has larger saturation magnetization, but the remanent magnetization and coercivity are comparatively smaller. The spinel MnZn ferrite nanosize powder was successfully prepared from δ-FeOOH at low temperature, with low-carbon steel and peroxide as main material.

  9. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    Science.gov (United States)

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L(-1)) in comparison to the control group (1.054 ± 0.174 mg L(-1)). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L(-1)) compared with that in the control group (46.00 ± 12.25 μg L(-1)). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  10. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  11. Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Bezerra, Marcos, E-mail: mbezerra47@yahoo.com.br [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, 45200-190, Jequie, Bahia (Brazil); Teixeira Castro, Jacira [Universidade Federal do Reconcavo da Bahia, Centro de Ciencias Exatas e Tecnologicas, 44380-000, Cruz das Almas, Bahia (Brazil); Coelho Macedo, Reinaldo; Goncalves da Silva, Douglas [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, 45200-190, Jequie, Bahia (Brazil)

    2010-06-18

    A slurry suspension sampling technique has been developed for manganese and zinc determination in tea leaves by using flame atomic absorption spectrometry. The proportions of liquid-phase of the slurries composed by HCl, HNO{sub 3} and Triton X-100 solutions have been optimized applying a constrained mixture design. The optimized conditions were 200 mg of sample ground in a tungsten carbide balls mill (particle size < 100 {mu}m), dilution in a liquid-phase composed by 2.0 mol L{sup -1} nitric, 2.0 mol L{sup -1} hydrochloric acid and 2.5% Triton X-100 solutions (in the proportions of 50%, 12% and 38% respectively), sonication time of 10 min and final slurry volume of 50.0 mL. This method allowed the determination of manganese and zinc by FAAS, with detection limits of 0.46 and 0.66 {mu}g g{sup -1}, respectively. The precisions, expressed as relative standard deviation (RSD), are 6.9 and 5.5% (n = 10), for concentrations of manganese and zinc of 20 and 40 {mu}g g{sup -1}, respectively. The accuracy of the method was confirmed by analysis of the certified apple leaves (NIST 1515) and spinach leaves (NIST 1570a). The proposed method was applied for the determination of manganese and zinc in tea leaves used for the preparation of infusions. The obtained concentrations varied between 42 and 118 {mu}g g{sup -1} and 18.6 and 90 {mu}g g{sup -1}, respectively, for manganese and zinc. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  12. Study on Manganese Balance in Zinc Hydrometallurgy Factory System%湿法炼锌厂系统锰平衡的研究

    Institute of Scientific and Technical Information of China (English)

    孙国记; 段宏志; 李志强

    2014-01-01

    Based on the production practice of zinc hydrometallurgy production , Through analyzing the change of manga-nese-bearing zinc hydrometallurgy process , it is pointed out in the high manganese condition that short-term measures should be taken to reduce acid zinc ratio with the reduction of manganese powder at the same time , and in the long run measures should be taken to solve the problem of effective open circuit for accumulated impurities from old electrolytic zinc plant system .Combined with change in the impurities in zinc leaching residues during the second washing , the balance of manganese in system was summarized .%本文根据生产实践,以分析系统含锰变化时锌湿法生产情况为出发点,指出高锰时短期应采取降低酸锌比同时配合减少锰粉加入量的技术措施,长远应考虑如何解决老电解锌厂系统内累积杂质有效开路的问题,并结合锌浸出渣二次洗涤前后杂质变化,总结系统锰的平衡。

  13. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    Science.gov (United States)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  14. Photocatalytic self-cleaning poly(L-lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Virovska, Daniela [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Paneva, Dilyana, E-mail: panevad@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya, E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia (Bulgaria); Karashanova, Daniela [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 109, BG-1113 Sofia (Bulgaria)

    2016-03-01

    New self-cleaning materials of polymer fibers decorated with a hybrid between nanosized zinc oxide and expanded graphite (EG) or fullerene (C{sub 60}) were obtained. The new materials were prepared by applying electrospinning in conjunction with electrospraying. Poly(L-lactide) (PLA) was selected as a biocompatible and (bio)degradable polymer carrier. PLA solution was electrospun in combination with electrospraying of a suspension that contained the ZnO/EG or ZnO/C{sub 60} hybrid. Mats with different content of EG or C{sub 60} were obtained. The new materials were characterized by scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The photocatalytic activity of the materials was evaluated by using model dyes. The formation of a hybrid between ZnO and EG led to enhancement of the photocatalytic activity of the mats at ZnO/EG weight ratios of 90/10 and 85/15. Increase in the photocatalytic activity of the ZnO-containing mats was also achieved by the formation of a hybrid between ZnO and C{sub 60} at a fullerene content of 0.5 and 1.0 wt.% in respect to ZnO weight. The new materials exhibited antibacterial activity as evidenced by the performed studies against Staphylococcus aureus. - Highlights: • New self-cleaning materials are fabricated by electrospinning/electrospraying. • PLA fibers decorated with nanosized ZnO/EG or ZnO/C{sub 60} hybrid are obtained. • Their photocatalytic activity is enhanced as compared to fibers with bare ZnO. • The new materials can be used repeatedly for degradation of MB and RR dyes. • The new self-cleaning materials exhibit antibacterial activity against S. aureus.

  15. Organometallics meet colloid chemistry: a case study in three phases based on molecular carbonyl precursors containing zinc and manganese.

    Science.gov (United States)

    Orlov, A; Roy, A; Lehmann, M; Driess, M; Polarz, S

    2007-01-17

    Two organometallic compounds containing zinc and manganese in different ratios are used as single-source precursors for the preparation of various new, bimetallic oxide materials with nanoscaled dimensions. It is shown that the materials synthesis can be performed in the solid-state, the liquid-phase, and even in the gas-phase. The molecular composition of the precursors determines the composition of the resulting materials. In addition, two novel methods for the preparation of highly crystalline metal oxide colloids are presented: The coupling between a gas-phase process and a colloidal approach, and the application of ozone as an oxidant for the transformation of metal carbonyls into oxides in the liquid phase.

  16. Recovery of Zinc and Manganese From Zinc-electrowinning Anode Mud%从锌电积阳极泥中回收锌和锰的试验研究

    Institute of Scientific and Technical Information of China (English)

    蒋光辉; 牛莎莎; 陈海清; 刘俊

    2014-01-01

    Washing of zinc and reduction leaching of manganese from zinc-electrowinning anode mud was investagated .The washing temperature ,washing time ,washing way and leaching time ,leaching temperature ,pH and other parameters on recovery of zinc and manganese are examined .The results show that in washing zinc process ,washing temperature affects obviously washing zinc rate .Under the conditions of the ratio between liquid volume and solid mass of 3∶1 ,the washing zinc rate is 97% .In leaching manganese process using SO2 as reducing agent ,effecting of pH and SO2 gas flow rate on the leaching rate of manganese is not obvious .Under the condition of leaching temperature of 60℃ , manganese leaching rate reaches 99% .T he experimental results demonstrate that it is effective to recovery zinc and manganese from zinc-electrowinning anode mud by washing and reduction leaching process .%研究了采用水洗和还原浸出法从锌电积阳极泥中提取锌和锰,考察了洗涤温度、洗涤时间、洗涤方式及还原浸出时间、浸出温度、pH等对锌、锰回收率的影响。试验结果表明:洗锌过程中,温度对洗锌率影响较大;在液固体积质量比3∶1、温度80℃条件下,通过逆流洗涤,洗锌率达97%以上,渣中锌质量分数在0.07%~0.09%之间。用SO2作还原剂浸出锰,pH和SO2气体流量对锰浸出率影响不明显;60℃下,锰浸出率在99%以上。通过水洗和还原浸出,锌电积阳极泥中的锌和锰得到有效回收,且流程简单。

  17. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  18. Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt.

    Science.gov (United States)

    Yamamoto, Satoshi; Ito, Kazuhiko; Suzuki, Kii; Matsushima, Yuki; Watanabe, Izumi; Watanabe, Yutaka; Abiko, Keima; Kamada, Toshihiko; Sato, Kan

    2014-03-01

    This study investigated how supplementation of the diet of dairy cows with trace minerals (zinc, manganese, copper and cobalt) affected kinematic gait parameters and lactation performance. Eight Holstein cows were divided into two groups, with each group receiving a different dietary treatment (control diet, or control diet supplemented with trace minerals) in a two-period crossover design. Kinematic gait parameters were calculated by using image analysis software. Compared to cows fed the control diet, cows that received the trace mineral-supplemented diet exhibited significantly increased walking and stepping rates, and had a shorter stance duration. Feed intake and milk production increased in cows fed the trace mineral-supplemented diet compared with control groups. The plasma manganese concentration was not different in control and experimental cows. In contrast, cobalt was only detected in the plasma of cows fed the supplemented diet. These results provide the first evidence that trace mineral supplementation of the diet of dairy cows affects locomotion, and that the associated gait changes can be detected by using kinematic gait analysis. Moreover, trace mineral supplementation improved milk production and only minimally altered blood and physiological parameters in dairy cows.

  19. 废干电池制取锰锌铁氧体过程中锰的测定%Determination of Manganese in the Process of Preparing Manganese Zinc Ferrite from Waste Dry Batteries

    Institute of Scientific and Technical Information of China (English)

    张晓东; 刘晓静; 冷士良; 刘兵; 李宗磊

    2013-01-01

    Manganese content must be determined accurately in the process of preparing manganese zinc ferrite from waste dry batteries. A method is used to determine manganese content by titration of ammonium ferrous sulfate with silver nitrate as catalyst. Meanwhile, the dosage of oxidant and silver nitrate, as well as the effect on iron and zinc is tested. The results show that this method is simple, rapid and accurate. The recovery rate of manganese is in the range of 98.7%~102.8%.%利用废干电池制取锰锌铁氧体过程中需要准确测定锰含量。以硝酸银作催化剂,采用硫酸亚铁铵滴定法测定锰含量,并对氧化剂用量、硝酸银用量、铁锌的影响等进行了试验。结果表明,该法操作简单、快速准确,锰回收率为98.7%~102.8%。

  20. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection

    Science.gov (United States)

    Clark, Heather L.; Jhingran, Anupam; Sun, Yan; Vareechon, Chairut; Carrion, Steven de Jesus; Skaar, Eric P.; Chazin, Walter J.; Calera, Jose Antonio; Hohl, Tobias M.; Pearlman, Eric

    2015-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9, is an abundant neutrophil protein which possesses anti-microbial activity primarily due to its ability to chelate zinc and manganese. In the current study, we showed that neutrophils from calprotectin-deficient S100A9 −/− mice have an impaired ability to inhibit Aspergillus fumigatus hyphal growth in vitro, and in infected corneas in a murine model of fungal keratitis; however, the ability to inhibit hyphal growth was restored in S100A9−/− mice by injecting recombinant calprotectin. Further, using recombinant calprotectin with mutations in either the Zn and Mn binding sites or the Mn binding site alone, we show that both zinc and manganese binding are necessary for calprotectin’s anti-hyphal activity. In contrast to hyphae, we found no role for neutrophil calprotectin in uptake or killing of intracellular A. fumigatus conidia either in vitro, or in a murine model of pulmonary aspergillosis. We also found that an A. fumigatus ΔzafA mutant, which demonstrates deficient zinc transport, exhibits impaired growth in infected corneas and following incubation with neutrophils or calprotectin in vitro as compared to wild-type. Collectively, these studies demonstrate a novel stage - specific susceptibility of A. fumigatus to zinc and manganese chelation by neutrophil-derived calprotectin. PMID:26582948

  1. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection.

    Science.gov (United States)

    Clark, Heather L; Jhingran, Anupam; Sun, Yan; Vareechon, Chairut; de Jesus Carrion, Steven; Skaar, Eric P; Chazin, Walter J; Calera, José Antonio; Hohl, Tobias M; Pearlman, Eric

    2016-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9, is an abundant neutrophil protein that possesses antimicrobial activity primarily because of its ability to chelate zinc and manganese. In the current study, we showed that neutrophils from calprotectin-deficient S100A9(-/-) mice have an impaired ability to inhibit Aspergillus fumigatus hyphal growth in vitro and in infected corneas in a murine model of fungal keratitis; however, the ability to inhibit hyphal growth was restored in S100A9(-/-) mice by injecting recombinant calprotectin. Furthermore, using recombinant calprotectin with mutations in either the Zn and Mn binding sites or the Mn binding site alone, we show that both zinc and manganese binding are necessary for calprotectin's antihyphal activity. In contrast to hyphae, we found no role for neutrophil calprotectin in uptake or killing of intracellular A. fumigatus conidia either in vitro or in a murine model of pulmonary aspergillosis. We also found that an A. fumigatus ∆zafA mutant, which demonstrates deficient zinc transport, exhibits impaired growth in infected corneas and following incubation with neutrophils or calprotectin in vitro as compared with wild-type. Collectively, these studies demonstrate a novel stage-specific susceptibility of A. fumigatus to zinc and manganese chelation by neutrophil-derived calprotectin.

  2. Influence of Formulation on the Cuticular Penetration and on Spray Deposit Properties of Manganese and Zinc Foliar Fertilizers

    Directory of Open Access Journals (Sweden)

    Alvin Alexander

    2016-06-01

    Full Text Available Foliar fertilization, or the application of nutrient solutions to the foliage of plants, has become a very important tool as a supplement to traditional soil fertilization. So far, knowledge about the real mechanisms of foliar nutrient uptake is still limited. In this study different manganese (Mn and zinc (Zn carriers differing in their solubility and chemical characteristics (chelated or non-chelated, with or without the presence of a surfactant-penetrant were compared with regard to their penetration characteristics through enzymatically-isolated cuticles. The experiments were explicitly conducted under high humidity conditions in order not to penalize compounds with a higher deliquescent point. The results show that Mn penetrates more rapidly through the cuticle than Zn ions for unknown reasons. The addition of a surfactant-penetrant enhances the penetration rate in the case of Mn ions. This trend is much less pronounced for zinc ions. Formulations based on insoluble carriers, such as carbonate or oxide, only poorly penetrate through the cuticle. In order to rapidly control micronutrient deficiency problems, only fully water soluble micronutrient carriers should be used.

  3. Synthesis of Nanosized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    OpenAIRE

    2013-01-01

    Two nanostructures of cobalt oxyhydroxide (CoOOH) and Zinc-(Zn-) doped CoOOH (1–4% Zn) are prepared from Co(NO3)2 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD) analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co+) of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nanostructure exhibit...

  4. Unusual route for preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds: synthesis and spectroscopic characterizations

    Indian Academy of Sciences (India)

    Moamen S Refat; Mohsen M Al-Qahtani

    2011-07-01

    The manganese(II) carbonate, MnCO3.H2O, cobalt(II) carbonate, CoCO3.4H2O, zinc(II) carbonate, ZnCO3 and cadmium(II) carbonate, CdCO3, respectively, were synthesis by a new simple unusual route during the reaction of aqueous solutions of MnX2, CoX2, ZnX2 and CdX2, where (X = Br- and ClO$^{-}_{4}$) with urea at high temperature within ∼ 90°C for 6 h. The infrared spectra of the reaction products clearly indicate the absence of the bands of urea, but show the characteristic bands of ionic carbonate, CO$^{2-}_{3}$. A general mechanism describing the preparation of manganese(II), cobalt(II), zinc(II) and cadmium(II) carbonate compounds are discussed.

  5. Egg quality during storage and deposition of minerals in eggs from quails fed diets supplemented with organic selenium, zinc and manganese

    Directory of Open Access Journals (Sweden)

    Rodrigo Antonio Gravena

    2011-12-01

    Full Text Available Three experiments with Japanese laying quails were performed aiming to assess the effect of supplementation with minerals in organic form on the egg quality during storage and the deposition of minerals in eggs. The assessments of each experiment were related to one mineral, thus, experiment 1 assessed the supplementation with selenium in 0.35-, 0.70- and 1.05-mg/kg levels of feed; experiment 2, the supplementation with zinc in 50-, 100- and 150-mg/kg levels of feed; and experiment 3, the supplementation of manganese with 60-; 120- and 180-mg/kg levels of feed. All diets were evaluated compared with a control diet without mineral supplementation. Birds were distributed in a completely randomized experimental design, with eight birds per plot and six replicates per treatment. Fifty-five days after the beginning of diets, the yolks of three eggs from each plot were collected for selenium, zinc and manganese quantification, whereas the albumens of three eggs from each parcel were collected for analysis of selenium concentration. Eggs were collected at the last days of the experimental period from each experiment, to be stored at room temperature (28±2 °C and refrigeration (4 °C during different periods (0, 10, 20 and 30 days, except for experiment 3, in which eggs were stored at 0, 10 and 20 days. Percentages of albumen and yolk, yolk index, Haugh unit and moisture loss of eggs were evaluated. The supplementation with selenium is able to maintain the egg yolk index unchanged over the storage periods; however, supplementation with zinc and manganese is not effective to keep the quality of stored eggs. Supplementation with selenium and manganese is effective to increase the concentration of these minerals at 328.66% in the albumen and at 74.47% in the yolk, respectively. The different levels of zinc do not change the egg composition.

  6. 均匀沉淀法制备不同粒径的纳米硫化锌%Preparation of nano-sized zinc sulphide with different sizes by homogeneous precipitation method

    Institute of Scientific and Technical Information of China (English)

    杨信成; 薛永强; 石建青

    2011-01-01

    以硫代硫酸钠为硫源,采用均匀沉淀法研究了不同粒径纳米硫化锌的制备,讨论了反应温度、加热方式、反应物的浓度及物质的量比对其粒径的影响.研究结果表明:通过控制制备工艺条件,采用均匀沉淀法可以制备出平均粒径为4~24nm、立方晶型的球形纳米硫化锌;制备工艺条件对纳米硫化锌的平均粒径有显著影响;加热方式对硫化锌的平均粒径影响较大,微波加热比水浴加热制备的硫化锌粒径小;此外,纳米硫化锌的粒径随着反应温度的增加、反应物浓度的增加、醋酸锌和硫代硫酸钠物质的量比的减小而减小.%Using sodium hyposulfite as sulphur source,the preparation of nano-sized zinc sulphide with different sizes was studied by homogeneous precipitation method,the influences of reaction conditions,such as reaction temperature,heating mode,concentration,and amount-of-substance ratio of the reactants.on nanosized zinc sulphide sizes were discussed. Results showed that through controlling the preparation conditions,cubjcal nanosized zinc sulphide with the average size at 4 ~ 24 nm can be prepared by homogeneous precipitation, and its shape was approximative spherical preparation conditions had notable effect on the sizes of nano^ized zinc sulphidejeffect of heating modes on the sizes was remarkable,and the particle size was larger through water bath heating than that through microwave;furthermore,the size of nano-sized zinc sulphide particle decreased with the decreasing of the amountof-substanee ratio of zinc acetate to sodium hyposulfite,with the increasing of reaction temperature and concentration of reactants.

  7. Alkaline manganese--zinc battery. [2000 Ah, 100 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Naumenko, V.A.; Lyapuntsova, T.G.; Lidorenko, N.S.; Lebedeva, E.S.; Penkova, L.F.; Aleshin, V.N.

    1975-02-12

    The battery described consisted of flat electrodes assembled in a pack. Cathodes were enclosed in perforated metal frames, while the anodes were metal plates coated with zinc. The batteries had capacities of about 2000 Ah and power--weight ratios of 100 Wh/kg and were resistant to shock and vibration. (RWR)

  8. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats.

    Science.gov (United States)

    Tarohda, Tohru; Ishida, Yasushi; Kawai, Keiichi; Yamamoto, Masayoshi; Amano, Ryohei

    2005-09-01

    Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson's disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson's disease.

  9. Effect of the Inclusion of Organic Copper, Manganese, And Zinc in The Diet of Layers on Mineral Excretion, Egg Production, and Eggshell Quality

    Directory of Open Access Journals (Sweden)

    LSS Carvalho

    2015-12-01

    Full Text Available ABSTRACT This study aimed at evaluating the replacement of inorganic copper, manganese, and zinc sources by organic sources in the diet of laying hens during the second laying cycle in trace mineral excretion, egg production, and eggshell quality. Two hundred and fifty 100-week-old Dekalb hens were distributed according to a completely randomized design into five treatments with five replicates of ten birds each. The control treatment consisted of a basal diet with all trace minerals in the inorganic form. The other treatments consisted of a basal diet with a mixture of the minerals copper, manganese, and zinc in the organic form with concentrations of 100%, 90%, 80%, and 70% of the levels of inclusion of inorganic mineral sources in the control treatment. Trace mineral excretion was determined in five layers per treatment by the method of total excreta collection. Excreta trace mineral contents were determined by atomic absorption spectrophotometry. Egg production and eggshell quality were determined by the mass of the eggs and the egg specific gravity, respectively. For all trace minerals examined, the dietary supplementation with organic sources reduced trace mineral excretion compared with the control group, even at 70% inclusion level, without compromising egg production or eggshell quality. The replacement of the inorganic trace mineral sources by organics source effectively reduced the excretion of copper, manganese, and zinc by laying hens in the second laying cycle.

  10. Synthesis of Nanosized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jian-Wen Wang

    2013-01-01

    Full Text Available Two nanostructures of cobalt oxyhydroxide (CoOOH and Zinc-(Zn- doped CoOOH (1–4% Zn are prepared from Co(NO32 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co+ of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nanostructure exhibits good sensitivity to carbon monoxide (CO in a temperature range of 40–110°C with maximum sensitivity to CO at around 70–80°C. When CoOOH nanostructure is doped with 1% Zn, its sensitivity and selectivity for CO gas are improved at 70–80°C; further Zn doping to 2% degraded the CO sensing properties of nano-CoOOH. The results of a cross-sensitivity investigation of the sensor to various gases coexisting at early stages of a fire show that the sensitivity of Zn-doped nano-CoOOH is the highest toward CO. Zn-doped nano-CoOOH film exhibits a high sensitivity to CO at room temperature, making it a promising sensor for early-stage fire detection.

  11. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-07-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  12. Elements in rice on the Swedish market: part 2. Chromium, copper, iron, manganese, platinum, rubidium, selenium and zinc.

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundstrom, B; Baxter, M; Stokes, P; Lewis, J; Grawe, K P

    2008-07-01

    A survey of the levels of some essential and non-essential trace elements in different types of rice available on the Swedish retail market was carried out in 2001-03. The types of rice included long and short grain, brown, white, and parboiled white. The mean levels found were: chromium (Cr) = 0.008 mg kg(-1), copper (Cu) = 1.9 mg kg(-1), iron (Fe) = 4.7 mg kg(-1), manganese (Mn) = 16 mg kg(-1), platinum (Pt) < 0.0003 mg kg(-1), rubidium (Rb) = 3.3 mg kg(-1), selenium (Se) =0.1 mg kg(-1); and zinc (Zn) = 15 mg kg(-1). Inductively coupled plasma-mass spectrometry (ICP-MS) was used for the determination of Pt, Rb, and Se, after acid digestion. All other elements were determined using atomic absorption spectrometry (AAS) after dry ashing. Intake calculations were performed and it was concluded that rice may contribute considerably to the daily requirements of the essential elements Cu, Fe, Mn, Se, and Zn if rice consumption is high. The levels of some elements, e.g. Fe and Mn, were significantly higher in brown compared with white rice.

  13. The levels of testosterone, zinc, manganese and selenium in type 2 diabetic patient in South-Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Christian Ejike Onah

    2015-05-01

    Full Text Available Background: This study is aimed at evaluating the levels of some trace elements and testosterone, and to ascertain their possible association in type 2 diabetes mellitus. Methods: Ninety male type 2 diabetic subjects and forty five apparently healthy non-diabetic male individuals were recruited into this study. The control group was matched for age with the study subjects and they were all within the age range of 30-67 years. Fasting Plasma Glucose (FPG, testosterone, trace elements (zinc, selenium, manganese, Body Mass Index (BMI were determined. Results: This study showed significant decreases in the levels of trace elements (Zn, Se, and Mn with a concomitant decrease in the levels of testosterone in type 2 diabetic patients (P <0.001. This findings were further strengthened by the strong positive correlation between testosterone and these trace elements (P <0.05. Conclusion: This suggests that low testosterone level might be as a result of low trace elements considering their role in testosterone production. Therefore, trace elements supplementation is recommended. [Int J Res Med Sci 2015; 3(5.000: 1138-1141

  14. Effect of Zinc and Manganese Nutrition on Fruit Yield and Nutrient Concentrations in Greenhouse Tomato in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    A. Tavassoli

    2010-06-01

    Full Text Available Abstract This research was performed in a completely randomized block design with four replications to investigate zinc (Zn and manganese (Mn nutrition effects on greenhouse tomato (Lycopersicon esculentum Mill. cv. HAMRA in a perlite-containing media. Experimental treatments were: (1 control (Mn and Zn-free nutrient solution, (2 application of Mn in a concentration equal to the full Hoagland’s nutrient solution (4.06 mg/l, (3 application of Zn in a concentration equal to the full Hoagland’s nutrient solution (4.42 mg/l, (4 application of Mn and Zn in concentrations equal to the 50% Hoagland’s nutrient solution (2.03 mg/l Mn + 2.21 mg/l Zn, and (5 application of Mn and Zn in concentrations equal to the full Hoagland’s nutrient solution (4.06 mg/l Mn + 4.42 mg/l Zn. Results showed that the highest fresh-fruit yield, fruit and leaf dry matter and content of Mn and Zn in fruit were obtained from single or combined application of Mn and Zn in concentrations equal to the full Hoagland’s nutrient solution. In addition, Zn and Mn nutrition significantly affected the fruit concentrations of crude protein, nitrogen and phosphorus, while the effect of these treatments on fruit size of tomato was not significant.

  15. Salivary estimation of copper, iron, zinc and manganese in oral submucous fibrosis patients: A case-control study

    Directory of Open Access Journals (Sweden)

    Akshata Raghavendra Okade

    2015-01-01

    Full Text Available Background: Trace elements (TEs are required for physiological functioning and alterations are noted in potentially malignant disorders and oral cancer. These TEs are used in early diagnosis, treatment and also as an indicator of disease progress and prognosis. Aims: To estimate the TEs such as copper (Cu, zinc (Zn, iron (Fe, manganese (Mn and Cu/Zn ratio in the saliva of oral submucous fibrosis (OSF patients and controls. Settings and Design: The hospital-based study was conducted to estimate salivary TEs using atomic absorption spectrometry (AAS in 60 individuals. Methods and Material: 5 ml saliva was collected from OSF cases (n=30 and controls (n=30 and was centrifuged and prepared by using the Wet Ashing method. The TEs were estimated in parts per million (ppm by using AAS. Statistical Analysis Used: The data obtained was statistically analyzed using non parametric tests such as Mann Whitney U and Kruskal Wallis tests. Results: Significant difference in the mean salivary Zn, Mn and Fe levels in OSF when compared to that of controls. Mean salivary Cu levels were increased and Cu/ Zn ratio was decreased in OSF when compared to the controls. Conclusions: To conclude TEs play a role in the pathogenesis and progression of OSF. Betel quid and areca nut chewing habits are frequently associated with OSF and alters the salivary TE levels. Concerted efforts would, therefore, help in early detection, management and monitoring the efficacy of treatment.

  16. Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583.

    Directory of Open Access Journals (Sweden)

    Marta Coelho Abrantes

    Full Text Available Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn(2+, Mn(2+ and Cu(2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles.

  17. The effect of the amount of electrolyte in the anode gel on the rechargeability of alkaline manganese dioxidezinc cells

    Science.gov (United States)

    Sharma, Yatendra; Haynes, Alejandro; Binder, Leo; Kordesch, Karl

    The zinc-limited anode technology for rechargeable alkaline manganese dioxidezinc cells is well known. Attempts have been made to relate the rechargeability of these cells with the amount of electrolyte available in the anode gel. The rechargeability of the cells is found to increase with the amount of electrolyte up to 35 - 40% of the dry weight of the anode mass. Further increases in the amount of electrolyte were found to be detrimental to the rechargeability of the cells. Analysis of cathodes after running several cycles shows higher amounts of zinc in those from cells with greater amounts of electrolyte. This could be due to haeterolite formation in the cathode which poisons it thus explaining the reduced rechargeability with excess electrolyte.

  18. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel Análise por espectroscopia no infravermelho das camadas de fosfato de zinco e de zinco modificado com níquel e manganês em aço eletrogalvanizado

    OpenAIRE

    Kirlene Salgado Fernandes; Evandro de Azevedo Alvarenga; Paulo Roberto Gomes Brandão; Vanessa de Freitas Cunha Lins

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electropainting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are i...

  19. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries

    Science.gov (United States)

    Li, Po-Chieh; Hu, Chi-Chang; Lee, Tai-Chou; Chang, Wen-Sheng; Wang, Tsin Hai

    2014-12-01

    Due to the poor electric conductivity but the excellent catalytic ability for the oxygen reduction reaction (ORR), manganese dioxide in the α phase (denoted as α-MnO2) anchored onto carbon black powders (XC72) has been synthesized by the reflux method. The specific surface area and electric conductivity of the composites are generally enhanced by increasing the XC72 content while the high XC72 content will induce the formation of MnOOH which shows a worse ORR catalytic ability than α-MnO2. The ORR activity of such air cathodes have been optimized at the XC72/α-MnO2 ratio equal to 1 determined by the thermogravimetric analysis. By using this optimized cathode under the air atmosphere, the quasi-steady-state full-cell discharge voltages are equal to 1.353 and 1.178 V at 2 and 20 mA cm-2, respectively. Due to the usage of ambient air rather than pure oxygen, this Zn-air battery shows a modestly high discharge peak power density (67.51 mW cm-2) meanwhile the power density is equal to 47.22 mW cm-2 and the specific capacity is more than 750 mAh g-1 when this cell is operated at 1 V.

  20. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Science.gov (United States)

    Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

    2014-01-01

    The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg-1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  1. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  2. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency.

    Science.gov (United States)

    Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-05-01

    Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.

    Science.gov (United States)

    Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The concentrations of specific elements in the equine liver and kidneys are of practical relevance since horses are not only food-producing animals, but also partially serve as an indicator for the environmental pollution, as the basic feed includes plants like grass, grain and fruits. In this study, the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) were measured in the liver, renal cortex and renal medulla of 21 horses (8 male; 13 female; aged between 5 months-28 years), using inductively coupled plasma mass spectrometry. Comparable Cu and Zn concentrations were detected in the liver and renal cortex, while approximately 50% lower concentrations were measured in the renal medulla. The lowest Sr, Cd and Se, but the highest Mn, Sb and Pb concentrations were measured in the liver. The Ba concentrations were comparable in the renal cortex and medulla, but lower in the liver of the horses. Gender-related differences were observed for Cd, Mn and Cr, with higher Cd concentrations in the liver, but lower Mn concentrations in the renal cortex and lower Cr concentrations in the renal medulla of female horses. Age-related differences were detected for most measured elements, however, the animal number per age-group was only low. In conclusion, the present study provides important reference data for the storage of Sr, Ba, Cd, Cu, Zn, Mn, Cr, Sb, Se and Pb in the liver and kidneys of horses, which are of practical relevance for an evaluation of the exposure of horses to these elements, either via feed or the environment.

  4. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    Science.gov (United States)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  5. In vitro susceptibility of the oomycete Pythium insidiosum to metallic compounds containing cadmium, lead, copper, manganese or zinc.

    Science.gov (United States)

    Ribeiro, Tatiana Corrêa; Weiblen, Carla; Botton, Sônia de Avila; Pereira, Daniela Isabel Brayer; de Jesus, Francielli Pantella Kunz; Verdi, Camila Marina; Gressler, Leticia Trevisan; Sangioni, Luís Antonio; Santurio, Janio Morais

    2017-08-01

    Pythium insidiosum is an aquatic oomycete that causes pythiosis, an important and severe disease of difficult treatment that affects humans, domestic and wild animals. This infection is often described in horses in Brazil and humans in Thailand. In clinical practice, we have observed many cases that do not respond to available therapies, indicating the need to explore alternative therapeutic approaches. In this sense, studies using metal compounds in conjunction with available antimicrobial agents have been demonstrated greater antimicrobial activity. Thus, in this research, we tested in vitro activities of metallic compounds containing cadmium, lead, copper, manganese, or zinc against 23 isolates of P. insidiosum. The assays were performed by broth microdilution based on CLSI M38-A2 document. The minimum inhibitory and fungicidal concentrations were established for all isolates. Copper acetate and cadmium acetate showed the highest inhibitory effects, with minimal inhibitory concentration ranging from 4-64 μg/ml and 16-256 μg/ml, respectively. The mean geometric for minimal fungicidal concentrations were, respectively, 26 μg/ml and 111.43 μg/ml for copper acetate and cadmium acetate. These results suggest that copper and cadmium can inhibit P. insidiosum growth, highlighting the greater inhibitory activity of copper acetate. In addition, our results propose that copper and/or cadmium compounds can be used in upcoming researches to formulate effective new complexed drugs against P. insidiosum in in vitro and in vivo experimental models. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  7. The manganese effect on the magnetism and optical properties especially interband transitions of zinc sulphide

    Science.gov (United States)

    Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.

    2016-10-01

    The electronic, magnetic and optical properties of Mn doped zinc sulphide (ZnS:Mn) were calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. The latter one is shown to be necessary to account for the strong electron correlation in the Mn 3d shell. With the increase of Mn2+ concentration, the band gap is decreased for the spin-up channel and increased for the spin-down channel. Furthermore, to calculate the correct exchange couplings d-d and sp-d of Mn-doped ZnS, we have applied the Hubbard U parameter on Mn-d states. The influence of this Hubbard U parameter on the optical, electronic and magnetic properties of ZnS:Mn is investigated. We found that U=6 eV gives good results for exchange couplings and optical properties close to the experimental ones. The magnetic coupling between neighboring Mn impurities in ZnS is found to be antiferromagnetic.

  8. Trace elements in the human endometrium. I. Zinc, copper, manganese, sodium and potassium concentrations at various phases of the normal menstrual cycle.

    Science.gov (United States)

    Hagenfeldt, K; Plantin, L O; Diczfalusy, E

    1970-11-01

    The cyclic variations in the content of 5 trace elements in the normal human endometrium were studied by means of neutron activation analysis. The concentrations of zinc, copper, manganese, sodium, and potassium were measured in endometrial biopsy specimens taken from 6 healthy, normally menstruating volunteers from 10 to 32 years of age. 4 specimens were obtained from each during 4 consecutive cycles in the following phases: a) early proliferative (Days 6-10); late proliferative (Days 11-14); c) early secretory (Days 15-18); and d) late secretory Days 22-27). Biopsies were taken with a Novak type suction curette without anesthesia and without dilation of the cervix. Chemical methodology is described. An analysis of variance of the data revealed that in the early proliferative phase the human endometrium is characterized by significantly elevated concentrations of manganese (p greater than .001), sodium (p greater than .01), and potassium (p greater than .001). However, the late secretory endometrium is characterized by a highly significant rise in its zinc concentration (p greater than .001), accompanied by a highly significantly decreased concentration of sodium (p greater than .001) and potassium (p greater than .001). The copper concentration of the secretory endometria was significantly higher than that of the proliferative endometria (p greater than .001). The significance of the findings was the same whether values were expressed per g protein or per g wet tissue. It is suggested that the high concentrations of zinc and copper associated with low levels of manganese, sodium, and potassium at the expected time of implantation may be a reflection of changes in endometrial enzyme activities. Investigations are in progress to explore this possibility.

  9. Evaluación de la dimensión fractal reactiva de los glicinatos de magnesio, manganeso y zinc Evaluation of the reactive fractal dimension of magnesium, manganese and zinc glycinates

    Directory of Open Access Journals (Sweden)

    Julie Fernanda Benavides Arevalo

    2012-03-01

    Full Text Available Introducción: complejos de glicina con los cationes magnesio, manganeso y zinc podrían ser parte de una formulación de un suplemento nutricional que proporcione una adecuada absorción de los metales en el organismo sin generar molestias gastrointestinales. Objetivo: realizar una aproximación a la solubilidad de los complejos de glicina con los cationes magnesio, manganeso y zinc. Métodos: se efectuaron estudios de disolución y análisis de imagen. Se realizó la síntesis y la verificación de formación de los complejos por espectroscopia infrarroja, calorimetría de barrido diferencial, análisis termogravimétrico y difracción de rayos X de polvos. Resultados: se obtuvieron por análisis de imagen los descriptores: circularidad, diámetro de Feret y dimensión fractal; esta última se relacionó con el proceso de disolución en agua, para obtener dos propiedades relacionadas: la dimensión fractal superficial y la dimensión fractal reactiva. Conclusiones: los resultados muestran que el proceso de disolución de los glicinatos, se realiza a través de los poros o grietas de la superficie de las partículas de estos y que son aptos para su empleo en formulaciones nutricionales como fuentes de magnesio, manganeso y zinc.Introduction: Complexes of glycine and cations magnesium, manganese and zinc, could be included in the formulation of a nutritional supplement that provides adequate absorption of these metals into the body without gastrointestinal disturbances. Objective: to study the solubility of complexes of glycine and cations manganese, zinc and magnesium. Methods: dissolution and image analysis studies were performed. The synthesis and verification of the formation of complexes were carried out by infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and X-ray diffraction of dust. Results: the image analysis showed some descriptors such as circularity, the Ferret diameter and the fractal dimension

  10. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies.

    Science.gov (United States)

    Liu, Jing; He, Lile; Dong, Faqin; Hudson-Edwards, Karen A

    2016-06-01

    Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8-246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage.

  11. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Babayan, V. [Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, nam T. G. Masaryka 5555, 760 01 Zlin (Czech Republic); Kazantseva, N.E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, nam T. G. Masaryka 5555, 760 01 Zlin (Czech Republic); Moucka, R. [Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, nam T. G. Masaryka 5555, 760 01 Zlin (Czech Republic); Sapurina, I. [Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg (Russian Federation); Spivak, Yu.M.; Moshnikov, V.A. [St. Petersburg Electrotechnical University ' LETI' , 197376 St. Petersburg (Russian Federation)

    2012-01-15

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability ({mu}*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Oe and in the temperature interval from -20 {sup o}S to +150 {sup o}S. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the {mu}*. It is established that, at high frequencies, the {mu}* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the 'single domain' state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the 'single domain' state in ferrite is not reached. The frequency and temperature dependence of {mu}* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization. - Highlights: > Polyaniline (PANI) coating significantly changes magnetic properties of MnZn ferrite. > Coated ferrite exhibits higher coercivity, thermomagnetic stability, and resonance frequency shifts

  12. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  13. Nutrients induction on lead, cadmium, manganese, zinc and cobalt speciation in the sediments of Aby lagoon (Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Akpétou K. L.,

    2010-08-01

    Full Text Available This study reported nitrogen and phosphorus leverage on lead, Cadmium, Manganese, Zinc and Cobalt speciation in the Aby lagoon sediments. The trace elements and water samples were collected from eleven sites located within the four lagoon sectors. Sequential extraction was carried out in five fractions: exchangeable (F1, bound to the carbonates (F2, bound to iron and manganese (oxy hydroxides (F3, bound to the organic matters (F4 and residual(F5. Heavy metals chemical fractionation followed the four-step Zerbe and al. (1999 process, completed with an acid digestion method for residual (F5 extraction. Co-inertia analysis monitored with ADE4 package showed that nitrite and Kjeldhal nitrogen (TKN mainly influenced Co speciation and especially the compounds (total lead, total Cd, total Zn, Co-F1 and Co-F4 tend to accumulate on sediment surface. However, their higher influence than nitrates on previous metals was too lower than the other nitrogen compounds which they were very negatively correlated. As the phosphorus compounds which showed a greatest impact on lead, Cd, Mn, and Zn speciation. The respective resulted factorial values were about -1 and 1. Total and inorganic phosphorus portion showed a similar influence range than total nitrogen on the various studied heavy metals speciation in sediment.

  14. Zinc

    Science.gov (United States)

    ... slow wound healing, poor sense of taste and smell, diarrhea, and nausea. Moderate zinc deficiency is associated ... nose, as it might cause permanent loss of smell. In June 2009, the US Food and Drug ...

  15. The Effect of Prophylactic Supplementation of Iron and Zinc on the Toxicity of Manganese in Mice%补充铁、锌对染锰小鼠毒性的影响

    Institute of Scientific and Technical Information of China (English)

    古丽巴哈尔; 黄贤仪; 龚建福

    2001-01-01

    [Objective] To examine the effects of iron and zinc prophylactic supplementation on the toxicity of manganese in mice in three aspects;(1)neurobehavioral function,(2)sperm shape and function,(3)brain of neuron ultrastructure.To determine what level of zinc and iron supplementation is the most effective in perventing toxic effect of manganese.[Method]After ip administering a dose of 55 mg/kg of manganese chloride,then the mice were divided into four groups,one is control group,other three groups were supplied different amount of zinc and iron through the drinking water.An open field test,sperm analysis and electronic microscopy of brain tissue were carried out. [Results] It was found that only the low iron and zinc-supplemented group showed significantly reduction of toxic effect of manganese based on the three aspects tested.Those groups given high doses of iron and zinc did not show a significant effect on manganese toxicity. [Conclusion] Iron and zinc can be successfully used as an antidote to manganese toxic effects,but only at low dose.%[目的]观察补充铁、锌对染锰小鼠的神经行为、精子变化、脑组织神经细胞超微结构的影响。[方法]对染锰小鼠同步补充铁、锌后,进行旷场行为测试、精子形态观察、脑组织细胞电镜的观察。[结果]单染毒组与低剂量补铁、锌组相比,小鼠出现探索潜伏期时间缩短(P<0.05);精子总数增加、精子畸形率降低(P<0.05);脑组织细胞电镜观察中发现低剂量组预防效果为最好,其次为中剂量组,而高剂量组则无效果。[结论]提示补充铁、锌对染锰小鼠的神经行为、小脑神经细胞的形态结构及精子变化均具有一定的预防效应,其改善程度与铁、锌剂量选择是否适当有关。

  16. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides

    Science.gov (United States)

    Li, Po-Chieh; Hu, Chi-Chang; Noda, Hiroyuki; Habazaki, Hiroki

    2015-12-01

    Manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The optimal MnOx/XC-72 mass ratio for the ORR is equal to 1 and the oxide crystalline structure effect on the ORR is compared. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The textural properties of MnOx are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical studies include linear sweep voltammetry (LSV), rotating ring-disk electrode (RRDE) voltammetry, and the full-cell discharge test. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.

  17. Synthesis, X-ray crystal structures and thermal analyses of some new antimicrobial zinc complexes: New configurations and nano-size structures.

    Science.gov (United States)

    Masoudiasl, A; Montazerozohori, M; Naghiha, R; Assoud, A; McArdle, P; Safi Shalamzari, M

    2016-04-01

    Some new five coordinated ZnLX2 complexes, where L is N3-Schiff base ligand obtained by condensation reaction between diethylenetriamine and (E)-3-(2-nitrophenyl)acrylaldehyde and X (Cl(-), Br(-), I(-), N3(-) and NCS(-)), were synthesized and characterized by FT-IR, (1)H and (13)CNMR, UV-visible, ESI-mass spectra and molar conductivity measurements. The structures of zinc iodide and thiocyanate complexes were determined by X-ray crystallographic analysis. The X-ray results showed that the Zn (II) center in these complexes is five-coordinated in a distorted trigonal-bipyramidal configuration. Zinc iodide and thiocyanate complexes crystallize in the monoclinic and triclinic systems with space groups of C2/c and P1- with eight and two molecules per unit cell respectively. The crystal packing of the complexes consists of intermolecular interactions such as C-H(…)O and C-H(…)I, C-H(···)S, N(…)O, together with π-π stacking and some other unexpected interactions. The mentioned interactions cause three-dimensional supramolecular structure in the solid state. Zinc complexes were also prepared in nano-structure by sonochemical method confirmed by XRD, SEM and TEM analyses. Moreover, ZnO nanoparticles were synthesized by direct thermolysis of zinc iodide complex. Furthermore, antimicrobial and thermal properties of the compounds were completely investigated.

  18. Effects of boron, manganese and zinc on the growth of processing tomato%硼、锰、锌的施用对加工番茄生长的影响

    Institute of Scientific and Technical Information of China (English)

    李倍金; 张勇; 魏强; 张录霞; 彭刚; 甘中祥; 迟庆勇; 葛泽峰; 王芳

    2015-01-01

    硼、锰、锌几个微量元素具有促进作物开花、增强作物抗病性、提高坐果率、增加番茄单果重等作用。研究设计9个处理,探索硼肥、锰肥和锌肥搭配在加工番茄上施用,明确其对加工番茄产量、固形物含量和单果重的影响。结果表明:微量元素硼、锰和锌施用的最佳浓度组合是硼1000倍液、锰200倍液、锌500倍液,施用后相对于对照增产3.27 t/667 m2,固形物含量提高0.07,综合指数提高170。%Boron, manganese and zinc, can promote flowering, increase crop resistance to disease, improve fruit setting rate, increase tomato fruit weight and so on. This study design nine treatments to explore the effect of combined fertilizers of boron, manganese and zinc on the yield, solid content and single fruit weight of processing tomato. The results showed that the best concentration combination was boron 1 000 times liquid, manganese 200 times liquid, zinc 500 times liquid. Compared with CK, combination application of boron, manganese and zinc increased the yield with 3.27 tons/667 m2, and the solid content and comprehensive index were increased by 0.07 and 170 respectively.

  19. [Zinc].

    Science.gov (United States)

    Couinaud, C

    1984-10-01

    Zinc is indispensable for life from bacteria to man. As a trace element it is included in numerous enzymes or serves as their activator (more than 80 zinc metallo-enzymes). It is necessary for nucleic acid and protein synthesis, the formation of sulphated molecules (insulin, growth hormone, keratin, immunoglobulins), and the functioning of carbonic anhydrase, aldolases, many dehydrogenases (including alcohol-dehydrogenase, retinal reductase indispensable for retinal rod function), alkaline phosphatase, T cells and superoxide dismutase. Its lack provokes distinctive signs: anorexia, diarrhea, taste, smell and vision disorders, skin lesions, delayed healing, growth retardation, delayed appearance of sexual characteristics, diminished resistance to infection, and it may be the cause of congenital malformations. Assay is now simplified by atomic absorption spectrophotometry in blood or hair. There is a latent lack prior to any disease because of the vices of modern eating habits, and this increases during stress, infections or tissue healing processes. Its lack is accentuated during long-term parenteral feeding or chronic gastrointestinal affections. Correction is as simple as it is innocuous, and zinc supplements should be given more routinely during surgical procedures.

  20. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  1. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries.

    Science.gov (United States)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni(4+)/Ni(3+)/Ni(2+) redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  2. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  3. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge.

    Science.gov (United States)

    Mikhailov, Ivan; Komarov, Sergey; Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis

    2017-01-05

    Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1g/l addition of nZVI and 0.05M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15min treatment with 0.1M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  4. Synthesis and luminescence properties of ZnO/Zn 2SiO 4/SiO 2 composite based on nanosized zinc oxide-confined silica aerogels

    Science.gov (United States)

    El Mir, L.; Amlouk, A.; Barthou, C.; Alaya, S.

    2007-01-01

    Luminescence properties of crystalline Zn 2SiO 4 greatly depend on the method of elaboration. A new protocol of sol-gel processing technique was used to prepare zinc orthosilicate willemite crystals incorporated in silica host matrix containing ZnO nanoparticles (ZnO/Zn 2SiO 4/SiO 2). Hydrolysis and condensation of tetraethylorthosilicate have been achieved in the presence of 25 nm-sized nanocrystalline ZnO particles. Supercritical drying and annealing in the range 1423-1473 K in air atmosphere yielded a new photoluminescence band centred at around 760 nm and observed for the first time. Photoluminescence excitation measurements show different origins in the recombination mechanism of this emission band. Different possible attributions of the 760 nm emission band will be discussed.

  5. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    Directory of Open Access Journals (Sweden)

    Abdollahi Yadollah

    2012-08-01

    Full Text Available Abstract The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM. The RSM used central composite design (CCD method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model. The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA. The used evidences include high F-value (143.12, very low P-value (2 = 0.99 and the adequate precision (47.067. To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation % be using a few number of three dimensional plots (3D. To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles.

  6. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D.; Warman, Phil R

    2004-09-01

    Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.

  7. Optimization of Manganese and Magnesium Contents in As-cast Aluminum-Zinc-Indium Alloy as Sacrificial Anode

    Institute of Scientific and Technical Information of China (English)

    Mohammed R. Saeri; Ahmad Keywni

    2011-01-01

    In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amounts of Mn and Mg were melted at 750℃, then casted at molds at 25℃. Corrosion experiments were mounted to determine the optimal effect of Mn and Mg on the efficiencies of the aluminum alloy anodes. The corroded and unexposed sample surfaces were subjected to microstructure characterization by optical and scanning electron microscopy. AI-Zn-ln alloy doped with 0%, 0.01%, 0.05%.0.2% and 0.3% by weights of Mn and 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weights of Mg were prepared to determine the effect of Mn and Mg on anode efficiency in the environment. The different microstructures of the evolved AI- Zn-ln-Mg-Mn alloy were correlated with the anode efficiencies. The Al-5.0%Zn-2.0%Mg-0.15%Mn-0.02%ln gave the best anode efficiency (about 83%). The microstructures of the corroded surface of the optimized alloy revealed decreased distribution of the pockets of localized attacks which are characteristics of pitting (or crevice) corrosion.

  8. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2014-01-01

    Full Text Available The artificial neural network (ANN modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP, Incremental Back Propagation (IBP, Batch Back Propagation (BBP, and Levenberg-Marquardt (LM algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

  9. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization.

    Science.gov (United States)

    Sivakumar, Manickam; Towata, Atsuya; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Iida, Yasuo; Maiorov, Michail M; Blums, Elmars; Bhattacharya, Dipten; Sivakumar, Neelagesi; Ashok, M

    2012-05-01

    In the present investigation, synthesis of manganese zinc ferrite (Mn(0.5)Zn(0.5)Fe(2)O(4)) nanoparticles with narrow size distribution have been prepared using ultrasound assisted emulsion (consisting of rapeseed oil as an oil phase and aqueous solution of Mn(2+), Zn(2+) and Fe(2+) acetates) and evaporation processes. The as-prepared ferrite was nanocrystalline. In order to remove the small amount of oil present on the surface of the ferrite, it was subjected to heat treatment at 300 °C for 3h. Both the as-prepared and heat treated ferrites have been characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), TGA/DTA, transmission electron microscopy (TEM) and energy dispersion X-ray spectroscopy (EDS) techniques. As-prepared ferrite is of 20 nm, whereas the heat treated ferrite shows the size of 33 nm. In addition, magnetic properties of the as-prepared as well as the heat treated ferrites have also been carried out and the results of which show that the spontaneous magnetization (σ(s)) of the heat treated sample (24.1 emu/g) is significantly higher than that of the as-synthesized sample (1.81 emu/g). The key features of this method are avoiding (a) the cumbersome conditions that exist in the conventional methods; (b) usage of necessary additive components (stabilizers or surfactants, precipitants) and (c) calcination requirements. In addition, rapeseed oil as an oil phase has been used for the first time, replacing the toxic and troublesome organic nonpolar solvents. As a whole, this simple straightforward sonochemical approach results in more phase pure system with improved magnetization.

  10. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J.; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ Xray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SSNMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni4+/Ni3+/ Ni2+ redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  11. Partial substitution, with their chelated complexes, of the inorganic zinc, copper and manganese in sow diets reduced the laminitic lesions in the claws and improved the morphometric characteristics of the hoof horn of sows from three Greek herds.

    Science.gov (United States)

    Varagka, Nikoleta; Lisgara, Marina; Skampardonis, Vassilis; Psychas, Vassilis; Leontides, Leonidas

    2016-01-01

    Hoof lesions in sows have been associated with lameness and poor hoof horn quality. The mechanical strength and quality of hoof horn is determined by the density and diameter of horn tubules, which were recently associated with the severity of lesions on the hoof wall of sows. Histologic changes that have previously been described in cases of bovine laminitis, have also been observed in the dermis and epidermis of the sows' claws. Trace elements, particularly zinc, copper and manganese, occupy important roles as enzyme catalysts in the process of keratin synthesis which determines the quality and the integrity of the hoof epidermis. Therefore, the objective of this study was to investigate the effect of diet supplementation with chelated zinc, copper and manganese, partially substituting their inorganic form, on sow claw health and hoof horn quality assessed by macroscopic, histologic and morphometric examination. Clinically, the total claw lesion score was significantly lower in claws of sows which received the "organic" diet compared to those of sows on the "inorganic" diet. Histologically, lamellar hyperplasia was the most frequently recorded change in the epidermis of the sows' claws regardless of the diet's mineral source. The claws of the sows which received the organic diet were more likely to have none or less histologic changes than at least one or more, respectively, compared to those of the sows on the "inorganic" diet. Morphometrically, the density and vertical and horizontal diameters of the horn tubules was significantly higher and smaller, respectively, in the hoof horn of sows which received the "organic" compared to those which received the "inorganic" source diet. Partial substitution of the inorganic zinc, copper and manganese in sows' diet with their chelated complexes, provided a comparative advantage against a conventional, inorganic mineral source diet, at least under the conditions examined in the current study, in terms of macroscopic

  12. ICP-AES测定大豆中锰、铁、锌含量的不确定度评价%Uncertainty Evaluation of Measurement Results for the Determination of Manganese, Iron,Zinc in Soybean by ICP-AES

    Institute of Scientific and Technical Information of China (English)

    许光; 杨波; 李爱力; 张艳玲; 侯汉秋

    2013-01-01

      采用微波方法消解大豆样品,电感耦合等离子体发射光谱法测定大豆中锰、铁、锌。并对测量中锰、铁、锌含量的不确定度来源进行分析和计算。其分析方法的标准不确定度主要来源包括物质称量、样品测定、样品定容过程,并依据不确定度的评定方法计算各不确定度分量。结果表明大豆中锰含量可表示为(24.4±0.39)mg/kg,铁含量可表示为(54.1±0.56)mg/kg,锌含量可表示为(35.2±0.36)mg/kg。%  Uncertainty for determination of manganese, iron, zinc in soybean by inductive coupled plasma-atomic emission spectrometric with microwave sample digestion in proficiency testing program is evaluate. The sources of the uncertainty were comprised of sample weighing,constant volume,and the determination of manganese, iron, zinc in soybean. The main source of measurement uncertainty is aliquot of standard solutions, and uncertainty of working curve variability is very smal1.The combined standard uncertainty and expanded uncertainty of manganese, iron, zinc concentration were showed(24.4±0.39)mg/kg;(54.1±0.56)mg/kg;(35.2± 0.36)mg/kg.

  13. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    Science.gov (United States)

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  14. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    Science.gov (United States)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  15. Microstructure and electroluminescent performance of chemical vapor deposited zinc sulfide doped with manganese films for integration in thin film electroluminescent devices

    Science.gov (United States)

    Topol, Anna Wanda

    Zinc sulfide (ZnS) doped with manganese (Mn), ZnS:Mn, is widely recognized as the brightest and most effective electroluminescent (EL) phosphor used in current thin film electroluminescent (TFEL) devices. ZnS acts as a host lattice for the luminescent activator, Mn, leading to a highly efficient yellow-orange EL emission, and resulting in a wide array of applications in monochrome, multi-color and full color displays. Although this wide band dap (3.7 eV) material can be prepared by several deposition techniques, the chemical vapor deposition (CVD) is the most promising for TFEL applications in terms of viable deposition rates, high thickness and composition uniformity, and excellent yield over large area panels. This study describes the development and optimization of a CVD ZnS:Mn process using diethylzinc [(C2H5)2Zn, DEZ], di-pi-cyclopentadienylmanganese [(C5H5)2Mn, CPMn], and hydrogen sulfide [H2S] as the chemical sources for, respectively, Zn, Mn, and S. The effects of key deposition parameters on resulting Film microstructure and performance are discussed, primarily in the context of identifying an optimized process window for best electroluminescence behavior. In particular, substrate temperature was observed to play a key role in the formation of high quality crystalline ZnS:Mn films leading to improved brightness and EL efficiency. Further investigations of the influence of temperature treatment on the structural characteristics and EL performance of the CVD ZnS:Mn film were carried out. In this study, the influence of post-deposition annealing both in-situ and ex-situ annealing processes, on chemical, structural, and electroluminescent characteristics of the phosphor layer are described. The material properties of the employed dielectric are among the key factors determining the performance, stability and reliability of the TFEL display and therefore, the choice of dielectric material for use in ACTFEL displays is crucial. In addition, the luminous

  16. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.

    Science.gov (United States)

    Wójtowicz, Halina; Bielecki, Marcin; Wojaczyński, Jacek; Olczak, Mariusz; Smalley, John W; Olczak, Teresa

    2013-04-01

    Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires haem from host haemoproteins through a haem transporter HmuR and a haemophore HmuY. The aim of this study was to analyse the binding specificity of HmuY towards non-iron metalloporphyrins which may be employed as antimicrobials to treat periodontitis. HmuY binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX which uses His(134) and His(166) as axial ligands. The metal ions in Ga(iii)PPIX and Zn(ii)PPIX can accept only His(166) as an axial ligand, whereas nickel(ii) and copper(ii) interact exclusively with His(134). Two forms of pentacoordinate manganese(iii) are present in the Mn(iii)PPIX-HmuY complex since the metal accepts either His(134) or His(166) as a single axial ligand. The cobalt ion is hexacoordinate in the Co(iii)PPIX-HmuY complex and binds His(134) and His(166) as axial ligands; however, some differences in their environments exist. Despite different coordination modes of the central metal ion, gallium(iii), zinc(ii), cobalt(iii), and manganese(iii) protoporphyrin IX bound to the HmuY haemophore cannot be displaced by excess haem. All of the metalloporphyrins examined bind to a P. gingivalis wild-type strain with higher ability compared to a mutant strain lacking a functional hmuY gene, thus corroborating binding of non-iron metalloporphyrins to purified HmuY protein. Our results further clarify the basis of metalloporphyrin acquisition by P. gingivalis and add to understanding of the interactions with porphyrin derivatives which exhibit antimicrobial activity against P. gingivalis.

  17. Synthesis of nanosize MnO2 and its performence

    Institute of Scientific and Technical Information of China (English)

    顾大明; 魏杰

    2003-01-01

    Sol sol-gel method and solid phase redox reaction were respectively applied in preparation of Nanos-ize MnO2 powders. The experiments showed that only Mn2O3 could be obtained from ignition of Mn( Ⅱ ) in themuffle furnace in air, and Mn2O3 had to be disproportionated in acids to gain MnO2. The analysis of XRD andTEM technique revealed that the diameters of nanosize MnO2 obtained by sol-gel method was 35 ~45 nm andthe x in MnOx was 1.9; the particle size of MnO2 produced from solid phase redox reaction was 10 ~ 20 nm andthe x in MnOx equaled 1.94. The test results have proved that the discharge property of alkaline-manganese bat-tery could be improved by nanosize MnO2.

  18. Hot coal gas desulfurization with manganese-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  19. Concentração foliar de manganês e zinco em laranjeiras adubadas com óxidos e carbonatos via foliar Leaf concentrations of manganese and zinc in the orange fertilized via foliar application with oxides and carbonates

    Directory of Open Access Journals (Sweden)

    Leandro José Grava de Godoy

    2013-09-01

    , corresponding to 250 and and 500g ha-1 of Mn, plus a control sprayed with water only. In the second experiment three sources of Zn were tested for foliar application: zinc oxide A, zinc oxide B and zinc sulphate at two rates per fertilizer, corresponding to 375 and 750g ha-1 of Zn, plus the control. Samples of leaves were collected monthly, beginning 30 days after application of the treatments. The foliar application of manganese carbonate B at a rate of 500g ha-1 Mn, and zinc oxide B at a rate of 750g ha-1, each provided adequate nutritional levels of Mn and Zn in the leaves of the orange. With the absence of rain, the appropriate levels of Mn and Zn in the soil are not enough to supply the Pêra orange grafted onto Rangpur lime.

  20. Influence of the zinc and manganese doping on the kinetics of resorption of a hydroxyapatite implant and study on matrix effects in the used P.I.X.E. nuclear method; Influence du dopage en zinc et en manganese sur la cinetique de resorption d`un implant d`hydroxyapatite et etude des effets de matrice dans la methode nucleaire P.I.X.E. utilisee

    Energy Technology Data Exchange (ETDEWEB)

    Jallot, E.

    1997-01-16

    In this work we study hydroxyapatite, hydroxyapatite doped with zinc or manganese and the compound of 75% hydroxyapatite, 25% tricalcic phosphate. The ceramics were implanted in the cortical femur of sheep. The global evolution of mineral concentrations in the implants with the time after implantation was studied by neutronic radioactivation. We studied matrix effects in P.I.X.E. (Particles Induced X-rays Emission) with Alpha parameter method. By measurements at two different energies, we determine a correction factor of the slowing down of incident protons and of the X rays absorption in matrix. So, the P.I.X.E. analysis allow us a scanning of mineral concentrations at the bone-implant interface at different time after implantation. The transformation of the hydroxyapatite matrix has been studied by X-rays by X-rays diffraction. (author).

  1. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  2. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il'yashchenko, D. P.; Kartsev, D. S.

    2016-04-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  3. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    OpenAIRE

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Ilyashchenko, Dmitry Pavlovich; Karthev, Dmitry Sergeevich

    2016-01-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  4. Iron, copper, zinc and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    Directory of Open Access Journals (Sweden)

    Gaëlle ePorcheron

    2013-12-01

    Full Text Available For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.

  5. Preparation of a Nanosized As2O3/Mn0.5Zn0.5Fe2O4 Complex and Its Anti-Tumor Effect on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Jia Zhang

    2009-09-01

    Full Text Available Manganese-zinc-ferrite nanoparticles (Mn0.5Zn0.5Fe2O4, MZF-NPs prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD and energy dispersive spectrometry (EDS. Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn0.5Zn0.5Fe2O4 nanoparticles in vitro was tested by the MTT assay. A nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex was made by an impregnation process. The complex’s shape, component, envelop rate and release rate of As2O3 were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex combined with magnetic fluid hyperthermia (MFH on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn0.5Zn0.5Fe2O4 and nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex were both prepared successfully. The Mn0.5Zn0.5Fe2O4 nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn0.5Zn0.5Fe2O4 didn’t show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As2O3/Mn0.5Zn0.5Fe2O4 complex can significantly inhibit the growth of hepatoma carcinoma cells.

  6. Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials

    Indian Academy of Sciences (India)

    Xiao-Ling Cui; Yong-Li Li; Shi-You Li; Guo-Cun Sun; Jin-Xia Ma; Lu Zhang; Tian-Ming Li; Rong-Bo Ma

    2014-05-01

    With a novel gas-liquid reaction, a facile and rapid method has been successfully developed for the synthesis of nano-sized Mn3O4 crystals. Coupled with complementary experiments, preparation mechanisms of Mn(II) and Mn(III)Mn(III)Mn(II) coordination complexes as well as nano-sized Mn3O4 crystals are studied. Besides, as the extension of synthesis of nano-sized Mn3O4 crystals, the intermediate ammonia alkaline solution containing Mn(III)Mn(III)Mn(II) coordination complexes, which tend to decompose into nano-sized Mn3O4 crystals spontaneously, are used to prepare nanosized LiMn2O4 materials. Although any physical treatment has been done to disperse powders, the as-synthesized LiMn2O4 nanoparticles are still existence with homogeneous size distribution (about 24.2 nm) without any obvious agglomeration. That is to say, the novel method is constructive not only to accelerate reaction rates for the elevated oxidation state of manganese ions, but also to prepare dispersed nanosized LiMn2O4 materials with good electrochemical properties.

  7. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease.

    Science.gov (United States)

    Passlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations.

  8. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment.

    Science.gov (United States)

    Singh, Abhay Kumar; Ghosh, Tapan Kumar; Haldar, Sudipto

    2015-04-01

    A straight-run flock of 1-day-old Cobb 400 chicks (n = 432) was distributed into four treatment groups (9 replicate pens in each group, 12 birds in a pen) for a 38-day feeding trial evaluating the effects of a methionine chelate (Met-TM)- or a yeast proteinate (Yeast-TM)-based supplement of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on growth performance, bone criteria and some metabolic indices in commercial broiler chickens. The diets were either not supplemented with any trace elements at all (negative control, NC) or supplemented with an inorganic (sulphate) trace element premix (inorganic TM (ITM), 1 g/kg feed), the Met-TM (1 g/kg feed) and the Yeast-TM (0.5 g/kg feed). Body weight, feed conversion ratio and dressed meat yield at 38 days were better in the Yeast-TM-supplemented group as compared with the NC, ITM and Met-TM groups (p chelates or yeast proteinate forms of Cu, Fe, Mn and Zn improved body weight and feed conversion ratio (FCR) and markedly reduced excretion of the said trace elements. The study revealed that it may be possible to improve broiler performance and reduce excretion of critical trace elements into the environment by complete replacement of inorganic trace minerals from their dietary regime and replacing the same with methionine chelate or yeast proteinate forms.

  9. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens.

    Science.gov (United States)

    Sirri, F; Maiorano, G; Tavaniello, S; Chen, J; Petracci, M; Meluzzi, A

    2016-08-01

    The aim of the experiment was to assess the effects of 2 dietary levels of trace minerals (TM) zinc, manganese, and copper either from organic (OTM) or inorganic (ITM) sources on broiler performance, carcass traits, intramuscular collagen (IMC) properties, occurrence of hock burns (HB), foot pad dermatitis (FPD), femoral and tibia head necrosis, and breast muscle abnormalities (white striping, WS; wooden breast, WB; poor cohesion, PC). A total of 3,600 one-day-old male chicks were randomly assigned to one of 4 dietary treatments in a 2 × 2 factorial arrangement (9 replicates of 100 birds/dietary treatment). Birds were slaughtered at 31 (thinning) and 51 d of age. Body weight, daily weight gain (DWG), feed intake, feed conversion rate (FCR), and mortality were determined. A significant effect of the source of TM supplementation was found only in 51-day-old chickens. Birds of the OTM groups were heavier (P 0.05) by the different sources and doses of TM administrated. © 2016 Poultry Science Association Inc.

  10. Synthesis of nanosized tungsten powder

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Nanosized tungsten powder was synthesized by means of different methods and under different conditions with nanosized WO3 powder. The powder and the intermediate products were characterized using XRD, SEM, TEM, BET (Brunauer Emmett Teller Procedure) and SAXS (X-ray diffracto-spectrometer/Kratky small angle scattering goniometer). The results show that nanosized WO3 can be completely reduced to WO2 at 600℃ after 40 min, and WO2 can be reduced to W at 700℃ after 90 min, moreover, the mean size of W particles is less than 40 nm. Furthermore, the process of WO3→WO2→W excelled that of WO3→W in getting stable nanosized tungsten powder with less grain size.

  11. Certain aspects of the formation and identification of nanosized oxide components in heterogeneous catalysts prepared by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Ellert, Ol' ga G; Novotortsev, Vladimir M [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Tsodikov, Mark V [A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-10-19

    The results of studies into the relationship 'methods and synthesis conditions of a catalyst{yields}catalyst structure{yields}catalytic properties' in highly efficient crystallo-graphically amorphous copper- and iron-containing heterogeneous systems obtained by different chemical methods are generalized. Polymorphism of active phases and catalytic properties of nanostructured copper-containing zinc, zirconium, manganese and cerium oxides are discussed. Unusual transformations of nanosized Pt- and Pd-containing components on the {gamma}-Al{sub 2}O{sub 3} surface in nanostructured catalysts of ethanol steam reforming into synthesis gas and reductive dehydration of ethanol to alkanes are considered. The results of comparative studies on the crystallographically amorphous mixed iron oxide catalysts synthesized by either the alkoxy method or the deposition on various supports obtained by the Moessbauer and XAFS spectroscopy and magnetic susceptibility measurements are presented. These materials are shown to be efficient catalysts of important processes such as liquid-phase oxidation of hydrocarbons, synthesis of alkenes and alkylaromatic hydrocarbons from CO and H{sub 2}, hydrogenative transformation of brown coal organic mass to hydrocarbons.

  12. Certain aspects of the formation and identification of nanosized oxide components in heterogeneous catalysts prepared by different methods

    Science.gov (United States)

    Ellert, Ol'ga G.; Tsodikov, Mark V.; Novotortsev, Vladimir M.

    2010-10-01

    The results of studies into the relationship 'methods and synthesis conditions of a catalyst→catalyst structure→catalytic properties' in highly efficient crystallo-graphically amorphous copper- and iron-containing heterogeneous systems obtained by different chemical methods are generalized. Polymorphism of active phases and catalytic properties of nanostructured copper-containing zinc, zirconium, manganese and cerium oxides are discussed. Unusual transformations of nanosized Pt- and Pd-containing components on the γ-Al2O3 surface in nanostructured catalysts of ethanol steam reforming into synthesis gas and reductive dehydration of ethanol to alkanes are considered. The results of comparative studies on the crystallographically amorphous mixed iron oxide catalysts synthesized by either the alkoxy method or the deposition on various supports obtained by the Mössbauer and XAFS spectroscopy and magnetic susceptibility measurements are presented. These materials are shown to be efficient catalysts of important processes such as liquid-phase oxidation of hydrocarbons, synthesis of alkenes and alkylaromatic hydrocarbons from CO and H2, hydrogenative transformation of brown coal organic mass to hydrocarbons.

  13. The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasim; Sunar, Fusun; Mogulkoc, Rasim; Acar, Musa; Toy, Hatice

    2014-05-01

    Study aimed to determine the effects of zinc supplementation/deficiency on the histological structure and elements levels in bone tissue in ovariectomized rats. The study included 40 Sprague-Dawley type adult female rats, divided as follows: Control, ovariectomized, ovariectomized + zinc supplemented, ovariectomized + zinc deficient groups. At the end of the study bone tissues (femur) were collected to determine the levels of calcium, phosphorus, magnesium, zinc, iron, aluminium, chrome, lithium, lead, nickel, and manganese. The bone tissue was examined for histopathology. Ovariectomy leaded to significant decrease in magnesium. Zinc supplementation to ovariectomized rats restored the reduced calcium, phosphorus, zinc. However, zinc deficiency in ovariectomized rats further reduced calcium, phosphorus, zinc, and manganese levels. Zinc deficiency in ovariectomized significantly increased Al, Cr, Li, Pb, and Ni levels. Tissue integrity was impaired due to ovariectomy and zinc deficiency. Ovariectomy and zinc deficiency leads significant decreases elements of the bone.

  14. Contents of Iron, Zinc, Copper and Manganese in the Leaves of 10 Evergreen Tree Species%10个常绿树种叶片中铁锌铜锰的含量特征

    Institute of Scientific and Technical Information of China (English)

    毕波; 刘云彩; 陈强; 周筑; 张学星; 孙宏

    2012-01-01

    通过对10个常绿树种在昆钢污染区和相对无污染区叶片中铁锌铜锰4种重金属元素含量的实验测定和分析,研究了各树种叶片中的金属含量特征和对污染的吸收净化能力.结果表明,不同的树种对不同重金属的抗性和吸收净化能力不同,参试的10个树种均对重金属元素表现出较好的抗性和吸收净化能力,叶片中铁含量最高的是飞蛾槭,锌含量最高的是鳞斑荚蒾,铜含量最高的是金叶子,锰含量最高的是滇青冈.叶片中铁和锌、铜含量的相关性达极显著和显著水平,其他元素之间相关性均不显著.按各树种的综合富积量进行排序,鳞斑荚蒾>红果树>飞蛾槭>茶条木>金叶子>云南泡花树>云南木樨榄>滇青冈>云南卫矛>子楝树.%Ten evergreen tree species growing in polluted area (Kunming Iron and Steel Plant) and a relatively pollution-free zone, respectively were selected to examine the characteristics of metal contents in the leaves and absorption capabilities by measuring the contents of 4 metals, including Fe, Zn. Cu, and Mn. The results showed that all the 10 tree species demonstrated better resistance to the metals and absorption capability, while differences were observed among different tree species. The highest contents of iron, zinc, copper, and manganese were found in the leaves of Acer oblongum , Viburnum punctatum , Craibio-dendron yunnanense, and Cyclubalanopsis glaucoides , respectively. The correlationships among the contents of iron and zinc and copper were most significant or significant, while no significant correlationships were found among other metals. Considering the integrated accumulation amount for the metals, an order was given among 10 tree species: V. punctatum >Stranvaesia davidiana>A. oblongum>Delavaya yun-nanensis>C. yunnanense >Meliosma yunnanensis>Olea yunnanensis>C. glaucoides >Euonymus yun-nanensis >Decaspermum fruticosum.

  15. Current concepts:supplementation of tough bone elements magnesium, zinc, copper, and manganese, for the prevention and treatment of osteoporotic fractures%骨质疏松性骨折防治新概念:补充韧骨元素镁、锌、铜、锰

    Institute of Scientific and Technical Information of China (English)

    周建烈; 陈声

    2012-01-01

    Routine supplementation of calcium and vitamin D is effective for the prevention and treatment of osteoporosis, and it can reduce the rate of osteoporotic fractures further. Bone strength is determined by bone mineral density and bone quality. Bone mineral density depends on highly mineralized inorganic salts ( calcium, phosphorus, magnesium, etc. ). Bone quality is mainly composed of organic bone matrix collagen fibers. Trace elements, especially copper, manganese and zinc, are necessary for the synthesis of collagen. This paper mainly describes the role of magnesium, zinc, copper, and manganese in the prevention and treatment of osteoporosis and osteoporotic fractures. A new concept of supplementation of tough bone elements such as magnesium, zinc, copper, and manganese for the prevention and treatment osteoporotic fracture is proposed.%常规补充钙和维生素D可防治骨质疏松,进一步减少骨质疏松性骨折发病率.骨强度由骨密度和骨质量决定,骨密度由高度矿化的无机盐(钙、磷、镁等)组成,骨质量主要由有机骨基质胶原纤维组成,而胶原蛋白合成必需有微量元素参加,特别是铜、锰和锌.本文主要介绍镁、锌、铜、锰对骨质疏松症和骨质疏松性骨折防治的作用和临床研究,提出骨质疏松性骨折防治的新概念:补充韧骨元素镁、锌、铜、锰.

  16. Production of Manganese Oxide Nanoparticles by Shewanella Species

    Science.gov (United States)

    Farooqui, Saad M.; White, Alan R.

    2016-01-01

    ABSTRACT Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S. loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates

  17. Manganese nodules

    Science.gov (United States)

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Fig. 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published...

  18. Determination of the Extractable Speciation and Total Amount of Zinc and Manganese in Cotton Textiles by Flame Atomic Absorption Spectrometry%火焰原子吸收光谱法测定纯棉纺织品中锌和锰的可提取态与总量

    Institute of Scientific and Technical Information of China (English)

    祖文川; 李冰宁; 汪雨; 武彦文; 陈舜琮

    2013-01-01

    Zinc and manganese in cotton textiles were extracted into the acidic sweat,and the extractable speciation was then determined by flame atomic absorption spectrometry(FAAS). Meanwhile,a method was used to determine the total amount of zinc and manganese in cotton textiles by FAAS assisted by microwave digestion. The detection limits for zinc and manganese were 2. 0 and 3. 0 μg·L-1,respectively. The relative standard deviations for the extractable speciation and total amount determination were in the range of 1. 8%-6. 6 %, and the spiked recoveries were in the range of 91. 2% -104. 8%. Five kinds of cotton textiles purchased from the Beijing market were determined. The extractable speciation amount of zinc and manganese were in the range of 0. 31 -3. 26 μg·g-1 and 0. 19 - 1. 39 μg·g-1 ,and the total amount were in the range of 3. 43-13. 31 μg·g-1 and 0. 56 - 3. 17 μg·g -1,respectively.%采用酸性汗液提取纯棉纺织品中锌和锰,火焰原子吸收光谱法(FAAS)测定可提取态含量;同时建立了微波辅助消解溶样,FAAS测定纯棉纺织品中锌和锰总量的方法.锌和锰的检出限分别为2.0和3.0 μg·L-1,可提取态和总量测定结果的相对标准偏差在1.8%~6.6%之间,加标回收率在91.2%~104.8%范围.对5种北京市市售纯棉纺织品测定,锌的可提取态含量在0.31~3.26 μg·g-1之间,总量为3.43~37.93μg·g-1;锰的可提取态含量在0.19~1.39 μg·g-1之间,总量为0.56~3.17 μg·g-1.

  19. Manganese Countries

    Directory of Open Access Journals (Sweden)

    Maria Sousa Galito

    2014-05-01

    Full Text Available Cheickna Bounajim Cissé wrote an article in Mars 2013 in the Journal Les Afriques N. º 237, suggesting a new acronym, MANGANESE, for the nine African countries: Morocco, Angola, Namibia, Ghana, Algeria, Nigeria, Egypt, South Africa and Ethiopia. According to Cissé, this group of African nations will be the fastest growing states in the region over the next few years. The purpose of this article is to test the pertinence of the acronym, discuss the credibility and reliability of the future prospects of these countries by comparing selected socioeconomic and sociopolitical indicators based on the latest global rankings and trends. Likewise, the potential of Cissé's claim will be assessed, especially in relationship to drug trafficking and terrorism that may put their recent sustainability in danger now and in the future.

  20. Comparison of Characteristics of Sol-Gel and Precipitation Synthesis of Nanosized ZnO Powders

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Liang; Shaobo Xin; Xiaohui Wang; Yajin Liu

    2006-01-01

    Zinc oxide nanosized powders with different sizes and morphologies were obtained by the sol-gel method and the precipitation method, respectively. The effects of the sintering temperature on the characteristics of nanosized ZnO powders were discussed. ZnO particles were characterized by XRD and TEM. The results show that the powders prepared by both methods are of hexagon crystalline, and the average diameter of the particles prepared by the sol-gel method is smaller than that by the precipitation method.

  1. Evolution of zinc morphology during continuous electrodeposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  2. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Science.gov (United States)

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  3. Annual changes of iron,manganese,zinc and copper concentrations in both types of citrus fruit%两结实类型柑橘果实铁锰锌铜含量的年周期变化

    Institute of Scientific and Technical Information of China (English)

    肖家欣; 彭抒昂

    2008-01-01

    Annual changes in concentrations of iron(Fe),manganese(Mn),zinc(Zn)and copper(Cu)were measured in whole fruits from parthenocarpic Kamei satsuma mandarin(Citrus unshiu)and self-pollinated Egan 1 tangerine(C.reticulata)trees. The results were showed as follows:(1)Zn and Cu concentrations in the ovary of Kamei were relatively high before flowering and at full bloom,and decreased after flowering,whereas those of Egan 1 decreased obviously and were relatively low at full bloom,thereafter significant increases were observed. There were no significant differences in changes of Fe and Mn concentrations in the ovaries(fruitlets)between the two cultivars,which presented similarly decreasing trends after flowering. (2)Fe,Mn,Zn and Cu concentrations were relatively high in whole fruits of both cultivars during young fruit development,and decreased remarkably during early fruit enlargement(drought spell),whereas increased dramatically at the middle stage of fruit enlargement,thereafter decreased gradually. Dynamics of micronutrients concentrations in developing fruit and their possible relation with fruits development is discussed herein.%对单性结实的龟井温州蜜柑和自花授粉结实的鄂柑1号柑橘果实的铁、锰、锌和铜含量的年周期变化进行了测定.结果表明:(1)龟井子房的锌和铜含量在花前至花期居较高,花后趋下降,而鄂柑1号对应值在花期出现明显下降并居较低,花后却有一明显上升;两品种子房(幼果)的铁和锰含量变化却无明显差异,花后呈类似的下降趋势.(2)幼果阶段的果实铁、锰、锌和铜含量均居较高,在果实膨大初期(干旱期)均出现一明显下降,而在果实膨大中期却出现显著上升,之后又趋下降.本文还对果实发育中的微量元素含量动态及其与果实发育之间的关系进行了讨论.

  4. 铜、锰诱导吉富罗非鱼血细胞凋亡及铁、锌的干预作用%Effects of Copper and Manganese on Hemocyte Apoptosis and Antagonism of Iron and Zinc in Oreochromis niloticus

    Institute of Scientific and Technical Information of China (English)

    白丽蓉; 赵志英

    2016-01-01

    为了研究重金属铜与锰对吉富罗非鱼血细胞凋亡的影响以及铁、锌的拮抗作用,采用原子吸收分光光度法检测血液及饲料中重金属的含量,采用流式细胞术检测实验鱼血细胞凋亡情况。360尾吉富罗非鱼幼鱼随机分为12组,每组30尾,分别以硫酸铜(0、2000 mg/kg)、硫酸锰(0、120 mg/kg)为攻毒组重金属源,以硫酸锌(20、320 mg/kg)、硫酸铁(150、350 mg/kg)为拮抗组金属源,通过饲料投喂的方式进行血细胞凋亡的研究,养殖周期为20周。细胞凋亡分析结果表明,染铜组、染锰组实验鱼血细胞凋亡率显著高于对照组;补充铁和锌后,随着饲料添加铁、锌水平的增加,实验鱼血细胞凋亡率明显下降,但铁、锌干预组血细胞凋亡率显著高于对照组。试验表明,过量铜、锰可诱发实验罗非鱼血细胞凋亡;较高水平的铁、锌对铜、锰的毒性作用具有拮抗作用。%This study aimed to investigate the effects of copper and manganese on hemocyte apoptosis and the antagonism of iron and zinc in Oreochromis niloticus. The heavy metal contents in fish blood and feed were determined by atomic ab-sorption spectrophotometry, and the hemocyte apoptosis was determined by flow cytometry. A total of 360 tilapias were selected, and they were divided randomly and evenly into 12 groups. In the chal enge groups, the tilapias were fed with con-stant-level copper sulfate (0, 200 mg/kg) and manganese sulfate (0, 120 mg/kg); in the antagonism groups, the tilapias were fed with constant-level zinc sulfate (20, 320 mg/kg) and iron sulfate (150, 350 mg/kg). After 20-week aquaculture, the hemocyte apoptosis rates in the copper and manganese groups were significantly increased; with the increased addition levels of iron and zinc, the hemocyte apopto-sis rates in the iron and zinc groups were significantly reduced, but they were stil higher than that in the control group. In

  5. Impact wear behaviors of Hadfield manganese steel

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XU Yun-hua; CEN Qi-hong; ZHU Jin-hua

    2005-01-01

    Impact wear behaviors of Hadfield manganese steel at different impact angles were investigated. The results of impact wear tests show that there exists a critical impact load for Hadfield steel. The wear rate suddenly turns down after some impact cycles when the impact load is greater than the critical load. The critical impact load is smaller than 8.2 J in this research because the nano-sized austenitic grains embedded in amorphous delay the crack propagation in subsurface. From high resolution transmission electron microscope (HRTEM) examination of subsurface microstructure, it is found that a large amount of nano-sized grains embedded in bulk amorphous matrix are fully developed and no martensitic transformation occurs during the impact wear process. The analytical results of worn surface morphology and debris indicate that the initiation of crack, propagation and spalling are restricted in the amorphous phase, resulting in the size distribution of debris in nano-sizes, which is the reason why the wear rate of Hadfield steel is greatly decreased at high impact load.

  6. Manganese nodules

    Science.gov (United States)

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2016-01-01

    The existence of manganese (Mn) nodules (Figure 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published in the journal Economic Geology (Mero, 1962) and later as a book (Mero, 1965). By the mid-1970s, large consortia had formed to search for and mine Mn nodules that occur between the Clarion and Clipperton fracture zones (CCZ) in the NE Pacific (Figure 2). This is still the area considered of greatest economic potential in the global ocean because of high nickel (Ni), copper (Cu), and Mn contents and the dense distribution of nodules in the area. While the mining of nodules was fully expected to begin in the late 1970s or early 1980s, this never occurred due to a downturn in the price of metals on the global market. Since then, many research cruises have been undertaken to study the CCZ nodules, and now 15 contracts for exploration sites have been given or are pending by the International Seabed Authority (ISA). Many books and science journal articles have been published summarizing the early work (e.g., Baturin, 1988; Halbach et al., 1988), and research has continued to the present day (e.g., ISA, 1999; ISA, 2010). Although the initial attraction for nodules was their high Ni, Cu, and Mn contents, subsequent work has shown that nodules host large quantities of other critical metals needed for high-tech, green-tech, and energy applications (Hein et al., 2013; Hein and Koschinsky, 2014).

  7. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter.

    Science.gov (United States)

    Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-Aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho

    2016-07-08

    Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn(43), which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys(52) and Leu(242) in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter.

  8. Phase Transformation of Nanosized Zirconia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The nanosized zirconia was synthesized via solid state reaction in the presence of surfactant. The results indicate that crystal phase of zirconia can be controlled by tuning the syn- thesis parameters such as OH-/Zr molar ratio, crystallizing temperature and time. It can be trans- formed among amorphous, tetragonal and monoclinic phases. The transformation is driven by particle size. The research shows the nanocrystalline zirconia possesses the higher thermal stability compared with amorphous framework. The "glow exotherm" can be observed for the amorphous samples. Otherwise, it is in the absence for nanocrystalline samples. Herein, the reason for retention of tetragonal zirconia is demonstrated.

  9. RESIDUAL CONCENTRATION OF COPPER, IRON, MANGANESE AND ZINC IN EUTROPHIC 'LATOSSOLO ROXO’ UNDER DIFFERENT SOIL MANAGEMENTS CONCENTRAÇÕES RESIDUAIS DE COBRE, FERRO, MANGANÊS E ZINCO EM LATOSSOLO ROXO EUTRÓFICO SOB DIFERENTES TIPOS DE MANEJO

    Directory of Open Access Journals (Sweden)

    Durval Dourado Neto

    2007-09-01

    Full Text Available

    The removal of micronutrients from soil by grains and burning of cultural remains constitute the main means of soilexhaustion. The correction of soil fertility and the adapted soilmanagement have been the means used to maintain the grainproduction. The soybean, corn, rice and common bean crops were developed in an eutrophic ‘latossolo roxo’, submitted to fourmanagement systems: 1 no-till, 2 deep moldboard plowing, 3shallow harrow plowing and 4 deep stirring, using a chiseling plower and three level of fertilization: 1 Check (natural soil fertility, 2 Goiás State recommendation and 3 Fertilizers to cover the nutrients extracted by grain exportation. Larger values of the pH were observed in the superficial layer of soil submitted to deep moldboard plowing in relation to no-till, shallow harrow plowing and deep stirring. Uniform distributions of iron, manganese and zinc were observed in areas submitted to deep moldboard plowing. The 40-60 cm layer presented similar concentrations in all types of soil management. Copper tried in the superficial layer and at deepest layers can be explained by the larger concentration of organic matter and origin of the soil. No variation was observed in relation to fertilizers application.

    KEY-WORDS: Micronutrients; no till system; cerrado soil.

    A exportação dos micronutrientes do solo pelos grãos e a queima dos restos culturais constituem os principais meios de esgotamento do solo. A correção da fertilidade e o manejo adequado do solo têm sido os meios usados para manter a produção de grãos. Desenvolveram-se culturas de soja, milho, arroz e feijão em um latossolo roxo eutrófico, submetidas a quatro sistemas de manejo: 1 plantio direto; 2 escarificação profunda; 3 grade aradora; e 4 aração profunda, e a três níveis de adubação: 1

  10. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  11. Manganese Oxidation State Assignment for Manganese Catalase.

    Science.gov (United States)

    Beal, Nathan J; O'Malley, Patrick J

    2016-04-06

    The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone.

  12. 济宁市太白湖区饮用水铅镉铜锌铁锰氟含量检测%The determination of Lead,Cadmium,Copper,Zinc,Iron,Manganese and Fluoride in drinking water of the North Lake District,Jining

    Institute of Scientific and Technical Information of China (English)

    张凯; 公维磊; 王长芹

    2014-01-01

    Objective To determinate the content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride in Drinking Water of the North Lake District in Jining in order to explore the non‐point source pollution in the process of new town building ,which provides a scientific basis for city construction and waterways in the layout ,al‐teration and application .Methods 102 water samples of 8 areas were collected randomly in the North Lake Dis‐trict of Jining .The contents of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were determined by atom‐ic absorption spectrometry and fluorine ion selective electrode method respectively .Results The average content of lead ,cadmium ,copper ,zinc ,iron ,manganese and fluoride were 0 .014mg/L ,0 .0034 mg/L ,0 .017mg/L , 0.406mg/L ,0 .509mg/L ,0 .047 mg/L ,0 .214mg/L ,and the corresponding rates of exceed standard were 1 .96% , 27 .45% ,0% ,7 .84% ,76 .47% ,5 .88% and 1 .96% respectively .Conclusion The contents of lead ,manganese , copper ,zinc and fluoride were generally good ,the content of cadmium was high ,and the content of iron was exces‐sive generally .%目的:对济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量进行检测,了解新城建设过程中的城市非点源污染状况,及早为城市建设和水系的布局、改造、应用提供科学依据。方法在济宁市太白湖区随机采集8个区域共102份水样,分别采用石墨炉原子吸收法、火焰原子吸收法和氟离子选择电极法测定其铅、镉、铜、锌、铁、锰、氟的含量。结果济宁市太白湖区饮用水中铅、镉、铜、锌、铁、锰、氟含量分别为0.014mg/L、0.0034 mg/L、0.017mg/L、0.406mg/L、0.509mg/L、0.047 mg/L、0.214mg/L ,超标率分别为1.96%、27.45%、0%、7.84%、76.47%、5.88%、1.96%。结论济宁市太白湖区饮用水中铅、锰、铜、锌、氟含量总体良好,镉含量超标

  13. Preparation, Characterization, and Biotoxicity of Nanosized Doped ZnO Photocatalyst

    OpenAIRE

    Lingling Liu; XiangRui Wang; Xiuping Yang; Wenhong Fan; Xiaolong Wang; Ning Wang; Xiaomin Li; Feng Xue

    2014-01-01

    Metal-doped nanosized ZnO (nZnO) photocatalyst has been widely used for its typical properties and has thus gained considerable attention. In this study, five types of nZnO (nondoped nZnO, iron- (Fe-) doped nZnO, cobalt- (Co-) doped nZnO, nickel- (Ni-) doped nZnO, and manganese- (Mn-) doped nZnO) materials were prepared through a wet chemical method and then exposed to Daphnia magna (D. magna) at low and high concentrations (50 and 250 μg L−1). Results showed that the different metal-doped nZ...

  14. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    Directory of Open Access Journals (Sweden)

    W. S. Lau

    2014-02-01

    Full Text Available Previously, Lau (one of the authors pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM and cross-sectional transmission electron microscopy (XTEM were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  15. Manganese homeostasis in the nervous system.

    Science.gov (United States)

    Chen, Pan; Chakraborty, Sudipta; Mukhopadhyay, Somshuvra; Lee, Eunsook; Paoliello, Monica M B; Bowman, Aaron B; Aschner, Michael

    2015-08-01

    Manganese (Mn) is an essential heavy metal that is naturally found in the environment. Daily intake through dietary sources provides the necessary amount required for several key physiological processes, including antioxidant defense, energy metabolism, immune function and others. However, overexposure from environmental sources can result in a condition known as manganism that features symptomatology similar to Parkinson's disease (PD). This disorder presents with debilitating motor and cognitive deficits that arise from a neurodegenerative process. In order to maintain a balance between its essentiality and neurotoxicity, several mechanisms exist to properly buffer cellular Mn levels. These include transporters involved in Mn uptake, and newly discovered Mn efflux mechanisms. This review will focus on current studies related to mechanisms underlying Mn import and export, primarily the Mn transporters, and their function and roles in Mn-induced neurotoxicity. Though and essential metal, overexposure to manganese may result in neurodegenerative disease analogous to Parkinson's disease. Manganese homeostasis is tightly regulated by transporters, including transmembrane importers (divalent metal transporter 1, transferrin and its receptor, zinc transporters ZIP8 and Zip14, dopamine transporter, calcium channels, choline transporters and citrate transporters) and exporters (ferroportin and SLC30A10), as well as the intracellular trafficking proteins (SPCA1 and ATP12A2). A manganese-specific sensor, GPP130, has been identified, which affords means for monitoring intracellular levels of this metal.

  16. Adubos foliares quelatizados e sais na absorção de boro, manganês e zinco em laranjeira ‘Pera’ Chelated foliar fertilizers and salts in the absortion of boron, manganese and zinc by 'Pera' orange trees

    Directory of Open Access Journals (Sweden)

    Carlos Henrique dos Santos

    1999-10-01

    Full Text Available O presente trabalho teve como objetivo comparar a eficiência de formulações de adubos foliares quelatizados na absorção dos micronutrientes boro, manganês e zinco, com a aplicação convencional de sais em plantas de laranjeira ‘Pera’ (Citrus sinensis (L. Osbeck. Para tanto foi conduzido experimento nas dependências do Departamento de Ciência do Solo da Faculdade de Ciências Agronômicas UNESP/Campus de Botucatu, Estado de São Paulo. Utilizaram-se plantas de laranjeira ‘Pera’ (Citrus sinensis (L. Osbeck enxertadas sobre limoeiro ‘Cravo’ (Citrus limonia Osbeck, com 2 anos de idade, plantadas em caixas de 250 litros. Os adubos foliares utilizados foram: Grex Citros na dose de 1,0 mL L-1; Copas citros 2,0 mL L-1; Plantin Citros 1,0 mL L-1; Citrolino 2,0 mL L-1; Fertamin Citros 1,75 mL L-1; Yogen Citros 2,0 mL L-1; MS-2 1,0 mL L-1; Sais, Sais + 1,0 g L-1 de KCl e Sais substituindo o ZnSO4 pelo ZnCl2. O volume de aplicação, foi de 1 litro de calda planta-1. Em todos os tratamentos adicionou-se o espalhante adesivo do grupo químico dos alquifenoletoxilados a 0,03%. A amostragem das folhas foi realizada 30 dias após a aplicação dos tratamentos, coletando-se a 3a ou 4a folha de ramos vegetativos no início do florescimento, dos 4 quadrantes, localizados na região mediana da planta, totalizando 10 folhas por planta. A aplicação foliar de micronutrientes, favoreceu a absorção e resultou no aumento do teor foliar de Mn e Zn mas não de B, sendo que a presença de cloreto aumentou os teores de Zn na folhas de laranjeira ‘Pera’, proporcionando maior absorção do que o sulfato e sulfato adicionado ao cloreto de potássio. Os resultados mostram, também, que os produtos quelatizados Yogen e MS-2, para as condições deste estudo, não foram eficientes como fontes fornecedoras de Mn.To compare the of chelated foliar fertilizers with salt conventional application in the absorption of boron, manganese and zinc in orange

  17. Zinc Composite Layers, Incorporating Polymeric Nano-aggregates: Surface Analysis and Electrochemical Behavior

    NARCIS (Netherlands)

    Koleva, D.A.; Zhang, X.; Petrov, P.; Boshkov, N.; Van Breugel, K.; De Wit, J.H.W.; Mol, J.M.C.; Tsvetkova, N.

    2008-01-01

    This study reports on a comparative investigation of the corrosion behavior of zinc (Zn) and nano-composite zinc (ZnC) galvanic layers in 5% NaCl solution. The metallic matrix of the ZnC layers incorporates nano-sized, stabilized polymeric aggregates, formed from the amphiphilic tri-block co-polymer

  18. Nicotianamine Secretion for Zinc Excess Tolerance

    NARCIS (Netherlands)

    Aarts, M.G.M.

    2014-01-01

    Plants acquire micronutrients such as iron (Fe), zinc (Zn), manganese, or copper from soil. These micronutrients are often not readily available and they need to be mobilized to the proper free ionic form in order to be taken up by plant roots. Perhaps the only exception to this is the uptake of Fe

  19. Interactive effects of manganese and/or iron supplementation in adult women

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.D.; Greger, J.L. (Univ. of Wisconsin, Madison (United States))

    1991-03-15

    Evaluation of the practical significance of manganese-iron interactions has been hampered by the limited methodologies available to assess manganese status. Manganese status has not been monitored longitudinally in control studies with humans. Forty-eight women were recruited for a double blind 125-day supplementation study. After an initial 5-day baseline period, subjects were assigned to one of four treatments: placebo; 30 mg iron as ferrous fumarate daily; 15 mg manganese as an amino acid chelated manganese supplement daily or both the iron and manganese supplements daily. Dietary information, blood and 3-day urine samples were collected during the baseline period and after 20, 55, 85 and 120 days of consuming the supplements. Urinary manganese excretion ranged from 0.11 to 1.40 {mu}g/day. Serum manganese ranged from 0.16 to 1.92 {mu}g/l. Serum was also analyzed for iron, zinc, copper, ferritin and transferrin concentrations. Lymphocytes were isolated and manganese-dependent superoxide dismutase activity was determined as a new method to assess manganese status. Plasma cholesterol ranged from 126 to 229 mg/dl and HDL cholesterol ranged from 31 to 84 mg/dl. Plasma triglycerides were determined and LDL cholesterol was calculated by difference.

  20. Air Manganese Study

    Science.gov (United States)

    In November 2011 US EPA researchers conducted a health study of airborne manganese exposure in East Liverpool, Ohio. This Web site discusses preliminary results of the study and provides background and other related information.

  1. Microstructure and application of mesoporous nanosize zirconia

    Institute of Scientific and Technical Information of China (English)

    LIU Xinmei; YAN Zifeng; G.Q.Lu

    2004-01-01

    The mesoporous nanoscale zircoina zeolite was firstly synthesized via solid state -- Structure directing method without addition of any stabilizer. The sample bears lamellar or worm pore structures, relatively high surface area compared with that reported. The mesoporous nanosize structure can also resist higher calcination temperature. The introduction of above zirconia to the catalyst of methanol synthesis dedicates the nanosize particle size to the catalyst, which significantly changes the physical structure and electronic effect of the catalyst. The catalyst shows higher catalytic activity and selectivity to methanol. The active sites for methanol synthesis are demonstrated over various catalysts in this paper.

  2. Synthesis, characterization and properties of nano-sized transition metal oxides

    Science.gov (United States)

    Yin, Ming

    2005-12-01

    Chapter 1. A General introduction to the emerging field of nanomaterials is presented highlighting the category of transition metal oxides. The wide variety of structures, properties, and phenomena of transition metal oxides are stressed. Nano-sized transition metal oxides are presented as systems for fundamental and application research. Examples of individual transition metal oxides are provided. Important developments in the synthesis and characterization of nano-sized transition metal oxides that have contributed to this work are reviewed. A novel synthesis (TDMA) is developed and successfully applied to the synthesis of transition metal oxide nanocrystals. Chapter 2. The synthesis of monodisperse cubic wuestite FexO nanocrystals is presented. The influence of reaction temperature and the molar ratio of surfactant to iron precursor was investigated, in order to further understand the ability to control particle size and monodispersity. In contrast to bulk material, it is also found that the nano-sized ligand-capped wuestite FexO particles were stable at room temperature. The procedure enable the collection of highly monodisperse nanocrystals of variable and uniform diameters as a function of time. Sharp Hancock analysis indicates that the reaction proceeds by a diffusion limited mechanism. Routes to control the size of gamma-Fe2O3 nanocrystals are also presented. gamma-Fe2O3 nanocrystals from 6 nm to 12 nm in diameter with uniform size, shape, consistent crystal structure were prepared. Chapter 3. A simple reaction to prepare monodisperse MnO nanocrystals is presented. MnO nanocrystals was prepared by thermal decomposition of manganese acetate in the presence of oleic acid at high temperature and by following annealing. Particles with different sizes and shapes were obtained by controlling annealing time. The morphology of MnO nanocrystals was studied based on their crystal structure and surface energy. SQUID measurement shows ferromagnetic magnetism at low

  3. [Function and disease in manganese].

    Science.gov (United States)

    Kimura, Mieko

    2016-07-01

    Manganese is a metal that has been known named a Greek word "Magnesia" meaning magnesia nigra from Roman Empire. Manganese provide the wide range of metablic function and the multiple abnomalities from its deficiency or toxicity. In 1931, the essentiality of manganese was demonstrated with the authoritative poor growth and declined reproduction in its deficiency. Manganese deficiency has been recognized in a number of species and its signs are impaired growth, impaired reproduction, ataxia, skeletal abnormalities and disorders in lipid and carbohydrate metabolism. Manganese toxicity is also acknowledged as health hazard for animals and humans. Here manganese nutrition, metabolism and metabolic function are summarized.

  4. Cytotoxicity of zinc in vitro.

    Science.gov (United States)

    Borovanský, J; Riley, P A

    1989-01-01

    The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.

  5. 食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量测定%Determination of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc Migration Quantity in Food Contact Polymer

    Institute of Scientific and Technical Information of China (English)

    方邢有; 路东琪; 马青; 周明辉; 郑朝辉

    2012-01-01

    Migration quantity of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc was determined by inductively coupled plasma atomic emission spectrometry. The influence of analysis line, incident power, pump speed, and carrier gas pressure of ICP-AES, and matrix ion interference and coexistence were studied. The results showed that the method is simple and rapid; recovery for the elements determined is from 85.9% to 108%; and RSDs are in the range of 2.92%-6. 78%.%采用电感耦等离子体原子发射光谱仪(ICP—AES),同时测定了食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量,并对ICP—AES法测定时分析线的选择和入射功率、泵速、栽气压力的影响,以及基体和共存离子的干扰情况等进行了研究。研究表明,此方法简便快速,回收率为85.9%-108%,相对标准偏差为2.92%-6.78%。

  6. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  7. Manganese As a Metal Accumulator

    Science.gov (United States)

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  8. Manganese As a Metal Accumulator

    Science.gov (United States)

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  9. Occupational exposure to manganese.

    Science.gov (United States)

    Sarić, M; Markićević, A; Hrustić, O

    1977-05-01

    The relationship between the degree of exposure and biological effects of manganese was studied in a group of 369 workers employed in the production of ferroalloys. Two other groups of workers, from an electrode plant and from an aluminium rolling mill, served as controls. Mean manganese concentrations at work places where ferroalloys were produced varied from 0-301 to 20-442 mg/m3. The exposure level of the two control groups was from 2 to 30 microgram/m3 and from 0-05 to 0-07 microgram/m3, in the electrode plant and rolling mill respectively. Sixty-two (16-8%) manganese alloy workers showed some signs of neurological impairment. These signs were noticeably less in the two control groups (5-8% and 0%) than in the occupationally exposed group. Subjective symptoms, which are nonspecific but may be symptoms of subclinical manganism, were not markedly different in the three groups. However, in the manganese alloy workers some of the subjective symptoms occurred more frequently in heavier smokers than in light smokers or nonsmokers. Heavier smokers engaged in manganese alloy production showed some of the subjective symptoms more often than heavier smokers from the control groups.

  10. Inductively coupled plasma atomic emission spectrometric determination of acid-soluble metal elements chromium,manganese, zinc and copper in talcum powder%电感耦合等离子体原子发射光谱法测定滑石粉中酸溶金属元素铬锰锌铜

    Institute of Scientific and Technical Information of China (English)

    胡晓静; 曾泽; 王长文; 仇薪越; 牟明仁; 富瑶; 沈桂玲; 刘向宽

    2011-01-01

    After digestion by aqua regia with microwave and selection of corresponding spectral lines at 267. 7, 257. 6, 213. 8 and 324. 7 nm as analytical lines, the acid-dissoluble metal elements including chromium, manganese, zinc and copper in talcum powder were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) under optimized conditions with radio frequency power of 1 250 W, auxiliary air flow rate of 0. 60 L/min and atomizer pressure of 26 psi. When the concentration of each testing element was 2. 0 μg/mL, the interferences caused by 20. 0 μg/mL of I-ron, magnesium, calcium, aluminum, zinc, nickel and copper were all less than 5 %. Since the contents of these elements in talcum powder were less than 1 %, their influence on the determination could be ignored. The detection limits of chromium, manganese, zinc and copper were 0. 004 8, 0. 003 8, 0. 001 and 0. 002 6 μg/mL, respectively. This proposed method was applied in actual samples, and the determination results were consistent with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) with relative standard deviations (RSD, n = 8) of 1.1%-4. 2% and recoveries of 93 %-107 %.%以王水作溶剂,微波消解法消解样品,选择267.7、257.6、213.8和324.7 nm波长的光谱线分别作为铬、锰、锌和铜的分析线,在发射功率为1 250 W、辅助气流量为0.60 L/min、雾化器压力为26 psi的优化条件下以电感耦合等离子体原子发射光谱法(ICP-AES)测定了滑石粉中酸溶金属元素铬、锰、锌、铜含量.样品中的基体组分硅酸镁在王水中的溶解量很少,对测定没有影响.当测定待测元素浓度均为2.0μg/mL的溶液时,20.0 μg/mL的铁、镁、钙、铝、锌、镍、铜对待测元素的干扰均小于5%.由于滑石粉中这些元素含量小于1%,因此它们对测定的影响可以忽略.铬、锰、锌、铜的检出限分别为0.004 8、0.003 8、0.001、0.002 6μg/mL.滑石粉样品分析

  11. Syntheses, spectral, electrochemical and thermal studies of mononuclear manganese(III) complexes with ligands derived from 1,2-propanediamine and 2-hydroxy-3 or 5-methoxybenzaldehyde: Self-assembled monolayer formation on nanostructure zinc oxide thin film

    Science.gov (United States)

    Habibi, Mohammad Hossein; Askari, Elham; Amirnasr, Mehdi; Amiri, Ahmad; Yamane, Yuki; Suzuki, Takayoshi

    2011-08-01

    Mononuclear Mn(III) complexes have been prepared via the Mn(II) reaction of an equimolar of Schiff-bases derived from reaction of 2-hydroxy-3-methoxybenzaldehyde or 2-hydroxy-5-methoxybenzaldehyde with 1,2-diaminopropane. Axial ligands L include: pyridine (py) and H 2O. The resulting complexes have been characterized by FT-IR and UV-vis spectroscopy. The crystal structures of the complexes were determined and indicate that in the solid state the complex adopts a slightly distorted octahedral environment of the imine N and hydroxo O with the two axial ligands. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Mn III-Mn II is electrochemically quasi-reversible. Thermal stability of these complexes was determined by TG and DTG. Layers of these complexes were formed on nanostructure zinc oxide thin film and a red shift was observed when zinc oxide thin film is modified by complex.

  12. Manganese in silicon carbide

    Science.gov (United States)

    Linnarsson, M. K.; Hallén, A.

    2012-02-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [ 1 1 2¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  13. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  14. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...

  15. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...

  16. Manganese, Metallogenium, and Martian Microfossils

    Science.gov (United States)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  17. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  18. Nanosizing techniques for improving bioavailability of drugs.

    Science.gov (United States)

    Al-Kassas, Raida; Bansal, Mahima; Shaw, John

    2017-08-28

    The poor solubility of significant number of Active Pharmaceutical Ingredients (APIs) has become a major challenge in the drug development process. Drugs with poor solubility are difficult to formulate by conventional methods and often show poor bioavailability. In the last decade, attention has been focused on developing nanocrystals for poorly water soluble drugs using nanosizing techniques. Nanosizing is a pharmaceutical process that changes the size of a drug to the sub-micron range in an attempt to increase its surface area and consequently its dissolution rate and bioavailability. The effectiveness of nanocrystal drugs is evidenced by the fact that six FDA approved nanocrystal drugs are already on the market. The bioavailabilities of these preparations have been significantly improved compared to their conventional dosage forms. There are two main approaches for preparation of drug nanocrystals; these are the top-down and bottom-up techniques. Top-down techniques have been successfully used in both lab scale and commercial scale manufacture. Bottom-up approaches have not yet been used at a commercial level, however, these techniques have been found to produce narrow sized distribution nanocrystals using simple methods. Bottom-up techniques have been also used in combination with top-down processes to produce drug nanoparticles. The main aim of this review article is to discuss the various methods for nanosizing drugs to improve their bioavailabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 21 CFR 184.1449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2, CAS... manganese carbonate from manganese sulfate and sodium carbonate solutions. The filtered and...

  20. Synthesis and testing of nanosized zeolite Y

    Science.gov (United States)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  1. Investigation of High Molar Ratio Potassium Solution Used in Zinc-Rich Coatings

    Institute of Scientific and Technical Information of China (English)

    LI Sheng; WU Hang; YAN Rui

    2004-01-01

    High molar ratio potassium silicate solution used in zinc-rich water-base coatings was prepared by adding the nanosize SiO2 to the low molar ratio potassium silicate solution, and its microstructure was investigated by SEM and IR.Furthermore, the zinc-rich coatings was prepared by adding the zinc powders to this type of solution, and the properties of the coatings were evaluated. The test results show that the high molar ratio potassium silicate solution is the bonder of zinc-rich inorganic coatings with excellent property.

  2. Manganese in Madison's drinking water.

    Science.gov (United States)

    Schlenker, Thomas; Hausbeck, John; Sorsa, Kirsti

    2008-12-01

    Public concern over events of manganese-discolored drinking water and the potential for adverse health effects from exposure to excess manganese reached a high level in 2005. In response, Public Health Madison Dane County, together with the Madison Water Utility, conceived and implemented a public health/water utility strategy to quantify the extent of the manganese problem, determine the potential for adverse human health effects, and communicate these findings to the community. This strategy included five basic parts: taking an inventory of wells and their manganese levels, correlating manganese concentration with turbidity, determining the prevalence and distribution of excess manganese in Madison households, reviewing the available scientific literature, and effectively communicating our findings to the community. The year-long public health/water utility strategy successfully resolved the crisis of confidence in the safety of Madison's drinking water.

  3. in situ immobilization of Cadmium and zinc in contaminated soils

    NARCIS (Netherlands)

    Osté, L.A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal c

  4. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  5. Disponibilidad de cinc, cobre, hierro y manganeso extraíble con DTPA en suelos de córdoba (Argentina y variables edáficas que la condicionan Availability of DTPA extractable zinc, copper, iron and manganese in Córdoba (Argentina soils and its relationship with other properties

    Directory of Open Access Journals (Sweden)

    Eduardo Volmer Buffa

    2005-12-01

    Full Text Available Se midió el contenido en suelo de Cu, Zn, Fe y Mn extraíbles con DTPA y se relacionó con la materia orgánica, pH, tenor salino y cantidad de carbonatos en Molisoles, Entisoles y Alfisoles de la llanura chaco-pampeana, en la provincia de Córdoba, Argentina. Las muestras de suelo, colectadas en 48 situaciones, correspondientes a distintas condiciones texturales (desde franco limoso a franco arenoso, de acidez (débil acidez a alta alcalinidad y con salinidad baja a media, fueron contrastadas con valores de suficiencia para microelementos, obtenidos de la bibliografía. Se encontraron valores muy bajos de Cu en suelos arenosos (0,1-1 mg kg-1 y los mayores correspondieron a Argiudoles (PO (1,5 -2,5 mg kg-1. El Zn estuvo por debajo de 1 mg kg-1 en la mayoría de los sitios. El Mn presentó un rango de 23 a 85 mg kg-1 y el Fe de 21 a 68 mg kg-1, valores superiores a los considerados críticos y con los máximos en Argiudoles (PO. Las variables acidez y carbonatos se asociaron con el Cu, la materia orgánica y la salinidad con el Zn, todas con signo positivo.Cu, Zn, Fe and Mn DTPA extractable content and it relationship with organic matter, pH, salinity and lime were studied in 48 soils (Mollisol, Entisol and Alfisol from some geomorphic regions of the Chaco-Pampean plain of Cordoba (Argentina. Soils ranged from silty loam to loamy sandy texture, weak acidity to strong alcalinity, and low to medium salinity, they were sampled from 0 to 60 cm depth. Copper were at its critical range (0,1-1 mg.kg-1 only in sandy soils, with the highest contents (1.5 -2.5 mg kg-1 in Argiudolls. Zinc was below 1 mg kg-1 in most regions. Manganese (23-85 mg kg-1 and Fe (21-68 mg kg-1 were above their respective critical content in all regions, with highest contents in Argiudolls for both micronutrients. Zn, Cu and Mn distribution in depth profile, was associated with organic matter content. Soil variables lime and pH for Cu, and OM and salinity for Zn, were positively

  6. Desempenho de frangos de corte alimentados com dietas contendo diferentes fontes de selênio, zinco e manganês, criados sob condições de estresse térmico Performance of broilers fed diets containing different sources of selenium, zinc and manganese reared under thermal stress conditions

    Directory of Open Access Journals (Sweden)

    M.M. Boiago

    2013-02-01

    Full Text Available Avaliaram-se o desempenho e o rendimento de carcaça e partes de frangos de corte alimentados com dietas que continham selênio, zinco e manganês complexados ou não a moléculas orgânicas, criados em diferentes temperaturas. Foram utilizados 980 pintinhos machos de um dia de idade, de linhagem comercial, criados durante 42 dias em três câmaras climáticas, que proporcionaram temperaturas alta, termoneutra e baixa. Foi utilizado um delineamento inteiramente ao acaso, em esquema fatorial 3x2+1, sendo três temperaturas de criação, duas fontes de Se, Zn e Mn - inorgânica e orgânica, mais o tratamento testemunha - criação em câmara termoneutra sem adição de Se, Zn e Mn na ração, com sete repetições por tratamento. As aves criadas em condições de estresse térmico apresentaram piores resultados para consumo de ração, ganho de peso e viabilidade, sendo mais sensíveis ao calor do que ao frio. Quando criadas em ambientes quentes, a conversão alimentar foi melhor quando se utilizaram os minerais na forma orgânica. Sob temperatura neutra, as aves não necessitaram da suplementação da dieta com os minerais avaliados.The performance and carcass yield of broilers fed supplemented diets with different selenium, zinc and manganese sources (organic and inorganic and reared under different environmental temperatures were evaluated. A total of 980 one-day-old broilers were reared until 42 days of age. Three climatic chambers (high, neutral and low temperatures and twenty chickens per pen, distributed in a 3x2 + 1 factorial arrangement with three breeding temperatures, two mineral sources and a control treatment that provided neutral temperature without mineral supplementation, with seven replicates each were used. The thermal stressed broilers showed lower results for feed intake, weight gain and viability, mainly under high temperature. The organic mineral utilization provided a better feed conversion ratio when high temperature was

  7. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  8. 21 CFR 184.1452 - Manganese gluconate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese gluconate. 184.1452 Section 184.1452 Food... Specific Substances Affirmed as GRAS § 184.1452 Manganese gluconate. (a) Manganese gluconate (C12H22MnO14... manganese carbonate with gluconic acid in aqueous medium and then crystallizing the product. (b)...

  9. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  10. Lithium manganese spinel materials for high-rate electrochemical applications

    Institute of Scientific and Technical Information of China (English)

    Anna V. Potapenko; Sviatoslav A. Kirillov

    2014-01-01

    In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century.

  11. Prevention of Dealloying in Manganese Aluminium Bronze Propeller: Part II

    Directory of Open Access Journals (Sweden)

    Napachat Tareelap

    2014-03-01

    Full Text Available Due to the failure of manganese aluminium bronze (MAB propeller caused by dealloying corrosion as described in Part I [1], this work aims to study the prevention of dealloying corrosion using aluminium and zinc sacrificial anodes. The results indicated that both of the sacrificial anodes could prevent the propeller from dealloying. Moreover, the dealloying in seawater was less than that found in brackish water. It was possible that hydroxide ions, from cathodic reaction, reacted with calcium in seawater to form calcium carbonate film protecting the propeller from corrosion.

  12. Structural and corrosion protection properties of electrochemically deposited nano-sized Zn–Ni alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tozar, A., E-mail: tozarali@gmail.com; Karahan, İ.H.

    2014-11-01

    Highlights: • Nano-sized, compact and bright deposits were obtained galvanostatically. • Deposition of zinc–nickel alloys has been materialized in domination of zinc-rich ∂-(Ni{sub 3}Zn{sub 22}) and γ-(Ni{sub 5}Zn{sub 22}) phases. • Sodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}) has been used together with boric acid (H{sub 3}BO{sub 3}) for inhibition of instantaneous deposition of zinc and accordingly increasing the relative amount of nickel. • Corrosion protection performances of the deposits were increased with increasing deposition current density and nickel amount. • Crystal defects have been increased with decreasing crystallite size. - Abstract: Zn–Ni alloy coatings were fabricated galvanostatically by applying varied current densities from 10 to 30 mA cm{sup −2}. Surface morphology of the coatings was examined with SEM. Crystal structure of the coatings was studied with X-ray diffraction spectroscopy (XRD). Compositions of the coatings were determined by atomic absorption spectroscopy (AAS). Corrosion protection properties studied using open circuit potential (OCP) measurements, potentiodynamic polarization measurements (Tafel), electrochemical impedance spectroscopy (EIS). Deposited alloy coatings were compact and nano-sized. Crystallite sizes of the coatings were varying from 26 nm to 36 nm. Nickel content of the samples were increased by increasing current densities and varied from 6.7 to 18.9 wt.%. Best corrosion protection performance was seen on the sample obtained at 30 mA cm{sup −2}. Our results are considerably encouraging for protection of mild steel against corrosion by obtained Zn–Ni alloys.

  13. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium.

    OpenAIRE

    Brown, J A; Glenn, J K; Gold, M H

    1990-01-01

    The appearance of manganese peroxidase (MnP) activity in nitrogen-limited cultures of Phanerochaete chrysosporium is dependent on the presence of manganese. Cultures grown in the absence of Mn developed normally and produced normal levels of the secondary metabolite veratryl alcohol but produced no MnP activity. Immunoblot analysis indicated that appearance of MnP protein in the extracellular medium was also dependent on the presence of Mn. Intracellular MnP protein was detectable only in cel...

  14. Mössbauer and magnetization studies of nanosize chromium ferrite

    African Journals Online (AJOL)

    user

    Synthesized chromium ferrite powders were in good phase and .... This could be because in smaller particles sample defect density is very high due to more broken .... nanosize particles using co-precipitation technique followed by ball milling, ...

  15. 微波消解-耐氢氟酸系统进样电感耦合等离子体发射光谱法测定锰矿中铝磷镁铁锌镍%Determination of aluminum, phosphorus, magnesium, iron, zinc and nickel in manganese ore by inductively coupled plasma atomic emission spectrometry with hydrofluoric add resistant sampling system after microwave digestion

    Institute of Scientific and Technical Information of China (English)

    邓全道; 许光; 林冠春; 刘建发; 刘灵芝

    2011-01-01

    采用混合酸作溶剂微波消解试样,样液定客后,直接用耐氢氟酸进样系统(Duo HF KIT)进样,电感耦合等离子体发射光谱法(ICP-AES)测定锰矿石试液中的铝、磷、镁、铁、锌、镍,避免因为引入硼酸掩蔽氟离子而带来的基体干扰,缩短了检测时间.测定时选择波长为369.152 nm{85}、186.942 nm{481}、280.270 nm{120}、240.488 nm{140}、213.856 nm{457}和341.476 nm{99}光谱线分别作为Al、P、Mg、Fe、Zn、Ni分析线,采用基体匹配方法来消除锰的基体效应.本法已测定国家锰矿标准物质中铝、磷、镁、铁、锌、镍,并与国标方法测定结果相比对,分析结果与认定值及国标方法的测定值相符,且重复性好.各元素的加标回收率为94%~107%,测定结果的相对标准偏差(RSD,n=12)小于1.1%.%The samples were dissolved by microwave digestion using mixed acid as solvent. After dilution, the aluminum, phosphorus, magnesium, iron, zinc and nickel in manganese ore were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) using hydrofluoric acid resistant sampling system (Duo HF KIT). The matrix effect of boric acid introduced for masking fluorine ion was prevented , and the detection time was shortened. The spectral lines for Al, P, Mg, Fe, Zn and Ni were 369. 152 nm{ 85 } , 186. 942 nm{ 481 } , 280. 270 nm{120} , 240. 488 nm {140} , 213. 856 nm {457} and 341. 476 nm {99}, respectively. The matrix effect of manganese was eliminated by matrix matching method. The proposed method had been applied to the determination of aluminum, phosphorus, magnesium, iron, zinc and nickel in certified reference materials of manganese ore. The determination results were compared with those obtained by national standard method. It was found that the analytical results were consistent with the certified values and those obtained by national standard method. Moreover, the repeatability was good. The recoveries of elements were 94%-107

  16. The nanosize catalysts role in the modern hydroprocesses

    Energy Technology Data Exchange (ETDEWEB)

    Irisova, K N; Smirnov, V K; Talisman, E L, E-mail: catachem@mtu-net.ru [Catachem Company Ltd., 20 Narodnaya st., Moscow, 117152 (Russian Federation)

    2011-04-01

    Introduction of the modern technological procedures operating the catalytic systems with different nanosized characteristics is the only way to fabricate components of commercial oils that meet the current requirements. Specifications to the individual catalysts, which form a catalytic system, differ both in nanostructural features of the support porosity and in distribution of nanosized active site. These specifications are related to the purpose of the process and the role of the catalyst in the process.

  17. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    Energy Technology Data Exchange (ETDEWEB)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro; Darminto, E-mail: darminto@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institute of Technology Sepuluh November (ITS), Jl. Arief Rahman Hakim, Surabaya Indonesia 60111 (Indonesia)

    2016-02-08

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinement of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.

  18. Alkaline battery with low mercury content in zinc anode. Alkalisk batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, K.

    1993-10-04

    An alkaline battery comprises a manganese dioxide mercury cathode, a zinc anode and an alkaline electrolyte. The battery has a low mercury content in the zinc anode which contains an inhibitor complex containing: (a) inhibitor tensides having a hydrophilic lepophilic balance number higher than 10 and less than 20; and (b) inhibitors of the naphthylamine-sulphonic acid type and radicals. The inhibitors are added to the anode gel and used in amount 25 to 100 ppm. The anode current collector is coated with a layer of pore-less zinc of same composition as the zinc anode. (au)

  19. Iron, zinc, and manganese distribution in mature soybean seeds

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Przybyłowicz, Wojciech J; Mesjasz-Przybyłowicz, Jolanta

    2009-01-01

    Micronutrient deficiencies have a negative impact in the lives of millions of people worldwide. Most affected are children and pregnant women in developing regions. Biofortification is a sustainable way to alleviate micronutrient deficiencies in at-risk populations. To optimize the biofortificati...

  20. Geometry effect on the magnetic properties of manganese zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, F.J.G.; Lazaro-Colan, V. [Polytechnic School - EPUSP, Av.Prof. Luciano Gualberto 380, Sao Paulo 05508-900 (Brazil); Leicht, J. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil)], E-mail: leichtj@ipt.br; Janasi, S.R. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil); Lopes, M.F. [IMAG Industria e Comercio de Componentes Eletronicos Ltda, Embaixador 74, Ribeirao Pires 09410-650 (Brazil)

    2008-10-15

    The geometry effect on the bulk magnetic properties of MnZn ferrite toroidal cores produced by the ceramic method was investigated. The MnZn ferrite powder was pressed at two different toroidal sizes and sintered, under controlled atmosphere at different temperatures. The MnZn ferrites cores were characterized according to their magnetic losses, electrical resistivity, initial permeability and Curie temperature. The total loss (200 mT, 100 kHz) in the small cores S (aspect ratio (AR)=2.84) is lower compared with the total loss in the large cores L (AR=0.79). These results show an agreement with the geometry effect observed on electrical steels.

  1. Synthesis and Photoconductivity of Nanosized Phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    Shuguang BIAN; Xianggao LI; Lei SHAO; Jianfeng CHEN

    2006-01-01

    Functional phthalocyanine (Pc) compounds of H2Pc, TiOPc, FePc and ClAlPc were synthesized with a yield of 46.7%, 91.2%, 37.4% and 34.0%, respectively. Nanosized TiOPc was synthesized via a one-step sol-gel method and effects of surfactant doses, nucleation temperature on TiOPc particle size and photoconductivity were investigated. When m(PEG): m(TiOPc) was 0.1 and nucleation temperature was 0℃, the as-obtained TiOPc had the smallest particle size and largest specific surface area, which were 60 nm and 83 m2/g, respectively. TiOPc synthesized under these conditions also exhibits excellent photoconductivity with charging potential V0, dark decay speed Rd and energy for half-discharging of potential E1/2 being 1160 V, 30 V/s and 0.6 lx·s, respectively.

  2. Toxicology of nanosized titanium dioxide: an update.

    Science.gov (United States)

    Zhang, Xiaochen; Li, Wen; Yang, Zhuo

    2015-12-01

    Nanosized titanium dioxide (nano-TiO2) has tremendous potential for a host of applications, and TiO2 nanoparticles (NP) possess different physicochemical properties compared to their fine particle analogs, which might alter their bioactivity. Their adverse effects on living cells have raised serious concerns recently for their use in health care and consumer sectors such as sunscreens, cosmetics, pharmaceutical additives and implanted biomaterials. Many researches have demonstrated that the physicochemical properties including shape, size, surface characteristics and inner structure of nano-TiO2 particles have different degrees of toxicity to different organism groups under different conditions. Some former reports have demonstrated that nano-TiO2 materials could enter into human body through different routes such as inhalation, dermal penetration and ingestion. After being taken by human body, NP might induce oxidative stress, cytotoxicity, genotoxicity, inflammation and cell apoptosis ultimately in mammal organs and systems. Here, we summarized the update about toxicity of nano-TiO2 and aimed to supply a safety usage guideline of this nanomaterial.

  3. Modeling of some biochemical mechanisms of development of manganese hypermicroelementosis

    Directory of Open Access Journals (Sweden)

    O. V. Goncharenko

    2013-04-01

    , muscles, liver and spleen. It was accompanied by increasing calcium content in liver, heart, muscle, kidneys and bones as well as by disorders of Ca/Mg ratios. MnCl2causes significant redistribution of the microelements in the rats’ organs. It is characterized by a decrease of copper, zinc and nickel contents in almost all studied tissues. The most antagonistic effect of manganese manifested in relation to nickel and copper in heart and spleen. A reduction of zinc content was most pronounced in spleen, while its contents in bones and kidneys almost don’t change. The study of the impact of manganese on biochemical parameters of membranes proved for the first time the malfunction of erythrocytes’ membranes. It results in increasing sorption capacity of the red blood cells glycocalyx to alcian blue. Using the erythrocyte model we established that manganese cations cause a significant increase in sorption capacity of the red blood cells (53.4 ± 1.8% and their osmotic fragility, as evidenced by an increase of spontaneous hemolysis to 42%. The other evidence is the change of surface properties (glycocalyx, which indicated by an increase in the sialic acid content by 60% as compared with the control. The obtained data of the model study of the dynamics of the sorption capacity of erythrocytes glycocalyx to alcian blue, osmotic resistance of erythrocytes, activation of lipid peroxidation and increased level of sialic acid may be a signal that the primary mechanism of manganese intoxication is a damage of cell (plasma membranes. The data obtained on a mitochondrial model suggests that MnCl2, acting as an antagonist of magnesium, has the ability to disturb respiration and oxidative phosphorylation that inhibits the energy metabolism of a cell. Mitochondrial oxidation of malate+glutamate was affected by MnCl2 in narrow range concentrations 3–4.5 mM that cause disengagement (3 mM and complete inhibition (4.5 mM. The effectiveness of manganese intoxicated rats treatment

  4. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  5. Manganese depresses rat heart muscle respiration

    Science.gov (United States)

    It has previously been reported that moderately high dietary manganese (Mn) in combination with marginal magnesium (Mg) resulted in ultrastructural damage to heart mitochondria. Manganese may replace Mg in biological functions, including the role of enzyme cofactor. Manganese may accumulate and subs...

  6. 21 CFR 582.5458 - Manganese hypophosphite.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese hypophosphite. 582.5458 Section 582.5458 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5458 Manganese hypophosphite. (a) Product. Manganese hypophosphite. (b) Conditions of...

  7. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use....

  8. 21 CFR 582.5452 - Manganese gluconate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese gluconate. 582.5452 Section 582.5452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5452 Manganese gluconate. (a) Product. Manganese gluconate. (b) Conditions of use....

  9. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  10. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium...

  11. 21 CFR 582.5455 - Manganese glycerophosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese glycerophosphate. 582.5455 Section 582.5455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate....

  12. 21 CFR 582.5449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese citrate. 582.5449 Section 582.5449 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5449 Manganese citrate. (a) Product. Manganese citrate. (b) Conditions of use....

  13. Influence of the preparation method on the structure, optical and photocatalytic properties of nanosized ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gancheva, M., E-mail: mancheva@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Uzunov, I.; Iordanova, R. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Papazova, K. [University of Sofia, Faculty of Chemistry and Pharmacy, James Bourchier 1 Blvd., 1164, Sofia (Bulgaria)

    2015-08-15

    Mechanochemical activation is the most commonly applied approach for improving the photocatalytic properties of commercial zinc oxide. Here we show that ZnO obtained by two-pathway decomposition of basic zinc carbonate also possesses a very good photocatalytic activity. Nanosized ZnO powders were successfully prepared by thermal and mechanochemical decomposition of Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6}, precipitated under soft conditions. The precursor and final products were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), infrared spectroscopy (IR) and B.E.T method. The morphology of the ZnO was observed by SEM analysis. The optical and photocatalytic properties of the prepared zinc oxides were also investigated and compared with commercial ZnO. The band gaps of the thermal and mechanochemical obtained ZnO nanopowders are 3.22 and 3.04 eV, respectively. The degree of decomposition of Malachite Green under UV and visible irradiations in the presence of ZnO prepared by both methods reached levels above 90%. Better catalytic activity was found for the visible region. It was established that the process follows second order kinetics. - Graphical abstract: Display Omitted - Highlights: • Synthesis of nanosized ZnO from hydrozincite by thermal and mechanochemical route. • ZnO powders possess high photocatalytic activity under UV and visible irradiation. • The degree of decomposition of Malachite Green is more than 90% for the both ZnO's. • The photodecomposition of MG under UV/Vis irradiation follows second order kinetics.

  14. Process for the recycling of alkaline and zinc-carbon spent batteries

    Science.gov (United States)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  15. Novel Synthesis of Sol-gel Derived Nanosized Mullite Powder

    Institute of Scientific and Technical Information of China (English)

    LIANG Long; LI Jian-bao; LIN Hong; GUO Gang-feng; HE Ming-sheng

    2006-01-01

    Using hydrous aluminum chloride (AlCl3 6H2O) and silicon ethoxide (Si (OC2H5)4) as raw materials, a kind of nano-sized mullite powder was synthesized with the sol-gel process at the medium calcination temperature. The microstructures of the alumina-silica binary aerogel and calcined nano-sized materials were investigated by means of thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The results show that the mullitization of Al2O3-SiO2 in gel starts from about 1 000 ℃ and its formation of mullite takes place in the range of 1 100 ℃-1 250 ℃. The size of the nano-sized mullite powder calcined at 1 250 ℃ is measured to be about 30 nm.

  16. Preparation of nanosized non-oxide powders using diatomaceous earth

    Directory of Open Access Journals (Sweden)

    Šaponjić A.

    2009-01-01

    Full Text Available In this paper the nanosized non-oxide powders were prepared by carbothermal reduction and subsequent nitridation of diatomaceous earth which is a waste product from coal exploitation. Our scope was to investigate the potential use of diatomaceous earth as a main precursor for low-cost nanosized non-oxide powder preparation as well as to solve an environmental problem. The influence of carbon materials (carbonized sucrose, carbon cryogel and carbon black as a reducing agent on synthesis and properties of low-cost nanosized nonoxide powders was also studied. The powders were characterized by specific surface area, X-ray and SEM investigations. It was found that by using diatomaceous earth it is was possible to produce either a mixture of non-oxide powders (Si3N4/SiC or pure SiC powders depending on temperature.

  17. Manganese Homeostasis in Group A Streptococcus Is Critical for Resistance to Oxidative Stress and Virulence

    Science.gov (United States)

    Turner, Andrew G.; Ong, Cheryl-lynn Y.; Gillen, Christine M.; Davies, Mark R.; West, Nicholas P.; McEwan, Alastair G.

    2015-01-01

    ABSTRACT Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a spectrum of human disease states. Metallobiology of human pathogens is revealing the fundamental role of metals in both nutritional immunity leading to pathogen starvation and metal poisoning of pathogens by innate immune cells. Spy0980 (MntE) is a paralog of the GAS zinc efflux pump CzcD. Through use of an isogenic mntE deletion mutant in the GAS serotype M1T1 strain 5448, we have elucidated that MntE is a manganese-specific efflux pump required for GAS virulence. The 5448ΔmntE mutant had significantly lower survival following infection of human neutrophils than did the 5448 wild type and the complemented mutant (5448ΔmntE::mntE). Manganese homeostasis may provide protection against oxidative stress, explaining the observed ex vivo reduction in virulence. In the presence of manganese and hydrogen peroxide, 5448ΔmntE mutant exhibits significantly lower survival than wild-type 5448 and the complemented mutant. We hypothesize that MntE, by maintaining homeostatic control of cytoplasmic manganese, ensures that the peroxide response repressor PerR is optimally poised to respond to hydrogen peroxide stress. Creation of a 5448ΔmntE-ΔperR double mutant rescued the oxidative stress resistance of the double mutant to wild-type levels in the presence of manganese and hydrogen peroxide. This work elucidates the mechanism for manganese toxicity within GAS and the crucial role of manganese homeostasis in maintaining GAS virulence. PMID:25805729

  18. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs.

    Science.gov (United States)

    Gresakova, Lubomira; Venglovska, Katarina; Cobanova, Klaudia

    2016-12-01

    Manganese (Mn) is a trace element required for normal physiological processes in animals and humans. Organic forms of trace elements are expected to have higher bioavailability in comparison with inorganic sources. The effect of feeding a diet supplemented with different sources of manganese to lambs was studied in a 112-d feeding trial. The aim of this study was to investigate the deposition of Mn in relation to activities of superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD) and arginase in the tissues of lambs fed the diet supplemented with an inorganic or an organic source of manganese up to the maximum total Mn content allowed in the European Union (150mg Mn/kg). A total of eighteen female lambs of the improved Valachian breed were randomly allocated to three dietary treatments and fed an unsupplemented basal diet (Control, 31mg Mn/kg) or the identical diet supplemented with manganese sulphate (MnSO4) or manganese chelate of glycine hydrate (Mn-Gly) with a total Mn content up to 150mg/kg. Regardless of the source, feed supplementation with manganese increased Mn concentrations in plasma (P˂0.05) and the liver (P˂0.001) as well as the activity of liver MnSOD (P˂0.05) and arginase (P˂0.001) compared with the control lambs. In the kidney cortex, the concentration of Mn was greatest in lambs fed the diet supplemented with the chelated Mn source compared with animals receiving the inorganic Mn source (P˂0.05) and the unsupplemented diet (P˂0.001). The 112-d intake of feed enriched with manganese did not result in any change in Mn levels, SOD or MnSOD activity in pancreas and kidney tissues. Plasma Cu concentration was depressed in both supplemented treatments. No analyzed tissue showed a change in zinc and copper levels, except the greater Cu concentration in the liver of lambs fed the diet with Mn-Gly. The presented results did not indicate any differences between dietary Mn sources either in Mn tissue deposition or activity of SOD, MnSOD and

  19. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Tangi [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Burel, Agnes [Electronic Microscopy Department, University of Rennes 1, 2 av. du Professeur Leon-Bernard, Campus de Villejean, 35043 Rennes (France); Esnault, Marie-Andree [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cordier, Stephane; Grasset, Fabien [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cabello-Hurtado, Francisco, E-mail: francisco.cabello@univ-rennes1.fr [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of nanosized Mo{sub 6} clusters on the growth of rapeseed plants. Black-Right-Pointing-Pointer The aggregation state of the clusters depends on the dispersion medium. Black-Right-Pointing-Pointer The concentration-dependant toxicity of the clusters depends on aggregation state. Black-Right-Pointing-Pointer We took into account the possible contribution to toxicity of dissolved ionic species. Black-Right-Pointing-Pointer The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs{sub 2}Mo{sub 6}Br{sub 14} as cluster precursor. [Mo{sub 6}Br{sub 14}]{sup 2-} cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  20. Synthesis and stabilization of nano-sized titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ismagilov, Zinfer R; Tsikoza, L T; Shikina, N V [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Zarytova, V F [Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences (Russian Federation); Zinoviev, V V [State Research Centre of Virology and Biotechnology ' Vector' (Russian Federation); Zagrebelnyi, Stanislav N [Novosibirsk State University, Novosibirsk (Russian Federation)

    2009-09-30

    The published data on the preparation and the dispersion-structural properties of nano-sized TiO{sub 2} are considered. Attention is focused on its sol-gel synthesis from different precursors. The possibilities for the purposeful control and stabilization of properties of TiO{sub 2} nanopowders and sols are analyzed. Information on physicochemical methods used in studies of the particle size and the phase composition of nanodisperse TiO{sub 2} is presented. The prospects of using nano-sized TiO{sub 2} in medicine and nanobiotechnology are considered.

  1. Processing of silicon nitride and alumina nanosize powders

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.J.; Piermarini, G.; Hockey, B.; Malghan, S.G. [National Inst. of Standard and Technology, Gaithersburg, MD (United States)

    1995-08-01

    The effects of pressure on the compaction and subsequent processing of nanosize {gamma} alumina powders were studied. A 3 mm diameter piston/cylinder die was used to compact the nanosize powders to pressures of 1 and 2.5 GPa. The green bodies were sintered at temperatures up to 1600{degrees}C. Results show that green body density can be increased by higher compaction pressures. It appears that as a result of the {gamma}-to-{alpha} transformation in alumina, higher green density does not necessarily produce a higher density sintered alumina body. The microstructures of the sintered bodies are described in terms of porosity and phase content.

  2. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  3. Integrated criteria document Zinc

    NARCIS (Netherlands)

    Cleven RFMJ; Janus JA; Annema JA; Slooff W

    1993-01-01

    This report contains information on zinc and zinc compounds concerning standards, emissions, exposure levels and effect levels. It includes a risk evaluation and presents proposals for maximum permissible concentrations of zinc in the environment. This study indicates that the concentration of zinc

  4. Metal Transporter Zip14 (Slc39a14) Deletion in Mice Increases Manganese Deposition and Produces Neurotoxic Signatures and Diminished Motor Activity.

    Science.gov (United States)

    Aydemir, Tolunay Beker; Kim, Min-Hyun; Kim, Jinhee; Colon-Perez, Luis M; Banan, Guita; Mareci, Thomas H; Febo, Marcelo; Cousins, Robert J

    2017-06-21

    Mutations in human ZIP14 have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli. In vitro evidence shows that ZIP14 can also transport manganese. To examine a role for ZIP14 in manganese homeostasis, we used Zip14 knock-out (KO) male and female mice to conduct comparative metabolic, imaging, and functional studies. Manganese accumulation was fourfold to fivefold higher in brains of Zip14 KO mice compared with young adult wild-type mice. There was less accumulation of subcutaneously administered (54)Mn in the liver, gallbladder, and gastrointestinal tract of the KO mice, suggesting that manganese elimination is impaired with Zip14 ablation. Impaired elimination creates the opportunity for atypical manganese accumulation in tissues, including the brain. The intensity of MR images from brains of the Zip14 KO mice is indicative of major manganese accumulation. In agreement with excessive manganese accumulation was the impaired motor function observed in the Zip14 KO mice. These results also demonstrate that ZIP14 is not essential for manganese uptake by the brain. Nevertheless, the upregulation of signatures of brain injury observed in the Zip14 KO mice demonstrates that normal ZIP14 function is an essential factor required to prevent manganese-linked neurodegeneration.SIGNIFICANCE STATEMENT Manganese is an essential micronutrient. When acquired in excess, manganese accumulates in tissues of the CNS and is associated with neurodegenerative disease, particularly Parkinson-like syndrome and dystonia. Some members of the ZIP metal transporter family transport manganese. Using mutant mice deficient in the ZIP14 metal transporter, we have discovered that ZIP14 is essential for manganese elimination via the gastrointestinal tract, and a lack of ZIP14

  5. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    Science.gov (United States)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  6. Update on zinc biology.

    Science.gov (United States)

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  7. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta

    2005-11-01

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  8. Copper deficiency conditioned by high levels of zinc, manganese and iron in the Middle Paraíba, RJ, BrazilDeficiência de cobre condicionada a altos teores de zinco, manganês e ferro na região do Médio Paraíba, RJ, Brasil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lopes Marques

    2013-06-01

    Full Text Available Concentrations of microminerals in the soils, pastures, and sera of adult and young bovines were determined in 7 areas of Middle Paraíba, Rio de Janeiro, Brazil, that showed a history of low reproductive performance, marked weight loss of cows after calving, allotriophagy, and changes in pelage color. The animals were subjected to clinical evaluation, and the main signs were as follows: regular to poor general condition, anemia, alopecia, depigmentation of the pelage in adult animals, discolored pelage (reddish in dark animals, and thinning and loss of hair around the eyes. Calves showed bad general appearance, retarded development, and rough, dry, and spiked hair. There were other evident signs such as craving and consumption of foreign material such as soil, wood, or bones. After the interview with the owners and on-site evaluation of the herds, soil samples, forages, and blood serum samples were obtained for analysis of macro and micronutrients in 2 different periods: May/June (end of the rainy season–autumn and October/November (end of dry season–spring. The findings of soil (3.03 ± 1.72/3.13 ± 1.22 mg/ dm3 and forage (11.91 ± 2.92/13.6 ± 5.23 ppm samples indicated normal and high levels of copper, respectively, in most of the pastures which is contrary to the clinical signs of deficiency observed in the animals. However, the copper levels in serum were lower than normal (0.42 ± 0.14/0.45 ± 0.17 ppm in majority of the animals, in periods of evaluation and for all properties. Excessively high values of iron, zinc, and manganese were found in soil and pasture samples, which could have probably been acting as antagonists of copper absorption, resulting in a conditioned deficiency. Descrevem-se as concentrações de microelementos minerais em amostras de solos, pastagens e soro de bovinos adultos e jovens em sete propriedades na região do Médio Paraíba, RJ, Brasil com histórico de baixo desempenho reprodutivo, emagrecimento

  9. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Directory of Open Access Journals (Sweden)

    Toni Gutknecht

    2015-01-01

    Full Text Available Metal oxide varistors (MOVs are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  10. Method of measuring charge distribution of nanosized aerosols.

    Science.gov (United States)

    Kim, S H; Woo, K S; Liu, B Y H; Zachariah, M R

    2005-02-01

    In this paper, we present the development of a method to accurately measure the positive and negative charge distribution of nanosized aerosols using a tandem differential mobility analyzer (TDMA) system. From the series of TDMA measurements, the charge fraction of nanosized aerosol particles was obtained as a function of equivalent mobility particle diameter ranging from 50 to 200 nm. The capability of this new approach was implemented by sampling from a laminar diffusion flame which provides a source of highly charged particles due to naturally occurring flame ionization process. The results from the TDMA measurement provide the charge distribution of nanosized aerosols which we found to be in reasonable agreement with Boltzmann equilibrium charge distribution theory and a theory based upon charge population balance equation (PBE) combined with Fuchs theory (N.A. Fuchs, Geofis. Pura Appl. 56 (1963) 185). The theoretically estimated charge distribution of aerosol particles based on the PBE provides insight into the charging processes of nanosized aerosols surrounded by bipolar ions and electrons, and agree well with the TDMA results.

  11. Synthesis of nanosized metal particles from an aerosol

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  12. Functionally charged nanosize particles differentially activate BV2 microglia.

    Science.gov (United States)

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...

  13. Biomolecular coronas provide the biological identity of nanosized materials

    NARCIS (Netherlands)

    Monopoli, Marco P; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2012-01-01

    The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the en

  14. Membrane with Stable Nanosized Microstructure and Method for Producing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from...

  15. AHE measurements of very thin films and nanosized dots

    NARCIS (Netherlands)

    Kikuchi, N.; Murillo, R.; Lodder, J.C.

    2005-01-01

    In this paper we present anomalous Hall effect analysis from very thin Co (0.5 nm) film, Co/Pt multilayers and large areas of nanosized dots as well as from a few magnetic dots having a diameter of 120 nm. The dot arrayis prepared from Co/Pt multilayer by using laser interference lithography (LIL) w

  16. ORGANIC SOL-GEL METHOD IN THE SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES

    OpenAIRE

    2014-01-01

    Nanosized Zinc Oxide (ZnO) was synthesized using sol-gel method. The nanomaterials with structure were annealed at different temperatures ranging from 500 to 700°C which were chosen based on the Thermogravimetric (TGA) Analysis. The structure and morphology were characterized by Powder X-Ray Diffraction (PXRD) and Transmission Electron Microscope (TEM), respectively. The PXRD shows the increasing tendency in crystallite size when the annealing temperature increases and the hexagonal struc...

  17. ORGANIC SOL-GEL METHOD IN THE SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES

    OpenAIRE

    2014-01-01

    Nanosized Zinc Oxide (ZnO) was synthesized using sol-gel method. The nanomaterials with structure were annealed at different temperatures ranging from 500 to 700°C which were chosen based on the Thermogravimetric (TGA) Analysis. The structure and morphology were characterized by Powder X-Ray Diffraction (PXRD) and Transmission Electron Microscope (TEM), respectively. The PXRD shows the increasing tendency in crystallite size when the annealing temperature increases and the hexagonal structure...

  18. Low temperature fabrication from nano-size ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.J.; Piermarini, G.J.; Hockey, B. [and others

    1995-06-01

    The objective of the compaction process is to produce a dense green-state compact from a nanosize powder that subsequently can be sintered at high temperatures to form a dense ceramic piece. High density in the green-state after pressing is of primary importance for achieving high densities after sintering. Investigation of the compaction behavior of ceramic powders, therefore, is an important part of characterization of raw ceramic powders and evaluation of their compaction behavior, analysis of interaction between particles, and the study of microstructure of green body (unsintered) during pressure-forming processes. The compaction of nanosize ceramic particles into high density green bodies is very difficult. For the nanosize materials used in this study (amorphous Si{sub 3}N{sub 4} and {gamma} Al{sub 2}O{sub 3}), there is no evidence by TEM of partial sintering after synthesis. Nevertheless, strong aggregation forces, such as the van der Waals surface forces of attraction, exist and result in moderate precursor particle agglomeration. More importantly, these attractive surface forces, which increase in magnitude with decreasing particle size, inhibit interparticle sliding necessary for particle rearrangement to denser bodies during subsequent compaction. Attempts to produce high density green body compacts of nanosize particles, therefore, generally have been focused on overcoming these surface forces of attraction by using either dispersive fluids or high pressures with or without lubricating liquids. In the present work, the use of high pressure has been employed as a means of compacting nanosize powders to relatively high green densities.

  19. Rechargeability of manganese dioxide/zinc cell using zinc sulfate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Askar, M.H. (National Research Centre, Dokki, Cairo (Egypt)); Abbas, H. (National Research Centre, Dokki, Cairo (Egypt)); Afifi, S.E. (National Research Centre, Dokki, Cairo (Egypt) Central Metallurgical Research and Development Inst., Tabbin, Cairo (Egypt))

    1994-03-19

    The charge/discharge of electrolytic [gamma]-MnO[sub 2] (EMD) in sulfate solution rather than chloride was investigated. Discharge potential-time curves at different conditions of current density, charging schemes and solutions were registered. The charge/discharge cycle can be repeated up to the 20th cycle with no significant change in the discharge behaviour. The charge/discharge products are characterized by X-ray diffraction pattern indicating recovery of [gamma]-MnO[sub 2] during charging process. The results are promising and encouraging. They are discussed in the light of recent views. (orig.)

  20. Spectroscopic characterization of manganese minerals

    Science.gov (United States)

    Lakshmi Reddy, S.; Padma Suvarna, K.; Udayabhaska Reddy, G.; Endo, Tamio; Frost, R. L.

    2014-01-01

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

  1. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  3. Method of capturing or trapping zinc using zinc getter materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  4. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  5. Manganese Research Health Project (MHRP)

    Science.gov (United States)

    2009-02-01

    of a GLP compliant micronucleus assay in mice according to the OECD Guideline for the Testing of Chemicals, OECD 474: Mammalian Erythrocyte... Micronucleus Test . Experimental Design The basic experimental design used at ILS and proposed for the definitive in vivo micronucleus assay in manganese...regimen, would be expected to produce lethality”. The limit dose for the in vivo micronucleus assay based on OECD 474 is 2000 mg/kg and testing in a

  6. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel

    Science.gov (United States)

    El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. J.

    2008-05-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. The obtained nanopowder was characterised by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range after thermal treatment at 500 °C in air. The energy position of the obtained PL band depends on the wavelength excitation and presents a blue shift with measurement temperature increase. Different possible attributions of this emission band will be discussed.

  7. DETERMINATION OF STABILITY CONSTANTS OF MANGANESE (II ...

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Amino acids, dissociation constant, potentiometry, stability constant. INTRODUCTION ... constants of manganese (II) amino acid complexes using potentiometer. .... Principles of Biochemistry Third Edition,. Worth publishers, 41 ...

  8. Battles with Iron: Manganese in Oxidative Stress Protection*

    Science.gov (United States)

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron. PMID:22247543

  9. The Two-Component System ArlRS and Alterations in Metabolism Enable Staphylococcus aureus to Resist Calprotectin-Induced Manganese Starvation

    Science.gov (United States)

    Radin, Jana N.; Párraga Solórzano, Paola K.; Kehl-Fie, Thomas E.

    2016-01-01

    During infection the host imposes manganese and zinc starvation on invading pathogens. Despite this, Staphylococcus aureus and other successful pathogens remain capable of causing devastating disease. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. We report that ArlRS, a global staphylococcal virulence regulator, enhances the ability of S. aureus to grow in the presence of the manganese-and zinc-binding innate immune effector calprotectin. Utilization of calprotectin variants with altered metal binding properties revealed that strains lacking ArlRS are specifically more sensitive to manganese starvation. Loss of ArlRS did not alter the expression of manganese importers or prevent S. aureus from acquiring metals. It did, however, alter staphylococcal metabolism and impair the ability of S. aureus to grow on amino acids. Further studies suggested that relative to consuming glucose, the preferred carbon source of S. aureus, utilizing amino acids reduced the cellular demand for manganese. When forced to use glucose as the sole carbon source S. aureus became more sensitive to calprotectin compared to when amino acids are provided. Infection experiments utilizing wild type and calprotectin-deficient mice, which have defects in manganese sequestration, revealed that ArlRS is important for disease when manganese availability is restricted but not when this essential nutrient is freely available. In total, these results indicate that altering cellular metabolism contributes to the ability of pathogens to resist manganese starvation and that ArlRS enables S. aureus to overcome nutritional immunity by facilitating this adaptation. PMID:27902777

  10. Preparation of manganese-doped ZnO thin films and their characterization

    Indian Academy of Sciences (India)

    S Mondal; S R Bhattacharyya; P Mitra

    2013-04-01

    In this study, pure and manganese-doped zinc oxide (Mn:ZnO) thin films were deposited on quartz substrate following successive ion layer adsorption and reaction (SILAR) technique. The film growth rate was found to increase linearly with number of dipping cycle. Characterization techniques of XRD, SEM with EDX and UV–visible spectra measurement were done to investigate the effect of Mn doping on the structural and optical properties of Mn:ZnO thin films. Structural characterization by X-ray diffraction reveals that polycrystalline nature of the films increases with increasing manganese incorporation. Particle size evaluated using X-ray line broadening analysis shows decreasing trend with increasing manganese impurification. The average particle size for pure ZnO is 29.71nm and it reduces to 23.76nm for 5%Mn-doped ZnO. The strong preferred c-axis orientation is lost due to manganese (Mn) doping. The degree of polycrystallinity increases and the average microstrain in the films decreases with increasing Mn incorporation. Incorporation of Mn was confirmed from elemental analysis using EDX. As the Mn doping concentration increases the optical bandgap of the films decreases for the range of Mn doping reported here. The value of fundamental absorption edge is 3.22 eV for pure ZnO and it decreases to 3.06 eV for 5%Mn:ZnO.

  11. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  12. Public Health Strategies for Western Bangladesh That Address Arsenic, Manganese, Uranium, and Other Toxic Elements in Drinking Water

    OpenAIRE

    Frisbie, Seth H.; Mitchell, Erika J.; Mastera, Lawrence J.; Maynard, Donald M.; Yusuf, Ahmad Zaki; Siddiq, Mohammad Yusuf; Ortega, Richard; Dunn, Richard K.; Westerman, David S.; Bacquart, Thomas; Sarkar, Bibudhendra

    2008-01-01

    Background More than 60,000,000 Bangladeshis are drinking water with unsafe concentrations of one or more elements. Objectives Our aims in this study were to evaluate and improve the drinking water testing and treatment plans for western Bangladesh. Methods We sampled groundwater from four neighborhoods in western Bangladesh to determine the distributions of arsenic, boron, barium, chromium, iron, manganese, molybdenum, nickel, lead, antimony, selenium, uranium, and zinc, and to determine pH....

  13. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  14. Structural and magnetic properties of mechanochemically synthesized nanosized yttrium titanate

    Directory of Open Access Journals (Sweden)

    Barudžija Tanja

    2012-01-01

    Full Text Available Nanosized perovskite YTiO3 with the mean crystallite size of 18 nm was synthesized for the first time by mechanochemical treatment. The mechanochemical solid state reaction between commercial Y2O3 powder and mechanochemically synthesized TiO powder in molar ratio 0.5:1 was completed for 3 h in a high-energy planetary ball mill in argon atmosphere. The heating in vacuum at 1150 °C for 12 h transforms nanosized YTiO3 to a well-crystallized single-phase perovskite YTiO3. Both samples were characterized by X-ray diffraction (XRD and thermogravimetric (TGA/DTA analyses, as well as superconducting quantum interference device magnetometer (SQUID measurements.

  15. A NEW THERMAL PROCESS FOR THE RECOVERY OF METALS FROM ZINC-CARBON AND ALKALINE SPENT BATTERIES

    Directory of Open Access Journals (Sweden)

    Girolamo Belardi

    2014-01-01

    Full Text Available The aim of this study is the thermal recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries containing 40.9% of Mn and 30.1% of Zn after a preliminary physical treatment. Separation of the metals is carried out on the basis of their different phase change temperatures, the boiling point of zinc being 906�C and 1564�C that of Mn3O4, the main Mn-bearing phase in the mixture. After wet comminution and sieving to remove the anodic collectors and most of the chlorides contained in the mixture, chemical and X-Ray Powder Diffraction (XRPD analyses were performed. The mixture was heated in CO2 atmosphere and the temperature raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture. Other tests were carried out by addition to the mixture of activated charcoal (95% C or of the automotive shredder residue (fluff containing 45% C.A zinc product was obtained suitable, after refining, for the production of new batteries. The treatment residue consisted of manganese and iron oxides that could be used to produce manganese-iron alloys. From these results, an integrated process for the recovery of the two metals was proposed.

  16. A NEW THERMAL PROCESS FOR THE RECOVERY OF METALS FROM ZINC-CARBON AND ALKALINE SPENT BATTERIES

    Directory of Open Access Journals (Sweden)

    Girolamo Belardi

    2014-01-01

    Full Text Available The aim of this study is the thermal recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries containing 40.9% of Mn and 30.1% of Zn after a preliminary physical treatment. Separation of the metals is carried out on the basis of their different phase change temperatures, the boiling point of zinc being 906°C and 1564°C that of Mn3O4, the main Mn-bearing phase in the mixture. After wet comminution and sieving to remove the anodic collectors and most of the chlorides contained in the mixture, chemical and X-Ray Powder Diffraction (XRPD analyses were performed. The mixture was heated in CO2 atmosphere and the temperature raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture. Other tests were carried out by addition to the mixture of activated charcoal (95% C or of the automotive shredder residue (fluff containing 45% C.A zinc product was obtained suitable, after refining, for the production of new batteries. The treatment residue consisted of manganese and iron oxides that could be used to produce manganese-iron alloys. From these results, an integrated process for the recovery of the two metals was proposed.

  17. Screen printed nanosized ZnO thick film

    Indian Academy of Sciences (India)

    Bindu Krishnan; V P N Nampoori

    2005-06-01

    Nanosized ZnO was prepared by polyol synthesis. Fluorescence spectrum of the ZnO colloid at varying pump intensities was studied. The powder was extracted and characterized by XRD and BET. The extracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. Coherent back scattering studies were performed on the screen printed sample which showed evidence of weak localization. The screen printed pattern showed strong UV emission.

  18. Nano-Sized Grain Refinement Using Friction Stir Processing

    Science.gov (United States)

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  19. Ultrasonic Production of Nano-Size Dispersions and Emulsions

    OpenAIRE

    Hielscher, Thomas

    2005-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Ultrasound is a well-established method for particle size reduction in dispersions and emulsions. Ultrasonic processors are used in the generation of nano-size material slurries, dispersions and emulsions because of the potential in the deagglomeration and the reduction of primaries. These are the mechanical effects of ultrasonic cavitation. Ultrasound can also be used to infl...

  20. Dielectric Properties of Nanosized ZnFe2O4

    Directory of Open Access Journals (Sweden)

    Željka Cvejić

    2008-06-01

    Full Text Available In this paper we present the results concerning the dielectric properties of the nanosized ZnFe2O4. Dielectric permittivity, the loss factor, as well as the conductivity, were measured in the temperature range 300-630 K and at 1 Hz, 10 Hz, 100 Hz, 1 kHz and 10 kHz frequencies. Signifi cant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed.

  1. Nanosized Iron Oxide Colloids Strongly Enhance Microbial Iron Reduction▿ †

    Science.gov (United States)

    Bosch, Julian; Heister, Katja; Hofmann, Thilo; Meckenstock, Rainer U.

    2010-01-01

    Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface is supposed to be present as nanosized colloids. We therefore studied the role of colloidal iron oxides in microbial iron reduction. In batch growth experiments with Geobacter sulfurreducens, colloids of ferrihydrite (hydrodynamic diameter, 336 nm), hematite (123 nm), goethite (157 nm), and akaganeite (64 nm) were added as electron acceptors. The colloidal iron oxides were reduced up to 2 orders of magnitude more rapidly (up to 1,255 pmol h−1 cell−1) than bulk macroaggregates of the same iron phases (6 to 70 pmol h−1 cell−1). The increased reactivity was not only due to the large surface areas of the colloidal aggregates but also was due to a higher reactivity per unit surface. We hypothesize that this can be attributed to the high bioavailability of the nanosized aggregates and their colloidal suspension. Furthermore, a strong enhancement of reduction rates of bulk ferrihydrite was observed when nanosized ferrihydrite aggregates were added. PMID:19915036

  2. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2014-03-01

    Full Text Available The microstructure and properties of austempered ductile iron (ADI strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN, titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isothermal retention at 280 оС, 2 h and 380 оС, 2h. The metallographic analysis by optical metallographic microscope GX41 OLIMPUS and hardness measurements by Vickers Method are performed. The structure of the austempered ductile iron consists of lower bainite and upper bainite.Experimental investigation of the wear by fixed abrasive are also carried out. The influence of the nanosized additives on the microstructure, mechanical and tribological properties of the austempered ductile irons (ADI is studied.

  3. Synthesis of nanosize BPO{sub 4} under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui, E-mail: wr_wrwr@163.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116023 (China); Jiang, Heng; Gong, Hong; Zhang, Jun [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

    2012-08-15

    Highlights: ► Nanosize BPO{sub 4} are prepared under microwave-irradiation conditions. ► This reaction is only performed at less than 640 W power for 2.5–5 min. ► The particles of sample irradiated at 400 W are 40–90 nm in size and well dispersed. ► A simple, fast and green procedure for synthesis of nanosize BPO{sub 4} is developed. -- Abstract: Nanosize BPO{sub 4} was synthesized using H{sub 3}BO{sub 3} and H{sub 3}PO{sub 4} (85%) as raw materials under microwave irradiation. This reaction was performed at powers lower than 640 W and irradiation time ranging from 2.5 min to 5 min, which were only a fraction of the time required for conventional synthetic procedures. The structure of the as-prepared BPO{sub 4} is analogous to that of a high cristobalite. The particle sizes of the samples irradiated at 640 and 400 W range from 40 nm to 90 nm and 30 nm to 60 nm, respectively. The effects of different conditions on the experimental outcome are also discussed.

  4. Effects of heteroatoms and nanosize on tin-based electrodes

    Science.gov (United States)

    Alcántara, Ricardo; Ortiz, Gregorio; Rodríguez, Inés; Tirado, José L.

    Tin-based intermetallic compounds of different compositions and with micro and nano-sized particles are studied as electrodes for lithium ion batteries. Crystalline microsized particles of CoSn x are obtained at high temperatures, while crystalline nano-sized particles are obtained at low-temperature following a one-pot method which is based on TEG solvent and reduction with NaBH 4. The observed capacities of CoSn x compounds in lithium test cells depend on the tin content, electrochemical cycling conditions and crystallite size. The change of the 119Sn Mössbauer isomer shift upon the electrochemical reaction with lithium is more limited for the intermetallic compounds CoSn x than for pure Sn. Nano-sized CoSn x materials show superior specific capacity than microsized CoSn x powders. The maximum observed reversible capacity of nano-Co 3Sn 2 is equal to 544 m Ah g -1 in the first cycle, while 413 m Ah g -1 were observed for nano-CoSn.

  5. Control of bacterial iron homeostasis by manganese

    Science.gov (United States)

    Puri, Sumant; Hohle, Thomas H.; O'Brian, Mark R.

    2010-01-01

    Perception and response to nutritional iron availability by bacteria are essential to control cellular iron homeostasis. The Irr protein from Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to globally regulate iron-dependent gene expression. Heme binds directly to Irr to trigger its degradation. Here, we show that severe manganese limitation created by growth of a Mn2+ transport mutant in manganese-limited media resulted in a cellular iron deficiency. In wild-type cells, Irr levels were attenuated under manganese limitation, resulting in reduced promoter occupancy of target genes and altered iron-dependent gene expression. Irr levels were high regardless of manganese availability in a heme-deficient mutant, indicating that manganese normally affects heme-dependent degradation of Irr. Manganese altered the secondary structure of Irr in vitro and inhibited binding of heme to the protein. We propose that manganese limitation destabilizes Irr under low-iron conditions by lowering the threshold of heme that can trigger Irr degradation. The findings implicate a mechanism for the control of iron homeostasis by manganese in a bacterium. PMID:20498065

  6. Preparation of Manganese Oxide Nanobelts

    Institute of Scientific and Technical Information of China (English)

    Jisen WANG; Jinquan SUN; Ying BAO; Xiufang BIAN

    2003-01-01

    Oriented nanobelts of manganese oxide have been firstly and successfully prepared by a microemulsion techniqueunder controlled circumstances. The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscope (TEM). Influences of sodium chloride and annealed temperature on the synthesis of Mn3O4 nanobeltswere investigated. It was found that NaCl is the key factor to synthesize oriented Mn3O4 nanobelts and 827 K isoptimum temperature to produce fine nanobelts. Oriented growth mechanism of Mn3O4 nanobelts was discussed.

  7. Functional finishing in cotton fabrics using zinc oxide nanoparticles

    Indian Academy of Sciences (India)

    A Yadav; Virendra Prasad; A A Kathe; Sheela Raj; Deepti Yadav; C Sundaramoorthy; N Vigneshwaran

    2006-11-01

    Nanotechnology, according to the National Nanotechnology Initiative (NNI), is defined as utilization of structure with at least one dimension of nanometer size for the construction of materials, devices or systems with novel or significantly improved properties due to their nano-size. The nanostructures are capable of enhancing the physical properties of conventional textiles, in areas such as anti-microbial properties, water repellence, soil-resistance, anti-static, anti-infrared and flame-retardant properties, dyeability, colour fastness and strength of textile materials. In the present work, zinc oxide nanoparticles were prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent. These nanoparticles, which have an average size of 40 nm, were coated on the bleached cotton fabrics (plain weave, 30 s count) using acrylic binder and functional properties of coated fabrics were studied. On an average of 75%, UV blocking was recorded for the cotton fabrics treated with 2% ZnO nanoparticles. Air permeability of the nano-ZnO coated fabrics was significantly higher than the control, hence the increased breathability. In case of nano-ZnO coated fabric, due to its nano-size and uniform distribution, friction was significantly lower than the bulk-ZnO coated fabric as studied by Instron® Automated Materials Testing System. Further studies are under way to evaluate wash fastness, antimicrobial properties, abrasion properties and fabric handle properties.

  8. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  9. RNASeq in C. elegans Following Manganese Exposure.

    Science.gov (United States)

    Parmalee, Nancy L; Maqbool, Shahina B; Ye, Bin; Calder, Brent; Bowman, Aaron B; Aschner, Michael

    2015-08-06

    Manganese is a metal that is required for optimal biological functioning of organisms. Absorption, cellular import and export, and excretion of manganese are all tightly regulated. While some genes involved in regulation, such as DMT-1 and ferroportin, are known, it is presumed that many more are involved and as yet unknown. Excessive exposure to manganese, usually in industrial settings such as mining or welding, can lead to neurotoxicity and a condition known as manganism that closely resembles Parkinson's disease. Elucidating transcriptional changes following manganese exposure could lead to the development of biomarkers for exposure. This unit presents a protocol for RNA sequencing in the worm Caenorhabditis elegans to assay for transcriptional changes following exposure to manganese. This protocol is adaptable to any environmental exposure in C. elegans. The protocol results in counts of gene transcripts in control versus exposed conditions and a ranked list of differentially expressed genes for further study.

  10. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  11. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  12. Unique zinc mass in mandibles separates drywood termites from other groups of termites

    Science.gov (United States)

    Cribb, Bronwen W.; Stewart, Aaron; Huang, Han; Truss, Rowan; Noller, Barry; Rasch, Ronald; Zalucki, Myron P.

    2008-05-01

    Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites. However, experimentation with mandibles in vitro indicates the presence of some elements of the cuticular biochemistry necessary to enable uptake of zinc. The Termopsidae, Serritermitidae, Rhinotermitidae and Termitidae all contain minor quantities of manganese, while trace to minor quantities of zinc occur in all except the Serritermitidae. In contrast, all Kalotermitidae or drywood termites contain major levels of zinc in the mandible edge. Diet and life type are explored as links to metal profiles across the termites. The presence of harder mandibles in the drywood termites may be related to lack of access to free water with which to moisten wood. Scratch tests were applied to a set of mandibles. The coefficient of friction for Cryptotermes primus (Kalotermitidae) mandibles, when compared with species from other subfamilies, indicates that zinc-containing mandibles are likely to be more scratch resistant.

  13. Zinc and skin biology.

    Science.gov (United States)

    Ogawa, Youichi; Kawamura, Tatsuyoshi; Shimada, Shinji

    2016-12-01

    Of all tissues, the skin has the third highest abundance of zinc in the body. In the skin, the zinc concentration is higher in the epidermis than in the dermis, owing to a zinc requirement for the active proliferation and differentiation of epidermal keratinocytes. Here we review the dynamics and functions of zinc in the skin as well as skin disorders associated with zinc deficiency, zinc finger domain-containing proteins, and zinc transporters. Among skin disorders associated with zinc deficiency, acrodermatitis enteropathica is a disorder caused by mutations in the ZIP4 transporter and subsequent zinc deficiency. The triad acrodermatitis enteropathica is characterized by alopecia, diarrhea, and skin lesions in acral, periorificial, and anogenital areas. We highlight the underlying mechanism of the development of acrodermatitis because of zinc deficiency by describing our new findings. We also discuss the accumulating evidence on zinc deficiency in alopecia and necrolytic migratory erythema, which is typically associated with glucagonomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  15. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    Science.gov (United States)

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes.

  16. Revision of the Export Tax Rebate Policy for Manganese

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>According to a newly released circular by the Finance Ministry and the State Administration of Taxation, the export tax rebate policy for the manganese products under the tax code No. 811100100 is eliminated as from August 1, 2005. These products mainly include un-wrought manganese, manganese scrap and manganese powder.

  17. Freestanding manganese dioxide nanosheet network grown on nickel/polyvinylidene fluoride coaxial fiber membrane as anode materials for high performance lithium ion batteries

    Science.gov (United States)

    Zhang, Yan; Luo, Zhongping; Xiao, Qizhen; Sun, Tianlei; Lei, Gangtie; Li, Zhaohui; Li, Xiaojing

    2015-11-01

    A novel manganese dioxide (MnO2) nanosheet network grown on nickel/polyvinylidene fluoride (Ni/PVDF) coaxial fiber membrane is successfully fabricated by a three-step route: the polyvinylidene fluoride fiber membrane is prepared by electrospinning method, and then the Ni(shell)/PVDF(core) coaxial fiber membrane with core-shell structure can be obtained by the electroless deposition, and finally the manganese dioxide nanosheet network grown on Ni/PVDF coaxial fiber membrane can be achieved by using a simple hydrothermal treatment. This as-prepared binder-free and flexible composite membrane is directly used as anode for lithium ion batteries. The excellent electrochemical performance of the composite membrane can be attributed to the unique combinative effects of nanosized MnO2 network and conductive Ni/PVDF fiber matrix as well as the porous structure of composite fiber membrane.

  18. Geochemical Characteristics of Sinian Manganese Deposits in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sinian is one of the main periods of the formation of manganese deposits in China. Sinian manganese deposits are mainly hosted in carbon-rich black shale and siliceous shale formed during the Sinian interglacial period. The composition of manganese ore is simple. The main ore mineral is manganiferous carbonates. The grade of manganese ore is about 16- 25%, with Mn/Fe>5 and P/Mn=0.006- 0.14. Based on the tectonic setting and geological and geochemical characteristics of manganese deposits, this paper discusses the process of migration and concentration of manganese and ore-forming conditions of Sinian manganese deposits in China.

  19. Study on the Phase Transformation Behavior of Nanosized Amorphous TiO2

    Institute of Scientific and Technical Information of China (English)

    Huaqing XIE; Tonggeng XI; Qinghong ZHANG; Qingren WU

    2003-01-01

    Nanosized amorphous TiO2 powders with a specific surface area of 501 m2.g-1 were prepared by hydrolysis. Aftercalcined at 400℃ for 2 h, the prepared amorphous TiO2 powders were fully transformed into anatase crystallitesthe samples of nanosized amorphous TiO2 mixed with microsized anatase, nanosized anatase, or nanosized α-Al2O3respectively. Effects of sample packing, anatase addition, or α-Al2O3 addition on the crystallization behavior ofnanosized amorphous TiO2 were analyzed.

  20. Crystal Structure of the Zinc-Binding Transport Protein ZnuA from Escherichia coli Reveals an Unexpected Variation in Metal Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Li,H.; Jogl, G.

    2007-01-01

    Bacterial ATP-binding cassette transport systems for high-affinity uptake of zinc and manganese use a cluster 9 solute-binding protein. Structures of four cluster 9 transport proteins have been determined previously. However, the structural determinants for discrimination between zinc and manganese remain under discussion. To further investigate the variability of metal binding sites in bacterial transporters, we have determined the structure of the zinc-bound transport protein ZnuA from Escherichia coli to 1.75 {angstrom} resolution. The overall structure of ZnuA is similar to other solute-binding transporters. A scaffolding {alpha}-helix forms the backbone for two structurally related globular domains. The metal-binding site is located at the domain interface. The bound zinc ion is coordinated by three histidine residues (His78, His161 and His225) and one glutamate residue (Glu77). The functional role of Glu77 for metal binding is unexpected, because this residue is not conserved in previously determined structures of zinc and manganese-specific transport proteins. The observed metal coordination by four protein residues differs significantly from the zinc-binding site in the ZnuA transporter from Synechocystis 6803, which binds zinc via three histidine residues. In addition, the E. coli ZnuA structure reveals the presence of a disulfide bond in the C-terminal globular domain that is not present in previously determined cluster 9 transport protein structures.

  1. [Tongue play and manganese deficiency in dairy cattle].

    Science.gov (United States)

    Karatzias, H; Roubies, N; Polizopoulou, Z; Papasteriades, A

    1995-09-01

    The present paper discusses "tongue rolling" observed in dairy cattle farms of a region in northern Greece associated with manganese deficiency. In these animals total body manganese status was evaluated by determining hair, as well as feed manganese content. Cows exhibiting tongue rolling had significantly lower hair manganese content, compared to non-tongue rolling control animals from other farms; in addition, feedstuff analysis demonstrated that manganese and inorganic phosphorus intake of affected cows was also significantly lower.

  2. EFFECTS OF MANGANESE ON THYROID HORMONE HOMEOSTASIS: POTENTIAL LINKS

    OpenAIRE

    Soldin, OP; Aschner, M.

    2007-01-01

    Manganese (Mn) is an essential trace nutrient that is potentially toxic at high levels of exposure. As a constituent of numerous enzymes and a cofactor, manganese plays an important role in a number of physiologic processes in mammals. The manganese-containing enzyme, manganese superoxide dismutase (Mn-SOD), is the principal antioxidant enzyme which neutralizes the toxic effects of reactive oxygen species. Other manganese-containing enzymes include oxidoreductases, transferases, hydrolases, l...

  3. [Zinc and type 2 diabetes].

    Science.gov (United States)

    Fukunaka, Ayako; Fujitani, Yoshio

    2016-07-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been a topic of great interest. While many studies demonstrating possible involvement of zinc deficiency in diabetes have been reported, precise mechanisms how zinc regulates glucose metabolism are still far from understood. Recent studies revealed that zinc can transmit signals that are driven by a variety of zinc transporters in a tissue and cell-type specific manner and deficiency in some zinc transporters may cause human diseases. Here, we review the role of zinc in metabolism particularly focusing on the emerging role of zinc transporters in diabetes.

  4. A kinetic study of electrochemical lithium insertion in nanosized rutile {beta}-MnO{sub 2} by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bach, S., E-mail: bach@glvt-cnrs.fr [Institut de Chimie et des Materiaux Paris Est, GESMAT, UMR 7182 CNRS-Universite Paris XII, 2 rue Henri Dunant 94320 Thiais (France); Universite d' Evry Val d' Essonne, Bd F.Mitterrand, Departement Chimie, 91025 Evry Cedex (France); Pereira-Ramos, J.P. [Institut de Chimie et des Materiaux Paris Est, GESMAT, UMR 7182 CNRS-Universite Paris XII, 2 rue Henri Dunant 94320 Thiais (France); Willmann, P. [Centre National d' Etudes Spatiales, 118 avenue Edouard Belin, 31401 Toulouse Cedex 9 (France)

    2011-11-30

    The kinetics of the electrochemical lithium insertion reaction in nano-sized rutile {beta}-MnO{sub 2} has been investigated using ac impedance spectroscopy. The experimental kinetic data are obtained for a rutile compound synthesized by ball-milling the powder produced from the heat treatment of manganese nitrate salts. The results are discussed as a function of the Li content for 0 < x < 0.6 and the number of cycles in the 4.1-2 V window. From a comparison with data obtained on the micro-sized oxide, an improved kinetics is found with D{sub Li} values for the apparent chemical diffusion coefficient of lithium much higher by one order of magnitude than in microsized oxide. Impedance behaviour of the ball-milled rutile {beta}-MnO{sub 2}vs cycles demonstrates a new system takes place from the second cycle, characterized by a significant improvement of Li diffusion by a factor 5 and a cathode impedance which decreases by a factor 2, remaining thereafter unchanged during cycling.

  5. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  6. Defects and ferromagnetism in transition metal doped zinc oxide

    Science.gov (United States)

    Thapa, Sunil

    Transition metal doped zinc oxide has been studied recently due to its potential application in spintronic devices. The magnetic semiconductor, often called Diluted Magnetic Semiconductors (DMS), has the ability to incorporate both charge and spin into a single formalism. Despite a large number of studies on ferromagnetism in ZnO based DMS and the realization of its room temperature ferromagnetism, there is still a debate about the origin of the ferromagnetism. In this work, the synthesis and characterization of transition metal doped zinc oxide have been carried out. The sol-gel method was used to synthesize thin films, and they were subsequently annealed in air. Characterization of doped zinc oxide films was carried out using the UV-visible range spectrometer, scanning electron microscopy, superconducting quantum interference device (SQUID), x-ray diffraction(XRD) and positron annihilation spectroscopy. Hysteresis loops were obtained for copper and manganese doped zinc oxide, but a reversed hysteresis loop was observed for 2% Al 3% Co doped zinc oxide. The reversed hysteresis loop has been explained using a two-layer model.

  7. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.

    Science.gov (United States)

    Hussain, Saber M; Javorina, Amanda K; Schrand, Amanda M; Duhart, Helen M; Ali, Syed F; Schlager, John J

    2006-08-01

    This investigation was designed to determine whether nano-sized manganese oxide (Mn-40 nm) particles would induce dopamine (DA) depletion in a cultured neuronal phenotype, PC-12 cells, similar to free ionic manganese (Mn(2+)). Cells were exposed to Mn-40 nm, Mn(2+) (acetate), or known cytotoxic silver nanoparticles (Ag-15 nm) for 24 h. Phase-contrast microscopy studies show that Mn-40 nm or Mn(2+) exposure did not greatly change morphology of PC-12 cells. However, Ag-15 nm and AgNO(3) produce cell shrinkage and irregular membrane borders compared to control cells. Further microscopic studies at higher resolution demonstrated that Mn-40 nm nanoparticles and agglomerates were effectively internalized by PC-12 cells. Mitochondrial reduction activity, a sensitive measure of particle and metal cytotoxicity, showed only moderate toxicity for Mn-40 nm compared to similar Ag-15 nm and Mn(2+) doses. Mn-40 nm and Mn(2+) dose dependently depleted DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), while Ag-15 nm only significantly reduced DA and DOPAC at concentrations of 50 mug/ml. Therefore, the DA depletion of Mn-40 nm was most similar to Mn(2+), which is known to induce concentration-dependent DA depletion. There was a significant increase (> 10-fold) in reactive oxygen species (ROS) with Mn-40 nm exposure, suggesting that increased ROS levels may participate in DA depletion. These results clearly demonstrate that nanoscale manganese can deplete DA, DOPAC, and HVA in a dose-dependent manner. Further study is required to evaluate the specific intracellular distribution of Mn-40 nm nanoparticles, metal dissolution rates in cells and cellular matrices, if DA depletion is induced in vivo, and the propensity of Mn nanoparticles to cross the blood-brain barrier or be selectively uptaken by nasal epithelium.

  8. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  9. Crystallization of Organic Semiconductor Molecules in Nanosized Cavities

    DEFF Research Database (Denmark)

    Milita, Silvia; Dionigi, Chiara; Borgatti, Francesco

    2008-01-01

    evaporation. Thanks to these real time experiments, the phase content and the crystalline domain orientation of H4T6 have been determined, from the onset of the first crystalline molecular assembly to the stable system. The correlation between the bead size dependent crystallization mechanism in this complex......The crystallization of an organic semiconductor, viz., tetrahexil-sexithiophene (H4T6) molecules, confined into nanosized cavities of a self-organized polystyrene beads template, has been investigated by means of in situ grazing incidence X-ray diffraction measurements, during the solvent...

  10. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  11. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  12. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Kirti Patel; Sudhir Kapoor; D P Dave; Tulsi Mukherjee

    2005-01-01

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that PVP is capable of complexing and stabilizing Ag nanoparticles formed through the reduction of Ag+ ions in water and ethylene glycol. In the case of ethylene glycol, it has been shown that the use of PVP leads to particles with a high degree of stability. The colloids are stable in glycerol for months even in the absence of stabilizer.

  13. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  14. Neurotoxicity of manganese oxide nanomaterials

    Science.gov (United States)

    Stefanescu, Diana M.; Khoshnan, Ali; Patterson, Paul H.; Hering, Janet G.

    2009-11-01

    Manganese (Mn) toxicity in humans has been observed as manganism, a disease that resembles Parkinson's disease. The mechanism of Mn toxicity and the chemical forms that may be responsible for its neurotoxicity are not well understood. We examined the toxicity of Mn oxide nanomaterials in a neuronal precursor cell model, using the MTS assay to evaluate mitochondrial function in living cells and the LDH assay to quantify the release of the enzyme lactate dehydrogenase as a result of damage to the cell membrane. Both assays show that the toxicity of Mn is dependent on the type of Mn oxide nanomaterial and its concentration as well as on the state of cell differentiation. Following exposure to Mn oxide nanomaterials, reactive oxygen species (ROS) are generated, and flow cytometry experiments suggest that cell death occurred through apoptosis. During exposure to Mn oxide nanomaterials, increased levels of the transcription factor NF-κB (which mediates the cellular inflammatory response) were observed.

  15. Manganese-based Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Ian Baker

    2015-08-01

    Full Text Available There is a significant gap between the energy product, BH, where B is the magnetic flux density and H is the magnetic field strength, of both the traditional ferrite and AlNiCo permanent magnets of less than 10 MGOe and that of the rare earth magnets of greater than 30 MGOe. This is a gap that Mn-based magnets could potentially, inexpensively, fill. This Special Issue presents work on the development of both types of manganese permanent magnets. Some of the challenges involved in the development of these magnets include improving the compounds’ energy product, increasing the thermal stability of these metastable compounds, and producing them in quantity as a bulk material.[...

  16. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  17. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  18. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    Science.gov (United States)

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  19. Manganese: Its Speciation, Pollution and Microbial Mitigation

    OpenAIRE

    Arvind Sinha; Sunil Kumar Khare

    2013-01-01

    Manganese is known to be one of the essential trace elements and has plenty of applications. Inspite of its essential nature, concerns are arising due to its toxic nature at higher concentration. Several methods of removing manganese from environment have been proposed during the last few decades. However, the most favourable option based on cost-effectiveness, performance, and simplicity is still under investigation. The current review summarizes updated information on various technical aspe...

  20. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...

  1. Composition and recovery method for electrolytic manganese residue

    Institute of Scientific and Technical Information of China (English)

    陶长元; 李明艳; 刘作华; 杜军

    2009-01-01

    According to the statistic analysis,the reserve of manganese in electrolytic manganese residue deposit is over 780 kt. The average contents of available manganese and ammonium reach 3.90% and 1.68% (mass fraction),respectively. Large amount of manganese compounds and ammonium sulfate are detruded without any treatment or recovery. The compositions of the main elements in electrolytic manganese residue were analyzed comprehensively based on the extensive research data. According to the new development of electrolytic manganese residue comprehensively used in recent years,a water washing residue-twice precipitation process was also proposed. The experimental results indicate that manganese dioxide silicon dioxide and calcium sulfate are presented as amorphous state in the manganese residues. The recovery rates of manganese and nitrogen reach up to 99.5% and 94.5 %,respectively. The recovery process can be easily implemented,environment-friendly and fitting for industrial production.

  2. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  3. Autonomic function in manganese alloy workers

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  4. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    Science.gov (United States)

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  5. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    Science.gov (United States)

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems.

  6. SURFACE EFFECT ON NANOSIZED VOID GROWTH IN A RIGID-PERFECTLY PLASTIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Tong Hui; Yiheng Chen

    2008-01-01

    The influence of the surface effect on the nanosized spherical void growth in a rigid-perfectly plastic material is analyzed and the mechanism of the nanosized void growth with high triaxiality is given. Based on the Rice and Tracey model for a macro void growth, the present model is proposed to account for the nanosized void growth under a uniform remote strain rate field with consideration on the surface effect. It is concluded that the surface effect yields an evident resistant influence on the nanosized void growth. That is, this influence decays as the void radius increases. With high triaxiality, the nanosized void growth is divided into two stages:the initial stage and the mature stage. At the first stage, the void grows slowly and the influence of surface effect is relatively weak, whereas at the second stage, the influene is significant and the void grows drastically.

  7. Nut traits and nutritional composition of hazelnut (Corylus avellana L.) as influenced by zinc fertilization.

    Science.gov (United States)

    Özenç, Nedim; Özenç, Damla Bender

    2015-07-01

    Zinc is an essential element for plants and its deficiency is a widespread problem throughout the world, causing decreased yields and nutritional quality. In this study the effect of zinc fertilization on some nut traits and the nutritional composition of 'Tombul' hazelnut (Corylus avellana L.) variety cultivated in the Black Sea region of Turkey was investigated and the contribution of this nut to human nutrition determined. Trials were carried out at 'Tombul' hazelnut orchards, and zinc fertilizers were applied at 0, 0.2, 0.4, 0.8 and 1.6 kg Zn ha(-1) in three consecutive years. Significant differences in some nut traits and mineral composition (protein, total oil, ash, kernel percentage, empty and wrinkled nuts, copper, boron, manganese and molybdenum) were observed with zinc fertilizer applications. In terms of daily nutritional element requirements, 100 g of hazelnut provided about 44.74% phosphorus, 13.39% potassium, 19.32% calcium, 37.49% magnesium, 0.19% sodium, 51.63% iron, 25.73% zinc and 14.05% boron of the recommended daily amounts (RDAs), while copper, manganese and molybdenum contents exceeded their RDAs. In order to improve some nut traits and the mineral composition of hazelnut, 0.8 and 1.6 kg Zn ha(-1) fertilizations could be recommended in practice. © 2014 Society of Chemical Industry.

  8. The roles of zinc and copper sensing in fungal pathogenesis.

    Science.gov (United States)

    Ballou, Elizabeth R; Wilson, Duncan

    2016-08-01

    All organisms must secure essential trace nutrients, including iron, zinc, manganese and copper for survival and proliferation. However, these very nutrients are also highly toxic if present at elevated levels. Mammalian immunity has harnessed both the essentiality and toxicity of micronutrients to defend against microbial invasion-processes known collectively as 'nutritional immunity'. Therefore, pathogenic microbes must possess highly effective micronutrient assimilation and detoxification mechanisms to survive and proliferate within the infected host. In this review we compare and contrast the micronutrient homeostatic mechanisms of Cryptococcus and Candida-yeasts which, despite ancient evolutionary divergence, account for over a million life-threatening infections per year. We focus on two emerging arenas within the host-pathogen battle for essential trace metals: adaptive responses to zinc limitation and copper availability.

  9. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese

    Science.gov (United States)

    Aguilar, C.; Nealson, K. H.

    1998-01-01

    Oneida Lake, New York is a eutrophic freshwater lake known for its abundant manganese nodules and a dynamic manganese cycle. Temporal and spatial distribution of soluble and particulate manganese in the water column of the lake were analyzed over a 3-year period and correlated with other variables such as oxygen, pH, and temperature. Only data from 1988 are shown. Manganese is removed from the water column in the spring via conversion to particulate form and deposited in the bottom sediments. This removal is due to biological factors, as the lake Eh/pH conditions alone can not account for the oxidation of the soluble manganese Mn(II). During the summer months the manganese from microbial reduction moves from the sediments to the water column. In periods of stratification the soluble Mn(II) builds up to concentrations of 20 micromoles or more in the bottom waters. When mixing occurs, the soluble Mn(II) is rapidly removed via oxidation. This cycle occurs more than once during the summer, with each manganese atom probably being used several times for the oxidation of organic carbon. At the end of the fall, whole lake concentrations of manganese stabilize, and remain at about 1 micromole until the following summer, when the cycle begins again. Inputs and outflows from the lake indicate that the active Mn cycle is primarily internal, with a small accumulation each year into ferromanganese nodules located in the oxic zones of the lake.

  10. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  11. Manganese exposure in foundry furnacemen and scrap recycling workers

    DEFF Research Database (Denmark)

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder...... that bears many similarities to Parkinson's disease. The aim of the study was to investigate the sources and levels of manganese exposure in foundry furnacemen by a combined measuring of blood-manganese (B-Mn) and manganese in ambient air (air-Mn)....

  12. Autonomic function in manganese alloy workers.

    Science.gov (United States)

    Barrington, W W; Angle, C R; Willcockson, N K; Padula, M A; Korn, T

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a "frog shop" for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6-10 years before and 1.2-3.4 years after the diagnosis of the index case exceeded 1.0 mg/m3 in 29% and 0.2 mg/m3 in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR' interval) and the rates of change at low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz). MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used. The five frog shop workers had abnormal sympathovagal balance with decreased high frequency variability (increased ln LF/ln HF). Seven of the eight workers had symptoms of autonomic dysfunction and significantly decreased heart rate variability (rMSSD) but these did not distinguish the relative exposure. Mood or affect was disturbed in all with associated changes in short-term memory and attention in four of the subjects. There were no significant correlations with serum or urine manganese. Power spectrum analysis of 24-h ambulatory ECG indicating a decrease in parasympathetic high frequency activation of heart rate variability may provide a sensitive index of central autonomic dysfunction reflecting increased exposure to manganese, although the contribution of exposures to solvents and other metals cannot be excluded. Neurotoxicity due to the gouging

  13. Leaching of marine manganese nodules by acidophilic bacteria growing on elemental sulfur

    Science.gov (United States)

    Konishi, Yasuhiro; Asai, Satoru; Sawada, Yuichi

    1997-02-01

    This article describes the bioleaching of manganese nodules by thermophilic and mesophilic sulfuroxidizing bacteria, in which oxidized sulfur compounds are biologically produced from elemental sulfur added to liquid medium and are simultaneously used to leach nodules. The thermophile Acidianus brierleyi solubilized the manganese nodules faster at 65 °C than did the mesophiles Thiobacillus ferrooxidans and Thiobacillus thiooxidans at 30 °C. Leaching experiments with A. brierleyi growing on elemental sulfur were used to optimize various process parameters, such as medium pH, initial sulfur-liquid loading ratio, and initial cell concentration. The observed dependencies of the leaching rates at a pH optimum on the initial amounts of elemental sulfur and A. brierleyi cells were qualitatively consistent with model simulations for microbial sulfur oxidation. Under the conditions determined as optimum, the leaching of nodule particles (-330+500 mesh) by A. brierleyi yielded 100 pct extraction of both copper and zinc within 4 days and high extractions of nickel (85 pct), cobalt (70 pct), and manganese (55 pct) for 10 days. However, the iron leaching was practically negligible.

  14. Adsorption of Zn2+ from solutions on manganese oxide obtained via ozone precipitation reaction

    Directory of Open Access Journals (Sweden)

    Contreras-Bustos Roberto

    2016-03-01

    Full Text Available Synthesis via ozone precipitation reaction was used to obtain manganese dioxide (OMD and it was probed as an adsorbent for zinc ions. Adsorption was followed along shaking time and increasing ratio [NO3−] / [Zn2+], and isotherms were obtained at different pH values and in the presence of several anions (chloride, nitrate, sulphate, and acetate. It was found that adsorption equilibrium is fast and follows the pseudo-second order model (qe = 34 ±1 mg/g and K = 0.07 ±0.01 g/mg h. Isotherms were fitted to Langmuir, Freundlich, and Langmuir-Freundlich models, and the best fitting was found with the last one. The process is dependent on pH and the efficiency increases from pH 1 to 4. The ratio [NO3−] / [Zn2+] up to 3 does not seem to change the behaviour of the process. Regarding the anions, the efficiency of Zn(II adsorption occurs according to: acetate > nitrate and sulphate > chloride. Manganese oxide obtained via ozonization is an excellent adsorbent for zinc ions.

  15. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H2SO4, current density of 25 mA/cm(2), solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  16. Manganese in dwarf spheroidal galaxies

    CERN Document Server

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  17. Exploring zinc coordination in novel zinc battery electrolytes.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  18. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  19. MONODISPERSED AND NANOSIZED DENDRIMER/POLYSTYRENE LATEX PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Changfeng Yi; Zushun Xu; Warren T. Ford

    2004-01-01

    Emulsion polymerization of styrene was carried out using dendrimer DAB-dendr-(NH2)64 as seed. The size and size distribution of the emulsion particles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effects of emulsion polymerization conditions on the preparation of emulsion particle were investigated. It has been found that the nanosized dendrimer/polystyrene polymer emulsion particles obtained were in the range of 26~64 nm in diameter, and were monodisperse; the size and size distribution of emulsion particles were influenced by the contents of dendrimer DAB-dendr-(NH2)64, emulsifier and initiator, as well as the pH value.

  20. Nanosized graphene crystallite induced strong magnetism in pure carbon films.

    Science.gov (United States)

    Wang, Chao; Zhang, Xi; Diao, Dongfeng

    2015-03-14

    We report strong magnetism in pure carbon films grown by electron irradiation assisted physical vapor deposition in electron cyclotron resonance plasma. The development of graphene nanocrystallites in the amorphous film matrix, and the dependence of the magnetic behavior on amorphous, nanocrystallite and graphite-like structures were investigated. Results were that the amorphous structure shows weak paramagnetism, graphene nanocrystallites lead to strong magnetization, and graphite-like structures corresponded with a lower magnetization. At a room temperature of 300 K, the highest saturation magnetization of 0.37 emu g(-1) was found in the nanosized graphene nanocrystallite structure. The origin of strong magnetism in nanocrystallites was ascribed to the spin magnetic moment at the graphene layer edges.

  1. Toxicological Concerns of Engineered Nanosize Drug Delivery Systems.

    Science.gov (United States)

    Mukherjee, Biswajit; Maji, Ruma; Roychowdhury, Samrat; Ghosh, Saikat

    2016-01-01

    Matters when converted into nanosize provide some unique surface properties, which are different from those of the bulk materials. Nanomaterials show some extraordinary behavioral patterns because of those properties, such as supermagnetism, quantum confinement, etc. A great deal of implication of nanomaterials in nanomedicine has already been realized. Utility of nanomaterials as drug nanocarrier projects many potential advantages of them in drug delivery. Despite many such advantages, the potential risk of health and environmental hazards related to them cannot be ignored. Here various physicochemical factors, such as chemical nature, degradability, surface properties, surface charge, particle size, and shape, have been shown to play a crucial role in toxicity related to drug nanocarriers. Evidence-based findings of some drug nanocarriers have been incorporated to provide distinct knowledge to the readers in the field. A glimpse of current regulatory controls and measures required to combat the challenges of toxicological aspects of drug nanocarriers have been described.

  2. Manganese and acute paranoid psychosis: A case report

    NARCIS (Netherlands)

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.J. Kuijpers (Harold)

    2011-01-01

    textabstractIntroduction: Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instabi

  3. Manganese and acute paranoid psychosis: a case report

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kuijpers, H.J.H.

    2011-01-01

    Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later,

  4. Effect of ascorbic acid and other adjuvants on manganese absorption

    Energy Technology Data Exchange (ETDEWEB)

    Papaioannou, R.; Sohler, A.; Pfeiffer, C.C.

    1986-03-01

    Animal experiments have demonstrated that manganese is poorly absorbed from the gut and that it is rapidly removed from the blood by liver uptake and bilary excretion. Zinc supplements which are readily absorbed can induce a Mn deficiency so that Mn supplementation is necessary. Supplementation with a diet rich in Mn (high in legumes, nuts, whole grains, tea) failed to influence blood Mn levels. The present study is concerned with the route of Mn administration and the effect of various adjuvants on the absorption and availability of Mn. Oral and sublingual administration of 20 mgs of Mn as the chloride failed to elicit a blood level rise. A rise was noted after the intramuscular injection of 2.5 mgs Mn as Mn Cl/sub 2/. Blood Mn levels rose to a maximum in thirty minutes and were back to basal levels within three hours. Adjuvants such as arginine, lecithin, taurine, biotin, bioflavinoids, were tested with essentially negative results. Mn orotate also failed to increase absorption. Oral absorption was obtained with ascorbic acid in five female subjects when 20 mgs of Mn as the chloride was given orally with 1 gm of ascorbic acid. This effect was not observed with five male subjects. A 30-40% increase in blood Mn after 2 hours was found when Mn was administered with ascorbic acid in the female subjects.

  5. Precipitation of Nanosized MX at Coherent Cu-Rich Phases in Super304H Austenitic Steel

    Science.gov (United States)

    Ou, Ping; Xing, Hui; Sun, Jian

    2015-01-01

    The present investigation of transmission electron microscopy reports the precipitation of nanosized and cubical-shaped incoherent Nb-rich MX at the coherent Cu-rich phases in the austenitic matrix of the Super304H steel. In addition, the nanosized Nb-rich MX phases were often observed to precipitate on dislocations during creep. It is concluded that the dense incoherent Nb-rich MX and coherent Cu-rich precipitates with a nanosized diameter contribute excellent creep resistance in the steel.

  6. Synthesis and characterisation: Zinc oxide-sulfide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prinsa, E-mail: prinsa.verma@gmail.co [Nanophosphor Application Center, Allahabad University (India); Satish Dhawan Space Center, ISRO (India); Pandey, Avinash C. [Nanophosphor Application Center, Allahabad University (India); Bhargava, R.N. [Nanocrystal Technology, New York (United States)

    2009-11-15

    A novel synthesis method is presented for the preparation of nanosized-semiconductor zinc oxide-sulphide (ZnO/ZnS) core-shell nanocomposites, both formed sequentially from a single-source solid precursor. ZnO nanocrystals were synthesized by a simple co-precipitation method and ZnO/ZnS core-shell nanocomposites were successfully fabricated by sulfidation of ZnO nanocrystals via a facile chemical synthesis at room temperature. The as-obtained samples were characterized by X-ray diffraction and transmission electron microscopy. The results showed that the pure ZnO nanocrystals were hexagonal wurtzite crystal structures and the ZnS nanoparticles were sphalerite structure with the size of about 10 nm grown on the surface of the ZnO nanocrystals. Optical properties measured reveal that ZnO/ZnS core-shell nanocomposites have integrated the photoluminescent effect of ZnO and ZnS. Based on the results of the experiments, a possible formation mechanism of ZnO/ZnS core-shell nanocomposites was also suggested. This treatment is suggested to improve various properties of optoelectronically valuable ZnO/ZnS nanocomposites. These nanosized semiconductor nanocomposites can form a new class of luminescent materials for various applications.

  7. 40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese heterocyclic tetraamine... Specific Chemical Substances § 721.10003 Manganese heterocyclic tetraamine complex (generic). (a) Chemical... as manganese heterocyclic tetraamine complex (PMNs P-98-625/626/627/628/629 and P-00-614/617)...

  8. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  9. Essentiality, Toxicity and Uncertainty in the Risk Assessment of Manganese

    Science.gov (United States)

    Risk assessments of manganese by inhalation or oral routes of exposure typically acknowledge the duality of manganese as an essential element at low doses and a toxic metal at high doses. Previously, however, risk assessors were unable to describe manganese pharmacokinetics quant...

  10. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    Science.gov (United States)

    Socha, Amanda L.; Guerinot, Mary Lou

    2014-01-01

    Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764

  11. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants

    Directory of Open Access Journals (Sweden)

    Amanda Lee Socha

    2014-04-01

    Full Text Available Manganese (Mn, an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn-deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world’s soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein, YSL (yellow stripe-like, ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein, CAX (cation exchanger, CCX (calcium cation exchangers, CDF/MTP (cation diffusion facilitator/metal tolerance protein, P-type ATPases and VIT (vacuolar iron transporter. A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.

  12. ORGANIC SOL-GEL METHOD IN THE SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Keanchuan Lee

    2014-01-01

    Full Text Available Nanosized Zinc Oxide (ZnO was synthesized using sol-gel method. The nanomaterials with structure were annealed at different temperatures ranging from 500 to 700°C which were chosen based on the Thermogravimetric (TGA Analysis. The structure and morphology were characterized by Powder X-Ray Diffraction (PXRD and Transmission Electron Microscope (TEM, respectively. The PXRD shows the increasing tendency in crystallite size when the annealing temperature increases and the hexagonal structure of ZnO. TEM further revealed the same tendency which the Zn NPs size increased with the annealing temperature.

  13. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  14. Kinetics of Nitrogen Diffusion in Granular Manganese

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-zhu; XU Chu-shao; ZHAO Yue-ping

    2008-01-01

    The kinetics and the influence of time on granular manganese nitriding were studied by means of a vacuum resistance furnace, X-ray diffraction technique, and LECO TC-436 oxygen/nitrogen determinator. The longer the nitriding time, the more the nitrogen pickup. Except for a trace of oxide MnO that developed, the metal manganese could thoroughly be nitrided to form Mn4N and a little ζ-phase (the stoichiometric components as Mn2N) with the nitriding time lasting. A kinetic model is developed to reveal the nitriding situation and agrees well with the experimental results.

  15. Zinc in diet

    Science.gov (United States)

    ... Zinc is also needed for the senses of smell and taste. During pregnancy, infancy, and childhood the ... sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing in the ...

  16. Zinc level and obesity

    Directory of Open Access Journals (Sweden)

    Doaa S.E. Zaky

    2013-01-01

    Conclusion Plasma zinc concentration in obese individuals showed an inverse relationship with the waist circumference and BMI as well as serum low-density lipoprotein-cholesterol and correlated positively with high-density lipoprotein.

  17. Zinc level and obesity

    OpenAIRE

    Doaa S.E Zaky; Eman A Sultan; Mahmoud F Salim; Rana S Dawod

    2013-01-01

    Background Obesity is a chronic condition that is associated with disturbances in the metabolism of zinc. Therefore, the aim of this study was to investigate the relationship between serum zinc level and different clinical and biochemical parameters in obese individuals. Patients and methods Twenty-four individuals with BMI more than 30 kg/m 2 and 14 healthy controls (BMI < 24 kg/m 2 ) were assessed for BMI and waist circumference using anthropometric measurements. Colorimetric tes...

  18. STUDY OF NANOSIZED SILICA GRAFIED WITH HYPERBRANCHED POLY(AMINE-ESTER)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; YANG Shu; LUO Yunjun

    2006-01-01

    A new method to chemically modify the surface of nanosized-SiO2 was studied in this paper. Nanosized-SiO2 was grafted with hyperbranched poly(amin ester) through one-spot polycondensation between AB2 monomer and active hydroxyl on silica surface in present of catalyst.Compared with the results of FTIR and TEM, it is found hyperbranched poly(amin ester) is successfully grafted on the surface of nanosized-SiO2 and the surface properties have been changed with an expected way. The results indicate that nanosized-SiO2 grafted with hyperbranched poly(amin ester) has better dispersion in the ethanol or chloroform than that unmodified.

  19. Preparation of Nanosized AlOOH and Its Application in Polymer-inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LIAO Haida; ZHANG Lianmeng; WU Bolin

    2008-01-01

    With industrial grade Al(OH)3 as raw materials, the self dispersion nanosized AIOOH crystal powder were prepared by the sol-hydrothermal method. The results of XRD and TEM show that the nanosized AIOOH could automatically disperse to a single-dispersing state in water without surface modification, dispersant, additive and accessional conditions (ultrasonic wave dispersing, ball-mill dispersing). The application results of the product indicate that the nanosized AIOOH can be composed into a toughened nanocomposites without surface modification. Accordingly, the self dispersion characteristic and mechanism of hydrothermal crystallization and charging composite dispersion of nanosized AIOOH are found, and a new technique of preparing polymer/inorganic nanocomposites is proposed, which is called blending compositing new techniques of sol even dispersing at quasi-homogeneous phase.

  20. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  1. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration.

    Science.gov (United States)

    Yokel, Robert A

    2006-11-01

    The etiology of many neurodegenerative diseases has been only partly attributed to acquired traits, suggesting environmental factors may also contribute. Metal dyshomeostasis causes or has been implicated in many neurodegenerative diseases. Metal flux across the blood-brain barrier (the primary route of brain metal uptake) and the choroid plexuses as well as sensory nerve metal uptake from the nasal cavity are reviewed. Transporters that have been described at the blood-brain barrier are listed to illustrate the extensive possibilities for moving substances into and out of the brain. The controversial role of aluminum in Alzheimer's disease, evidence suggesting brain aluminum uptake by transferrin-receptor mediated endocytosis and of aluminum citrate by system Xc;{-} and an organic anion transporter, and results suggesting transporter-mediated aluminum brain efflux are reviewed. The ability of manganese to produce a parkinsonism-like syndrome, evidence suggesting manganese uptake by transferrin- and non-transferrin-dependent mechanisms which may include store-operated calcium channels, and the lack of transporter-mediated manganese brain efflux, are discussed. The evidence for transferrin-dependent and independent mechanisms of brain iron uptake is presented. The copper transporters, ATP7A and ATP7B, and their roles in Menkes and Wilson's diseases, are summarized. Brain zinc uptake is facilitated by L- and D-histidine, but a transporter, if involved, has not been identified. Brain lead uptake may involve a non-energy-dependent process, store-operated calcium channels, and/or an ATP-dependent calcium pump. Methyl mercury can form a complex with L-cysteine that mimics methionine, enabling its transport by the L system. The putative roles of zinc transporters, ZnT and Zip, in regulating brain zinc are discussed. Although brain uptake mechanisms for some metals have been identified, metal efflux from the brain has received little attention, preventing integration of

  2. Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation

    National Research Council Canada - National Science Library

    Yin, Zhaobao; Jiang, Haiyan; Lee, Eun-Sook Y; Ni, Mingwei; Erikson, Keith M; Milatovic, Dejan; Bowman, Aaron B; Aschner, Michael

    2010-01-01

    Although manganese (Mn) is an essential trace element for human development and growth, chronic exposure to excessive Mn levels can result in psychiatric and motor disturbances, referred to as manganism...

  3. Influência do glifosato na eficiência nutricional do nitrogênio, manganês, ferro, cobre e zinco em soja resistente ao glifosato Glyphosate influence on nitrogen, manganese, iron, copper and zinc nutritional efficiency in glyphosate resistant soybean

    Directory of Open Access Journals (Sweden)

    Ademar Pereira Serra

    2011-01-01

    plants in each vase. The treatments have been arranged in a factorial pathway 5X5, with five levels of the factor Mn (0, 20, 40, 60 and 80mg dm-3 and five of glyphosate drifts (0; 0,648; 1,296; 1,944 e 2,592kg e.a. ha-1 and the Mn was supplied by the manganese sulfate (MnSO4.H2O. The experimental design was randomized blocks, with four repetitions. There was no influence on response from plants concerning the levels of Mn used into the experiment. The application of glyphosate interfered on mineral nutrition of soybean and the total contents of N, Mn, Cu, Zn and Fe. The use of glyphosate has caused reduction of the nodules number and reduced the output of dry mass.

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, C.A.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  5. Multifunctional Core-Shell and Nano-channel Design for Nano-sized Thermo-sensor

    Science.gov (United States)

    2015-04-01

    L R E P O R T DTRA-TR-14-32 Multifunctional Core-Shell and Nano- channel Design for Nano-sized Thermo - sensor Distribution Statement A... Thermo -sensor PI: Jie Lian, Associate Professor, Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY...within s time frame. (2) Scope This project is under the scope of Basic and Applied Sciences Directorate and the JSTO and Nano-sized Thermo -sensor

  6. Synthesis of Nanosized NaY Zeolite by Confined Space Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanosized NaY crystals have been prepared from metakaolin and sodium silicate by confined space synthesis with starch additive.It is found that the product has a narrow crystal size distribution (50-100 nm),high Si/Al ratio (Si/Al=4.6-6.1),high surface area (1090 m2/g) and the average diameter of nanosized NaY (75 nm) synthesized is 30 nm,it is smaller than that of without starch additive.

  7. Electrical explosion of a conductor in energy accumulating phase change materials with nanosized semiconducting additions

    Science.gov (United States)

    Savenkov, G. G.; Morozov, V. A.; Lukin, A. A.

    2016-11-01

    The results of experiments on the explosion of a copper conductor in paraffin and wax both without additions and with nanosized copper oxide additions are presented. The experiments provided the size of the channel formed in wax samples upon the conductor explosion and subsequent expansion of the electric discharge plasma. The obtained results testify to the influence of nanosized additions on the character of electric discharge plasma expansion in the formed channel, the strength of composite materials, and the sample fragmentation (destruction).

  8. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  9. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach.

    Science.gov (United States)

    Patel, M A; Bhanvase, B A; Sonawane, S H

    2013-05-01

    Ultrasound assisted synthesis of yellow rare earth cerium zinc molybdate anticorrosion nanopigment is presented. This new class of pigment is eco-friendly alternatives to lead, cadmium and chromium pigment as these pigments contains carcinogenic species like Cr(6+) which is responsible for human disease. The synthesis of nanosized cerium zinc molybdate was carried out using cerium nitrate, sodium zinc molybdate as a precursor materials by conventional and ultrasound assisted chemical precipitation method without addition of emulsification agent. XRD, FTIR and elemental analysis confirm the formation of cerium zinc molybdate nanoparticles. The conductivity results indicate that conventional synthesis takes longer time, while in sonochemical technique (US), reaction completes within short period of time. Improved solute transfer rate, rapid nucleation, and formation of large number of nuclei are attributed to presence of cavitation. Saturation of the Ce(3+) ions reaches earlier in case of sonochemical technique which restricts the growth of particles hence smaller size is obtained. The crystallite size of cerium zinc molybdate was found to be 27nm from XRD analysis.

  10. Plasma dynamic synthesis of ultradispersed zinc oxide and sintering ceramics on its basis by SPS method

    Science.gov (United States)

    Shanenkova, Yu; Sivkov, A.; Ivashutenko, A.; Shanenkov, I.; Firsov, K.

    2017-05-01

    Zinc oxide is a well-known semiconductor material having good electrical, optical and catalytic properties. It can be used in different areas from cosmetics to drug delivery and biosensors. The synthesis of nanosized zinc oxide is an urgent task for obtaining ZnO-based ceramics with enhanced physical properties. This work shows the possibility to implement the plasma dynamic synthesis of zinc oxide in one short-term process (less than 1 ms) using an electrodischarge zinc-containing plasma jet, flowing into oxygen atmosphere. It allows synthesizing a mono-crystalline powder with particle size distribution from tens to hundred nanometers. The synthesized powdered product is investigated using by X-Ray diffractometry (XRD), scanning electron microscopy and high-resolution transmission electron microscopy. According to XRD, the obtained product consists of hexagonal zinc oxide with lattice parameters a = b = 3.24982 Å, c = 5.20661 Å that is clearly confirmed by microscopy data. This powder was used to produce a bulk ceramics sample on its basis by spark plasma sintering. The influence of sintering parameters on the structure of the resulting sample was studied. The optimal parameters were found which allows obtaining the more dense ceramics with a better microstructure. It was also found that the absence of exposure time after reaching the working temperature and pressure allows decreasing the porosity of ceramics.

  11. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    Science.gov (United States)

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  12. Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels

    Science.gov (United States)

    Yin, Feng-Shi; Jung, Woo-Sang

    2009-02-01

    Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant 9Cr-W-Mo-VNbTiN steels were characterized by transmission electron microscope (TEM) using carbon film replicas. The steels were prepared by vacuum induction melting followed by hot forging and rolling into plates. The plates were normalized at 1100 °C for 1 hour, cooled in air, and tempered at 700 °C for 1 hour. The results show that bimodal nanosized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. The larger nanosized MX precipitates with the size of 30 to 50 nm are rich in Nb, while the smaller ones with the size of about 10 nm contain less Nb but more V. Small addition of Ti causes an increase in the number of the larger nanosized MX precipitates. The total number density of the nanosized MX precipitates in the ultra-low-carbon ferritic/martensitic steels is measured to be over 300/ μm2, much higher than that in conventional ferritic/martensitic steels. Short-term creep test results show that the ultra-low-carbon ferritic/martensitic steels with high dense nanosized MX precipitates have much higher creep rupture strength than conventional ASME-P92 steel. The strength degradation of the ultra-low-carbon ferritic/martensitic heat-resistant steels during creep is also discussed in this article.

  13. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  14. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  15. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast...

  16. ADVERSE HEALTH EFFECTS FROM ENVIRONMENTAL MANGANESE EXPOSURE.

    Science.gov (United States)

    The ubiquitous element, manganese (Mn), is an essential nutrient, but toxic at excessive exposure levels. Therefore, the US EPA set guideline levels for Mn exposure through inhalation (reference concentration-RfC=0.05 ?g/m3) and ingestion (reference dose-RfD=0.14 mg/kg/day (10 mg...

  17. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Directory of Open Access Journals (Sweden)

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  18. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    Science.gov (United States)

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  19. Photo-triggered release in polyamide nanosized capsules

    Energy Technology Data Exchange (ETDEWEB)

    Marturano, V.; Ambrogi, V. [Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Cerruti, P. [Institute of Polymer Chemistry and Technology (ICTP-CNR), via Campi Flegrei 34, 80078 Pozzuoli (Italy); Giamberini, M.; Tylkowski, B. [University Rovira i Virgili, Department of Chemical Engineering, Av. Paisos Catalans 26, 43007 Tarragona (Spain)

    2014-05-15

    In this work, nanosized capsules based on a lightly cross-linked polyamide containing azobenzene moieties in the main chain were synthesized by miniemulsion interfacial polymerization. The obtained nanocapsules were loaded either with toluene or with the fluorescent probe coumarin-6 as a core. Diameters of the nanocapsules were in the 100-900 nm range, depending on the selected emulsion conditions. The morphology and shape of the samples were observed by TEM and SEM while the emulsion droplets and nanocapsules size was measured by DLS. Under continuous UV irradiation the polymer underwent E-Z photoisomerization allowing the release of the encapsulated material. Variation in diameter of the nanocapsules with the time of UV irradiation was detected through DLS analysis. 10-30% growth was observed, depending on the sample. The kinetics of release of coumarin-6 was followed by spectrofluorimetry in ethanol. In absence of irradiation, the fluorescence intensity appeared to be constant over time, while it increased when the sample was irradiated with 360 nm UV light.

  20. Superfocusing the light through the nanosize slit via photonic tornado

    Science.gov (United States)

    Choi, Seong Soo; Jha, Vinaya; Suwal, Om; Park, Myoung Jin; Park, Nam Kyu; Kim, Daisik

    2010-03-01

    The macro size pyramidal horn probe such as klystron horn antenna has been used to provide the excellent focusing capabilities in microwave region. In the similar way, the pyramidal probe with the micron size mirror (pyramidal horn probe) has been fabricated with a nano-size aperture with diameter ranging from ˜1 nm to ˜30 nm. Light transmission through the micro-fabricated pyramidal horn probe has been measured to enhance the light transmission due to resonant effects between the cavity mode and the slit modes in the probe, along with improved directionality of the transmitted beam. The resonant tunneling between two standing waves in the input groove and in the output groove can provide the transmission enhancements. With decreasing slit width, the transmission is found to increasing tremendously.[1] The transmission is measured to be inversely proportional to the area.[2,3] References:[1] R. Gordon, Phys. Rev. B 73, 153405 (2006).[2] R. Harrington, IEEE Trans. Antennas Propagat. Ap-30, 205(1982).[3] Y Leviatan, R. Harrington, J. Maut, IEEE Trans. Antennas Propagat. Ap-30, 1533(1982)

  1. Local structure of nanosized tungstates revealed by evolutionary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, Janis; Anspoks, Andris; Kuzmin, Alexei [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Kalinko, Alexandr [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France)

    2015-02-01

    Nanostructured tungstates, such as CoWO{sub 4} and CuWO{sub 4}, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel evolutionary algorithm (EA) for the interpretation of the Co and Cu K-edges as well as the W L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) of nanosized CoWO{sub 4} and CuWO{sub 4}. The combined EA-EXAFS approach and simultaneous analysis of the W L{sub 3} and Co(Cu) K-edge EXAFS spectra allowed us for the first time to obtain a 3D structure model of the tungstate nanoparticles and to explore in details the effect of size, temperature and transition metal type. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption

    DEFF Research Database (Denmark)

    Watanabe, Yujiro; Kasama, Takeshi; Fukushi, Keisuke;

    2011-01-01

    Nano-sized boehmites with different crystallinity were synthesized at the temperature range of 25 to 200°C in order to produce phosphate absorbents with high capacity. The physicochemical property of boehmites was depended on the synthesis temperature: the particle size was increased and the surf......Nano-sized boehmites with different crystallinity were synthesized at the temperature range of 25 to 200°C in order to produce phosphate absorbents with high capacity. The physicochemical property of boehmites was depended on the synthesis temperature: the particle size was increased...... and the surface area showed the maximum for the boehmite at 50°C. The phosphate sorptions into boehmites were analyzed at room temperature in the phosphoric acid solutions as a model of wastewater at the concentration of 0.1 to 3.0 mmol l-1 and the pH of 3 to 7. The boehmite synthesized at 50°C exhibited...... the highest amount of phosphate sorption (1.73 mmol g-1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore...

  3. Random vibration movements of liquid nanosized Pb inclusions in Al

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.; Andersen, J.S.; Levinsen, M.; Steenstrup, S.; Prokofjev, S.; Zhilin, V.; Dahmen, U.; Radetic, T.; Turner, J.H

    2004-07-15

    Transmission electron microscopy has been used to study the behavior of liquid nanosized Pb inclusions in Al ribbons made by rapid solidification. In situ heating experiments carried out in the temperature range from around 375 to 450 deg. C have shown that liquid inclusions with sizes from around 10-50 nm, that are trapped on dislocations, perform random vibrations around their positions of attachment with vibration periods of some fractions of seconds. The amplitudes of the vibrations in directions perpendicular to the dislocations are a few nanometers, while the motion in directions parallel to the dislocations can be more than an order of magnitude larger. Under conditions where two or more inclusions, attached to a dislocation line, display one-dimensional random motion the inclusions are rarely seen to coalesce. Movement of the inclusions has been monitored by video and shorter sequences have been digitized and analyzed frame-by-frame. The analysis shows that the step lengths have Gaussian distributions indicative of random walks. Fractal analysis of the paths shows that the fractal dimension is close to two which agrees well with the observations that the inclusions carry out linear random walks in a confined space.

  4. Tribological properties of nanosized calcium carbonate filled polyamide 66 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Kaito [Department of Mechanical Engineering, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan (Japan); Nishitani, Yosuke [Department of Mechanical Engineering, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015 Japan (Japan); Kitano, Takeshi [Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. 275, Zlin, 767 72 Czech Republic (Czech Republic); Eguchi, Kenichiro [Shiraishi Central Laboratories, 4-78 Motohama,Amagasaki,Hyogo,660-0085 Japan (Japan)

    2016-03-09

    For the purpose of developing high performance tribomaterials for mechanical sliding parts such as gears, bearings and so on, nanosized calcium carbonate (nano-CaCO{sub 3}) filled polyamide 66 (PA66) nanocomposites were investigated. The nano-CaCO{sub 3} was a kind of precipitated (colloid typed) CaCO{sub 3}, and its average particle size was 40, 80 and 150 nm. Surface treatment was performed by fatty acid on the nano-CaCO{sub 3} and its volume fraction in the nanocomposite was varied from 1 to 20vol.%. These nanocomposites were melt-mixed by a twin screw extruder and injection-molded. Tribological properties were measured by two types of sliding wear testers such as ring-on-plate type and ball-on-plate type one under dry condition. The counterface, worn surface and wear debris were observed by digital microscope and scanning electron microscope. It was found that the nano-CaCO{sub 3} has a good effect on the tribological properties, although the effect on the frictional coefficient and specific wear rate is differed by the volume fraction and the type of sliding wear modes. This is attributed to the change of wear mechanisms, which is the change of form of the transfer films on the counterface and the size of wear debris. It follows from these results that PA66/nano-CaCO{sub 3} nanocomposites may be possible to be the high performance tribomaterials.

  5. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  6. The Synthesis and Modification of Nanosized Clickable Latex Particles

    KAUST Repository

    Almahdali, Sarah

    2013-05-01

    This research aims to add to the current knowledge available for miniemulsion polymerization reactions and to use this knowledge to synthesize multifunctional nanosized latex particles that have the potential to be used in catalysis. The physical properties of the latex can be adjusted to suit various environments due to the multiple functional groups present. For this research, styrene, pentafluorostyrene, azidomethyl styrene, pentafluorostyrene with azidomethyl styrene and pentafluorostyrene with styrene latexes were produced, and analyzed by dynamic light scattering. The latexes were synthesized using a miniemulsion polymerization technique found through this research. Potassium oleate and potassium 1,1,2,2,3,3,4,4-nonafluorobutane-1-sulfonate were used as surfactants during the miniemulsion polymerization reaction to synthesize pentafluorostyrene with azidomethyl styrene latex. Transmission electron microscopy data and dynamic light scattering data have been collected to analyze the structure of this latex, and it has been synthesized using a number of conditions, differing in reaction time, surfactant amount and sonication methods. We have also improved the solubility of the latex through a copper(I) catalyzed 1,3-dipolar azide-alkyne reaction, by clicking (polyethylene glycol)5000 onto the azide functional groups.

  7. Selective effect of zinc on uphill transport of oligopeptides into kidney brush border membrane vesicles.

    Science.gov (United States)

    Daniel, H; Adibi, S A

    1995-08-01

    Based on the involvement of zinc in hydrolysis of peptides, we hypothesized that Zn2+ may also play a role in peptide transport. To investigate this hypothesis, kidney brush border membrane vesicles (BBMV) were incubated for 30 min with different concentrations of ZnSO4 before use in uptake studies. This incubation increased by twofold the overshoot uptake of 3H-Gly-L-Gln, D-Leu-125I-Tyr and 3H-cephalexin (all high-affinity substrates for the oligopeptide/H+ symporter) without affecting passive and/or facilitated diffusion of these substrates. Zinc had no effect on the uptake of either glutamine or glucose by kidney BBMV. Among a group of metal ions (cobalt, iron, copper, cadmium, and manganese), only manganese and copper substantially stimulated the activity of the oligopeptide/H+ symporter. DTPA (a complexing agent) inhibited dipeptide uptake, which was reversed by the addition of zinc to the BBMV. Zinc treatment of BBMV reduced the EC50 value of inhibition of 3H-Gly-L-Gln uptake by unlabeled Gly-L-Gln by twofold (90 +/- 8 vs. 45 +/- 4 microM). Similarly, zinc treatment of BBMV reduced the EC50 value for inhibition of D-Leu-125I-Tyr uptake by bestatin from 80 +/- 4 to 40 +/- 3 mM. In conclusion, the data show that zinc has a selective effect on transport of nutrients into kidney BBMV. It stimulates uphill transport of oligopeptides by a modification of their affinity for the binding site of the membrane transporter.

  8. Zinc in Well Water and Infant Mortality in Bangladesh: A Report from Gonoshasthaya Kendra

    Directory of Open Access Journals (Sweden)

    Zafrullah Chowdhury

    2012-01-01

    Full Text Available Zinc supplementation reduces the duration, severity and recurrence of diarrhoea in young children. This study examines whether zinc, found naturally in drinking water, reduced infant deaths from diarrhoea in rural Bangladesh. Information was compiled for births over two calendar years with follow-up for deaths within one year of birth. The study included 29,744 live births and 934 deaths in some 600 villages under the care of Gonoshasthaya Kendra (GK, grouped into 15 health centre regions within 12 upazillas. Individual matching of death to birth data was not possible, but information on exposures through well water and on potential confounders was available for each upazilla. Average concentration of zinc in well water, reported by the British Geological Survey, was grouped into high (>0.07 mg/L, moderate (0.020–0.070 mg/L and low (< 0.020 mg/L concentrations. Odds ratios (OR were calculated for zinc by age and cause of death. Zinc concentration was unrelated to all-cause mortality but a decrease in deaths from diarrhoea (N = 50 was seen in areas with high zinc (OR = 0.30; 95% CI 0.13–0.69. No relation to diarrhoeal deaths was found with other well contaminants (arsenic, manganese having accounted for zinc. Upazillas with a high proportion of women without education had higher rates of death from diarrhea, but the decrease in risk with high zinc remained (OR adjusted = 0.41; 95% CI 0.20–0.84. It is concluded that exposure to zinc through drinking water may reduce risk of diarrhoeal deaths.

  9. Manganese intake is inversely associated with depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study.

    Science.gov (United States)

    Miyake, Yoshihiro; Tanaka, Keiko; Okubo, Hitomi; Sasaki, Satoshi; Furukawa, Shinya; Arakawa, Masashi

    2017-03-15

    One epidemiological study in Canada has addressed the association between zinc intake and depressive symptoms during pregnancy while another epidemiological study in Korea has examined the association between iron intake and depressive symptoms during pregnancy. The present cross-sectional study in Japan examined the association between intake of zinc, magnesium, iron, copper, and manganese and depressive symptoms during pregnancy. Study subjects were 1745 pregnant women. Dietary intake during the preceding month was assessed using a self-administered diet history questionnaire. Depressive symptoms were defined as a score ≥16 on the Center for Epidemiologic Studies Depression Scale. Adjustment was made for age, gestation, region of residence, number of children, family structure, history of depression, family history of depression, smoking, secondhand smoke exposure at home and at work, employment, household income, education, body mass index, and intake of saturated fatty acids, eicosapentaenoic acid plus docosahexaenoic acid, calcium, vitamin D, and isoflavones. In crude analysis, significant inverse associations were observed between intake levels of zinc, magnesium, iron, copper, and manganese and the prevalence of depressive symptoms during pregnancy. After adjustment for confounding factors, only manganese intake was independently inversely associated with depressive symptoms during pregnancy: the adjusted prevalence ratio between extreme quartiles was 0.74 (95% confidence interval:0.56-0.97, P for trend=0.046). Information was obtained between the 5th and 39th week of pregnancy. The current cross-sectional study of Japanese women demonstrated higher manganese intake to be independently associated with a lower prevalence of depressive symptoms during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Zinc Determination in Pleural Fluid

    OpenAIRE

    Nazan DEMİR; DEMİR, Yaşar

    2000-01-01

    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  11. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes

    OpenAIRE

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by prov...

  12. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  13. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  14. Magneto-structural studies of sol–gel synthesized nanocrystalline manganese substituted nickel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pandav, R.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Patil, R.P. [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Chavan, S.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India); Mulla, I.S. [Centre for Materials for Electronics and Technology (C-MET), Panchavati, Pune 411008 (India); Hankare, P.P., E-mail: p_hankare@rediffmail.com [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-11-01

    Nanocrystalline NiFe{sub 2−x}Mn{sub x}O{sub 4} (2≥x≥0) ferrites were prepared by sol–gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels. - Highlights: • NiFe{sub 2−x}Mn{sub x}O{sub 4} system was synthesized by a chemical combustion route. • All samples shows cubic phase. • All the synthesized ferrospinels are in nanocrystalline form. • The saturation magnetization decreases with increase in Mn content.

  15. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  16. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  17. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  18. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  19. Surface Grafting of Polymers onto Nano-Sized Particles in Solvent-Free Dry-System and in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Norio TSUBOKAWA

    2005-01-01

    @@ 1Introduction We have reported the grafting of various polymers onto the surface of inorganic nano-sized particles, such as silica, titanium oxide, and carbon black[1]. The polymer-grafted nano-sized particles are known to have excellent properties, such as a good dispersibility in solvents and polymer matrices[1,2]. However, scale-up production of polymer-grafted nano-sized particles was hardly achieved, because complicated procedures, such as centrifugation, filtration, and solvent extraction, are needed for the production of polymer-grafted nano-sized particles, and a lot of abolishing solvent comes out.

  20. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  1. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  2. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Lin; Guo-hua Gu; Hui Wang; Ren-feng Zhu; You-cai Liu; and Jian-gang Fu

    2016-01-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leach-ing efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sul-furic acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respec-tively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent ac-tivation energy of 12.28 kJ·mol−1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  3. Synthesis and photochromic property of nanosized amino acid polyoxometalate compounds

    Science.gov (United States)

    Sun, Dehui; Zhang, Jilin; Ren, Huijuan; Cui, Zhenfeng

    2009-07-01

    A series of novel nanosized amino acid-polyoxometalate compounds were successfully synthesized using a low temperature solid-state chemical reaction method. Their compositions, structures, morphologies, photochromic properties were characterized by ICP-AES/MS, TG/DTA, FTIR, XRD, SEM and UV-Vis diffuse reflectance spectra (DRS), respectively. The elemental analysis results showed that the compounds ((HThr)7PMo12O42•4H2O, (HTyr)7PMo12O42Â.5H2O, (HSer)7PMo12O42•5H2O and (HGlu)7PMo12O42•4H2O) were obtained. The analyses of the TG/DTA, XRD and FTIR confirmed that the four compounds are new phases different from the corresponding reactants and they are composed of the polyoxometalate anions and the corresponding protonated amino acids, respectively. Observation of the SEM revealed that the particle shape (e.g. (HThr)7PMo12O42Â.4H2O nanoplates, (HTyr)7PMo12O42•5H2O nanorods, (HSer)7PMo12O42•5H2O and (HGlu)7PMo12O42•4H2O nanoparticles) depended strongly on the structures of amino acids. This implied that the amino acids can play a structural template agent role in synthesis of the Silverton-type polyoxometalate compounds. After irradiated with ultraviolet light, these samples all exhibited photochromism. Their photochromic mechanism may be explained based on Yamase's photochromic model. These photochromic compounds could be applied to the field of photosensitive materials.

  4. Manganese Abnormity in Holocene Sediments of the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Manganese abnormity has been observed in the Holocene sediments of the mud area of Bohai Sea. On the basis of grain size, chemical composition, heavy mineral content and accelerator mass spectrometry (AMS) 14C dating of foraminifer, relationships between manganese abnormity and sedimentation rates, material source, hydrodynamic conditions are probed. Manganese abnormity occurred during the Middle Holocene when sea level and sedimentation rates were higher than those at present. Sedimentary hiatus was not observed when material sources and hydrodynamic conditions were quite similar. Compared with the former period, the latter period showed a decrease in reduction environment and an inclination toward oxidation environment with high manganese content, whereas provenance and hydrodynamic conditions showed only a slight change. From the above observations, it can be concluded that correlation among manganese abnormity, material source, and hydrodynamic conditions is not obvious. Redox environment seems to be the key factor for manganese enrichment, which is mainly related to marine authigenic process.

  5. Spin dependent calculation of calcium manganese oxide

    Science.gov (United States)

    Rathod, Ruchi; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2017-05-01

    Particularly interesting as candidates for technological applications are the manganese perovskites with AMnO3 formula. In this paper, we investigated the ground states properties of the CaMnO3 perovskite oxide. Our structural properties are given using GGA in the aim to introduce the exchange correlation potential using density functional calculation. Generally, the perovskites materials of ABO3-type are well known with their anti/ferroelectric, piezoelectric and anti/ferromagnetism properties applied in remarkable technological studies.

  6. Manganese concentration in human saliva using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Lewgoy, Hugo R., E-mail: hugorl@usp.br [Universidade Bandeirante Anhanguera (UNIBAN), Sao Paulo, SP (Brazil); Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  7. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  8. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  9. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  10. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  11. Zinc in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Frederiksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  12. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill).

    Science.gov (United States)

    Feizi, Hassan; Kamali, Maryam; Jafari, Leila; Rezvani Moghaddam, Parviz

    2013-04-01

    The objective of the this study was to compare concentrations of nanosized TiO2 at 0, 5, 20, 40, 60 and 80 mg L(-1) with bulk TiO2 for phytotoxic and stimulatory effects on fennel seed germination and early growth stage. After 14 d of seed incubation, germination percentage highly improved following exposure to 60 ppm nanosized TiO2. Similar positive effects occurred in terms of shoot dry weight and germination rate. Application of bulk TiO2 particles in 40 ppm concentration greatly decreased shoot biomass up to 50% compared to the control. Application of 40 ppm nanosized TiO2 treatment improved mean germination time by 31.8% in comparison to the untreated control. In addition, low and intermediate concentrations of nanosized TiO2 enhanced indices such as germination value, vigor index and mean daily germination. In general, there was a considerable response by fennel seed to nanosized TiO2 presenting the possibility of a new approach to overcome problems with seed germination in some plant species, particularly medicinal plants.

  13. Can Bulk and Nanosized Titanium Dioxide Particles Improve Seed Germination Features of Wheatgrass (Agropyron desertorum

    Directory of Open Access Journals (Sweden)

    Reyhaneh AZIMI

    2013-08-01

    Full Text Available The goal of this study was to evaluate concentrations of nanosized TiO2 at 0, 5, 20, 40, 60 and 80 mg L-1 with bulk TiO2 for possible stimulatory effects on wheatgrass seed germination and early growth stage. After 14 days of seed incubation, germination percentage improved by 9% following exposure to 5 ppm nanosized TiO2 treatment comparing to control. Similar positive effects occurred in terms of germination value and mean daily germination. Application of bulk TiO2 particles in 80 ppm concentration greatly decreased the majority of studied traits. Therefore phytotoxicity effect observed on wheatgrass seedling by application of bulk TiO2 particles in 80 ppm concentration. Exposure of wheatgrass seeds to 5 ppm nanosized TiO2 and bulk and nanosized TiO2 at 60 ppm obtained the lowest mean germination time but higher concentrations did not improve mean germination time. In general, there was a positive response by wheatgrass seed to some concentrations of nanosized TiO2. Usage of nanoparicles in order to improve germination and establishment of range plant in adverse environments similar to rangeland could be possible.

  14. 40 CFR 424.60 - Applicability; description of the electrolytic manganese products subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic manganese products subcategory. 424.60 Section 424.60 Protection of Environment ENVIRONMENTAL... CATEGORY Electrolytic Manganese Products Subcategory § 424.60 Applicability; description of the electrolytic manganese products subcategory. The provisions of this subpart are applicable to...

  15. MANGANESE SPECIATION IN SELECTED AGRICULTURAL SOILS OF PENINSULAR MALAYSIA

    OpenAIRE

    J. Habibah; J. Khairiah; Ismail, B.S.; M.D. Kadderi

    2014-01-01

    Manganese speciation in selected agricultural soils of Peninsular Malaysia is discussed in this study. Manganese concentration in the Easily Leacheable and Ion Exchangeable (ELFE), Acid Reducible (AR), Organic Oxidizable (OO) and Resistant (RR) fractions of soils developed on weathered rocks, soils of mixed nature, alluvium and peat deposits are described. The total manganese concentration in soils developed on weathered rocks was found to be higher than that in soils of mixed nature, alluviu...

  16. Manganese oxide nanowires, films, and membranes and methods of making

    Science.gov (United States)

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  17. Manganese-induced turnover of TMEM165.

    Science.gov (United States)

    Potelle, Sven; Dulary, Eudoxie; Climer, Leslie; Duvet, Sandrine; Morelle, Willy; Vicogne, Dorothée; Lebredonchel, Elodie; Houdou, Marine; Spriet, Corentin; Krzewinski-Recchi, Marie-Ange; Peanne, Romain; Klein, André; de Bettignies, Geoffroy; Morsomme, Pierre; Matthijs, Gert; Marquardt, Thorsten; Lupashin, Vladimir; Foulquier, François

    2017-04-19

    TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn(2+) supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn(2+) concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn(2+)-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn(2+)-induced degradation of TMEM165. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Manganese abundances in Galactic bulge red giants

    CERN Document Server

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  19. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  20. Manganese deposition in drinking water distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Tammie L., E-mail: Tammie.Gerke@miamioh.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States); Little, Brenda J., E-mail: brenda.little@nrlssc.navy.mil [Naval Research Laboratory, Stennis Space Center, MS 39529 (United States); Barry Maynard, J., E-mail: maynarjb@ucmail.uc.edu [Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013 (United States)

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn{sup 3+} and Mn{sup 4+}) and hollandite (Mn{sup 2+} and Mn{sup 4+}), and a Mn silicate, braunite (Mn{sup 2+} and Mn{sup 4+}), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. - Highlights: • Oxidation and deposition of Mn deposits in drinking water distribution pipes • In-situ synchrotron-based μ-XANES and μ-XRF mapping • Toxic metal sorption in Mn deposits.

  1. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles

    Indian Academy of Sciences (India)

    A DHANALAKSHMI; B NATARAJAN; V RAMADAS; A PALANIMURUGAN; S THANIKAIKARASAN

    2016-10-01

    Pure ZnO and Mn-doped ZnO nanoparticles were synthesized by Co-precipitate method. The structural characterizations of the nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. UV–Vis, FTIR and photoluminescence (PL) spectroscopy were used for analysingthe optical properties of the nanoparticles. XRD results revealed the formation of ZnO and Mn-doped ZnO nanoparticles with wurtzite crystal structure having average crystalline size of 39 and 20 nm. From UV–Vis studies, the optical band-gap energy of 3.20 and 3.25 eV was obtained for ZnO and Mn-doped ZnO nanoparticles, respectively. FTIR spectra confirm the presence of ZnO and Mn-doped ZnO nanoparticles. Photoluminescence analysis of all samples showed four main emission bands: a strong UV emission band, a weak blue band, a weak blue–green band and a weak green band indicating their high structural and optical qualities. The antibacterial efficiency of ZnO and Mn-doped ZnO nanoparticles were studied using disc diffusion method. The Mn-dopedZnO nanoparticles show better antibacterial activity when higher doping level is 10 at% and has longer duration of time.

  2. Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L.

    NARCIS (Netherlands)

    Wu, J.; Schat, H.; Koornneef, M.; Wang, X.; Aarts, M.G.M.

    2007-01-01

    Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in

  3. Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L.

    NARCIS (Netherlands)

    Wu, J.; Schat, H.; Koornneef, M.; Wang, X.; Aarts, M.G.M.

    2007-01-01

    Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in

  4. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  5. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  6. A survey of neurobehavioral symptoms of welders exposed to manganese

    Directory of Open Access Journals (Sweden)

    H Hassani

    2013-05-01

    Conclusion: Welders’ exposure to manganese and its potential health effects should be evaluated periodically and effective control measures should be applied in order to to prevent neurobehavioral symptoms.

  7. Manganese-enhanced magnetic resonance microscopy of mineralization

    Science.gov (United States)

    Chesnick, I.E.; Todorov, T.I.; Centeno, J.A.; Newbury, D.E.; Small, J.A.; Potter, K.

    2007-01-01

    Paramagnetic manganese (II) can be employed as a calcium surrogate to sensitize magnetic resonance microscopy (MRM) to the processing of calcium during bone formation. At high doses, osteoblasts can take up sufficient quantities of manganese, resulting in marked changes in water proton T1, T2 and magnetization transfer ratio values compared to those for untreated cells. Accordingly, inductively coupled plasma mass spectrometry (ICP-MS) results confirm that the manganese content of treated cell pellets was 10-fold higher than that for untreated cell pellets. To establish that manganese is processed like calcium and deposited as bone, calvaria from the skull of embryonic chicks were grown in culture medium supplemented with 1 mM MnCl2 and 3 mM CaCl2. A banding pattern of high and low T2 values, consistent with mineral deposits with high and low levels of manganese, was observed radiating from the calvarial ridge. The results of ICP-MS studies confirm that manganese-treated calvaria take up increasing amounts of manganese with time in culture. Finally, elemental mapping studies with electron probe microanalysis confirmed local variations in the manganese content of bone newly deposited on the calvarial surface. This is the first reported use of manganese-enhanced MRM to study the process whereby calcium is taken up by osteoblasts cells and deposited as bone. ?? 2007 Elsevier Inc. All rights reserved.

  8. Synthesis and Crystal Structure of a New Manganese Complex

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LIU Ping; CHEN Yun

    2003-01-01

    @@ In order to study the relationship between the manganese ion and the biological coordination agent, the role ofmanganese ion in the active sites and the structure of the active sites in the manganese enzymes, small molecule complexes are often applied to modeling the structure and the properties of reaction in the active centers. In this pa per, we will report the synthesis and crystal structure of a new manganese(Ⅱ) complex, catena[ aqua-(p-methoxybenzoato- O, O′ ) - (p-methoxybenzoato- O )- (2,2′-bipyridine)-manganese (Ⅱ) ] (p-methoxybenzoic acid). The crystal structure was confirmeded by X-ray crystallography analysis.

  9. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese......-uptake systems relevant for growth in defined medium. Based on these results an exit strategy enabling the cell to cope with iron depletion and use of manganese as an alternative for iron could be shown. Such a strategy would also explain why E. coli harbors some iron- or manganese-dependent iso......-enzymes such as superoxide dismutases or ribonucleotide reductases. The benefits for gaining a means for survival would be bought with the cost of less efficient metabolism as indicated in our experiments by lower cell densities with manganese than with iron. In addition, this strain was extremely sensitive to the metalloid...

  10. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Early Detection of Manganese Intoxication Based on Occupational History and T1-weighted MRI].

    Science.gov (United States)

    Fukutake, Toshio; Yano, Hajime; Kushida, Ryutaro; Sunada, Yoshihide

    2016-02-01

    Manganese regulates many enzymes and is essential for normal cell function. Chronic manganese intoxication has an insidious and progressive course terminating to atypical parkinsonism with little therapeutic efficacy. For subjects with chronic manganese exposure such as welders, manganese intoxication can be detected early based on the presence of hyperintensity in the globus pallidus on T(1)-weighted MRI and abnormally high urinary excretion of manganese with a chelating agent even in cases of normal serum/urine level of manganese.

  12. VERTEX: manganese transport through oxygen minima

    Science.gov (United States)

    Martin, John H.; Knauer, George A.

    1984-01-01

    Manganese transport through a well-developed oxygen minimum was studied off central Mexico (18°N, 108°W) in October-November 1981 as part of the VERTEX (Vertical Transport and Exchange) research program. Refractory, leachable and dissolved Mn fractions associated with particulates caught in traps set at eight depths (120-1950 m) were analyzed. Particles entering the oxygen minimum had relatively large Mn loads; however, as the particulates sank further into the minimum, total Mn fluxes steadily decreased from 190 nmol m -2 day -1 at 120 m to 36 nmol m -2 day -1 at 400 m. Manganese fluxes then steadily increased in the remaining 800-1950 m, reaching rates of up to 230 nmol m -2 day -1 at 1950 m. Manganese concentrations were also measured in the water column. Dissolved Mn levels Rate-of-change estimates based on trap flux data yield regeneration rates of up to 0.44 nmol kg -1 yr -1 in the upper oxygen minimum (120-200 m). However, only 30% of the dissolved Mn in the oxygen minimum appears to be from sinking particulate regeneration; the other 70% probably results from continental-slope-release-horizontal-transport processes. Dissolved Mn scavenges back onto particles as oxygen levels begin to increase with depth. Scavenging rates ranging from -0.03 to -0.09 nmol kg -1 yr -1 were observed at depths from 700 to 1950 m. These scavenging rates result in Mn residence times of 16-19 years, and scavenging rate constants on the order of 0.057 yr -1. Manganese removal via scavenging on sinking particles below the oxygen minimum is balanced by Mn released along continental boundaries and transported horizontally via advective-diffusive processes. Manganese appears to be very weakly associated with particulates. Nevertheless, the amounts of Mn involved with sinking biogenic particles are large, and the resulting fluxes are on the same order of magnitude as those necessary to explain the excess Mn accumulating on the sea floor. The overall behavior of Mn observed in this, and

  13. Synthesis of nanosized platinum based catalyst using sol-gel process

    Science.gov (United States)

    Ingale, S. V.; Wagh, P. B.; Bandyopadhyay, D.; Singh, I. K.; Tewari, R.; Gupta, S. C.

    2015-02-01

    The nano-sized platinum based catalysts using high surface area silica support have been prepared by sol-gel method. Tetramethoxysilane (TMOS) diluted in methanol was hydrolyzed to form a porous silica gel. Platinum (2%) was loaded at sol state using platinum chloride solution. After gelation, the solvent from the gel pores was extracted at ambient temperature which resulted in porous silica matrix incorporated with nanosized platinum. X-ray diffraction studies indicated the presence of elemental platinum in the silica-platinum composites. Transmission electron microscopy of the platinum -silica composites revealed that nanosized platinum particles of about 5-10 nm are homogeneously dispersed in silica matrix. Chemisorptions studies showed high dispersion (more than 50%) of platinum on silica support with specific surface area of 400 m2/g which puts them as promising candidates as catalyst in heterogeneous reactions.

  14. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  15. Effects of nanosized metallic palladium loading and calcination on characteristics of composite silica

    Institute of Scientific and Technical Information of China (English)

    吴玉程; 吴侠; 李广海; 张立德

    2003-01-01

    In order to investigate the effects of nanosized metallic palladium loading and calcination on the characteristics of composite silica,the silica was prepared by sol-gel technique,leading to an amorphous solid with mesoporosity,and the pore size distribution is narrow,centered at 3-5 nm.The composite silica was formed by impregnating palladium precursor into the porous network with sequel calcination in hydrogen.The results show that the nanosized palladium as guest phase in the composite silica is subjected to the mesoporous structure and calcination,resulting in the changes of optical adsorption that red-shifted to higher wavelength with the palladium loading and the heating temperature.The tailoring of the optical properties can be ascribed to the effect of the nanosized metal particles and interactions occurred between palladium and silica.

  16. Incrusting structure of nanosized Fe3O4 particles in magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jinsheng(张金升); YIN; Yansheng; (尹衍升); Lü; Yinong; (吕忆农); ZHANG; Yinyan; (张银燕); MA; Laipeng; (马来鹏); ZHANG; Shuqing; (张淑卿)

    2003-01-01

    High-performance nanosized Fe3O4 magnetic fluids are prepared by chemical co-pre- cipitate method. The microstructure of magnetic fluids is characterized using a transmission electron microscope (TEM) and high-resolution electron microscope (HREM). The results are satisfactory. The nanosized magnetic particles have diameter of 8-10 nm and the minimum diameter is 4 nm, belonging to super-paramagnetic material. The nanosized magnetic particles crystallized completely and have clear crystal boundary. The surfactant used in the test coats the magnetic particles homogeneously and forms a uniform and complete elastic spherical shell of amorphous phase around the magnetic particles. The study proves that the incrusting layer of surfactant has the protective effect and stable effect on the magnetic particles. These effects can enhance and maintain the magnetic properties of the magnetic fluids effectively.

  17. Heterogeneous Photo-Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    Full Text Available Great efforts have been exerted in overcoming the drawbacks of the Fenton reaction for water treatment applications. The drawbacks include pH confinement, handling of iron sludge, slow regeneration of Fe(II, and so forth. This paper highlights the recent developments in the heterogeneous photo-Fenton reaction which utilizes nanosized iron oxides as catalyst for maximizing the activity due to the enhanced physical or chemical properties brought about by the unique structures. This paper also summarizes the fundamentals of the Fenton reaction, which determine the inherent drawbacks and associated advances, to address the advantages of iron oxides and nanosized iron oxides. Tips for applying this method in water treatment are also provided. Given that the environmental effect of nanosized iron oxides is not yet well established, rapid research growth may occur in the near future to advance this promising technology toward water treatment once it is smartly coupled with conventional technologies.

  18. Manganese Catalyzed C-H Halogenation.

    Science.gov (United States)

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  19. A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available While separating two natural nano-sized triterpenic acids via bromolactonization, we serendipitously discovered that arjuna-bromolactone is an excellent gelator of various organic solvents. A simple and efficient method for the separation of two triterpenic acids and the gelation ability and solid state 1D-helical self-assembly of nano-sized arjuna-bromolactone are reported.

  20. Electrical properties of nanosized non-barrier inhomogeneities in Zn-based metal-semiconductor contacts to InP

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1998-01-01

    We have found that the electrical properties of carriers across the metal-semiconductor interface for alloyed Zn based metallizations to n- and p-InP are dominated by nanosized non-barrier inhomogeneities. The effective area covered by the nanosized regions is a small fraction of the contact area...

  1. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  2. Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles.

    Science.gov (United States)

    Formentini, Thiago Augusto; Legros, Samuel; Fernandes, Cristovão Vicente Scapulatempo; Pinheiro, Adilson; Le Bars, Maureen; Levard, Clément; Mallmann, Fábio Joel Kochem; da Veiga, Milton; Doelsch, Emmanuel

    2017-03-01

    Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Zinc homeostasis and neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Bernadeta eSzewczyk

    2013-07-01

    Full Text Available Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer’s disease, aging and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip and metallothioneins (MT which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and Alzheimer’s disease. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, Alzheimer

  4. Role of Amorphous Manganese Oxide in Nitrogen Loss

    Institute of Scientific and Technical Information of China (English)

    LILIANG-MO; WUQI-TU

    1991-01-01

    Studies have been made,by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that 15NO2,15N2O,15N14NO,15NO,15N2 and 15N14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.

  5. Nano-Sized Zero Valent Iron and Covalent Organic Polymer Composites for Azo Dye Remediation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, Jeehye; Hwang, Yuhoon

    2014-01-01

    Having superior reductive properties and large surface areas, nanosized zero valent iron (nZVI) is ideal for the degradation of chemicals such as azo dyes and trichloroethylene (TCE). However, immobilization of nZVI is a key parameter in its effectiveness as a chemical degradation agent. In this ......Having superior reductive properties and large surface areas, nanosized zero valent iron (nZVI) is ideal for the degradation of chemicals such as azo dyes and trichloroethylene (TCE). However, immobilization of nZVI is a key parameter in its effectiveness as a chemical degradation agent...

  6. [Influence of nanosize particles of cobalt ferrite on contractile responses of smooth muscle segment of airways].

    Science.gov (United States)

    Kapilevich, L V; Zaĭtseva, T N; Nosarev, A V; D'iakova, E Iu; Petlina, Z R; Ogorodova, L M; Ageev, B G; Magaeva, A A; Itin, V I; Terekhova, O G; Medvedev, M A

    2012-02-01

    Contractile responses of airways segments of porpoises inhaling nanopowder CoFe2O4 were stidued by means of a mechanographic method. Inhalation of the nanosize particles of CoFe2O4 in vivo and in vitro testing the nanomaterial on isolated smooth muscles led to potentiation histaminergic, cholinergic contractile activity in airways of porpoises and to strengthening of adrenergic relaxing answers. Nanosize particles vary amplitude of hyperpotassium reductions in smooth muscle segments of airways similarly to the effect of depolymerizing drug colchicine.

  7. Cytocompatibility of HeLa Cells to Nano-Sized Ceramics Particles.

    Science.gov (United States)

    Seitoku, Eri; Abe, Shigeaki; Kusaka, Teruo; Nakamura, Mariko; Inoue, Satoshi; Yoshida, Yasuhiro; Sano, Hidehiko

    2016-04-01

    In this study, we investigated the behaviors and cytocompatibility response of human cervical carcinoma (HeLa) cells expose to nano-sized particles. Cultivated cells exposed to titanium oxide and indium oxide nanoparticles remained highly viable. In the presence of copper oxide (CuO); however, the cells became seriously inflamed. To understand the mechanism by which CuO causes cell death, we evaluated cell death and apoptosis cytometry. CuO induced cells apoptosis more strongly than exposure to titania nanoparticles. Confocal fluorescence microscopy revealed that the nano-sized particles penetrate the cells.

  8. Tribological Properties of the Semi-metallic Friction Material with Nano-SiC

    Institute of Scientific and Technical Information of China (English)

    CHENDong; HUANGPing; ZHUWen-jian

    2004-01-01

    The tribological properties of the semi-metallic friction materials with nano-SiC were studied by the contrast experiments. The experimental result indicates that when the nano-SiC powder substitutes the generalSiC powder, the friction coefficient is not obviously improved. On the contrary, the wear rate increases a little.The friction surfaces and the mixed powder were examined by a scanning electron microscope and the experimental data were analysed. The main reason, which leads to the high wear, is found.

  9. Using Moessbauer spectroscopy as key technique in the investigation of nanosized magnetic particles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P. C., E-mail: pcmor@unb.br [Universidade de Brasilia, Nucleo de Fisica Aplicada, Instituto de Fisica (Brazil)

    2008-01-15

    This paper describes how cobalt ferrite nanoparticles, suspended as ionic or biocompatible magnetic fluids, can be used as a platform to built complex nanosized magnetic materials, more specifically magnetic drug delivery systems. In particular, the paper is addressed to the discussion of the use of the Moessbauer spectroscopy as an extremely useful technique in supporting the investigation of key aspects related to the properties of the hosted magnetic nanosized particle. Example of the use of the Moessbauer spectroscopy in accessing information regarding the nanoparticle modification due to the empirical process which provides long term chemical stability is included in the paper.

  10. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  11. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.

    Science.gov (United States)

    Smith, Kelsy F; Bibb, Lori A; Schmitt, Michael P; Oram, Diana M

    2009-03-01

    Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.

  12. Study on Desulfurization Efficiency and Products of Ce-Doped Nanosized ZnO Desulfurizer at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Li Fen; Yan Bo; Zhang Jie; Jiang Anxi; Shao Chunhong; Kong Xiangji; Wang Xin

    2007-01-01

    Ce-doped nanosized ZnO desulfurizer was prepared by homogeneous precipitation, and its desulfurization efficiency at ambient temperature was investigated through dynamic experiments. The results showed that the desulfurization activity of nanosized Ce-ZnO had improved greatly, compared to nanosized ZnO desulfurizer. Nanosized Ce-ZnO desulfurizer was characterized by XRD, TPD-MS, XPS, and TEM. The research results indicated that doping Ce decreased the particle size of the nanosized ZnO desulfurizer and ZnS was the principal desulfurization product. There were adsorption complexes of HS and S on the surface of desulfurizer as well. Only a small amount of vapor appeared in the tail gas on the condition of meeting the precision of desulfurization.

  13. Improved Thermoelectric Performances of SrTiO3 Ceramic Doped with Nb by Surface Modification of Nanosized Titania.

    Science.gov (United States)

    Li, Enzhu; Wang, Ning; He, Hongcai; Chen, Haijun

    2016-12-01

    Nb-doped SrTiO3 ceramics doped with the surface modification of nanosized titania was prepared via liquid phase deposition approach and subsequent sintered in an Ar atmosphere. The surface modification of nanosized titania significantly improved the ratio of the electrical conductivity to thermal conductivity of SrTiO3 ceramic doped with Nb, and has little impact on the Seebeck coefficient, thus obviously improving the dimensionless thermoelectric figure of merit (ZT value). The surface modification of nanosized titania is a much better method to lower the thermal conductivity and to enhance the electrical conductivity than the mechanical mixing process of nanosized titania. The highest ZT value of 0.33 at 900 K was obtained. The reason for the improved thermoelectric performances by the surface modification of nano-sized titania was preliminary investigated.

  14. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    Science.gov (United States)

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  15. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice

    Science.gov (United States)

    Alsulimani, Helal Hussain; Ye, Qi

    2015-01-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe-/-) and their control wild-type (Hfe+/+) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe+/+ mice, but not in Hfe-/- mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe+/+ compared with water-drinking Hfe+/+ mice. However, Mn-exposed Hfe-/- mice spent more time to find the target hole than Mn-drinking Hfe+/+ mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and other iron overload

  16. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  17. Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits.

    Science.gov (United States)

    Ghosh, Shreya; Mohanty, Sansuta; Nayak, Sanghamitra; Sukla, Lala B; Das, Alok P

    2016-03-01

    Manganese (Mn) ranks twelfth among the most exuberant metal present in the earth's crust and finds its imperative application in the manufacturing steel, chemical, tannery, glass, and battery industries. Solubilisation of Mn can be performed by several bacterial strains which are useful in developing environmental friendly solutions for mining activities. The present investigation aims to isolate and characterize Mn solubilising bacteria from low grade ores from Sanindipur Manganese mine of Sundargh district in Odisha state of India. Four morphologically distinct bacterial strains showing visible growth on Mn supplemented plates were isolated. Mn solubilising ability of the bacterial strains was assessed by visualizing the lightening of the medium appearing around the growing colonies. Three isolates were gram negative and rod shaped while the remaining one was gram positive, coccobacilli. Molecular identification of the isolates was carried out by 16S rRNA sequencing and the bacterial isolates were taxonomically classified as Bacillus anthrasis MSB 2, Acinetobacter sp. MSB 5, Lysinibacillus sp. MSB 11, and Bacillus sp. MMR-1 using BLAST algorithm. The sequences were deposited in NCBI GenBank with the accession number KP635223, KP635224, KP635225 and JQ936966, respectively. Manganese solubilisation efficiency of 40, 96, 97.5 and 48.5% were achieved by MMR-1, MSB 2, MSB 5 and MSB 11 respectively. The efficiency of Mn solubilisation is suggested with the help of a pH variation study. The results are discussed in relation to the possible mechanisms involved in Manganese solubilisation efficiency of bacterial isolates.

  18. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth...

  19. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been

  20. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been inve

  1. Growth and Chemical Composition of Pistachio Seedlings under Different Levels of Manganese in Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    T. Poorbafrani

    2016-09-01

    zinc availability were determined. Then plastic pots were filled with 5 kg of these soils. Pistachio seeds (cv Badami Zarand were placed in muslin sacks and pretreated for 24 h with Benomyl solution. The germinated seeds were planted in each pot, and each pot was irrigated with distilled water. Nitrogen and phosphorous were applied uniformly to all pots at the rate of 50 mg kg−1 soil as ammonium nitrate and potassium dihydrogen phosphate forms, respectively. Zinc, iron and copper also were added to treatments at level of 5 mg kg−1 soil as zinc sulfate, iron sequestrine138 and copper sulfate. After 24 weeks, the seedlings were cut at the soil surface, and the roots were washed free of soil. Leaves, stems and roots were dried at 70 oC for 48 h in an oven. The total leaf, stem, and root dry weights were recorded. The ground plant samples were dry- ashed at 550oC, dissolved in 2 N HCl, and made to volume with hot distilled water. Plant Mn, Cu, Zn and Fe concentrations determined by atomic absorption spectrophotometry. All data were statistically analyzed according to the technique of analysis variance (ANOVA by MSTATC. Results and Discussion: Results indicated that the application of manganese increased leaf, stem and root dry weight of pistachio seedlings so that the maximum amount of the dry weight of roots stems and leaves of pistachio seedlings were observed at 10 mg Mn kg-1soil. Application of 10 mg Mn kg-1 soil increased leaf, stem and root dry weight by 19.2%, 25.2% and 23.9% in comparison to control, respectively. Chemical composition (concentration and uptake of shoot of pistachio seedlings was also affected by Mn application. Mn application decreased the concentration and uptake of iron, concentrations of copper and zinc in Pistachio seedling shoots so that the highest concentrations of these elements were observed in control treatment. Reductions in concentrations of zinc and copper elements in 10 mg Mn kg-1 treatment were not statistically significant but

  2. Magnetic properties of cobalt and manganese doped ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, G.; Pinna, N. [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Zitoun, D. [LAMMI, Institut Charles Gerhardt, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier (France)

    2007-01-15

    The study focuses on synthesis and characterization of transition-metal doped zinc oxide (Zn{sub 1-x}M{sub x}O), which has been theoretically predicted to be ferromagnetic at room temperature. Although this system has been under experimental study for some time, the vast majority of research conducted on this material has been done on bulk crystals or thin films. There are very few reports on the fabrication of one-dimensional nanostructures of Zn{sub 1-x}M{sub x}O, and all of these syntheses employ high-temperature, vapor-phase methods. While this approach has proven quite effective for the production of a multitude of nanoscale semiconductors, gas-phase synthesis have considerable limits on nanowire yield and reaction scalability. We present the synthesis and characterization of cobalt- or manganese-doped zinc oxide (Zn{sub 1-x}Co{sub x}O and Zn{sub 1-x}Mn {sub x}O) nanowires grown from a solution phase synthesis. The article reports the structural and magnetic characterization of the nanowires, the effect of annealing on secondary phase precipitation and on magnetic properties. The dopant concentration was determined by EDX (Energy Dispersive X-ray) spectroscopy, the dopant distribution by EDX and EPR (Electron Paramagnetic Resonance). (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Jacek Wojnarowicz

    2016-05-01

    Full Text Available Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1−xMnxO ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA, phase purity (XRD, lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1−xMnxO was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1−xMnxO particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.

  4. Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2017-10-01

    Zinc (Zn) recovery from alkaline and zinc-carbon (Zn-C) battery waste were studied by a laboratory scale pyrolysis process at a reaction temperature of 950°C for 15-60min residence time using 5%H2(g)-N2(g) mixture at 1.0L/min gas flow rate. The effect of different cooling rates on the properties of pyrolysis residue, manganese oxide particles, were also investigated. Morphological and structural characterization of the produced Zn particles were performed. The battery black mass was characterized with respect to the properties and chemical composition of the waste battery particles. The thermodynamics of the pyrolysis process was studied using the HSC Chemistry 5.11 software. A hydrogen reduction reaction of the battery black mass (washed with Milli-Q water) takes place at the chosen temperature and makes it possible to produce fine Zn particles by rapid condensation following the evaporation of Zn from the pyrolysis batch. The amount of Zn that can be separated from the black mass increases by extending the residence time. Recovery of 99.8% of the Zn was achieved at 950°C for 60min residence time using 1.0L/min gas flow rate. The pyrolysis residue contains MnO and Mn2O3 compounds, and the oxidation state of manganese can be controlled by cooling rate and atmosphere. The Zn particles exhibit spherical and hexagonal particle morphology with a particle size varying between 200nm and 3µm. However the particles were formed by aggregation of nanoparticles which are primarily nucleated from the gas phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae.

    Science.gov (United States)

    Fisher, Carolyn R; Wyckoff, Elizabeth E; Peng, Eric D; Payne, Shelley M

    2016-10-15

    Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly conserved among Vibrio spp. An mneA mutant exhibited sensitivity to manganese but not to other cations. Under high-manganese conditions, the mneA mutant showed an almost 50-fold increase in intracellular manganese levels and reduced intracellular iron relative to those of its wild-type parent, suggesting that the mutant's manganese sensitivity is due to the accumulation of toxic levels of manganese and reduced iron. Expression of mneA suppressed the manganese-sensitive phenotype of an Escherichia coli strain carrying a mutation in the nonhomologous manganese export gene, mntP, further supporting a manganese export function for V. cholerae MneA. The level of mneA mRNA was induced approximately 2.5-fold after addition of manganese to the medium, indicating regulation of this gene by manganese. This study offers the first insights into understanding manganese homeostasis in this important pathogen. Bacterial cells control intracellular metal concentrations by coordinating acquisition in metal-limited environments with export in metal-excess environments. We identified a putative manganese export protein, MneA, in Vibrio cholerae An mneA mutant was sensitive to manganese, and this effect was specific to manganese. The mneA mutant accumulated high levels of intracellular manganese with a concomitant decrease in intracellular iron levels when grown in manganese-supplemented medium. Expression of mneA in trans suppressed the manganese sensitivity of an E. coli mntP mutant. This study is the first to investigate manganese export in V. cholerae. Copyright © 2016, American Society for Microbiology

  6. Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52.

    Science.gov (United States)

    Wooten, A Lake; Aweda, Tolulope A; Lewis, Benjamin C; Gross, Rebecca B; Lapi, Suzanne E

    2017-01-01

    Manganese is essential to life, and humans typically absorb sufficient quantities of this element from a normal healthy diet; however, chronic, elevated ingestion or inhalation of manganese can be neurotoxic, potentially leading to manganism. Although imaging of large amounts of accumulated Mn(II) is possible by MRI, quantitative measurement of the biodistribution of manganese, particularly at the trace level, can be challenging. In this study, we produced the positron-emitting radionuclide 52Mn (t1/2 = 5.6 d) by proton bombardment (EpManganese is known to cross the blood-brain barrier, as confirmed in our studies following IV injection (0.86%ID/g, 1 d p.i.) and following inhalation of aerosol, (0.31%ID/g, 1 d p.i.). Uptake in salivary gland and pancreas were observed at 1 d p.i. (0.5 and 0.8%ID/g), but to a much greater degree from IV injection (6.8 and 10%ID/g). In a separate study, mice received IV injection of an imaging dose of [52Mn]MnCl2, followed by in vivo imaging by positron emission tomography (PET) and ex vivo biodistribution. The results from this study supported many of the results from the biodistribution-only studies. In this work, we have confirmed results in the literature and contributed new results for the biodistribution of inhaled radiomanganese for several organs. Our results could serve as supporting information for environmental and occupational regulations, for designing PET studies utilizing 52Mn, and/or for predicting the biodistribution of manganese-based MR contrast agents.

  7. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  8. Preparation of highly efficient manganese catalase mimics.

    Science.gov (United States)

    Triller, Michael U; Hsieh, Wen-Yuan; Pecoraro, Vincent L; Rompel, Annette; Krebs, Bernt

    2002-10-21

    The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.

  9. Toxicity of manganese metallodrugs toward Danio rerio.

    Science.gov (United States)

    Arndt, Anderson; Borella, Maria Inês; Espósito, Breno Pannia

    2014-02-01

    Manganese is an essential metal which can be neurotoxic in some instances. As Mn-based metallodrugs are ever more prevalent in clinical practice, concern regarding the toxic effects of Mn discharges to water bodies on the biota prompted us to study the physicochemical parameters of these complexes and to assess their acute toxicity toward adult Danio rerio individuals, particularly in terms of brain tissue damage. Our results show that the Mn(III)-salen acetate complex EUK108 is toxic, which can be rationalized in terms of its lipophilicity, stability and redox activity.

  10. Thermoelectric properties of higher manganese silicides

    Science.gov (United States)

    Tseng, Yu-Chih; Venkataraman, Vijay Shankar; Kee, Hae-Young

    2015-03-01

    Higher manganese silicides (HMS) are promising thermoelectric materials that may be broadly deployable because of the abundance of the constituent elements and their non-toxic nature. We study the thermoelectric properties of HMS using density functional theory calculations and tight-binding models to fit these calculations. We estimate charge carrier density and mobility, and compare with experimental data. Theoretically obtained thermal and electrical conductivities, and the Seebeck coefficients are presented. Possible scattering mechanisms and relations to figure of merit are also discussed. NSERC CREATE - HEATER Program.

  11. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  12. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  13. Zinc In CCl4 Toxicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  14. A Study of Substituted Aliphatic Sulphides on the Corrosion Behaviour of Zinc in Ammonium Chloride Solution

    Directory of Open Access Journals (Sweden)

    R. Venckatesh

    2007-01-01

    Full Text Available Sulphur containing organic compounds decreases the corrosion rate by increasing the hydrogen over potential on zinc metal due to their electron donating groups. Their inhibiting effect was found to be associated with their adsorption on the active centers of the metal. The inhibition efficiencies of some aliphatic sulphides in ammonium chloride solution have been studied by weight loss studies, polarization and impedance measurements. The effect of substituent groups is correlated with their inhibition performance. These studies due to their relevance in Zn-Manganese dry batteries assume their importance.

  15. Studies on the effects of x-ray on erythrocyte zinc and copper concentrations in rabbits after treatment with antioxidants.

    Science.gov (United States)

    Dede, S; Deger, Y; Mert, N; Kahraman, T; Alkan, M; Keles, I

    2003-04-01

    The aim of this study was to investigate the effect of supplemental antioxidant vitamins and minerals on the erythrocyte concentrations of zinc and copper in rabbits after exposure to X-rays. The animals were divided into two experimental and one control group (CG). The first group (VG) was given daily oral doses of vitamins E and C; supplemental amounts of manganese, zinc, and copper were mixed with the feed and given to the second group of experimental animals (MG). Blood samples were taken from all groups before and after 4 wk of vitamin and mineral administration and after irradiation with a total dose of 550-rad X-rays. The administration of minerals caused the most significant increases of Zn and Cu. Even after irradiation, the zinc levels in the irradiated animals were higher than in the nonirradiated vitamin-supplemented animals (pvitamins and minerals may have a protective effect against X-ray-induced damage.

  16. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  17. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full

  18. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full scal

  19. Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-11-01

    The corrugated layer structure bismuth has been successfully tailored into negative thermal expansion along c axis by size effect. Pair distribution function and extended X-ray absorption fine structure are combined to reveal the local structural distortion for nanosized bismuth. The comprehensive method to identify the local structure of nanomaterials can benefit the regulating and controlling of thermal expansion in nanodivices.

  20. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae

    NARCIS (Netherlands)

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on th

  1. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    Stormwater from urban areas contains a vast array of different pollutants, including particulate matter and organic and inorganic compounds as well as microbial pollution. These compounds can be found associated with particulate matter, colloids and nano-sized particles in stormwater. The associa......Stormwater from urban areas contains a vast array of different pollutants, including particulate matter and organic and inorganic compounds as well as microbial pollution. These compounds can be found associated with particulate matter, colloids and nano-sized particles in stormwater....... The associated pollutants will, if not removed in stormwater treatment facilities, be discharged into receiving surface waters, due to enhanced transportation exerted by the colloids and nano-sized particles. More stormwater than previously is separated from wastewater and drained to stormwater treatment.......Since little is known about the colloids and nano-sized particle-enhanced transportation of pollutants in stormwater, it has been difficult to determine their quantitative role in the total release of pollutants into receiving waters.Therefore the main purpose of this thesis has been to document the presence...

  2. Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process

    Institute of Scientific and Technical Information of China (English)

    Huaping ZHU; Hao LI; Huiyu SONG; Shijun LIAO

    2009-01-01

    Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.

  3. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae

    NARCIS (Netherlands)

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on

  4. Nano-sized aerosol classification, collection and analysis--method development using dental composite materials.

    Science.gov (United States)

    Bogdan, Axel; Buckett, Mary I; Japuntich, Daniel A

    2014-01-01

    This article presents a methodical approach for generating, collecting, and analyzing nano-size (1-100 nm) aerosol from abraded dental composite materials. Existing aerosol sampling instruments were combined with a custom-made sampling chamber to create and sample a fresh, steady-state aerosol size distribution before significant Brownian coagulation. Morphological, size, and compositional information was obtained by Transmission Electron Microscopy (TEM). To create samples sizes suitable for TEM analysis, aerosol concentrations in the test chamber had to be much higher than one would typically expect in a dental office, and therefore, these results do not represent patient or dental personnel exposures. Results show that nano-size aerosol was produced by the dental drill alone, with and without cooling water drip, prior to abrasion of dental composite. During abrasion, aerosol generation seemed independent of the percent filler load of the restorative material and the operator who generated the test aerosol. TEM investigation showed that "chunks" of filler and resin were generated in the nano-size range; however, free nano-size filler particles were not observed. The majority of observed particles consisted of oil droplets, ash, and graphitic structures.

  5. A top-down methodology for ultrafast tuning of nanosized zeolites.

    Science.gov (United States)

    Liu, Zhendong; Nomura, Naoki; Nishioka, Daisuke; Hotta, Yuusuke; Matsuo, Takeshi; Oshima, Kazunori; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Kohara, Shinji; Takewaki, Takahiko; Okubo, Tatsuya; Wakihara, Toru

    2015-08-14

    We herein present a top-down methodology to prepare nanosized zeolites with tunable size by combining post-synthesis milling and fast recrystallization of several minutes (10 min for SSZ-13 and 5 min for AlPO4-5). A continuous-flow recrystallization process is demonstrated to further enhance the overall product efficiency.

  6. Irradiation Initiated Grafting of Poly(butyl acrylate) onto Nano-sized Calcium Carbonate Particles

    Institute of Scientific and Technical Information of China (English)

    Chuan Guo MA; Min Zhi RONG; Ming Qiu ZHANG

    2005-01-01

    The present work reports the irradiation induced grafting polymerization onto nano-sized CaCO3 particles, mainly focusing on the effects of pretreatment with silane coupling agent. It is proved that poly(butyl acrylate) can be grafted onto the nanoparticles using the technical route suggested by the authors, and the silane treatment of the nanoparticles promotes the grafting polymerization.

  7. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Seong Hak; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    In this work, hydrogen production from glycerol by aqueous phase reforming (APR) is studied by using nanosize Ni-Cu catalysts supported on LaAlO3 perovskite in order to investigate the effects of the copper loading amount and the reaction conditions. Nanosize copper-promoted nickel-based catalysts were prepared by the precipitation method. The structure of the nanosize catalysts is characterized by XRD analysis. The surface area, morphology, dispersion and reducibility of the nanosize catalysts is examined by BET, TEM and TPR, respectively. It was found that 15Ni-5Cu/LaAlO3 catalyst showed the highest glycerol conversion and hydrogen selectivity. The highest activity found in the 15Ni-5Cu/LaAlO3 was attributed to it having the proper copper loading amount. It also has the lowest metal crystal size and the highest surface area, which have an effect on the catalytic activity and hydrogen selectivity. The 15Ni-5Cu/LaAlO3 catalyst showed the best performance for hydrogen production at a reaction temperature of 250 degrees C, a reaction pressure of 20 bar and a feed rate of 5 ml/h.

  8. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  9. NANOSIZE TITANIA STIMULATES REACTIVE OXYGEN SPECIES IN BRAIN MICROGLIA AND DAMAGES NEURONS.

    Science.gov (United States)

    Research that addresses the environmental impact and biological consequences of widely distributed, commonly used nanoparticles is needed. Nanosize titanium dioxide (i.e., titania, TiO2) is used in air and water remediation and in numerous products designed for direct human us...

  10. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  11. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  13. Zinc supplementation for tinnitus.

    Science.gov (United States)

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R

    2016-11-23

    Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement

  14. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  15. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  16. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  17. Recovery of manganese and zinc from waste Zn-C cell powder: Characterization and leaching.

    Science.gov (United States)

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L; Hossain, Mohammad N

    2015-12-01

    A large number of waste Zn-C cells (Haquebrand) were broken down and collected as agglomerated powder. This powder was sun-dried, dry-ground and sieved down to 300 mesh size and stored. The sample was analysed and found to contain (35.4 ± 0.2)% Mn, (11.0 ± 0.1)% Zn and ∼ 2.5% Fe as major metallic constituents. The phases, ZnMn2O4 and Zn(ClO4)2 · 2H2O or MnO(OH) were identified in the hot water washed sample. The material was found to be leached effectively by a 2 mol/L sulfuric acid solution containing glucose (2g/L). However, the dissolution was dependent on (S/L) ratio; and the stage-wise leaching was not fruitful for Mn-dissolution. On leaching 5 g of powder (recovered corresponding to cent percent dissolutions of Zn and Mn and 80% dissolution of Fe.

  18. Ultrafine grained high density manganese zinc ferrite produced using polyol process assisted by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Gaudisson, T.; Beji, Z.; Herbst, F.; Nowak, S. [ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75205 Paris (France); Ammar, S., E-mail: ammarmer@univ-paris-diderot.fr [ITODYS, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75205 Paris (France); Valenzuela, R. [D2MC, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico (Mexico)

    2015-08-01

    We report the synthesis of Mn–Zn ferrite (MZFO) nanoparticles (NPs) by the polyol process and their consolidation by Spark Plasma Sintering (SPS) technique at relatively low temperature and short time, namely 500 °C for 10 min. NPs were obtained as perfectly epitaxied aggregated nanoclusters forming a kind of spherical pseudo-single-crystals of about 40 nm in size. The results on NPs consolidation by SPS underlined the importance of this clustering on the grain growth mechanism. Grain growth proceeds by coalescing nanocrystalline aggregates into single grain of almost the same average size, thus leading to a high density ceramic. Due to magnetic exchange interactions between grains, the produced ceramic does not exhibit thermal relaxation whereas their precursor polyol-made NPs are superparamagnetic. - Highlights: • Textured Mn–Zn ferrite nano-aggregates were produced in polyol. • Dense ceramic was obtained by SPS starting from these particles at 500 °C for 10 min. • The grain growth was driven by coalescence leading to nanometer-sized grains. • The 300 K-magnetic properties of the ceramic are typical of a soft magnet. • Its magnetization is very close to that of bulk despite its ultrafine grain size.

  19. Effect of Sintering Conditions on Structure of Manganese Zinc Ferrite Powders

    Institute of Scientific and Technical Information of China (English)

    DONG Li-min; HAN Zhi-dong; WU Ze; ZHANG Xian-you

    2006-01-01

    The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on two factors: the pre-sintering treatment and the calcining time. The results show that the sintering conditions have significant effects on the structures and the particle size of the Mn-Zn ferrites. Compared with the products without pre-sintering, those pre-sintered at 500 ℃ have a single phase and no diffraction peaks of Fe2O3 that could be found. The effects of the pre-sintering temperature on the structures of the ferrites were also studied. As a result, 500 ℃ proves to be the favorite in the pre-sintering treatment. The XRD patterns of the ferrites calcined at 1 200 ℃ for 6 h will present diffraction peaks of pure crystallization of spinel phase while those for 2 h or 4 h will show peaks of Fe2O3. The SEM also bears witness to well-grown grains of pure Mn-Zn ferrites if calcined for 6 hours.

  20. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    caleb

    implied that heavy metals have toxic effects and plasma electrolyte is a useful tool for early detection and diagnosis of ... essential metals, such as arsenic (As), mercury (Hg), cadmium (Cd) and ... underlying electrolyte imbalances can prevent.