WorldWideScience

Sample records for nanosized alumina coated

  1. Mechanical Properties of Plasma Sprayed Alumina Coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Nohava, Jiří; Siegel, J.

    2003-01-01

    Roč. 48, č. 2 (2003), s. 129-145 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprayed alumina coatings, fatigue test, metalography, fractography, residual stress, microhardness, Young's modulus , four-point bending Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  3. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  4. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  5. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  6. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  7. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

    Science.gov (United States)

    Fernandez, Ruben; Jodoin, Bertrand

    2018-04-01

    Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

  8. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  9. Laser-induced reaction alumina coating on ceramic composite

    Science.gov (United States)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  10. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  11. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  12. Performance improvement by alumina coatings on Y

    NARCIS (Netherlands)

    Zhou, Z.; Zhou, Nan; Lu, Xiangyang; ten Kate, O.M.; Valdesueiro Gonzalez, D.; van Ommen, J.R.; Hintzen, H.T.J.M.

    2016-01-01

    To improve the thermal stability, Al2O3 has been successfully coated on a Y3Al5O12:Ce3+ (YAG:Ce) phosphor powder host by using the Atomic Layer Deposition (ALD) approach in a fluidized bed reactor. Transmission Electron Microscopy

  13. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  14. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  15. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating

    International Nuclear Information System (INIS)

    Zhou Minjie; Zeng Zhenou; Zhong Li

    2009-01-01

    Nano-sized TiO 2 /WO 3 bilayer coatings were prepared on type 304 stainless steel substrate by sol-gel method. The performance of photo-electrochemical and photogenerated cathode protection of the coating was investigated by the electrochemical method. The results show that the bilayer coating with four TiO 2 layers and three WO 3 layers exhibits the highest photo-electrochemical efficiency and the best corrosion resistance property. Type 304 stainless steel with the coating can maintain cathode protection for 6 h in the dark after irradiation by UV illumination for 1 h. In addition, the mechanism of the photogenerated cathode protection for the bilayer coating was also explored.

  16. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  17. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  18. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  19. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  20. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    Science.gov (United States)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  1. Diffusion of Cr, Fe, and Ti ions from Ni-base alloy Inconel-718 into a transition alumina coating

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, M., E-mail: martin.dressler@bam.de; Nofz, M.; Doerfel, I.; Saliwan-Neumann, R.

    2012-04-30

    Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV-vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 Degree-Sign C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. - Highlights: Black-Right-Pointing-Pointer We investigated the diffusion of Cr into alumina coatings applied on IN-718. Black-Right-Pointing-Pointer The ingress of Cr led to the formation of mixed alumina/chromium coatings. Black-Right-Pointing-Pointer The mass gain of mixed alumina/chromium coatings was compared to uncoated IN-718. Black-Right-Pointing-Pointer The mixed alumina/chromium coatings improved the oxidation resistance of IN-718.

  2. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  3. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  4. ZIF-8 Membranes with Improved Reproducibility Fabricated from Sputter-Coated ZnO/Alumina Supports

    KAUST Repository

    Yu, Jian; Pan, Yichang; Wang, Chongqing; Lai, Zhiping

    2015-01-01

    for reproducible fabrication of high-quality membranes. In this study, high-quality ZIF-8 membranes were prepared through hydrothermal synthesis under the partial self-conversion of sputter-coated ZnO layer on porous α-alumina supports. The reproducibility

  5. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  6. Alumina Coating To Realize Desired Pore Characteristics Of Sintered Diatomite Membrane

    Directory of Open Access Journals (Sweden)

    Ha J.-H.

    2015-06-01

    Full Text Available Porous ceramic membranes prepared from natural materials such as diatomite, have lately attracted great interest in industrial applications due to their cost-effectiveness. In this study, we attempted to prepare an alumina coating to be deposited over a sintered diatomite-kaolin composite support layer in order to reduce the largest pore size to below 0.4 μm; such a coating could be potentially used in water treatment applications for bacterial removal.

  7. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    gold-coated NAA is strongly quenched due to the strong plasmonic coupling. Keywords. Plasmon ... When coated by a thin film of gold, these templates can support surface plasmon resonance. ... 2.2 Equipment for characterization. Surface ...

  8. Lithium battery electrodes with ultra-thin alumina coatings

    Science.gov (United States)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  9. Formation of alumina-aluminide coatings on ferritic-martensitic T91 steel

    Directory of Open Access Journals (Sweden)

    Choudhary R.K.

    2014-01-01

    Full Text Available In this work, alumina-aluminide coatings were formed on ferritic-martensitic T91 steel substrate. First, coatings of aluminum were deposited electrochemically on T91 steel in a room temperature AlCl3-1-ethyl-3-methyl imidazolium chloride ionic liquid, then the obtained coating was subjected to a two stage heat treatment procedure consisting of prolonged heat treatment of the sample in vacuum at 300 ○C followed by oxidative heat treatment in air at 650 ○C for 16 hours. X-ray diffraction measurement of the oxidatively heat treated samples indicated formation of Fe-Al and Cr-Al intermetallics and presence of amorphous alumina. Energy dispersive X-ray spectroscopy measurement confirmed 50 wt- % O in the oxidized coating. Microscratch adhesion test conducted on alumina-aluminide coating formed on T91 steel substrate showed no major adhesive detachment up to 20 N loads. However, adhesive failure was observed at a few discrete points on the coating along the scratch track.

  10. Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina

    Science.gov (United States)

    2012-05-17

    made nanoporous alumina membranes, which were created by means of anodic oxidation of aluminum in an oxalic acid electrolyte, for treatment of skin...this study. All of the solutions were prepared using 18 M de-ionized water (lab supply) and trace metal grade nitric acid (Thermo Fisher Scientific...low production cost, repro- ducible reproduction, and facile reproduction approach for these materials. Using in vitro studies, keratinocytes (HaCaT

  11. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    International Nuclear Information System (INIS)

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  12. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  13. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  14. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    A mechanical as well as metallurgical bonding is necessary. 3. Applications ... Here the feasibility of using metallic components that were plasma spray- ... To study the electrical insulation, integrity of ceramic coating etc, tests were carried out.

  15. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  16. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  17. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  18. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    International Nuclear Information System (INIS)

    Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz

    2014-01-01

    Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix

  19. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  20. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  1. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  2. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  3. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  4. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  5. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  6. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  7. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbel, Halima Feki, E-mail: ghorbel.halima@yahoo.fr [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Guidara, Awatef [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Danlos, Yoan [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France); Bouaziz, Jamel [LCI, Ecole Nationale d' Ingénieurs de Sfax “ENIS”, Soukra 1173-3038, Sfax (Tunisia); Coddet, Christian [LERMPS, Université de Technologie de Belfort-Montbeliard “UTBM”, Belfort 90010 (France)

    2017-02-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al{sub 2}O{sub 3}/Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al{sub 2}O{sub 3} and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates.

  8. Alumina-fluorapatite composite coating deposited by atmospheric plasma spraying: An agent of cohesion between bone and prostheses

    International Nuclear Information System (INIS)

    Ghorbel, Halima Feki; Guidara, Awatef; Danlos, Yoan; Bouaziz, Jamel; Coddet, Christian

    2017-01-01

    In order to remedy the poor biological and tribological properties of 316 L stainless steel (SS), plasma sprayed bio-ceramic coatings have been widely investigated. In the present study, a small amount of fluorapatite (Fap) was introduced into alumina in order to enhance its bioactivity. The powder feedstock was sprayed on 316 L substrate by Atmospheric Plasma Spraying (APS) technology. The roughness profiles and average roughness values were determined using 3D profilometry. The cross sectional morphologies of the coatings were examined by scanning electron microscopy (SEM). Adhesive strength, micro-hardness and tribological properties were also examined. Experimental results revealed that Al 2 O 3 /Fap coating showed a good microhardness property revealing that the calcium aluminates were quite effective in improving the Fap mechanical behavior. The tribological characteristics of both alumina and alumina-Fap coating were also compared to those of classical hydroxyapatite (Hap) coatings as reported in the literature. The main finding of this work was that Fap coating can contribute to the cohesion between bone and prostheses and thus ensure a more durable and reliable prostheses. - Highlights: • This research addresses tissue engineering and novel biomaterials consisting of combination of Al 2 O 3 and Fap. • The addition of Fap to alumina results in higher coating porosity, which may be beneficial for the mechanical fixture by bone ingrowth. • Adhesion strength of the alumina ceramic coating is improved by the Fap addition • The presence of CaO in the synthesized Fap may help in improving the mechanical resistance through to formation of the calcium aluminates

  9. ZIF-8 Membranes with Improved Reproducibility Fabricated from Sputter-Coated ZnO/Alumina Supports

    KAUST Repository

    Yu, Jian

    2015-11-10

    Zeolitic imidazolate framework-8 (ZIF-8) membrane has shown great potential for propylene/propane separation based on molecular sieving mechanism. Although diverse synthesis strategies were applied to prepare ZIF-8 membranes, it is still a challenge for reproducible fabrication of high-quality membranes. In this study, high-quality ZIF-8 membranes were prepared through hydrothermal synthesis under the partial self-conversion of sputter-coated ZnO layer on porous α-alumina supports. The reproducibility was significantly improved, compared with that from sol-gel coated ZnO layer, due to the highly controllable sputtering deposition of ZnO precursor. The relationship between the quality of as-synthesized membrane and amount of deposited ZnO was also determined. The effect of pressure drop in C3H6/C3H8 separation on separating performance was also examined.

  10. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  11. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  12. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    Science.gov (United States)

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  13. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  14. Investigation of Dip-Coating Parameters Effect on The Performance of Alumina-Polydimethylsiloxane Nanofiltration Membranes for Desalination

    OpenAIRE

    Mohammad Hadi Yousefi; Mohamad Mehdi Zerafat; Majid Shokri Doodeji; Samad Sabbaghi

    2017-01-01

    The objective of this work is to investigate the effect of dip-coating parameters on the performance of Alumina-PDMS hybrid nanofiltration membranes for water desalination. Ceramic supports used in this work were prepared with a 340 nm average pore size and 34% total porosity. The aim is to determine optimum conditions of dipping time, PDMS concentration, and withdrawal speed in order to achieve high rejection and flux values. Dip-coating parameters were considered as dipping time (60 - 120 s...

  15. Matrix coatings based on anodic alumina with carbon nanostructures in the pores

    Science.gov (United States)

    Gorokh, G. G.; Pashechko, M. I.; Borc, J. T.; Lozovenko, A. A.; Kashko, I. A.; Latos, A. I.

    2018-03-01

    The nanoporous anodic alumina matrixes thickness of 1.5 mm and pore sizes of 45, 90 and 145 nm were formed on Si substrates. The tubular carbon nanostructures were synthesized into the matrixes pores by pyrolysis of fluid hydrocarbon xylene with 1% ferrocene. The structure and composition of the matrix coatings were examined by scanning electron microscopy, Auger analysis and Raman spectroscopy. The carbon nanostructures completely filled the pores of templates and uniformly covered the tops. The structure of carbon nanostructures corresponded to the structure of multiwall carbon nanotubes. Investigations of mechanical and tribological properties of nanostructured oxide-carbon composite performed by scratching and nanoindentation showed nonlinear dependencies of the frictional force, penetration depth of the cantilever, hardness and plane strain modulus on the load. It was found that the microhardness of the samples increases with reduced of alumina pore diameter, and the penetration depth of the cantilever into the film grows with carbon nanostructures size. The results showed the high mechanical strength of nanostructured oxide-carbon composite.

  16. Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating

    Directory of Open Access Journals (Sweden)

    Junbiao Peng

    2017-11-01

    Full Text Available In this paper, an alumina-zirconia (Al2O3-ZrO2 nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al2O3/ZrO2 in nanolaminates: when the content of Al2O3 was higher than 50%, the properties of nanolaminates, such as the optical energy gap, dielectric strength (Vds, capacitance density, and relative permittivity were relatively stable, while the change of these properties became larger when the content of Al2O3 was less than 50%. With the content of ZrO2 varying from 50% to 100%, the variation of these properties was up to 0.482 eV, 2.12 MV/cm, 135.35 nF/cm2, and 11.64, respectively. Furthermore, it was demonstrated that the dielectric strength of nanolaminates were influenced significantly by the number (n of bilayers. Every increment of one Al2O3-ZrO2 bilayer will enhance the dielectric strength by around 0.39 MV/cm (Vds ≈ 0.86 + 0.39n. This could be contributed to the amorphous alumina which interrupted the grain boundaries of zirconia.

  17. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  18. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  19. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  20. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  1. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Nandakumar, Anandkumar; Roqan, Iman S.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2012-01-01

    amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating

  2. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts

    International Nuclear Information System (INIS)

    Li, R.M.; Joshi, Sunil C.; Ng, H.W.

    2006-01-01

    Spacecraft thermal control materials (TCMs) play a vital role in the entire service life of a spacecraft . Most of the conventional TCMs degrade in the harmful space environment . In the previous study, plasma sprayed alumina (PSA) coating was established as a new and better TCM for spacecrafts, in view of its stability and reliability compared to the traditional TCMs . During the investigation, the surface roughness of PSA was found important, because the roughness affects the radiative heat exchange between the surface and its surroundings. Parameters such as root-mean-square roughness cannot properly evaluate surface roughness effects on radiative properties of opaque surfaces . Some models have been developed earlier to predict the effects, such as Davies' model , Tang and Buckius's statistical geometric optics model . However, they are valid only in their own specific situations. In this paper, an energy absorption geometry model was developed and applied to investigate the roughness effects with the help of 2D surface profile of PSA coated substrate scanned at micron level. This model predicts effective normal solar absorptance (α ne ) and effective hemispherical infrared emittance (ε he ) of a rough PSA surface. These values, if used in the heat transfer analysis of an equivalent, smooth and optically flat surface, lead to the prediction of the same rate of heat exchange and temperature as that of for the rough PSA surface. The model was validated through comparison between a smooth and a rough PSA coated surfaces. Even though not tested for other types of materials, the model formulation is generic and can be used to incorporate the rough surface effects for other types of thermal coatings, provided the baseline values of normal solar absorptance (α n ) and hemispherical infrared emittance (ε h ) are available for a generic surface of the same material

  3. Obtain ceramic porous alumina-zirconia by replica method calcium phosphate coated

    International Nuclear Information System (INIS)

    Silva, A.D.R.; Rigoli, W.R.; Osiro, Denise; Pallone, E.M.J.A.

    2016-01-01

    Biomaterials used in bone replacement, including porous bioceramics, are often used as support structure for bone formation and repair. The porous bioceramics are used because present features as biocompatibility, high porosity and pore morphology that confer adequate mechanical strength and induce bone growth. In this work were obtained porous specimens of alumina containing 5% by inclusion of volume of zirconia produced by the replica method. The porous specimens had its surface chemically treated with phosphoric acid and were coated with calcium phosphate. The coating was performed using the biomimetic method during 14 days and an initial pH of 6.1. The porous specimens were characterized using the follow techniques: porosity, axial compression tests, microtomography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and pH measurements SBF solution. The results showed specimens with suitable pore morphology for application as biomaterial, and even a reduced time of incubation favored the calcium phosphate phases formation on the material surfaces. (author)

  4. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2016-12-01

    Full Text Available This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB particles in combination with nanofibrillated cellulose (NFC and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°–122° and 129°–144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP were synthesized by an oil-in-water emulsion (o/w solvent evaporation method and mixed in aqueous suspensions with 0–7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°–152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity.

  5. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers.

    Science.gov (United States)

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-12-30

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°-122° and 129°-144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0-7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°-152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity.

  6. Synthesis of Polyhydroxybutyrate Particles with Micro-to-Nanosized Structures and Application as Protective Coating for Packaging Papers

    Science.gov (United States)

    Rastogi, Vibhore Kumar; Samyn, Pieter

    2016-01-01

    This study reports on the development of bio-based hydrophobic coatings for packaging papers through deposition of polyhydroxybutyrate (PHB) particles in combination with nanofibrillated cellulose (NFC) and plant wax. In the first approach, PHB particles in the micrometer range (PHB-MP) were prepared through a phase-separation technique providing internally-nanosized structures. The particles were transferred as a coating by dip-coating filter papers in the particle suspension, followed by sizing with a carnauba wax solution. This approach allowed partial to almost full surface coverage of PHB-MP over the paper surface, resulting in static water contact angles of 105°–122° and 129°–144° after additional wax coating. In the second approach, PHB particles with submicron sizes (PHB-SP) were synthesized by an oil-in-water emulsion (o/w) solvent evaporation method and mixed in aqueous suspensions with 0–7 wt % NFC. After dip-coating filter papers in PHB-SP/NFC suspensions and sizing with a carnauba wax solution, static water contact angles of 112°–152° were obtained. The intrinsic properties of the particles were analyzed by scanning electron microscopy, thermal analysis and infrared spectroscopy, indicating higher crystallinity for PHB-SP than PHB-MP. The chemical interactions between the more amorphous PHB-MP particles and paper fibers were identified as an esterification reaction, while the morphology of the NFC fibrillar network was playing a key role as the binding agent in the retention of more crystalline PHB-SP at the paper surface, hence contributing to higher hydrophobicity. PMID:28336839

  7. PVD-Alumina Coatings on Cemented Carbide Cutting Tools: A Study About the Effect on Friction and Adhesion Mechanism

    Directory of Open Access Journals (Sweden)

    S.E. Cordes

    2012-03-01

    Full Text Available Crystalline PVD γ-alumina coatings are interesting for machining operations due to their outstanding characteristics, such as high hot hardness, high thermal stability and low tendency to adhesion. In the present work (Ti,AlN/γ-Al2O3-coatings are deposited on cemented carbide by means of MSIP. Objectives of this work are to study the effects of coating and cutting fluid regarding friction in tribological tests and to study the wear mechanisms and cutting performance of γ-Al2O3-based coated cemented carbide cutting tools in machining operations of austenitic stainless steels. Based on the remarkable properties of the coating system the performance of the cutting tools is increasing significantly.

  8. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  9. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  10. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  11. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  12. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  13. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  14. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  15. Effect of Kaolin Clay and Alumina on Thermal Performance and Char Morphology of Intumescent fire retardant coating

    Directory of Open Access Journals (Sweden)

    aziz Hammad

    2014-07-01

    Full Text Available Intumescent fire retardant coating (IFRC have been developed by using ammonium polyphosphate, expandable graphite, melamine, boric acid, kaolin clay and alumina as fillers bound together with epoxy resin and cured with the help of curing agent. Five different formulations were developed with and without using fillers. Cured samples were burned in furnace at 500°C for 2h for char expansion. Bunsen burner test was performed for 1h using UL-94 vertical burning test to investigate the thermal performance of IFRC. The resultant char obtained after burning of coated samples were characterized by using field emission scanning electron microscopy for char morphology. Char composition was analyzed by using fourier transform infrared spectroscopy. Thermogravimetric analysis was carried out to investigate the residual weight of coating. Results showed that formulation with 0.5 weight % of kaolin clay and 0.5 weight % of alumina provide best thermal performance, uniform and multi-porous char structure with high anti-oxidation property.

  16. Dataset on experimental investigation of gum arabic coated alumina nanoparticles for enhanced recovery of nigerian medium crude oil.

    Science.gov (United States)

    Orodu, Oyinkepreye D; Orodu, Kale B; Afolabi, Richard O; Dafe, Eboh A

    2018-08-01

    The dataset in this article are related to an experimental Enhanced Oil Recovery (EOR) scheme involving the use of dispersions containing Gum Arabic coated Alumina Nanoparticles (GCNPs) for Nigerian medium crude oil. The result contained in the dataset showed a 7.18% (5 wt% GCNPs), 7.81% (5 wt% GCNPs), and 5.61% (3 wt% GCNPs) improvement in the recovery oil beyond the water flooding stage for core samples A, B, and C respectively. Also, the improvement in recovery of the medium crude oil by the GCNPs dispersions when compared to Gum Arabic polymer flooding was evident in the dataset.

  17. Prediction and optimization of process variables to maximize the Young's modulus of plasma sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2017-03-01

    Full Text Available Like other manufacturing techniques, plasma spraying has also a non-linear behavior because of the contribution of many coating variables. This characteristic results in finding optimal factor combination difficult. Subsequently, the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data. Plasma spray parameters such as power, stand-off distance and powder feed rate have significant influence on coating characteristics like Young's modulus. This paper presents the use of statistical techniques in specifically response surface methodology (RSM, analysis of variance, and regression analysis to develop empirical relationship to predict Young's modulus of plasma-sprayed alumina coatings. The developed empirical relationships can be effectively used to predict Young's modulus of plasma-sprayed alumina coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young's modulus in alumina coatings. A linear regression relationship was established between porosity and Young's modulus of the alumina coatings.

  18. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan. A study in mice

    Directory of Open Access Journals (Sweden)

    Vibenholt Anni

    2010-06-01

    Full Text Available Abstract Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181. Methods Time-mated mice (C57BL/6BomTac were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2 with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test. Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  19. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens J; Löschner, Katrin; Larsen, Erik H; Birkedal, Renie K; Vibenholt, Anni; Boisen, Anne-Mette Z; Wallin, Håkan; Vogel, Ulla

    2010-06-14

    Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  20. Investigation of Dip-Coating Parameters Effect on The Performance of Alumina-Polydimethylsiloxane Nanofiltration Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Yousefi

    2017-10-01

    Full Text Available The objective of this work is to investigate the effect of dip-coating parameters on the performance of Alumina-PDMS hybrid nanofiltration membranes for water desalination. Ceramic supports used in this work were prepared with a 340 nm average pore size and 34% total porosity. The aim is to determine optimum conditions of dipping time, PDMS concentration, and withdrawal speed in order to achieve high rejection and flux values. Dip-coating parameters were considered as dipping time (60 - 120 s, withdrawal speed (5 - 15 mm/s and PDMS concentration (10 - 20 wt. %. Hybrid membranes were characterized using FE-SEM and FTIR analysis techniques. Pure water flux and salt rejection were also measured to evaluate the rejection performance. Alumina-PDMS hybrid nanofiltration membranes fabricated with dipping time = 120 s, withdrawal speed = 15 mm/s and 10 wt. % PDMS exhibited the best performance giving 30.5% rejection for NaCl and 53.8% for Na2SO4.

  1. Dispersion of γ-Alumina Nano-Sized Spherical Particles in a Calamitic Liquid Crystal. Study and Optimization of the Confinement Effects

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel

    2014-01-01

    We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528

  2. Influence of a sol–gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W., E-mail: wencke.schulz@bam.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Feigl, M. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Fügetechnik Berlin-Brandenburg GmbH, Kupferhammerweg 14-18, 16227 Eberswalde (Germany); Dörfel, I.; Nofz, M.; Kranzmann, A. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-07-31

    The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al{sub 2}O{sub 3} based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm{sup 2}) were detected. The sol–gel alumina layer (mainly δ-Al{sub 2}O{sub 3}) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm{sup 2}). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 μm–30 μm) in the coating led to the formation of iron-oxide islands. - Highlights: • Power plant steel X20 was coated with alumina by sol–gel method. • A 400 nm alumina layer provides good protection up to 650 °C. • Cr and Mn diffusion into Al{sub 2}O{sub 3} supports coating adhesion and protective ability. • Improvement of the coating process must be directed to avoidance of local defects.

  3. Influence of a sol–gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C

    International Nuclear Information System (INIS)

    Schulz, W.; Feigl, M.; Dörfel, I.; Nofz, M.; Kranzmann, A.

    2013-01-01

    The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al 2 O 3 based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm 2 ) were detected. The sol–gel alumina layer (mainly δ-Al 2 O 3 ) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm 2 ). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 μm–30 μm) in the coating led to the formation of iron-oxide islands. - Highlights: • Power plant steel X20 was coated with alumina by sol–gel method. • A 400 nm alumina layer provides good protection up to 650 °C. • Cr and Mn diffusion into Al 2 O 3 supports coating adhesion and protective ability. • Improvement of the coating process must be directed to avoidance of local defects

  4. Preconcentration and determination of trace chromium using 1-(2-pyridylazo-2 -naphthol) immobilization on surfactant- coated alumina

    International Nuclear Information System (INIS)

    Shemirani, F.; Zamani, M

    2002-01-01

    Full text: Chromium is one of the essential elements for all vertebrates, as it appears to play a role in the metabolism of glucose and some lipids such as cholesterol. Since chromium is used widely in various industries, such as in the galvanization, steel, leather and paint industries, the resulting anthropogenic contamination of chromium is observed in the coastal sediments and seawater. Chromium in natural waters is normally present at low concentration levels, typically 0.3 - 1.0 μg/L in river water, and 0.1.5 μg/L in sea water. In many cases, the separation and preconcentration techniques are generally required to determined chromium at low concentration levels in natural waters, even when the most sensitive techniques, for instance electrothermal atomic absorption spectrometry and inductively coupled plasma-mass spectrometry (ICP - MS), are used. In the present work, the column of alumina modified with SDS and PAN was prepared in order to achieve a simple, low - cost and effective method for the improvement of the detection limit of ETAAS by preconcentration of chromium from a large volume of the aqueous through immobilization of PAN on surfactant coated alumina. The influence of P H, flow rate of sample solution and eluent, amount of eluent and effect of cationic interferences on percent recovery of chromium were studied. A concentration factor of 100 can be achieved by passing 500 ml of sample through the column. The method was applied to the determination of chromium in waste and mineral waters

  5. Composite reinforced alumina ceramics with titan and lantana for use in coating storage tanks and transport of crude oil

    International Nuclear Information System (INIS)

    Mendes, C.E.; Rego, S.A.B.C.; Oliveira, J.C.S.; Ferreira, R.A. Sanguinetti; Yadava, Y.P.

    2011-01-01

    The objective of this work is to use ceramics to improve the performance of the tanks that store and transport crude oil and which use metallic materials for their manufacture. These tanks in contact with crude oil undergo a process of degradation on their surfaces, since crude oil is a highly corrosive substance. And in turn ceramic materials have good stability in hostile environments. However, they are inherently fragile for display little plastic deformation. Therefore, the choice of a ceramic composite alumina-titania-lantana has high mechanical strength and high toughness which were produced by thermo-mechanical processing. These composites were sintered at 1350 ° C for 36 hours, and it was held Vickers hardness testing and microstructural characterization to assess their surfaces before and after the attack by crude to use such material as ceramic coating. These results will be presented at the congress. (author)

  6. Plasma-Sprayed Titania and Alumina Coatings Obtained from Feedstocks Prepared by Heterocoagulation with 1 wt.% Carbon Nanotube

    Science.gov (United States)

    Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.

    2018-05-01

    Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.

  7. A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties

    International Nuclear Information System (INIS)

    Ammar, Sh.; Ramesh, K.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K.

    2016-01-01

    Highlights: • Hybrid SiO 2 nanocomposite coatings were fabricated on mild steel. • Highest coating resistance were exhibited by coatings with 3 wt.% SiO 2 nanoparticles. • Long-term stability measurement, together with hydrophobic surface measurements, were obtained. - Abstract: The influence of SiO 2 nanoparticles on hydrophobicity and the corrosion protection capabilities of hybrid acrylic-silicone polymeric matrix have been investigated. Contact angle measurements (CA), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX) were used to study the hydrophobicity, morphology, and topography of the coatings. In addition, electrochemical impedance spectroscopy (EIS) and salt spray techniques were employed to evaluate the corrosion protection performance. A coating with 3 wt.% SiO 2 , AS 3, demonstrates significant improvement in corrosion resistance with the highest measured CA of 97.3°. Morphology and topography studies clarify the influence of nano-sized SiO 2 fillers on the surface topography and demonstrated the uniform and good distribution of the embedded SiO 2 nanoparticles within the polymeric matrix.

  8. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  9. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  10. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  11. Interaction of plasma-sprayed YBa/sub y/Cu/sub 3/0/sub x/ coatings with alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Dallaire, S; Champagne, B

    1989-01-01

    Superconducting YBa/sub 2/Cu/sub 3/O/sub x/ coatings can be obtained by plasma spraying. Since the as-sprayed coatings do not have an appropriate crystalline structure and are not superconducting, a thermal treatment must be done for crystallizing them in the appropriate YBa/sub 2/Cu/sub 3/O/sub x/ phase. During heat treatment, reactions between the substrate and coating occur and in some cases, may prevent superconducting properties to be obtained. In the present study, YBa/sub 2/Cu/sub 3/O sub/x/ coatings have been deposited on alumina substrates by plasma spraying and heat treated under flowing oxygen at 950/sup 0/C for different periods of time. The modification in coating microstructure has been investigated after different heat treatments. A degradation mechanism of superconducting coatings is proposed. 14 refs., 7 figs., 2 tabs.

  12. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  13. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    International Nuclear Information System (INIS)

    Broxtermann, Mike; Jüstel, Thomas

    2016-01-01

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N_3"−) leads to a steady pH increase used for precipitation. • A UV induced Al(OH)_3 precipitation is used to craft Al_2O_3 coatings onto YPO_4:Bi. • The influence of Al_2O_3 coated onto YPO_4:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al_2O_3 coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO_4:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al_2O_3. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN_3 in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH)_3 from an Al_2(SO_4)_3 _× 18H_2O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al_2O_3 coated YPO_4:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  14. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Broxtermann, Mike, E-mail: mike.b@fh-muenster.de; Jüstel, Thomas, E-mail: tj@fh-muenster.de

    2016-08-15

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N{sub 3}{sup −}) leads to a steady pH increase used for precipitation. • A UV induced Al(OH){sub 3} precipitation is used to craft Al{sub 2}O{sub 3} coatings onto YPO{sub 4}:Bi. • The influence of Al{sub 2}O{sub 3} coated onto YPO{sub 4}:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al{sub 2}O{sub 3} coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO{sub 4}:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al{sub 2}O{sub 3}. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN{sub 3} in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH){sub 3} from an Al{sub 2}(SO{sub 4}){sub 3} {sub ×} 18H{sub 2}O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al{sub 2}O{sub 3} coated YPO{sub 4}:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  15. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  16. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    International Nuclear Information System (INIS)

    Zhang Zhuomin; Wang Qingtang; Li Gongke

    2012-01-01

    Highlights: ► Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. ► NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. ► NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7–4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography–mass spectrometry (GC–MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient analytical method for the potential study of trace and small molecular

  17. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhuomin [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang Qingtang [Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002 (China); Li Gongke, E-mail: cesgkl@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-05-21

    Highlights: Black-Right-Pointing-Pointer Nanoporous array anodic alumina (NAAA) SPME coating was originally prepared. Black-Right-Pointing-Pointer NAAA SPME coating achieved excellent enrichment capability and selectivity for VOCs. Black-Right-Pointing-Pointer NAAA SPME coating can be applied for the headspace sampling of biological VOCs. - Abstract: In the study, nanoporous array anodic alumina (NAAA) prepared by a simple, rapid and stable two-step anodic oxidization method was introduced as a novel solid-phase microextraction (SPME) fiber coating. The regular nanoporous array structure and chemical composition of NAAA SPME fiber coating was characterized and validated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Compared with the commercial polydimethylsiloxane (PDMS) SPME fiber coating, NAAA SPME fiber coating achieved the higher enrichment capability (1.7-4.7 folds) for the mixed standards of volatile organic compounds (VOCs). The selectivity for volatile alcohols by NAAA SPME fiber coating demonstrated an increasing trend with the increasing polarity of alcohols caused by the gradually shortening carbon chains from 1-undecanol to 1-heptanol or the isomerization of carbon chains of some typical volatile alcohols including 2-ethyl hexanol, 1-octanol, 2-phenylethanol, 1-phenylethanol, 5-undecanol, 2-undecanol and 1-undecanol. Finally, NAAA SPME fiber coating was originally applied for the analysis of biological VOCs of Bailan flower, stinkbug and orange peel samples coupled with gas chromatography-mass spectrometry (GC-MS) detection. Thirty, twenty-seven and forty-four VOCs of Bailan flower, stinkbug and orange peel samples were sampled and identified, respectively. Moreover, the contents of trace 1-octanol and nonanal of real orange peel samples were quantified for the further method validation with satisfactory recoveries of 106.5 and 120.5%, respectively. This work proposed a sensitive, rapid, reliable and convenient

  18. Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Introduction: The development of an effective method regarding chromium removal from the environment is of great importance. Therefore, the present study aimed to examiner magnetic nanoparticles coated with alumina modified by Cetyl Trimethyl Ammonium Bromide (CTAB in the removal of Cr6+ through magnetic solid phase extraction method. Materials & Methods: At first, iron oxide nanoparticles were synthesized, coated with alumina, modified with CTAB and characterized with suitable instruments. The factors affecting the process of chromium removal were investigated, including the concentration of CTAB, the pH, the amount of nanoparticles, the sample volume, a proper eluent, the adsorption and desorption time, and the effect of interfering ions. Moreover, the chromium concentration was determined by flame atomic absorption spectrometric (FAAS technique. The adsorption isotherm, adsorption capacity, and recoverability of the adsorbent were further examined. Results: The modified magnetic nanoparticles were demonstrated to be homogeneous, spherical, with a size lower than 20 nanometer having a magnetic property. The optimal conditions for chromium removal entailed 7*10-6 mol/L concentration of CTAB, pH range of 6-8, 0.1 g of the nanoparticles, 10 mL volume of the chromium sample (5 &mug mL-1, nitric acid 2 M as a suitable eluent, 15 minutes of adsorption and desorption, and no interference of interfering ions in the process of chromium separation. The process efficiency under optimal conditions was determined to be over 95%, which this process followed the Langmuir adsorption isotherm. The adsorption capacity proved to be 23.8 mg/g. Reusing after four times of adsorbent recovering was effective in the chromium removal (80%. The method accuracy for five measurement times was 4.155% and the method’s LOD was 0.081 mg/L. Conclusion: The method enjoys the benefits of convenient preparation of the adsorbent, high selectivity, high accuracy, short process

  19. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  20. Synthesis of nano γ-alumina by the solvothermal technique

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2006-01-01

    The paper describes work done on synthesis of γ-alumina by using the solvo thermal technique. Synthesis of γ-alumina involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, a x-ray diffraction (XRD) technique was used to identify γ-alumina and the other forms of alumina. After establishing the optimum conditions for the production of a single-phase γ-alumina, characteristic study on the product was performed. An important parameter in establishing nanosized powders is their crystallite size and analysis of the γ-alumina shows that it is a nanosized powder with a size of 28 nm. Other properties analysed include morphology, surface area and particle size. (Author)

  1. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    International Nuclear Information System (INIS)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen

    2012-01-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of − 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s −1 ; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M −1 cm −2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: ► A film composed of MWCNT-ACS was used for biosensor application. ► High sensitivity and good selectivity were obtained for the detection of glucose. ► This approach is potential for fabrication of mediator-free biosensor.

  2. Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method

    Science.gov (United States)

    Jiang, Ye; Shen, Honglie; Yang, Wangyang; Zheng, Chaofan; Tang, Quntao; Yao, Hanyu; Raza, Adil; Li, Yufang; Huang, Chunlai

    2018-02-01

    In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiO x stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400-900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.

  3. Composite Coatings of Alumina-based Ceramics and Stainless Steel Manufactured by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Neufuss, Karel; Zahálka, F.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 108-114 ISSN 1392-1320 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.299, year: 2009 http://internet.ktu.lt/en/science/journals/medz/medz0-97.html#Composite_Coatings_

  4. Development of suspension plasma sprayed alumina coatings with high enthalpy plasma torch

    Czech Academy of Sciences Publication Activity Database

    Tesař, Tomáš; Mušálek, Radek; Medřický, Jan; Kotlan, Jiří; Lukáč, František; Pala, Zdeněk; Ctibor, Pavel; Chráska, Tomáš; Houdková, Š.; Rimal, V.; Curry, N.

    2017-01-01

    Roč. 325, September (2017), s. 277-288 ISSN 0257-8972 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Suspension plasma spraying * Aluminium oxide * Mechanical properties * Hardness * Adhesion * Wear resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897217306424

  5. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Jensen, Keld A.

    2010-01-01

    to a nanoparticulate UV-filter (UV-titan L181). Methods: Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring...... the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Conclusion: Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally...

  6. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hao [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Tang Liming [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: tanglm@mail.tsinghua.edu.cn; Wu Xiaomin; Dai Wantian [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Qiu Yipeng [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2007-09-15

    Nano-sized calcium carbonate (CaCO{sub 3}) particles were modified by heptadecafluorodecyl trimethoxysilane under acidic water condition. An ordinary polyacrylate prepared via radical copolymerization of methyl methacrylate, butyl acrylate, acrylic acid and {beta}-hydroxyethyl methacrylate was used as the binder to form hydrophobic coatings with the modified CaCO{sub 3}. Super hydrophobic coating with water contact angle of 155{sup o} was obtained from modified CaCO{sub 3} and the polyacrylate at their weight ratio of 8/2 by a simple procedure. Based on surface analysis by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), the super hydrophobicity can be attributed to both the surface microstructure and surface enrichment of fluoroalkyl chains. Due to a low water sliding angle, carbon black powder on super hydrophobic surface was easily removed by rolling water droplet. Furthermore, the anti-frosting performance of different surfaces was investigated, which indicated that the frost formed on superhydrophobic surface was greatly retarded compared with that on bare copper surface. The surface kept super hydrophobicity even after freezing-thawing treatment for 10 times.

  7. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating (Preprint)

    Science.gov (United States)

    2009-04-01

    with increase in p(H2O) [21,35 Janakiraman 1999, Maris- Sida 2003]. However the same effect was not especially evident for the more oxidation resistant...Tolpygo 2007, Maris- sida 2003). Crystallographically aligned surface striations and pits are also evident, presumably an artifact of the CVD...A similar but less severe effect was reported for the same coating on Rene´N5 (35 Maris- Sida , 2003), exhibiting a loss of 1 mg/cm2 in wet air

  8. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  9. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  10. Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating

    Science.gov (United States)

    Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.

    2018-03-01

    Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.

  11. Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-06-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. In this work, empirical relationships were developed to predict the porosity and corrosion rate of alumina coatings by incorporating independently controllable atmospheric plasma spray operational parameters (input power, stand-off distance and powder feed rate using response surface methodology (RSM. A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the stand-off distance appeared to be the most significant two parameters affecting the responses among the three investigated process parameters. A linear regression relationship was also established between porosity and corrosion rate of the alumina coatings. Further, sensitivity analysis was carried out and compared with the relative impact of three process parameters on porosity level and corrosion rate to verify the measurement errors on the values of the uncertainty in estimated parameters.

  12. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  13. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  14. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junbo, E-mail: Lijunbo@haust.edu.cn [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China); Wu, Wenlan [Henan University of Science and Technology, School of Medicine (China); Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China)

    2017-03-15

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB) coating gold nanoparticles (PEG-b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  15. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Science.gov (United States)

    Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan

    2017-03-01

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  16. Obtain ceramic porous alumina-zirconia by replica method calcium phosphate coated; Oobtencao de ceramicas porosas de alumina-zirconia pelo metodo da replica recobertas com fosfato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.D.R.; Rigoli, W.R.; Osiro, Denise; Pallone, E.M.J.A., E-mail: adinizrs@yahoo.com.br [Universidade de Sao Paulo (FZEA/USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Lobo, A.O. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Biomaterials used in bone replacement, including porous bioceramics, are often used as support structure for bone formation and repair. The porous bioceramics are used because present features as biocompatibility, high porosity and pore morphology that confer adequate mechanical strength and induce bone growth. In this work were obtained porous specimens of alumina containing 5% by inclusion of volume of zirconia produced by the replica method. The porous specimens had its surface chemically treated with phosphoric acid and were coated with calcium phosphate. The coating was performed using the biomimetic method during 14 days and an initial pH of 6.1. The porous specimens were characterized using the follow techniques: porosity, axial compression tests, microtomography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and pH measurements SBF solution. The results showed specimens with suitable pore morphology for application as biomaterial, and even a reduced time of incubation favored the calcium phosphate phases formation on the material surfaces. (author)

  17. Interaction of RBa sub 2 Cu sub 3 O sub x (R = Y or Nd) coatings with alumina and zirconia substrates. [YBaCuO; NdBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Champagne, B; Dallaire, S [National Research Council of Canada, Industrial Materials Research Inst., Boucherville, PQ (Canada)

    1989-12-10

    As-deposited YBa{sub 2}Cu{sub 3}O{sub x} coatings by plasma spraying are not superconducting because of their inadequate crystalline structure and low oxygen content. A post-deposition heat treatment in oxygen is required to restore the appropriate superconducting YBa{sub 2}Cu{sub 3}O{sub x} structure. During heat treatment, deterimental reactions between coatings and substrates may occur and lead to the degradation or destruction of the coating superconducting properties. In the present paper, interactions of RBa{sub 2}Cu{sub 3}O{sub x} (R = Y, Nd) coatings with alumina and zirconia substrates are examined. The modifications of the coating electrical properties and microstructure are studied using X-ray diffraction, energy dispersive X-ray analysis and resistivity measurements. Coating degradation is shown to occur by diffusion of the barium atoms out of the coating leading to the formation of Y{sub 2}BaCuO{sub 5} and CuO in yttrium-based coatings, and to the formation of nonstoichiometric Nd{sub 1+y}Ba{sub 2-y}Cu{sub 3}O{sub x} and CuO in neodymium-based coatings. The coating degradation is more important on alumina substrates that on zirconia substrates for both yttrium- and neodymium-based coatings. (orig.).

  18. IMPROVEMENT OF MECHANICAL PROPERTIES OF ALUMINA AND ZIRCONIA PLASMA SPRAYED COATINGS INDUCED BY LASER POST-TREATMENT

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kraus, L.; Tuominen, J.; Vuoristo, P.; Chráska, Pavel

    2007-01-01

    Roč. 51, č. 4 (2007), s. 181-189 ISSN 0862-5468 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * plasma spraying * wear resistance * slurry abrasion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.488, year: 2007

  19. Proton-conducting beta"-alumina via microwave-assisted synthesis and mechanism of enhanced corrosion prevention of a zinc rich coating with electronic control

    Science.gov (United States)

    Kirby, Brent William

    Proton Conducting beta-alumina via Microwave Assisted Synthesis. The microwave assisted synthesis of proton conducting Mg- and Li-stabilized NH4+/H3O+ beta-alumina from a solution based gel precursor is reported. beta-alumina is a ceramic fast ion conductor containing two-dimensional sheets of mobile cations. Na +-beta-alumina is the most stable at the sintering temperatures (1740°C) reached in a modified microwave oven, and can be ion exchanged to the K+ form and then to the NH4+/H 3O+ form. beta-phase impurity is found to be 20% for Mg-stabilized material and 30-40% for Li-stabilized material. The composition of the proton conducting form produced here is deficient in NH4 + as compared to the target composition (NH4)1.00 (H3O)0.67Mg0.67Al10.33O 17. Average grain conductivity for Li-stabilized material at 150°C is 6.6x10-3 +/- 1.6x10-3 S/cm with 0.29 +/- 0.05 eV activation energy, in agreement with single crystal studies in the literature. Grain boundary conductivity is found to be higher in the Li-stabilized material. A hydrogen bond energy hypothesis is presented to explain these differences. Li-stabilized NH4+/H3O + beta-alumina is demonstrated as a fuel cell electrolyte, producing 28 muA/cm2 of electrical current at 0.5 V. Mechanism of Enhanced Corrosion Prevention of a Zinc Rich Coating with Electronic Control. A corrosion inhibition system consisting of high weight-loading zinc rich coating applied to steel panels is examined. An electronic control unit (ECU) consisting of a battery and a large capacitor in series with the panel is shown to improve corrosion protection upon immersion in 3% NaCl solution. Weekly solution changes to avoid zinc saturation in solution system were necessary to see well differentiated results. The corrosion product, hydrozincite [Zn5(CO3) 2(OH)6] is observed to deposit within the pores of the coating and on the surface as a barrier layer. Simonkolleite [Zn5(OH) 8Cl2·H2O] is found to form in place of the original zinc particles

  20. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have good

  1. Sodium dodecyl sulfate coated γ-alumina support modified by a new Schiff base for solid phase extraction and flame-AAS determination of lead and copper ions

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS-coated γ-alumina modified with bis(2-hydroxy acetophenone-1,6-hexanediimine (BHAH ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS. The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

  2. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L{sup -1} nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples.

  3. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry

    International Nuclear Information System (INIS)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P.

    2014-01-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  4. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction.

    Science.gov (United States)

    Sun, Lei; Zhang, Chuanzhou; Chen, Ligang; Liu, Jun; Jin, Haiyan; Xu, Haoyan; Ding, Lan

    2009-04-13

    In this study, a new type of alumina-coated magnetite nanoparticles (Fe(3)O(4)/Al(2)O(3) NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe(3)O(4) NPs not only avoids the dissolving of Fe(3)O(4) NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1g Fe(3)O(4)/Al(2)O(3) NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 microg L(-1), respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe(3)O(4)/Al(2)O(3) NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples.

  5. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  6. Fiber damage during the consolidation of PVD Ti-6Al-4V coated NEXTEL 610 trademark alumina fibers

    International Nuclear Information System (INIS)

    Warren, J.; Elzey, D.M.; Wadley, H.N.G.

    1995-01-01

    Titanium matrix composites reinforced with sol-gel synthesized α-alumina fiber tows have attracted interest as a potentially low cost continuous fiber reinforced metal matrix composite system. The authors have conducted a detailed investigation of fiber damage during high temperature consolidation of PVD Ti-6Al-4V metallized sol-gel alumina fiber tows. Using both hot isostatic pressing and interrupted vacuum hot press consolidation cycles, the two principal mechanisms of fiber damage have been experimentally identified to be microbending/fracture and fiber matrix reaction. A time dependent micromechanics model incorporating the evolving geometry and mechanical properties of both the fibers and matrix has been formulated to simulate the fiber bending/failure mechanism in a representative unit cell and explore the effect of fiber strength loss due to reaction with the matrix. This model has been used to design a process cycle that minimizes damage by exploiting the enhanced superplastic deformation of the initially nanocrystalline PVD Ti-6Al-4V matrix

  7. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  8. Growth of polycrystalline Pr_2NiO_4_+_δ coating on alumina substrate by RF magnetron co-sputtering from composite targets

    International Nuclear Information System (INIS)

    Sediri, A.; Zaghrioui, M.; Barichard, A.; Autret, C.; Negulescu, B.; Del Campo, L.; Echegut, P.; Laffez, P.

    2016-01-01

    Polycrystalline Pr_2NiO_4_+_δ coatings have been deposited on alumina substrates at room temperature by RF magnetron co-sputtering from Pr and Ni metallic composite target. The mixed target's area and the sputtering conditions were optimized to reach an atomic ratio Pr/Ni of 2. A subsequent annealing, at 1050–1100 °C, allowed obtaining Pr_2NiO_4_+_δ phase after in situ high temperature x-ray diffraction study performed on as-deposited film. Microstructural analyses (SEM and AFM) revealed dense and rough microstructure. Normal spectral emittance measurements performed at 794 °C in the spectral range 400–5000 cm"-"1 showed an emissivity of ε ≈ 0.8. - Highlights: • Pr_2NiO_4_+_δ coatings deposited by RF magnetron co-sputtering • Crystallization kinetic studied by X-ray diffraction versus temperature • SEM and AFM observations showed dense and rough microstructure • Normal spectral emittance reaches to ε = 0.8 at 794 °C in the opaque zone.

  9. Growth of polycrystalline Pr{sub 2}NiO{sub 4+δ} coating on alumina substrate by RF magnetron co-sputtering from composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Sediri, A., E-mail: amal.sediri@univ-tours.fr [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France); Zaghrioui, M.; Barichard, A.; Autret, C.; Negulescu, B. [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France); Del Campo, L.; Echegut, P. [CNRS, UPR 3079 CEMHTI, 45071 Orléans Cedex 2 (France); Laffez, P. [Université François-Rabelais de Tours, GREMAN UMR 7347 CNRS, IUT de Blois 15 rue de la chocolaterie CS 2903, 41029 Blois Cedex (France)

    2016-02-01

    Polycrystalline Pr{sub 2}NiO{sub 4+δ} coatings have been deposited on alumina substrates at room temperature by RF magnetron co-sputtering from Pr and Ni metallic composite target. The mixed target's area and the sputtering conditions were optimized to reach an atomic ratio Pr/Ni of 2. A subsequent annealing, at 1050–1100 °C, allowed obtaining Pr{sub 2}NiO{sub 4+δ} phase after in situ high temperature x-ray diffraction study performed on as-deposited film. Microstructural analyses (SEM and AFM) revealed dense and rough microstructure. Normal spectral emittance measurements performed at 794 °C in the spectral range 400–5000 cm{sup -1} showed an emissivity of ε ≈ 0.8. - Highlights: • Pr{sub 2}NiO{sub 4+δ} coatings deposited by RF magnetron co-sputtering • Crystallization kinetic studied by X-ray diffraction versus temperature • SEM and AFM observations showed dense and rough microstructure • Normal spectral emittance reaches to ε = 0.8 at 794 °C in the opaque zone.

  10. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    International Nuclear Information System (INIS)

    Méndez, Franklin J.; Rivero-Prince, Sayidh; Escalante, Yelisbeth; Villasana, Yanet; Brito, Joaquín L.

    2016-01-01

    Al_2O_3–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al_2O_3 are studied. • Al_2O_3–Al sponges could be used as structured reactors.

  11. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  12. Obtenção de um revestimento compósito de poliéster-uretana reforçado com alumina pela técnica de deposição por imersão sobre fibras de poliamida 6 Preparation of a composite coating of alumina reinforced polyester urethane by dip coating on polyamide 6 fibers

    Directory of Open Access Journals (Sweden)

    F. A. L. Sánchez

    2009-12-01

    Full Text Available O uso de revestimentos compósitos de matriz polimérica e reforço cerâmico capazes de manter a flexibilidade e a elasticidade das fibras poliméricas, agregando propriedades típicas dos materiais cerâmicos (como ação bactericida ou fotocatalítica, resistência à chama, ao desgaste e à abrasão, tem atraído interesse da indústria têxtil. Baseado na técnica dip coating e usando fibras sintéticas de poliamida como substrato, foram produzidas suspensões de poliéster-uretana com partículas de alumina (tamanho médio de partícula 2,2 μm para obtenção de revestimentos uniformes e espessos sobre o material base, poliamida 6. A viscosidade das suspensões foi controlada pela adição de carboximetilcelulose e avaliada por reometria rotacional. A distribuição granulométrica das suspensões também foi determinada. Os parâmetros operacionais do dip coating, i.e., velocidade de bobinamento e temperatura dos fornos, foram mantidos constantes em todas as amostras. O processo mostrou viabilidade para deposição uniforme do recobrimento avaliado, com espessura adequada, indicando ser promissor para revestir fibras, agregando propriedades de interesse tecnológico.Ceramic reinforced polymer composite coatings that can retain the flexibility and elasticity of the polymeric fibers, being also able to incorporate the functionality of ceramic materials (e.g. fire, wear, or abrasion resistance, antibacterial performance, photocatalytic effect are interesting to the processing of textile materials. In this work, polyester-urethane slurries with alumina particles (mean particle size: 2.2 μm were developed based on the dip coating technique and using polyamide-6 synthetic fibers as the substrate, seeking to obtain an uniform and thick coating. The viscosity of the slurries was varied using carboxymethylcellulose as a rheological agent and evaluated by rotational rheometry. Particle size distribution of the slurries was also analyzed. The

  13. Ultrafiltro de alumina Alumina ultrafilter

    Directory of Open Access Journals (Sweden)

    M. F. de Souza

    1999-06-01

    Full Text Available Membranas de alumina AKP-50 foram preparadas sobre um substrato de alumina APC-SG de alta resistência mecânica. As membranas foram sinterizadas a 1000 °C e possuem uma distribuição estreita de poros de 40 a 90 nm, espessura média de 57 mm e taxa de fluxo de 0,4 m3/m2h. O filtro assim obtido é classificado como ultrafiltro sendo capaz de reter bactérias e alguns vírus. São quimicamente inertes e resistem a temperaturas inferiores a 1000 °C. A aderência entre as camadas permite a limpeza por contra-fluxo.Alumina ceramic membranes with unimodal pore size distribution in the 40 to 90 nm range were prepared on alumina porous substrates. The 57mm thickness membrane made from AKP-50 alumina shows 0,4 m3/m2h flow rate. The two layer substrate, prepared to have high mechanical strength, was made from commercially available APC-SG alumina. The filter made of three layers, membrane, intermediate layer and substrate, is classified as ultra-filter being able to retain bacteria and some viruses. Adherence between the three layers allows reverse washing. Filters are chemically inert and resistant to temperatures below 1000oC.

  14. Sodium dodecyl sulfate coated alumina modified with a new Schiff's base as a uranyl ion selective adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Science, Shiraz University, 71454 Shiraz (Iran, Islamic Republic of); Moradi Abdoluosofi, L.; Pakniat, M. [Department of Chemistry, Faculty of Science, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Montazerozohori, M. [Department of Chemistry, Faculty of Science, Yasouj University, Yasouj (Iran, Islamic Republic of)

    2011-03-15

    A simple and selective method was used for the preconcentration and determination of uranium(VI) by solid-phase extraction (SPE). In this method, a column of alumina modified with sodium dodecyl sulfate (SDS) and a new Schiff's base ligand was prepared for the preconcentration of trace uranyl(VI) from water samples. The uranium(VI) was completely eluted with HCl 2 M and determined by a spectrophotometeric method with Arsenazo(III). The preconcentration steps were studied with regard to experimental parameters such as amount of extractant, type, volume and concentration of eluent, pH, flow rate of sample source and tolerance limit of diverse ions on the recovery of uranyl ion. A preconcentration factor more than 200 was achieved and the average recovery of uranyl(VI) was 99.5%. The relative standard deviation was 1.1% for 10 replicate determinations of uranyl(VI) ion in a solution with a concentration of 5 {mu}g mL{sup -1}. This method was successfully used for the determination of spiked uranium in natural water samples.

  15. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.

    Science.gov (United States)

    Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie

    2013-03-05

    A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well

  16. Effect of microstructure and microhardness on the wear resistance of zirconia-alumina, zirconia-yttria and zirconia-ceria coatings manufactured by atmospheric plasma spraying; fecto de la microestructura y de la microdureza sobre la resistencia al desgaste de recubrimientos elaborados por proyeccion termica por plasma atmosferico a partir de circona-alumina, circona-itria y circona-ceria

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Gonzalez, A.; Ageorges, H.; Rojas, O.; Lopez, E.; Milena Hurtado, F.; Vargas, F.

    2015-10-01

    The effect of the structure and microhardness on the wear resistance of zirconia-alumina (ATZ), zirconia-yttria (YSZ) and zirconia-ceria (CSZ) coatings manufactured by atmospheric plasma spraying was studied. The microstructure and the fracture on the cross section of the coatings were analyzed using Scanning Electron Microscopy, the phases were identified using X-Ray Diffraction, the microhardness was measured by Vickers indentation and the wear resistance was evaluated by ball on disc test. The results showed that zirconia-alumina coating exhibits the best performance in the wear test. This behavior is closely related to their microstructure and higher microhardness, despite of its significant quantity of the monoclinic zirconia phase, which has lower mechanical properties than tetragonal zirconia phase. Tetragonal zirconia phase was predominant in the zirconia-yttria and zirconia-ceria coatings and despite this behavior; they did not have a good performance in the wear tests. This low wear resistance was mainly influenced by the columnar structure within their lamellae, which caused a greater detachment of particles in the contact surface during the ball-disc tests, increasing its wear. (Author)

  17. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  18. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  19. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  20. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  1. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de lantanio para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S., E-mail: julianamb91@gmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Engenharia Mecanica

    2016-07-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have

  2. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    Science.gov (United States)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  3. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  4. Structural and optical characteristics of nano-sized structure of Zn0.5Cd0.5S thin films prepared by dip-coating method

    International Nuclear Information System (INIS)

    Rafea, M. Abdel; Farag, A.A.M.; Roushdy, N.

    2009-01-01

    In this work, a stoichiometry Zn 0.5 Cd 0.5 S nano-structured powder was synthesized. Thin films of different thicknesses of Zn 0.5 Cd 0.5 S were prepared by dip-coating method onto glass substrates. The X-ray diffraction analysis of the prepared powder and films were performed to investigate the crystalline structure. Some structural parameters such as the mean crystallite size and the internal lattice strain were calculated. The composition analysis was made by the energy dispersive X-ray technique, EDX. Scanning electron micrographs, SEM showed that the prepared films are nearly homogeneous and consists of nearly parallel surfaces and the thickness was determined by the cross section imaging. The transmission spectra, T(λ), of the films at normal incidence of light were obtained in the spectral region 190-1100 nm. The optical constants of Zn 0.5 Cd 0.5 S films were determined using the interference maxima and minima of the transmission spectrum. The dispersion of refractive index was discussed in terms of the single-oscillator model and the important oscillating parameters were determined. The dependence of absorption coefficient on the photon energy was determined and the analysis of the result showed that the optical transition in Zn 0.5 Cd 0.5 S is allowed and indirect. The thickness dependence of the obtained optical parameters was also considered.

  5. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  6. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry; Estudo de microestrutura e propriedades mecanicas de compositos ceramicos alumina-zirconia reforcado com itria para revestimento inerte de matrizes metalicas usadas na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: juliaopontual@hotmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  7. Composite reinforced alumina ceramics with titan and lantana for use in coating storage tanks and transport of crude oil; Composito de ceramica alumina reforcada com titania e lantana para a utilizacao em revestimento de tanques de armazenamento e transporte de petroleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.E.; Rego, S.A.B.C.; Oliveira, J.C.S.; Ferreira, R.A. Sanguinetti; Yadava, Y.P., E-mail: cata_esposito@hotmail.com [Universidade Federal de Pernambuco (UFPE), PE (Brazil). Centro de Tecnologia e Geociencia. Departamento de Engenharia Mecanica

    2011-07-01

    The objective of this work is to use ceramics to improve the performance of the tanks that store and transport crude oil and which use metallic materials for their manufacture. These tanks in contact with crude oil undergo a process of degradation on their surfaces, since crude oil is a highly corrosive substance. And in turn ceramic materials have good stability in hostile environments. However, they are inherently fragile for display little plastic deformation. Therefore, the choice of a ceramic composite alumina-titania-lantana has high mechanical strength and high toughness which were produced by thermo-mechanical processing. These composites were sintered at 1350 ° C for 36 hours, and it was held Vickers hardness testing and microstructural characterization to assess their surfaces before and after the attack by crude to use such material as ceramic coating. These results will be presented at the congress. (author)

  8. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina ceramics come from two parent phases designated as β-alumina and β ..... Acknowledgements. This work was supported by the Energy Efficiency & ... of Trade, Industry & Energy, Republic of Korea (No. 20142010102460).

  9. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  10. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates

    International Nuclear Information System (INIS)

    Ghaedi, M.; Tavallali, H.; Shokrollahi, A.; Zahedi, M.; Montazerozohori, M.; Soylak, M.

    2009-01-01

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L -1 HNO 3 . The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran.

  11. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints)

    International Nuclear Information System (INIS)

    Demonet, N.

    1998-01-01

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  12. Preparation of nano-sized α-Al2O3 from oil shale ash

    International Nuclear Information System (INIS)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan

    2010-01-01

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized α-Al 2 O 3 . Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of α-Al 2 O 3 . The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO 2 ), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles.

  13. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  14. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2015-07-01

    Full Text Available This review presents the latest results of studies directed at photocatalyst coatings of titanium dioxide (TiO2 prepared by mechanical coating technique (MCT and its application. Compared with traditional coating techniques, MCT is a simple, low cost and useful coating formation process, which is proposed and developed based on mechanical frictional wear and impacts between substrate materials and metal powder particles in the bowl of planetary ball mill. The formation process of the metal coatings in MCT includes four stages: The nucleation by adhesion, the formation and coalescence of discrete islands, formation and thickening of continuous coatings, exfoliation of continuous coatings. Further, two-step MCT was developed based on the MCT concept for preparing composite coatings on alumina (Al2O3 balls. This review also discusses the influence on the fabrication of photocatalyst coatings after MCT and improvement of its photocatalytic activity: oxidation conditions, coating materials, melt salt treatment. In this review, the oxidation conditions had been studied on the oxidation temperature of 573 K, 673 K, 773 K, 873 K, 973 K, 1173 K and 1273 K, the oxidation time of 0.5 h, 1 h, 3 h, 10 h, 15 h, 20 h, 30 h, 40 h, and 50 h. The photocatalyst coatings showed the highest photocatalytic activity with the oxidation condition of 1073 K for 15 h. The metal powder of Ti, Ni and Cr had been used as the coating materials. The composite metal powder could affect the surface structure and photocatalytic activity. On the other hand, the melt salt treatment with KNO3 is an effective method to form the nano-size structure and enhance photocatalytic activity, especially under visible light.

  15. Porous Alumina Films with Width-Controllable Alumina Stripes

    Directory of Open Access Journals (Sweden)

    Huang Shi-Ming

    2010-01-01

    Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  16. Porous Alumina Films with Width-Controllable Alumina Stripes

    Science.gov (United States)

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  17. Development and characterization of ceramic composites based on alumina-titania reinforced with rare earth oxide (holmium oxide) for the production of inert coatings in metal tanks of petroleum industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de terra rara (oxido de holmio) para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.D.G.; Pontual, J.O.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: nokaa_demery@hotmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    Due to the importance of petroleum and its derivatives for modern society, it is necessary to develop technologies that improve processes and transports of petroleum. The crude oil creates hostile environments and in the process of transport and storage of petroleum are used metallic materials, which corrode becoming a critical problem in this industry. One way of solving this problem is the use of ceramics based on alumina as inert coating on hostile environments. In this work was studied a structure, microstructure and mechanical properties of ceramic composite based on Al2O3 - TiO2 reinforced Ho2O3. The composites were produced by a thermomechanical process, sintered at 1350°C, were analyzed by x-ray diffraction, optical microscopy, scanning electron microscopy, and microhardness. Analyses were performed before and after immersion in earth and offshore crude petroleum to study stability of the developed composites and concluded that the ceramic composites immersed in petroleum show stable in hostile environments. (author)

  18. Efeito da adição de coating de cromita de ferro na emissividade de concreto refratário de alta alumina

    Directory of Open Access Journals (Sweden)

    R. G. Campiteli

    Full Text Available Resumo Coatings de alta emissividade têm sido utilizados em aplicações industriais há mais de 40 anos com o objetivo de reduzir as perdas térmicas em processos de aquecimento. Com a aplicação de um coating de alta emissividade na superfície dos revestimentos internos de um forno industrial é possível aumentar a eficiência nas trocas térmicas entre a atmosfera e as paredes do revestimento, reduzindo a perda de calor e também o consumo de combustíveis. Em geral são utilizados compostos cerâmicos como óxido de cério, carbeto de boro, boreto de silício, siliceto de molibidênio ou óxido de cromo como agentes de emissividade para se obter as propriedades termo-ópticas desejadas nos coatings. Entretanto tais compostos muitas vezes inviabilizam sua aplicação, devido ao seu elevado valor comercial ou ainda sua escassez. Neste contexto, o presente trabalho buscou avaliar os efeitos da cromita de ferro, um óxido mineral abundante e de valor comercial acessível, em sua utilização como agente de emissividade em coatings refratários de alta emissividade. Por meio de um método indireto de medição de emissividade, foram avaliadas de maneira comparativa composições com e sem a presença da cromita de ferro visando sua aplicação como cobertura de revestimentos isolantes e refratários de fornos de aquecimento industrial. Com adições de 7,5% de cromita de ferro, observaram-se aumentos na emissividade dos coatings da ordem de 8%, sugerindo seu potencial para essa aplicação.

  19. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  20. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  1. Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating

    Science.gov (United States)

    Ur Rehman, Zeeshan; Shin, Seong Hun; Ahmad, Tanveer; Koo, Bon Heun

    2018-05-01

    Al2O3-ZrO2 composite ceramic coatings were prepared on Al6061 aluminum alloy by plasma electrolytic oxidation in Na3PO4-K2ZrF6-Na2SiF6-based alkaline electrolyte. Optimum processing time for the coating formation was found to be 50 min. Cross section and surface morphology of the coatings were analyzed using scanning electron microscope. From the phase and elemental composition analysis, the presence of m-ZrO2 and t-ZrO2 phases was confirmed. It was further observed that the peak intensities of t-ZrO2 and α-Al2O3 phases increased with processing time, which was attributed to the enhanced crystallinity caused by the efficient sintering conditions. Corrosion properties were investigated by potentiodynamic polarization test in 3.5 wt.% NaCl solution. The results showed high improvement in corrosion rate with minimum recorded value 0.25 mmy (mm/year) and corrosion current 0.15 × 10-6 A/cm2.

  2. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  3. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  4. Preparation of nano-sized {alpha}-Al{sub 2}O{sub 3} from oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    An, Baichao; Wang, Wenying; Ji, Guijuan; Gan, Shucai; Gao, Guimei; Xu, Jijing; Li, Guanghuan [College of Chemistry, Jilin University, Changchun 130026 (China)

    2010-01-15

    Oil shale ash (OSA), the residue of oil shale semi-coke roasting, was used as a raw material to synthesize nano-sized {alpha}-Al{sub 2}O{sub 3}. Ultrasonic oscillation pretreatment followed by azeotropic distillation was employed for reducing the particle size of {alpha}-Al{sub 2}O{sub 3}. The structural characterization at molecular and nanometer scales was performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), respectively. The interaction between alumina and n-butanol was characterized by Fourier transform infrared spectroscopy (FT-IR). The results revealed that the crystalline phase of alumina nanoparticles was regular and the well dispersed alumina nanoparticles had a diameter of 50-80 nm. In addition, the significant factors including injection rate of carbon oxide (CO{sub 2}), ultrasonic oscillations, azeotropic distillation and surfactant were investigated with respect to their effects on the size of the alumina particles. (author)

  5. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  6. Protein adsorption on low temperature alpha alumina films for surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cloud, A.N., E-mail: acloud@uark.ed [University of Arkansas, Fayetteville, AR 72701 (United States); Kumar, S. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Kavdia, M.; Abu-Safe, H.H.; Gordon, M.H. [University of Arkansas, Fayetteville, AR 72701 (United States)

    2009-08-31

    Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can be exploited for developing alumina-coated surgical instruments and devices. Alpha alumina thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a model protein (BSA, bovine serum albumin). The films were deposited at 480 {sup o}C by AC inverted cylindrical magnetron sputtering. Films were obtained at 6 kW and 50% oxygen partial pressure by volume. The presence of alpha-phase alumina has been shown by transmission electron microscopy. Results indicate that there was a 50% reduction in protein adsorption for samples with the alumina coating compared to those with no coating.

  7. Preparation of Nano Activated γ-Alumina ( with Surfactant and Surface Characterization

    Directory of Open Access Journals (Sweden)

    Enas Sameer AL-Khawaja

    2016-09-01

    Full Text Available This paper deals with the preparation of Alumina by sol-gel technique through the hydrolysis of aluminum ion mixed with the glucose as a surfactant and converting it to gel by ammonium hydroxide in aqueous media. The resulting sol composed of particle is draying to become a transparent gel. The freshly prepared gel is heated at 700°C for 2hrs to obtain alumina ( particles. The obtained particles are found to be γ-alumina particles with high porosity, Their characteristics are determined by LPSA, XRD, SEM, TEM and BET techniques. The results show that the particles are pure alumina, nano-sized=20nm, spherical shape, high surface area=210 /gm.

  8. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  9. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  10. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  11. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    rehman, Wasif ur; Xu, Youlong; Du, Xianfeng; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Jin, Yanling; Zhang, Baofeng; Li, Xifei

    2018-07-01

    Derived from avocado fruit, a three dimension (3D) carbon is prepared via a hydrothermal/pyrolysis process followed by embedding with MnO nanoparticles by a wet chemical method and coating with Al2O3 through an atomic layer deposition technique. The obtained material presents a hierarchical structure that MnO nanocrystals wrapped in 3D carbon and then encapsulated in a uniform Al2O3 layer with a thickness of about 5 nm. Benefiting from this hierarchical structure in which 3D carbon offers numerous electronic pathways to enhance the conductivity and Al2O3 nanolayer provide a shelter to keep away from dissolution of Mn4+ and volume changes during charge/discharge process. This material (marked as C/MnO@Al2O3) has exhibited high rate performance and excellent cyclability as an anode for lithium ion batteries. A high specific capacity of about 600 mA h g-1 is achieved at a current density of 1000 mA g-1 and the electrode can still deliver a high specific capacity of about 1165 mA h g-1 at 150 mA g-1 after 100 cycles. These results facilitate a green and high potential of anode materials towards promising devices for advance performance of lithium-ion batteries.

  12. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  13. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    this dissertation were to synthesize selenium nanoparticles, characterize nanosized selenium coatings on various materials, test the effectiveness of selenium coated materials at inhibiting bacteria growth and biofilm formation and investigate the mechanisms of how selenium nanoparticles inhibit bacteria growth. The nanosized selenium coated materials showed significant and continuous inhibitions to bacteria growth by up to 92.5% without using any antibiotics. The work performed in this dissertation presents a novel platform technology based on nanosized selenium to inhibit bacterial infections on various materials, which demonstrates the strong potential applications of nanosized selenium as an antibacterial agent in hospital environments and healthcare settings.

  14. High alumina refractories

    International Nuclear Information System (INIS)

    Simao, L.C.; Lopes, A.B.; Galvao Filho, N.B.; Souza, R.B. de

    1989-01-01

    High alumina refractories with 92 to 96.5% Al 2 O 3 were produced using brown and white fused as aggregate. Those refractories present only alumina-α and mullite as crystalline mineralogical phase. Other physical and chemical characteristics are similar to the ones found in refractories produced in Brazil, Japan and U.S.A. The most important physical and chemical tests used for the characterization of the raw materials and refractories, complemented by those realized at high temperatures, plus X-ray Difractometry and optical microscopy are presented, besides the refractory formulation and main parameters of production [pt

  15. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  16. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  17. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  18. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  19. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  20. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport.

    Science.gov (United States)

    Borisova, Tatiana; Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

  1. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  2. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    Science.gov (United States)

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  3. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  4. Study of carbon-doped micro and nano sized alumina for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Fontainha, C. C. P.; Alves, N.; Ferraz, W. B.; Faria, L. O.

    2017-10-01

    New materials have been widely investigated for ionizing radiation dosimetry for medical procedures. Carbon-doped doped alumina (Al 2 O 3 :C) have been proposed as thermoluminescent and photo luminescent dosimeters. In the present study nano and micro-sized alumina doped with different percentages of carbon, sintered under different atmosphere conditions, at temperatures ranging from 1300 to 1750 degrees Celsius, were sintered and their dosimetric characteristics for gamma fields were investigated. Among the investigated sample preparation methods, the micro-sized alumina doped with 0.01% of carbon and sintered at 1700 degrees Celsius under reducing atmosphere has presented the best Tl output, comparable to the best Tl sensitivities ever reported to alumina and better efficiency than the nano-sized alumina synthesized in this study. The influence of humidity in the Tl signal has been evaluated to be -4.0%. The micro-sized alumina obtained by the methodology used in this work is a suitable candidate for application in X and gamma radiation dosimetry. (Author)

  5. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  6. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating

    International Nuclear Information System (INIS)

    Duan, Jianguo; Wu, Ceng; Cao, Yanbing; Du, Ke; Peng, Zhongdong; Hu, Guorong

    2016-01-01

    Highlights: • LiMnPO 4 was introduced to modify Ni-rich cathode materials. • LiMnPO 4 uniformly coated NCA composite has been constructed successfully. • Olivine structured skin restrains the formation of residues on NCA during cycling. • LiMnPO 4 improves the structural and thermal stability of NCA@LMP. - Abtract: LiNi 0.80 Co 0.15 Al 0.05 O 2 has been widely pursued as an alternative to LiCoO 2 cathode materials for lithium ion batteries because of its high capacity and acceptable cycling property. However, that NCA can react with commercialized electrolyte during cycling restrains its wide use. Here, olivine structured LiMnPO 4 has been introduced to modify the surface of NCA by a sol-gel method. Characterizations from structure, morphology and composition analysis technologies demonstrate that a LiMnPO 4 layer has been uniformly coated on NCA particles. The electrochemical performance and thermo stability of modified samples are characterized by electrochemical tests, XRD and metallic nail penetration tests. The olivine structured skin, which provides structural and thermal stability, is used to encapsulate the high powered core via using the effective coating technique. The modified material displays a high discharge capacity of 211.0 mAh g −1 at 0.2 C and better rate performance and promoted cycling stability than the uncoated control sample. Furthermore, the thermal stability of coated sample in the delithiated state is upgraded to the pristine powders remarkably.

  7. Photoluminescence properties of the composite of porous alumina and poly (2,5-dibutoxy-1,4 phenylenevinylene)

    International Nuclear Information System (INIS)

    Zhao Yi; Yang Deren; Zhou Chengyao; Yang Qing; Que Duanlin

    2003-01-01

    The spin coating method was used to assemble polymer (Poly (2,5-dibutoxy-1,4-phenylenevinylene)) (DBO-PPV) into the pores of porous alumina which was prepared by anodization. Four peaks in the photoluminescence (PL) spectra of the composite, with contributions from the DBO-PPV and porous alumina, were found. It was also found that the light emitting from the porous alumina could excite the photoluminescence of DBO-PPV. The nanometer effect of the porous alumina can lead to a blue shift of 90 nm of the PL peaks of DBO-PPV

  8. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  9. Luminescence enhancement of a self-organised Y.sub.2./sub.O.sub.3./sub.:Eu.sup.3+./sup. thin film-coated porous alumina membrane

    Czech Academy of Sciences Publication Activity Database

    Abdellaoui, N.; Pereira, A.; Kandri, T.; Drouard, E.; Novotný, Michal; Moine, B.; Pillonnet, A.

    2016-01-01

    Roč. 4, č. 39 (2016), s. 9212-9218 ISSN 2050-7526 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : pulsed laser deposition * thin film * self- organisation * alumina membrane * luminescence * photonic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.256, year: 2016

  10. The examination of calcium ion implanted alumina with energy filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Hunt, E.M.; Hampikian, J.M.

    1997-01-01

    Ion implantation can be used to alter in the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca + to a fluence of 5 x 10 16 ions/cm 2 . Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ∼7--8 nm in diameter. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium. Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals. EFTEM has confirmed that the aluminum present in the particles is metallic in nature, that the particles are oxygen deficient in comparison with the matrix material and that the particles are deficient in calcium, and therefore not likely to be calcia. The particles thus appear to be FCC Al (possibly alloyed with a few percent Ca) with a lattice parameter of 0.409nm. A similar result was obtained for yttrium ion implantation into alumina

  11. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  12. Preparation and characterization of multilayer mesoporous γ-alumina membrane obtained via sol-gel using new precursors

    Directory of Open Access Journals (Sweden)

    Tafrishi R.

    2015-12-01

    Full Text Available In this paper, a mesoporous γ-alumina membrane coated on a macroporous α-alumina support via sol-gel method has been reported. A crack-free γ-alumina membrane was obtained by adding PVA to the alumina solution and optimum parameters of roughness, temperature and porosity were achieved. The support was dip-coated in different solutions using two new different solvents with different particle size distributions. Using these two solvents led to the uniform distribution of pore size in the final membrane. The alumina sols showed particle size distributions in the range of 20 to 55 nm which was measured by a DLS Zeta Sizer. X-ray diffraction technique, atomic force microscopy and scanning electron microscopy were used to characterize the membrane layer. XRD and DTA data for the γ-alumina membrane showed its thermal stability up to around 600 °C. The thickness of the mesoporous γ-alumina membrane was about 4 μm with 16 nm of surface roughness and 5 nm pore size. The resultant crack-free mesoporous membrane shows that the membrane preparation procedure was optimum. In this work, it has been investigated the performance of γ-alumina membranes for single gas permeation and separation of binary gas mixtures.

  13. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara; Thorat, Sanjay B.; La Rocca, Rosanna; Scarpellini, Alice; Salerno, Marco; Dante, Silvia; Das, Gobind

    2014-01-01

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  14. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  15. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Fabrication of asymmetric alumina membranes

    International Nuclear Information System (INIS)

    Firouzghalb, H.; Falamaki, C.

    2010-01-01

    The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al 2 O 3 -x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl 3 and Sr(NO 3 ) 2 salts using NH 4 OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 deg. C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al 2 O 3 ) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 deg. C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

  17. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  18. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  19. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  20. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  1. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  2. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  3. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  4. Fabrication of a segmented composite stainless steel-alumina discharge tube for a theta-pinch coil

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Stoddard, S.D.; Muller, J.F.

    1975-11-01

    An 80-mm-diam segmented discharge tube that simulated in a simplified way the blanket and first wall of the Reference Theta-Pinch Reactor (RTPR) has been constructed. The segments were fabricated by plasma-arc spraying an alumina coating on tubular stainless steel trapezoids. These were laid up to form a cylinder that was contained in a fully dense alumina vacuum tube. The fabrication processes are discussed in detail

  5. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  6. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  7. Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Čelko, L.; Chráska, Tomáš; Šulák, Ivo; Gejdoš, P.

    2017-01-01

    Roč. 318, MAY (2017), s. 374-381 ISSN 0257-8972. [RIPT - International Meeting on Thermal Spraying /7./. Limoges, 09.12.2015-12.12.2015] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Thermal barrier coating * Nickel-based superalloy * Plasma spraying * High temperature fatigue * Fatigue life * Cyclic stress-strain curve Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFP-V) OBOR OECD: Audio engineering, reliability analysis; Audio engineering, reliability analysis (UFM-A); Audio engineering, reliability analysis (UFP-V) Impact factor: 2.589, year: 2016

  8. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  9. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  10. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.

  11. Investigation of the thermoluminescent properties of nanosized Alpha-Al2 O3 doped with carbon for application in digital radiography

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2013-01-01

    Thermoluminescent (TL) materials are mainly used in personal and environmental dosimetry. In addition to these applications, their use as the sensor element in the manufacturing of digital radiographic films has been investigated. Particularly, there is an interest concerned to the influence of the particle size in the TL response and in the resolution of the digital imaging. Aluminum oxide, or alumina, is a mineral found in the ruby or sapphire form, and may be synthetically produced in the alpha or gamma crystalline phase. Since the 50s, these materials have been studied in their diverse forms and phases. Particularly, the microsized α-Al 2 O 3 :C is considered one of the best TL dosimeter ever produced in the word. In this work, nanosized alumina particulates in the alpha phase, sintered at different temperatures and doped with different concentrations of carbon, were investigated aiming application in industrial radiography and medical diagnosis. The mixture of the oxide powder with the carbon source was pressed and sintered at temperatures of 1740 deg C and 1745 deg C, under reducing atmosphere. For doping purposes we have used two sources of carbon, graphite and high purity polyvinyl acetate (PVA), respectively. During the sintering process, intentional inclusion of oxygen vacancies into the oxide crystal lattice is performed, allowing the inclusion of carbon atoms into the crystal lattice. Among the samples studied, the nanosized alumina doped with 0.01at.% of carbon and sintered at 1745 deg C has shown an excellent thermoluminescent response, with sensitivity higher than that of LiF: Mg, Ti (TLD-100), when irradiated under similar conditions. This is an excellent result, since the material with nanosized particles offers the best features for radiographic image. Thus, it is concluded that the α-Al 2 O 3 doped with 0.01at.% of carbon is a good candidate for use in TL films for application in digital radiography. (author)

  12. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  13. Nanosized lithium titanates produced by plasma technique

    International Nuclear Information System (INIS)

    Grabis, J; Orlovs, A; Rasmane, Dz

    2007-01-01

    The synthesis of nanosized lithium titanates is studied by evaporation of coarse grained commercially available titanium and lithium carbonate particles in radio-frequency plasma flow with subsequent controlling formation and growth conditions of product particles. In accordance with the XRD analysis the phase composition of the obtained powders is determined by feeding rate of precursors and strongly by ratio of lithium and titanium. The Li 2 TiO 3 and Li 4 Ti 5 O 12 particles containing small amounts of extra phases were obtained at ratio of Li/Ti = 2 and Li/Ti = 0.8 respectively, feeding rate of precursors being in the range of 0.6-0.9 kg/h. Specific surface area of powders is in the range of 20-40 m2/g depending on concentration of vapours in gas flow and cooling rate of the products. Additional calcination of nanosize particles at 800-900 deg. C improves phase composition of lithium titanates

  14. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  15. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    Science.gov (United States)

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  16. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  17. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Sb-SnO2-Nanosized-Based Resistive Sensors for NO2 Detection

    Directory of Open Access Journals (Sweden)

    T. Krishnakumar

    2009-01-01

    Full Text Available A study over Sb-promoted tin oxide nanopowders for sensing applications is reported. SnO2 nanopowders pure and promoted with 5 wt% of antimony were prepared by wet chemical methods and widely characterized by TEM, XRD, and XPS techniques. Thick film resistive sensors were fabricated by depositing the synthesized nanopowders by drop-coating on interdigited alumina substrates. The sensing characteristics of the pure SnO2 and Sb-promoted sensors for the monitoring of trace level of NO2 were studied. The response of the sensors to water vapor was also investigated, revealing that Sb acts favorably eliminating the interference of humidity.

  19. Lignin from Micro- to Nanosize: Applications

    Directory of Open Access Journals (Sweden)

    Stefan Beisl

    2017-11-01

    Full Text Available Micro- and nanosize lignin has recently gained interest due to improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. This review focuses on the application of micro- and nanostructured lignin in final products or processes that all show potential for high added value. The fields of application are ranging from improvement of mechanical properties of polymer nanocomposites, bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. Also, a carbonization of lignin nanostructures can lead to high-value applications such as use in supercapacitors for energy storage. The properties of the final product depend on the surface properties of the nanomaterial and, therefore, on factors like the lignin source, extraction method, and production/precipitation methods, as discussed in this review.

  20. Synthesis of nanosized powders of stabilized zirconia

    International Nuclear Information System (INIS)

    Takodoro, Sandra Kiyoko

    2000-01-01

    Zirconia solid solutions containing 3 mol % Yttria or 12 mol % ceria have been prepared by the coprecipitation technique followed by azeotropic distillation. The aim of this work is the synthesis of tetragonal zirconia polycrystals nanosized powders that sinter at comparatively lower temperatures attaining high densification, and without using any milling procedure. The main results show that: 1- the dopant cation has a strong influence on the crystallization behavior of the precipitates; 2- the used techniques allowed for obtaining high values of specific surface area (∼130 m 2 .g -1 ); 3- the optimization of the synthesis and processing parameters are responsible for obtaining high densification (≥97% of the theoretical value), at lower temperatures (∼1200 deg C) with average grain sizes lower than 500 nm; 4- impedance spectroscopy results show a strong correlation between the electrical resistivity and the microstructure of sintered ceramics.(author)

  1. Preparation of nanosize carbon powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Minami, C.; Kinemuchi, Y.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan); Hirata, T.; Hatakeyama, R. [Tohoku Univ., Graduate School of Engineering, Sendai, Miyagi (Japan)

    2002-06-01

    Nanosize powders of carbons were tried to be synthesized by pulsed discharge of graphite wires in several kinds of ambient gases. When the wire was discharged in N{sub 2} gas, nanosize powders have been successfully produced. The result of X-ray diffraction analysis indicated that nanosize powders produced in N{sub 2} gas at 750 Torr were amorphous carbon containing glassy carbons, while mass-spectrum analysis demonstrated the production of fullerenes at 600 Torr. If the wire is discharged in Ar gas, dielectric breakdown takes place between electrodes, producing no carbon powders. (author)

  2. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    Directory of Open Access Journals (Sweden)

    A. Faeghinia

    2016-09-01

    Full Text Available The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.% nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass –ceramic coat. According to the EDAX results, the precipitated reduced Sb and Mo particles at the interface of enamel and steel caused to reasonable adherence of coat and steel. The dry sliding wear tests were carried out using pin on disk method. Results revealed the 0.01 mg wear rate by 30N load at 100 m for nano alumina bearing coats. The wear resistance increased by a factor of 10. According to SEM micrographs, the sliding load transfer by nano alumina particles occurred.

  3. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  4. Mullite-alumina functionally gradient ceramics

    International Nuclear Information System (INIS)

    Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.

    1993-01-01

    Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)

  5. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  6. The Synthesis and Modification of Nanosized Clickable Latex Particles

    KAUST Repository

    Almahdali, Sarah

    2013-01-01

    This research aims to add to the current knowledge available for miniemulsion polymerization reactions and to use this knowledge to synthesize multifunctional nanosized latex particles that have the potential to be used in catalysis. The physical

  7. Development of nano-sized α-Al2O3:C films for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2011-01-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon (α-Al 2 O 3 :C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized α-Al 2 O 3 samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized α-Al 2 O 3 :C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized α-Al 2 O 3 :C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized α-Al 2 O 3 :C, in view of their improved resolution provided by nano-particulates. (author)

  8. The nanosize catalysts role in the modern hydroprocesses

    International Nuclear Information System (INIS)

    Irisova, K N; Smirnov, V K; Talisman, E L

    2011-01-01

    Introduction of the modern technological procedures operating the catalytic systems with different nanosized characteristics is the only way to fabricate components of commercial oils that meet the current requirements. Specifications to the individual catalysts, which form a catalytic system, differ both in nanostructural features of the support porosity and in distribution of nanosized active site. These specifications are related to the purpose of the process and the role of the catalyst in the process.

  9. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  10. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat

    Science.gov (United States)

    Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung

    2018-05-01

    This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.

  11. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  12. Everlasting Dark Printing on Alumina by Laser

    Science.gov (United States)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  13. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    College of Engineering & Ceramic Technology, Kolkata 700 010, India. †. School of .... Chemical compositions of different batches of spinel–alumina composites. Chemistry ..... sence of magnesio–aluminate spinel, Ph D Thesis, University.

  14. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  15. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  16. Preparation of Natural Rubber (NR) Based Nano-Sized Materials Using Sol-Gel Technique

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    The objectives of this project are to prepare nano-sized natural rubber-based hybrid coating material by sol-gel technique; to explore the possibility of producing ENR-Si (epoxidized natural rubber-silica) cramer with toughening effects; and to use it in radiation curing of surface coating. Since early 1960s Malaysia has introduced various forms of value-added natural rubber such as Standard Malaysian Rubber (SMR), methylmethacrylate-grafted natural rubber (MG rubber), followed by liquid natural rubber and epoxidized natural rubber (ENR). Products such as liquid epoxidized natural rubber acrylate (LENRA) and thermoplastic natural rubber (TPNR) are still on-going research projects in Nuclear Malaysia. The former has strong possibility to be used as radiation-sensitive comparabilities in TPNR blends, besides its original purpose for example in radiation curing of surface coating. But earlier findings indicated that, to make it (as for surface coating) more effective, reinforcement system is needed to be introduced. Strong candidate is silica by sol-gel technique, since common reinforcement filler for example carbon black has drawbacks in this particular case. This technique was introduced in late 1960s to produce metal oxides such as silica and titanium oxides in solution. (author)

  17. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  18. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  19. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    Science.gov (United States)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  20. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  1. Mixing of nanosize particles by magnetically assisted impaction techniques

    Science.gov (United States)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel

  2. Synthesis of Alumina using the solvo thermal method

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2007-01-01

    The paper describes work done on synthesis of α- and β-alumina by using the solvo thermal technique. Synthesis of both these aluminas involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD) technique was used to identify α-alumina and β-alumina. After establishing the optimum conditions for the production of a single-phase α- and β-aluminas, characteristic study on the product was performed. An important parameter in establishing nano sized powders is their crystallite size and analysis of the β-alumina shows that it is a nano sized powder with a size of 28 nm while the α-alumina has a crystallite size of 200 nm. Other properties analysed include morphology, surface area and particle size. (author)

  3. La3+-modified activated alumina for fluoride removal from water

    International Nuclear Information System (INIS)

    Cheng, Jiemin; Meng, Xiaoguang; Jing, Chuanyong; Hao, Jumin

    2014-01-01

    Graphical abstract: - Highlights: • A La 3+ -modified activated alumina adsorbent was prepared for effective removal F − . • SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA. • The La-AA had much high adsorption rate and capacity than the AA. • The La-AA was promising adsorbent for effective removal of F − from water. - Abstract: A La 3+ -modified activated alumina (La-AA) adsorbent was prepared for effective removal of fluoride from water. The surface properties of adsorbent were characterized with zeta potential analysis, SEM-EDS and EXAFS. Batch and column experiments were conducted to evaluate improvement of F − removal by the La-AA. SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA and strong bonding interactions between La 3+ and the Al atoms. The points of zero charge (pH PZC ) of AA and La-AA were at pH 8.94 and 9.57, respectively. Batch experimental results indicated that the La-AA had much higher adsorption rate and capacity than the AA. The F − adsorption processes on La-AA and AA followed the pseudo-second-order kinetics and the Langmuir isotherm. Column filtration results shows that the La-AA and AA treated 270 and 170 bed volumes of the F − -spiked tap water, respectively, before F − breakthrough occurred. The results demonstrated that the La-AA was a promising adsorbent for effective removal of F − from water

  4. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  5. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    Modifications of the partial gas percentage influences the optical properties and composition ... O2 flow in the Ar ambient and substrate temperature on struc- ture and properties of ..... nism to explain mechanical behaviour of nanocrystalline.

  6. Effect of alumina coating and extrusion deformation on ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... microstructures and thermal properties of short carbon fibre–Al composites ... For SCF–Al composites, it is widely accepted that car- bon fibres would react with ..... nearly oriented along the heat conduction direction. On the.

  7. Characterization of silane coated hollow sphere alumina-reinforced ...

    Indian Academy of Sciences (India)

    Unknown

    in clinical practice, which depends on the magnitude of the applied load, the ... component design for its excellent wear and corrosion resistance (Chandra et al ... The nearly uniform distribution of particles in the com- posite was checked using ...

  8. Through-mask anodization of titania dot- and pillar-like nanostructures on bulk Ti substrates using a nanoporous anodic alumina mask

    International Nuclear Information System (INIS)

    Sjoestroem, Terje; Su Bo; Fox, Neil

    2009-01-01

    Nanosized surface topography on an implant material has the capability of stimulating the acceptance of the material in its host surrounding. Fine-tuning of nanotopography feature size has been shown to trigger differentiation of mesenchymal stem cells into bone cells in vitro. For this purpose we have created well defined nanosized titania dot- and pillar-like structures on mechanically polished Ti substrates using a through-mask anodization technique with an anodic porous alumina template. The anodization technique allowed the titania structure dimensions to be precisely tuned in the range 15-140 nm in a single electrolyte system. The fabricated surfaces serve as good model surfaces for precise studies of in vitro cell behaviour. The through-mask anodization technique was used directly on bulk Ti surfaces, thus demonstrating a potential application for patterning of actual Ti implant surfaces.

  9. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  10. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  11. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Nikkanen

    2008-01-01

    Full Text Available The liquid flame spray (LFS method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical composition were determined by TEM, XRD, XPS, and N2-adsorption measurements. The collected particulate material consists of micron-sized aggregates with nanosized primary particles. In both doped and undoped samples, tetragonal phase of zirconia was detected in room temperature while alumina was found to be noncrystalline. In the doped powder, Fe was oxidized to Fe2O3. The primary particle size of collected sample was approximately from 6 nm to 40 nm. Doping was observed to increase the specific surface area of the powder from 39 m2/g to 47 m2/g.

  12. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    Science.gov (United States)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  13. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  14. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    Science.gov (United States)

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  15. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  16. Preferential spin canting in nanosize zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Pune 411112 (India); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Institut für Physik der Kondensierten Materie,Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Baggio-Saitovitch, E.M. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with Fe{sup III} in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects. - Highlights: • Spinel structure ZnFe{sub 2}O{sub 4} nanoparticles in the uniform size range of 10.0±0.5 nm have been synthesized using the citrate precursor route. • Canting of the spins of A- and B-sublattice sites has been studied by low temperature and high magnetic field Mössbauer spectroscopy. • A-site spins are aligned antiparallel to the applied field with only small angular scatter. • B-site spins are strongly canted in contrast to earlier quoted only partial canting. • B site spin structure deviates significantly from a collinear antiferromagnetic arrangement.

  17. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  18. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2011-01-01

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  19. Synthesis and application of alumina supported nano zero valent zinc as adsorbent for the removal of arsenic and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hafiz Badaruddin; Abbas, Yasir; Hussain, Mazhar; Akhtar, Naeem; Ansari, Tariq Mahmood [Bahauddin Zakariya University, Multan (Pakistan); Zuber, Muhammad; Zia, Khalid Mahmood [Government College University Faisalabad, Faisalabad (Pakistan); Arain, Shafiq Ahmad [Shah Abdul Latif University, Khairpur (Pakistan)

    2014-02-15

    Arsenic and nitrate are ill-famed environmental pollutants that are responsible for various lethal diseases. Their removal from drinking water is very essential. In present study, newly synthesized alumina supported nano zerovalent zinc (Alumina-nZvZ) has been tested to remove arsenic and nitrate. Quantitative analyses of arsenic have been performed spectrophotometrically and while that of nitrates ions colorimetrically. After optimization of time and amount of adsorbent, Langmuir, Freundlich and D-R isotherms were applied to determine different parameters for the assessment of adsorption. Synthesized samples were characterized by scanning electron microscopy (SEM) to evaluate porosity and void size. Alumina coated with reduced ZnCl{sub 2} showed better efficiency for removal of arsenic and nitrate ions. Kinetics of adsorption was evaluated by using pseudo first-order and pseudo second-order rate equations.

  20. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  1. Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties

    Science.gov (United States)

    Lyasnikova, A. V.; Markelova, O. A.

    2016-09-01

    IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.

  2. A nanoindentation study of magnetron co-sputtered nanocrystalline ternary nitride coatings

    Directory of Open Access Journals (Sweden)

    Yeung W.Y.

    2006-01-01

    Full Text Available Nanoindentation testing was used to determine the hardness, elastic modulus and plasticity parameter of three newly developed ternary nitride coatings with nano-sized grains. With decreasing nitrogen deposition pressure, grain diameter of the coatings decreases that leads to both higher nanohardness and elastic modulus with conservation of satisfactory values of plasticity characteristic.

  3. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  4. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    International Nuclear Information System (INIS)

    Thakur, Lalit; Arora, Navneet

    2013-01-01

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  5. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Lalit; Arora, Navneet [Indian Institute of Technology Roorkee, Roorkee (India)

    2013-05-15

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  6. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  7. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  8. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  9. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    study, alumina ball was chosen as the counter body material to show better performance of the ... Tribology is a relatively new science that considers ... The science is applied in ... for example, in hip prosthesis, instead of existing alumina.

  10. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  11. Characterization of alumina scales formed during isothermal and cyclic oxidation of plasma-sprayed TBC systems at 1150 C

    International Nuclear Information System (INIS)

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1999-01-01

    The isothermal- and cyclic-oxidation behavior of thermal barrier coating (TBC) systems consisting of vacuum plasma-sprayed (VPS) Ni-22Cr-10Al/Y (wt%) bond coatings and air plasma-sprayed (APS) Y 2 O 3 -stabilized ZrO 2 (YSZ) top coatings (on single-crystal superalloys) was investigated. The microstructures, flaw contents, and fracture behavior of the Al 2 O 3 scales formed during oxidation testing at 1150 C were characterized (by analysis of coating and scale fracture surfaces and metallographic cross sections). Significant localized fracture and buckling of the Al 2 O 3 scales that formed along the bond-coat--top-coat interfaces were observed after cyclic oxidation of TBCs. However, substantial amounts of localized scale damage did not induce rapid TBC failure. Decohesion of the columnar alumina scales on the rough bond-coat surfaces occurred by both internal Al 2 O 3 fracture (parallel to the metal surface) and oxide-metal delamination. There were microstructural indications of Al 2 O 3 scale crack healing by sintering into planar arrays of voids. Alumina scales that formed on convex NiCrAlY surfaces (with radii of 50 microm or less) after cyclic oxidation, whereas scales formed by isothermal oxidation contained few visible voids. Accelerated void growth in Al 2 O 3 scales on the irregular NiCrAlY surfaces appeared to be creep-related and was attributed to the synergistic effects of geometric and thermal stresses

  12. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  13. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  14. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  15. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  16. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  17. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  18. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  19. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    International Nuclear Information System (INIS)

    Aubert, Tangi; Burel, Agnès; Esnault, Marie-Andrée; Cordier, Stéphane; Grasset, Fabien; Cabello-Hurtado, Francisco

    2012-01-01

    Highlights: ► We investigated the effect of nanosized Mo 6 clusters on the growth of rapeseed plants. ► The aggregation state of the clusters depends on the dispersion medium. ► The concentration-dependant toxicity of the clusters depends on aggregation state. ► We took into account the possible contribution to toxicity of dissolved ionic species. ► The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs 2 Mo 6 Br 14 as cluster precursor. [Mo 6 Br 14 ] 2− cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  20. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Tangi [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Burel, Agnes [Electronic Microscopy Department, University of Rennes 1, 2 av. du Professeur Leon-Bernard, Campus de Villejean, 35043 Rennes (France); Esnault, Marie-Andree [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cordier, Stephane; Grasset, Fabien [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cabello-Hurtado, Francisco, E-mail: francisco.cabello@univ-rennes1.fr [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of nanosized Mo{sub 6} clusters on the growth of rapeseed plants. Black-Right-Pointing-Pointer The aggregation state of the clusters depends on the dispersion medium. Black-Right-Pointing-Pointer The concentration-dependant toxicity of the clusters depends on aggregation state. Black-Right-Pointing-Pointer We took into account the possible contribution to toxicity of dissolved ionic species. Black-Right-Pointing-Pointer The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs{sub 2}Mo{sub 6}Br{sub 14} as cluster precursor. [Mo{sub 6}Br{sub 14}]{sup 2-} cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  1. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s"−"1). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  2. Sol-gel synthesized of nanocomposite palladium-alumina ceramic membrane for H{sub 2} permeability: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, A.L.; Mustafa, N.N.N. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2007-08-15

    Palladium-alumina membrane with mesopore and narrow pore size distribution was prepared by the sol-gel method. Effect of the finely dispersed metal on the microstructure and the characteristic properties of the palladium-alumina membrane were investigated. Observations were made on membrane weight loss, morphology, pore structure, pore size, surface area, pore surface fractal and membrane's crystal structure. Autosorb analysis, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) analysis were employed in the membrane characterization. Autosorb analysis found that, BET surface area decreased and pore size of the membrane increased with the increasing of calcinations temperature (500-1100{sup o}C) and with the increasing of palladium amount in the membrane. FTIR and TG/DTA analysis show that the suitable temperature for calcinations of palladium-alumina membrane is at 700{sup o}C. Palladium metals are highly dispersed at calcinations temperature of 700{sup o}C as observed by TEM analysis. The fine crystallinity of the palladium and {gamma}-alumina phase was obtained after calcined at 700{sup o}C. The SEM morphology shows a smooth and free crack layer of palladium-alumina membrane after repeating the process of dipping, drying and calcinations at temperature of 700{sup o}C. The membrane also successfully coated with a good adhesion on support. The thickness of the final membrane layer was estimated as 9{mu} m. (author)

  3. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  4. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  5. Delayed Failure in a Shock Loaded Alumina

    International Nuclear Information System (INIS)

    Cooper, G. A.; Millett, J. C. F.; Bourne, N. K.; Dandekar, D. P.

    2006-01-01

    Manganin stress gauges have been used to measure the lateral stress in a shock-loaded alumina. In combination with known longitudinal stresses, these have been used to determine the shear strength of this material, behind the shock front. The two-step nature of the lateral stress traces shows a slow moving front behind the main shock, behind which shear strength undergoes a significant decrease. Results also show that this front decreases markedly in velocity as the HEL is crossed, suggesting that limited plasticity occurs during inelastic deformation. Finally, comparison of measured shear strengths with other aluminas shows a high degree of agreement

  6. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  7. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  8. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  9. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  10. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  11. Surface modification of nanoporous alumina membranes by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: dusan.losic@unisa.edu.au

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  12. Surface modification of nanoporous alumina membranes by plasma polymerization

    International Nuclear Information System (INIS)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J

    2008-01-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes

  13. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  14. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  15. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  16. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  17. Investigating the property profile of polyamide-alumina nanocomposite materials

    International Nuclear Information System (INIS)

    Sarwar, Muhammad Ilyas; Zulfiqar, Sonia; Ahmad, Zahoor

    2009-01-01

    Transparent sol-gel-derived nanocomposites were prepared by incorporating an alumina network into a polyamide matrix. Different amounts of aluminum butoxide were hydrolyzed and condensed to produce the alumina network. Thin composite films were characterized in terms of their optical, morphological, mechanical and thermomechanical properties. Tensile modulus, stress at both yield and break points, improved for alumina loadings of 5-10 wt.%. The glass transition temperature increased to 140 o C for nanocomposites containing 15 wt.% alumina. Scanning electron microscopy investigations indicated a uniform distribution of alumina in the polyamide matrix.

  18. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  19. Wear of alumina on alumina total hip prosthesis - effect of lubricant on hip simulator test

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Amino, H. [Kyocera Corp., Fushimi, Kyoto (Japan). Bioceram Div.; Oonishi, H. [Dept. of Orthopaedic Surgery, Artificial Joint Sect. and Biomat. Res. Lab., Osaka Minami National Hospital, Osaka (Japan); Clarke, I.C.; Good, V. [Dept. of Orthopaedic Surgery, Loma Linda Univ. Medical Center, CA (United States)

    2001-07-01

    The complex wear-friction-lubrication behavior of alumina on alumina combination in total hip prostheses (THP) was investigated using a hip joint simulator. The objectives of this study were to evaluate the effect of the ball/cup clearance and of the lubricant conditions. Alumina bearings were categorized in three diametrical clearances, 20-30, 60-70 and 90-100 micrometer, three each and wear tests were carried out with 90% bovine serum. There was no significant difference between three groups. Volumetric wear in the run-in phase for all tested nine ceramic liners averaged 0.27mm{sup 3}/million cycles and in the steady-state phase averaged 0.0042mm{sup 3}/million cycles. In addition to the 90% serum, 27% serum and saline were used as the lubricant for evaluate the effect of serum concentration on alumina on alumina wear couples. The wear test results showed that in all tested conditions the wear trends of alumina BEARING were bi-phasic and wear volume could be affected by the serum concentration. Both ''Run-in'' and ''Steady-state'' wear rates in 90% bovine serum were three times higher than those in saline. (orig.)

  20. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) ... In addition, the TEM images show that the average particle size of ... of both compounds decreases exponentially by increasing the temperature.

  1. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. Synthesis of nanosized metal particles from an aerosol

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  3. Membrane with Stable Nanosized Microstructure and Method for Producing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from...... an electrolyte material, a grain growth inhibitor and/or grain boundary modifier, and a method for producing same....

  4. Crystallization of Organic Semiconductor Molecules in Nanosized Cavities

    DEFF Research Database (Denmark)

    Milita, Silvia; Dionigi, Chiara; Borgatti, Francesco

    2008-01-01

    The crystallization of an organic semiconductor, viz., tetrahexil-sexithiophene (H4T6) molecules, confined into nanosized cavities of a self-organized polystyrene beads template, has been investigated by means of in situ grazing incidence X-ray diffraction measurements, during the solvent evapora...

  5. Mössbauer and magnetization studies of nanosize chromium ferrite ...

    African Journals Online (AJOL)

    Nanosize chromium ferrite (CrF) powder samples were synthesized by citrate precursor route in the size range of 6 to 35 nm. The structural and magnetic behaviour of these samples were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized ...

  6. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  7. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  8. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak Ali, M., E-mail: masterscience2003@yahoo.co.in [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India); Raj, V., E-mail: alaguraj2@rediffmail.com [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India)

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  9. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  10. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    Science.gov (United States)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  11. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    Science.gov (United States)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying

  12. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  13. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  14. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints); Etude physico-chimique de depots plasma duplex alumine/hydroxyapatite pour applications medicales relations elaboration/structure/proprietes (dissolution/adherence/contraintes residuelles)

    Energy Technology Data Exchange (ETDEWEB)

    Demonet, N

    1998-11-19

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  15. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  16. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  17. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  18. Mesoscale Modelling of the Response of Aluminas

    International Nuclear Information System (INIS)

    Bourne, N. K.

    2006-01-01

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response

  19. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  20. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  1. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  2. Development of nano-sized {alpha}-Al{sub 2}O{sub 3}:C films for application in digital radiology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edna C., E-mail: edca@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear; Fontainha, Crissia C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Propedeutica Complemetar; Oliveira, Vitor H.; Ferraz, Wilmar B.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Ceramic materials are widely used as sensors for ionizing radiation. In nuclear applications, the alpha-alumina doped with carbon ({alpha}-Al{sub 2}O{sub 3}:C) is the most widely ceramic used because of its excellent optically stimulated luminescence (OSL) and thermoluminescent (TL) properties applied to detection of ionizing radiation. Another application of OSL and TL materials are in Digital Radiography, with ceramic/polymeric film composites. Recently, Computed Radiography (CR) devices based on OSL materials are replacing the old conventional film radiography. In this study we investigate the thermoluminescence of nano-sized {alpha}-Al{sub 2}O{sub 3} samples doped with different percentages of carbon, sintered in reducing atmospheres at temperatures ranging from 1300 to 1750 deg C. The results indicate that the nano-sized {alpha}-Al{sub 2}O{sub 3}:C materials have a luminescent response that could be due to both OSL and RPL properties, but without application to radiation dosimetry. Moreover, the results indicate that micro-sized {alpha}-Al{sub 2}O{sub 3}:C, doped with 0.5% carbon, and nano-sized ones doped with 2% of carbon, present thermoluminescent signal around 30 to 100 times the TL output signal of commercial TLD-100, the most used TL dosimeter in the world. The results indicate that these ceramic nano-particles have great potential for use in Digital Radiography based on thermoluminescent film imaging, being able to provide image resolutions much higher than the micro-sized {alpha}-Al{sub 2}O{sub 3}:C, in view of their improved resolution provided by nano-particulates. (author)

  3. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  4. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  5. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  6. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  7. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  8. Interaction of alumina with liquid Pb{sub 83}Li{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Uttam, E-mail: uttamj@barc.gov.in [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Abhishek; Sonak, Sagar; Kumar, Sanjay [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, Ratikant [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Krishnamurthy, Nagaiyar [Fusion Reactor Materials Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-11-15

    Highlights: • The role of oxygen in the interaction of alumina with Pb{sub 83}Li{sub 17} alloy was studied. • Li of Pb{sub 83}Li{sub 17} alloy undergoes oxidation even in flowing high pure argon atmosphere. • It was seen that alumina reacts with Pb{sub 83}Li{sub 17} alloy at 550 °C to form LiAlO{sub 2} compound. • The reaction is rapid in the presence of oxygen and happens more slowly in the presence of flowing argon. - Abstract: Eutectic lead lithium (Pb{sub 83}Li{sub 17}) alloy is being considered a coolant, neutron multiplier and tritium breeder for International Thermonuclear Experimental Reactor (ITER) and Fusion Power Reactors (FPR). In order to reduce the magneto-hydrodynamic drag (MHD) and to prevent corrosion of structural materials due to the flow of lead lithium (Pb{sub 83}Li{sub 17}) alloy, alumina (Al{sub 2}O{sub 3}) is proposed as a candidate ceramic coating material. Interaction of liquid Pb{sub 83}Li{sub 17} alloy with Al{sub 2}O{sub 3} at the operating temperature of these reactors is therefore an important issue. The present paper deals with the characterization of Pb{sub 83}Li{sub 17} alloy and its interaction with Al{sub 2}O{sub 3} at the reactor operating temperature. The interaction was studied using EPMA, XRD and thermal analysis technique. The result indicates that alumina can interact with Pb{sub 83}Li{sub 17} alloy at 550 °C even in high purity argon atmosphere. The role of oxygen in the interaction process has also been discussed.

  9. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  10. Characterization of nanosized Al2(WO4)3

    International Nuclear Information System (INIS)

    Nihtianova, D.; Velichkova, N.; Nikolova, R.; Koseva, I.; Yordanova, A.; Nikolov, V.

    2011-01-01

    Graphical abstract: TEM method allows to detect small quantities of impurities not detectable by other methods. In our case impurities of W 5 O 14 are detected in Al 2 (WO 4 ) 3 nanopowder. Highlights: → Nanosized Al 2 (WO 4 ) 3 by simple co-precipitation method. → Spherical particles with mean size of 22 nm distributed between 10 and 40 nm at 630 o C. → XRD, DTA and TEM confirm well defined products with perfect structure. → TEM locality allows detection of impurities not detectable by XRD and DTA. -- Abstract: Nanosized aluminum tungstate Al 2 (WO 4 ) 3 was prepared by co-precipitation reaction between Na 2 WO 4 and Al(NO 3 ) 3 aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al 2 (WO 4 ) 3 nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W 5 O 14 impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.

  11. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  12. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...... of the stability of transition alumina at finite temperatures....

  13. Characterization of coke deposited on nano-sized Pt-Pd/H-beta spent during long-chain paraffin hydroisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Einicke, W.D.; Ficht, K.; Glaeser, R. [Leipzig Univ. (Germany). Inst. of Chemical Technology; Bertmer, M. [Leipzig Univ. (Germany). Inst. of Experimental Physics II; Kuchling, T. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Energy Process Engineering and Chemical Engineering

    2013-11-01

    The hydroisomerization of long-chain n-paraffins were studied in the temperature range 205- 230 C at p{sub H2}=50 bar using a bench scale trickle-bed continuous-flow reactor. The bimetallic catalysts consisted of mixtures of platinum and palladium supported on commercially available nano-sized zeolites Beta (n{sub Si}/n{sub Al} = 12 and 25) extruded with a binder ({gamma}-alumina). For hexadecane conversion, high yields to isomers (25 and 45 wt.% of mono- and multibranched isomers, respectively) without extensive cracking (>10 wt.%) were obtained at a conversion of 80 %. Long-term tests with C{sub 16}H{sub 34} and blends of solid n-paraffins for 30-60 days on stream clearly indicate that a minor loss in catalyst activity can easily be compensated by increasing the reaction temperature from 230 C to 235 C. The zeolite sample with a 'mild acidity' revealed low hydrocracking at isomerization yield up to 70 wt.% and high stability. Carbonaceous deposits formed during n-paraffin hydroisomerization were investigated by temperature-programmed oxidation, elemental analysis, ATR-FTIR and {sup 13}C MAS NMR spectroscopy showing the formation of low-temperature, hydrogen-rich coke. (orig.)

  14. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    International Nuclear Information System (INIS)

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  15. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  16. A method for probing the effects of conformal nanoscale coatings on fatigue crack initiation in electroplated Ni films

    International Nuclear Information System (INIS)

    Straub, T.; Baumert, E.K.; Eberl, C.; Pierron, O.N.

    2012-01-01

    This paper describes an experimental technique to identify robust nanoscale coatings for improving the long-term reliability of metallic microelectromechanical systems. More specifically, the influence of nanoscale alumina coatings on the fatigue crack initiation process in 20 μm thick electrodeposited Ni films was investigated in a mild (30 °C, 50% RH) and harsh (80 °C, 90% RH) environment. Atomic-layer-deposited alumina layers, with thicknesses of 5 and 25 nm, were coated on Ni fatigue micro-resonators, and the fatigue degradation behavior in the very high cycle fatigue regime was compared to that of uncoated structures. Evidence based on post-test scanning electron microscopy and resonant frequency evolution plots shows that the coatings do not prevent the formation of fatigue extrusions and micro-cracks. However, their formation is likely delayed for the 25 nm thick alumina-coated Ni films. - Highlights: ► Effect of alumina coatings (5 and 25 nm thick) on fatigue initiation in nickel films ► Fatigue tests were performed at 30 °C, 50% relative humidity (RH) and 80 °C, 90% RH. ► Coatings did not prevent fatigue extrusions and micro-cracks. ► 25 nm coatings likely delayed the formation of fatigue extrusions and micro-cracks. ► The technique can be used to identify reliable nanoscale coatings.

  17. ZnO/Al{sub 2}O{sub 3} coatings for the photoprotection of polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Moustaghfir, A. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Tomasella, E. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Jacquet, M. [Laboratoire des Materiaux Inorganiques, UMR CNRS 6002, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France)]. E-mail: jacquet@chimie.univ-bpclermont.fr; Rivaton, A. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Mailhot, B. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Gardette, J.L. [Laboratoire de Photochimie Moleculaire et Macromoleculaire, UMR CNRS 6505, Universite Blaise Pascal (Clermont-Fd), 63177 Aubiere Cedex (France); Beche, E. [PROMES, Odeillo, 66125 Font-Romeu Cedex (France)

    2006-10-25

    ZnO and ZnO/Al{sub 2}O{sub 3} thin films were deposited by r.f. magnetron sputtering on polycarbonate (PC) films in order to protect this polymer against photodegradation. The composition, structure and optical properties of the ceramic coatings were characterised. CO{sub 2}-plasma treatments were applied to PC in order to improve the coating adhesion. The PC surface energy was characterised by wettability measurements and the chemical bonds were analysed by XPS. It was found that ZnO coatings improve the stability of PC to UV radiations and that an intermediate alumina coating inhibits the photocatalytic oxidation of PC at the PC/ZnO interface. Additionally an external alumina coating brings a high hardness to the coating.

  18. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  19. Development and evaluation of alumina calcination

    International Nuclear Information System (INIS)

    Bennett, I.J.

    2000-01-01

    This thesis focuses on a number of aspects governing the transformation of gibbsite, via intermediate phases, to α-alumina. These aspects include the size and morphology of the gibbsite grains, the influence of additions of foreign elements, the effect of a mechanical treatment of the gibbsite prior to calcination, and combinations of these factors. The materials were characterised by scanning electron microscopy, X-ray diffraction and surface area measurements. For some of the calcined materials an attempt was made to sinter the powders to a dense body to investigate if any of the treatments during calcination had an effect on this process. The literature review covers the current state of understanding of the production of bulk alumina powder by the Bayer process and the phase changes seen on calcination of precursors to the stable α-alumina phase. A detailed description of the phase changes is given and the various routes and conditions necessary for the transformations to occur are considered. The transformations are examined in relation to the morphology of the crystals and the variables controlling the phase transformation route are discussed. Calcination in air showed that the size of the gibbsite grain governs the calcination route taken to reach oc-alumina. The standard gibbsites used in this work show a mixed calcination sequence transforming both via the boehmite phase, followed by the γ, δ and θ phases, and via the χ and κ phases. The formation of boehmite is attributed to retention of water vapour within the grain. Differences in morphology of the starting materials showed that for the range of materials seen, the morphology of the grain is less important than its size. The super fine material confirmed that a small grain size transforms via the non-boehmite route only, with the other gibbsites taking intermediate routes as for the standard gibbsites. Of the additions made prior to calcination, aluminium fluoride was found to reduce the

  20. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  1. Cathodoluminescence study of anodic nanochannel alumina

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q.X. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)]. E-mail: guoq@cc.saga-u.ac.jp; Hachiya, Y. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Nishio, M. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Ogawa, H. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)

    2006-07-15

    Nanochannel alumina (NCA) templates with highly ordered pore arrays were prepared by anodizing pure aluminum foil in acid solutions. Cathodoluminescence measurements reveal that a blue emission band appears at around 2.8 eV and its energy position depends on measurement temperature and pore size of NCA. The shift of the blue emission band energy with temperature is ascribed to the variations of electron-phonon interactions. X-ray absorption near-edge fine structure results show that the blue emission band shift with pore size is due to the local environment change of atoms in NCA.

  2. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  3. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  4. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  5. Cavity cutting efficiency of a Bioglass and alumina powder ...

    Indian Academy of Sciences (India)

    1531–1536. c Indian Academy of Sciences. ... conical in shape, whereas cavities produced by alumina and alumina + 45S5 were more ... any other material having good cutting properties is highly .... Saw, Buehler Ltd, IL, USA) at a blade speed of 3500 r.p.m. ... and the machine was run for 1min to remove any residual.

  6. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    Science.gov (United States)

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  7. Near net-shape fabrication of alumina glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.J.M.G.; Feenstra, F.

    2005-01-01

    The purpose of the present study is to fabricate alumina glass composites by melt infiltration with better dimensional control through reducing both the presintering and infiltration temperature. Main efforts were put to develop glasses that are chemically compatible with alumina. After extensive

  8. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment of ammonium alum prepared from the filtrate of the dealuminated metakaolin was employed to obtain the alumina. Crystalline aluminum sulfate with 39 wt% Al2O3 ...

  9. Synthesis of Nano Crystalline Gamma Alumina from Waste Cans

    Directory of Open Access Journals (Sweden)

    Nada Sadoon Ahmedzeki

    2018-03-01

    Full Text Available In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5, sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55% and weights of aluminum cans (2, 4, 6, 8 and 10 g. The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS; and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD, N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF and atomic force microscopy (AFM. Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.

  10. Characterization of the microporous HDPE film with alpha alumina

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2010-01-01

    The effects of the addition of the alpha alumina on the properties of the microporous high density polyethylene (HDPE) films were investigated. The particle size and the specific surface area of alpha alumina were 400 nm and 7.3 m 2 g -1 . The HDPE and the alpha alumina were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in oven 120 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume of the microporous HDPE films was increased with an increasing content of the alpha alumina. The mechanical characteristics of the microporous HDPE films were increased with a content of alpha alumina up to 15%, but decreased at 20%. The electrochemical stability of the microporous HDPE film containing alpha alumia was increased with an increased irradiation dose up ti 50 kGy

  11. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  12. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  13. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  14. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  15. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  16. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  17. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  18. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    Science.gov (United States)

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  20. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  1. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  2. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  3. Microstructure and interfacial behaviour of Alumina/Inconel 600 joints prepared by brazing route

    International Nuclear Information System (INIS)

    Laik, A.; Mishra, P.; Bhanumurthy, K.; Kashyap, B.P.

    2010-01-01

    Joining of metals to ceramics remains a technological challenge due to the wide difference in the physical and mechanical properties of the two classes of materials. Attempt was made to produce leak tight joints between Inconel-600 and alumina using the brazing route with Au-Ni brazing alloy. Alumina tubes were metallised following the Mo-Mn route and then coated with Ni. The metallised alumina tubes were brazed to Inconel-600 ferrules using Au-18%Ni brazing alloy under vacuum, at optimised process parameters. In order to study the effect of prolong annealing on the microstructural stability and the micro-chemistry of the brazing zone, brazed joints were subjected to prolong annealing at 400 deg C and 560 deg C for 8000 hrs each. Detailed analysis of the interfacial structure of the brazing zones was done using an electron probe microanalyser (EPMA). X-ray maps of the elements Fe, Ni, Cr, Al, Au, Mo and Mn along with BSE images of the brazing zone are given. These X-ray maps precisely reveal the micro-chemistry of the brazing zones. The various phases formed were identified. The distribution of the various elements across the interfaces was also obtained, which helps to reveal the chemical behaviour of the individual elements during the process of brazing. Two phases appear very distinctly in the brazement, one is rich in Au and the other is rich in Ni. Depending upon their affinity, rest of the elements shows a partitioning in these two phases. While Fe, Cr and Mo get dissolved in the Ni-rich phase, Mn seems to partition in the Au-rich phase. The microstructure and the X-ray maps of the couple annealed at 400 deg C shows that the spatial variation in the composition throughout the brazing zone gets homogenised due to diffusion at high temperatures. This effect is even more pronounced on annealing at 560 deg C. Moreover, the transport of Cr from the Inconel side to the surface of alumina is very evident. On annealing at 560 deg C, a region rich in Cr, was found to

  4. Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Johansen, Villads Egede; Ambat, Rajan

    2015-01-01

    of anodised surfaces. PU matrix was selected for its matching refractive-index (n = 1.7) with anodic alumina layer. Three different TiO2 particle size distributions were dispersed in PU and spin coated onto bright high-gloss and matte caustic-etched aluminium substrates. The reflectance spectra of coated...

  5. Characterization of high-energy milled alumina powders Caracterização de pós de alumina submetidos a moagem de alta energia

    Directory of Open Access Journals (Sweden)

    Roberto Tomasi

    1998-10-01

    Full Text Available The utilization of reactive high-energy milling has been reported for the synthesis of ceramic powders namely, metal oxides, carbides, borides, nitrides or mixtures of ceramics or ceramic and metal compounds. In this work, high-energy milling was used for reduction of alumina powders to nanometric particle size. The ceramic characteristics of the powders were analyzed in terms of the behavior during deagglomeration, compaction curves, sintering and microstructure characterization. It was observed that the high energy milling has strong effect in producing agglomeration of the nanosized powders. This effect is explained by the high-energy impact of the balls, which may fracture particles or just cause the particles compacting. In this case, strong agglomerates are produced. As the powder surface area increases, stronger agglomerates are produced.Tem sido amplamente divulgada a utilização da moagem reativa de alta energia para a síntese de pós cerâmicos de óxidos de metais, carbetos, boretos, nitretos ou misturas de compostos cerâmicos ou compostos cerâmicos e metálicos. Neste trabalho, a moagem de alta energia (não reativa foi utilizada para a redução de pós de alumina para partículas de dimensões nanométricas. As características cerâmicas dos pós obtidos foram analisadas a partir de resultados de comportamento durante a desaglomeração, curvas de densificação, sinterização e caracterização de microestrutura. Observou-se que a moagem de alta energia tem forte efeito de aglomeração dos pós com partículas em dimensões nanométricas. Esse efeito é explicado pelo impacto de alta energia das bolas, os quais podem fraturar as partículas ou apenas causar a compactação das mesmas. Nesse último caso, que sempre ocorre, são formados aglomerados de alta resistência. O aumento da área superficial do pó produz aglomerados mais resistentes.

  6. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  7. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Franger, Sylvain; Cruz, Manuel; Morales, Julián; Santos-Peña, Jesús

    2014-01-01

    Highlights: • Thermal treatment of boron phosphate with LiFePO 4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g -1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO 4 , FePO 4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO 4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO 4 , possibly doped with a low amount of boron, ii) FePO 4 and iii) an amorphous layer based on Li 4 P 2 O 7 -derived material that surrounds the phosphate particles. The thermal treatment with BPO 4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B 6 -LiFePO 4 , provided close to 150 and 140 mAhg -1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  8. Concretos refratários preparados com alumina hidratável: efeito dos dispersantes Refractory castables prepared with hydratable alumina: the dispersant effect

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira

    2009-03-01

    the coating of the particles surfaces by the additive inhibits the hydration. Comb-like chain additives were indicated in order to match dispersion and hydration of castables containing hydratable alumina as a binder.

  9. Reduction-sensitive polymer-shell-coated nanogels for intracellular delivery of antigens

    NARCIS (Netherlands)

    Li, Dandan; Chen, Yinan|info:eu-repo/dai/nl/377279048; Mastrobattista, Enrico|info:eu-repo/dai/nl/228061105; Van Nostrum, Cornelus F.|info:eu-repo/dai/nl/134498690; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Vermonden, Tina|info:eu-repo/dai/nl/275124517

    2017-01-01

    Nowadays, layer-by-layer assembled microsized particles receive interest as drug delivery systems. In the present study, we report nanosized hydrogels loaded with a protein antigen that are coated with a disulfide cross-linked polymer shell. These disulfide bonds are stable in the nonreducing

  10. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    Science.gov (United States)

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  11. Application of Nanosize Zeolite Molecular Sieves for Medical Oxygen Concentration

    Directory of Open Access Journals (Sweden)

    Mingfei Pan

    2017-07-01

    Full Text Available The development of a portable oxygen concentrator is of prime significance for patients with respiratory problems. This paper presents a portable concentrator prototype design using the pressure/vacuum swing adsorption (PVSA cycle with a deep evacuation step (−0.82 barg instead of desorption with purge flow to simplify the oxygen production process. The output of the oxygen concentrator is a ~90 vol % enriched oxygen stream in a continuous adsorption and desorption cycle (cycle time ~90 s. The size of the adsorption column is 3 cm in diameter and 20 cm in length. A Li+ exchanged 13X nanosize zeolite is used as the adsorbent to selectively adsorb nitrogen from air. A dynamic model of the pressure and vacuum swing adsorption units was developed to study the pressurization and depressurization process inside the microporous area of nanosized zeolites. The describing equations were solved using COMSOL Multiphysics Chemical Engineering module. The output flow rate and oxygen concentration results from the simulation model were compared with the experimental data. Velocity and concentration profiles were obtained to study the adsorption process and optimize the operational parameters.

  12. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  13. Ni-YSZ graded coatings produced by dipping

    International Nuclear Information System (INIS)

    Ferrari, B.; Moreno, R.

    2004-01-01

    A new colloidal processing route for the shaping of a graded Ni-YSZ composite for applications in SOFC devices is described. A Ni foil is coated by Ni/YSZ layers by dipping in aqueous suspensions with an organic binder. Behind the metal-ceramic layers introduced to improve adhesion, an outer thin layer of nanosized YSZ is formed by electrophoretic deposition. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    Science.gov (United States)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  15. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina

    International Nuclear Information System (INIS)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A.

    2014-01-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  16. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  17. Stresses in sulfuric acid anodized coatings on aluminum

    Science.gov (United States)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  18. Nanocomposite tribological coatings with 'chameleon' surface adaptation

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Fitz, T.A.; Hu, J.J.; Zabinski, J.S.

    2002-01-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed 'chameleon' because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its 'skin' chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS 2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS 2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS 2 /DLC coatings against steel and Si 3 N 4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 deg. C in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS 2 for sliding in dry N 2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 deg. C (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS 2 /DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design

  19. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Padmanaban, P.V.A.; Venkatramani, N.; Singh, S.P.; Saha, D.P.; Date, V.G.

    2002-01-01

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  20. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  1. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    International Nuclear Information System (INIS)

    Rau, Julietta V.; Fosca, Marco; Cacciotti, Ilaria; Laureti, Sara; Bianco, Alessandra; Teghil, Roberto

    2013-01-01

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications

  2. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Julietta V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Fosca, Marco [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Cacciotti, Ilaria [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Laureti, Sara [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300-00016 Monterotondo Scalo (RM) (Italy); Bianco, Alessandra [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Teghil, Roberto [Università della Basilicata, Dipartimento di Scienze, Via dell' Ateneo Lucano 10-85100, Potenza (Italy)

    2013-09-30

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications.

  3. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  4. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  6. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  7. Activated alumina preparation and characterization: The review on recent advancement

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  8. Nanoporous alumina as templates for multifunctional applications

    Science.gov (United States)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  9. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  10. Compositional characterization of atomic layer deposited alumina

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev [Department of Instrumentation, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  11. Compositional characterization of atomic layer deposited alumina

    International Nuclear Information System (INIS)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-01

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al 2 O 3 is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra

  12. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  13. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  14. Characterization of alumina suspensions by electroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Galassi, C.; Roncari, E.; Greenwood, R.; Piancastelli, A. [CNR, Faenza (Italy). Research Inst. for Ceramics Technology

    1997-12-31

    Using the acoustophoresis technique three different dispersants were selected to investigate the effect of the volume fraction of the suspension on the minimum amount of dispersant required to give the maximum zeta potential. No effect was detected over a volume fraction range 0.11 to 0.35. The acoustosizer was used to screen many dispersants for alumina in a relatively short time. From the viewpoint that the most stable suspensions are those with the greatest zeta potentials, then the following dispersants can be recommended: Reotan LA (0.25 mg/m{sup 2}) Dolapix CA (0.20 mg/m{sup 2}) and Dolapix PC33 (0.30 mg/m{sup 2}). Vanisperse and Borresperse are poor. Polyacrylic acid and polymethacrylic acid were better than some commercially available products. (orig.) 2 refs.

  15. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  16. The local strength of microscopic alumina reinforcements

    International Nuclear Information System (INIS)

    Žagar, Goran; Pejchal, Václav; Mueller, Martin G.; Rossoll, Andreas; Cantoni, Marco; Mortensen, Andreas

    2015-01-01

    We measure, using an adaptation of a method designed for ceramic ball bearings, the local strength of a brittle second phase that serves to reinforce a metal. The method uses focused ion beam milling and a nanoindentation device, and is free of artifacts commonly present in micromachined specimens. It is demonstrated on Nextel 610™ nanocrystalline alumina fibers embedded in an aluminum matrix composite. Results reveal a size effect that does not follow, across size scales, usual Weibull statistics: the fiber strength distribution differs between measurements at the microscale and macroscopic tensile testing. This implies that, in micromechanical analysis of multiphase materials, highly localized events such as the propagation of internal damage require input data that must be measured at the same, local, microscale as the event; the present work opens a path to this end.

  17. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@wust.edu.cn; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-15

    Highlights: • Uniform ZrC coatings are prepared on flake graphite at 900 °C. • ZrC coatings are composed of nanosized (30–50 nm) particles. • The template growth mechanism is believed to be dominant in the molten salt synthesis process. - Abstract: A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30–50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a “template mechanism” played an important role during the molten salt synthesis.

  18. Durability of an inorganic polymer concrete coating

    Science.gov (United States)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  19. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  20. Al2O3 - TiO2-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    International Nuclear Information System (INIS)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.; Wunderlich, W.; Warrier, K.G.K.

    2008-01-01

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and the observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 μm. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route

  1. PHOTOACTIVE POLYACRYLONITRILE FIBERS COATED BY NANO-SIZED TITANIUM DIOXIDE: SYNTHESIS, CHARACTERIZATION, THERMAL INVESTIGATION

    OpenAIRE

    MOAFI, HADI FALLAH; FALLAH SHOJAIE, ABDOLLAH; ALI ZANJANCHI, MOHAMMAD

    2011-01-01

    Anatase nanocrystals were successfully synthesized and deposited onto polyacrylonitrile fibers with photocatalytic self-cleaning activity using the sol-gel process at low temperature. The original and treated samples have been characterized by several techniques such as scanning electron microscopy, fourier transform infrared spectroscopy, x-ray diffraction, diffuse reflectance spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The TiO2 nanoparticles, have been fo...

  2. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  3. The Adsorption of Cr(VI Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2013-12-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  4. Nanosized f.c.c. thallium inclusions in aluminium

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Thoft, N.B.; Andersen, H.H.; Sarholt-Kristensen, L.

    1993-01-01

    Ion implantation of pure aluminium with thallium induces the formation of nanosized crystalline inclusions of thallium with a f.c.c. structure. The size of the inclusions depends on the implantation conditions and subsequent annealing treatments and is typically in the range from 1 to 10 nm. The inclusions are aligned topotactically with the aluminium matrix with a cube-cube orientation relationship and they have a truncated octahedral shape bounded by {111} and {001} planes. The lattice parameter of the f.c.c. thallium inclusions is 0.484 ± 0.002 nm, which is slightly but significantly larger than in the high-pressure f.c.c. thallium phase known to be stable above 3.8 GPa. (Author)

  5. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  6. Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves

    International Nuclear Information System (INIS)

    Naydenova, I; Leite, E; Babeva, Tz; Pandey, N; Baron, T; Martin, S; Toal, V; Yovcheva, T; Sainov, S; Mintova, S

    2011-01-01

    Acrylamide-based photopolymerizable nanocomposites containing three types of nanosized crystals with controlled microporosity, Silicalite-1 (MFI-structure), AlPO-18 (AEI-structure) and Beta (BEA-structure) are studied. The influence of the porous nanoparticles on the average refractive index, optical scattering and holographic recording properties of the nanocomposite are characterized. The redistribution of nanoparticles as a result of the holographic recording in the layers is investigated by Raman spectroscopy. It is observed that in all three nanocomposites the nanoparticles are redistributed according to the illuminating light pattern. This redistribution improves the refractive index modulation only in the case of the MFI nanoparticles, while no improvement is observed in AEI and BEA doped layers. The results can be explained by the hydrophobic/hydrophilic nature of the nanoparticles and their interactions, or absence of interactions, with the host photopolymer

  7. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  8. Hot isostatic pressing of nanosized WC-Co hardmetals

    International Nuclear Information System (INIS)

    Azcona, I.; Ordonez, A.; Sanchez, J.M.; Castro, F.; Dominguez, L.

    2001-01-01

    A new technique based on hot isostatic pressing (HIP) has been developed to produce dense nanosized WC-Co hardmetals without the addition of grain growth inhibitors. The glass encapsulation process is the key for the effective application of isostatic pressure at temperatures well below those usually required for reaching the closed porosity state in the WC-Co system. Fully dense WC-Co samples with cobalt contents ranging from 10 to 12 wt. % have been obtained by this technique at temperatures between 1000 o C and 1200 o C with 150 MPa of applied isostatic pressure for 30 minutes. The role of isostatic pressure on the activation of densification mechanisms is discussed. (author)

  9. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  10. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  11. Significance of structure–property relationship in alumina based ...

    Indian Academy of Sciences (India)

    Unknown

    adverse environmental conditions and mechanical vibra- tions. Most ceramic ... However, even alumina insulators manufactured (for use in 25 kV railway traction ..... early showed plastic deformation and large cracks in and around the indents.

  12. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  13. Characterization of the Uptake of Nitrogen Oxides on Alumina Adsorbents

    National Research Council Canada - National Science Library

    Pocengal, David

    1999-01-01

    ...) to quantify nitrate and nitrite (NOx) in aqueous solutions that contained NOx exposed alumina and to correlate the quantities of these surface NOx species with the quantity of gaseous NOx sorbed...

  14. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  15. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    dental applications. M GUEDES1,4,*, V .... Alumina/LAS bioceramics for dental applications. 697 strength ... assessment. ... indentation load (N) and c is the median length (m) of the ... mixtures show two distinct modes, reflecting both the.

  16. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  17. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    porcelain types (Morrell 1985; Vazquez and Mejia Velasquez. 1998). By increasing ... Orlova et al found that, in alumina porcelains, opti- mum mechanical ... of high mobility of ions, acceptable electrical performance may be achieved with ...

  18. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  19. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  20. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  1. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  2. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D., E-mail: music@mch.rwth-aachen.de; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Bednarcik, J.; Michalikova, J. [Deutsches Elektronen Synchrotron DESY, FS-PE group, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  3. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    International Nuclear Information System (INIS)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D.; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M.; Bednarcik, J.; Michalikova, J.

    2015-01-01

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O 2 atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al 2 O 3 formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO 2 at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al 2 O 3 with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds

  4. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  5. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  6. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  7. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template

    Science.gov (United States)

    Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi

    2014-06-01

    In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.

  8. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  9. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  10. The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol

    International Nuclear Information System (INIS)

    Fu Hongbo; Yao Wenqing; Zhang Liwu; Zhu Yongfa

    2008-01-01

    Nanosized Bi 2 WO 6 catalyst exhibited the enhanced photoactivity for the degradation of 4-chlorophenol (4-CP) under visible irradiation compared to the sample prepared by high-temperature solid reaction. The photoactivity of the catalyst was sensitive to pH variation of the suspension. Nanosized Bi 2 WO 6 catalyst showed the highest activity at pH 7.2. The photodegradation of 4-CP by nanosized Bi 2 WO 6 catalyst followed a pseudo-first-order reaction. After three recycling runs for the photodegradation of 4-CP, the activity of the catalyst did not show any significant loss, suggesting that the catalyst was stable under visible irradiation

  11. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

    Directory of Open Access Journals (Sweden)

    A. Hebeish

    2013-01-01

    Full Text Available Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM, particle size analyzer (PS, Polydispersity index (PdI, Zeta potential (ZP, XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm. The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs.

  12. Preparation, characterization and microstructural optimization of a thin {gamma}-alumina membrane on a porous stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, Sanam [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Street, Tehran (Iran, Islamic Republic of); Parvin, Nader, E-mail: naderparvin@yahoo.com [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Street, Tehran (Iran, Islamic Republic of); Ashtari, Parviz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer A mesoporous {gamma}-Al{sub 2}O{sub 3} membrane was synthesized on conventional {alpha}-Al{sub 2}O{sub 3} substrates. Black-Right-Pointing-Pointer {gamma}-Al{sub 2}O{sub 3} membrane was potential for CO{sub 2} separation at high pressure test conditions. Black-Right-Pointing-Pointer Thus, it was required to provide the membrane layer with more strength. Black-Right-Pointing-Pointer {alpha}-Alumina substrate was substituted with porous stainless steel. Black-Right-Pointing-Pointer A stainless steel supported {alpha}-Al{sub 2}O{sub 3} membrane with better properties was synthesized. - Abstract: In this work, a supported mesoporous (MEP) {gamma}-Al{sub 2}O{sub 3} membrane was synthesized on conventional {alpha}-Al{sub 2}O{sub 3} substrates by sol-gel dip coating process. In the following, the preparation of a novel metallic-ceramic composite membrane was studied, which incorporated desirable properties of both ceramic membrane and porous metallic substrate. For this purpose, mesoporous alumina membrane layer was developed on a porous 316L stainless steel substrate. The substrate was prepared by loose powder sintering and modified by soaking-rolling and fast drying method. The prepared membranes were characterized using scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and N{sub 2}-adsorption/desorption measurements (BET analyses). The results revealed that a defect-free {gamma}-alumina membrane with 2.1 nm average pore size can be produced. Permeation tests with N{sub 2} gas revealed that the stainless steel substrate had 40 times more permeability than conventionally used alumina support. Additionally, single gas permeation of {gamma}-alumina membrane for CO{sub 2} and N{sub 2} was compared. It was observed that CO{sub 2} could be separated from N{sub 2} by the MEP {gamma}-Al{sub 2}O{sub 3} membrane in high pressure permeation condition, where stainless steel

  13. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu, E-mail: m-kawa@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); Hasegawa, Maki [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); Kudo, Tada-aki; Kanetaka, Hiroyasu [Graduate School of Dentistry, Tohoku University, Sendai 980-8575 (Japan); Miyazaki, Toshiki [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196 (Japan); Hashimoto, Masami [Japan Fine Ceramics Center, Nagoya 456-8587 (Japan)

    2016-12-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al{sub 2}O{sub 3}). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al{sub 2}O{sub 3}. Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al{sub 2}O{sub 3}in vivo are warranted. - Highlights: • We studied osteoblast-like MC3T3-E1 cell responses on fibronectin (Fn)-coated discs (HAp/α-Al{sub 2}O{sub 3}). • Fn adsorption enhanced adhesion and spreading of MC3T3-E1 cells on HAp but not on α-Al{sub 2}O{sub 3}. • Fn adsorption hardly affected proliferation and differentiation of MC3T3-E1 cells on HAp and α-Al{sub 2}O{sub 3}. • Fn adsorption might stimulate osteoconduction on HAp along with other serum proteins.

  14. Effect of fibronectin adsorption on osteoblastic cellular responses to hydroxyapatite and alumina

    International Nuclear Information System (INIS)

    Kawashita, Masakazu; Hasegawa, Maki; Kudo, Tada-aki; Kanetaka, Hiroyasu; Miyazaki, Toshiki; Hashimoto, Masami

    2016-01-01

    Initial cellular responses following implantation are important for inducing osteoconduction. We investigated cell adhesion, spreading, proliferation and differentiation of mouse MC3T3-E1 osteoblastic cells on untreated or fibronectin (Fn)-coated discs of hydroxyapatite (HAp) or alpha-type alumina (α-Al 2 O 3 ). Fn coating significantly enhanced adhesion and spreading of MC3T3-E1 cells on HAp, but did not affect MC3T3-E1 cell proliferation and differentiation on HAp or α-Al 2 O 3 . Fn-coated HAp likely does not stimulate pre-osteoblast cells to initiate the process of osteoconduction; however, Fn adsorption might affect the response of inflammatory cells to the implanted material or, in conjunction with other serum proteins, stimulate pre-osteoblast cell proliferation and differentiation. Further studies on the effect of serum proteins in cell culture and the efficacy of Fn-coated HAp and α-Al 2 O 3 in vivo are warranted. - Highlights: • We studied osteoblast-like MC3T3-E1 cell responses on fibronectin (Fn)-coated discs (HAp/α-Al 2 O 3 ). • Fn adsorption enhanced adhesion and spreading of MC3T3-E1 cells on HAp but not on α-Al 2 O 3 . • Fn adsorption hardly affected proliferation and differentiation of MC3T3-E1 cells on HAp and α-Al 2 O 3 . • Fn adsorption might stimulate osteoconduction on HAp along with other serum proteins.

  15. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  16. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  17. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  18. Red mud flocculation process in alumina production

    Science.gov (United States)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  19. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  20. Synthesis and characterization of bulk and coatings of hydroxyapatite using methanol precursor

    International Nuclear Information System (INIS)

    Khongwar, Jasper K.; Kannan, K.R.; Buvaneswari, G.

    2008-01-01

    Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert α-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 deg. C for 10 min. The complete crystallization of the apatite was obtained at 800 deg. C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on α-alumina and yttria stabilized zirconia substrates

  1. High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities

    Science.gov (United States)

    Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf

    2018-04-01

    Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.

  2. Irradiation performance of coated fuel particles with fission product retaining kernel additives

    International Nuclear Information System (INIS)

    Foerthmann, R.

    1979-10-01

    The four irradiation experiments FRJ2-P17, FRJ2-P18, FRJ2-P19, and FRJ2-P20 for testing the efficiency of fission product-retaining kernel additives in coated fuel particles are described. The evaluation of the obtained experimental data led to the following results: - zirconia and alumina kernel additives are not suitable for an effective fission product retention in oxide fuel kernels, - alumina-silica kernel additives reduce the in-pile release of Sr 90 and Ba 140 from BISO-coated particles at temperatures of about 1200 0 C by two orders of magnitude, and the Cs release from kernels by one order of magnitude, - effective transport coefficients including all parameters which contribute to kernel release are given for (Th,U)O 2 mixed oxide kernels and low enriched UO 2 kernels containing 5 wt.% alumina-silica additives: 10g sub(K)/cm 2 s -1 = - 36 028/T + 6,261 (Sr 90), 10g Dsub(K)/cm 2 c -2 = - 29 646/T + 5,826 (Cs 134/137), alumina-silica kernel additives are ineffective for retaining Ag 110 m in coated particles. However, also an intact SiC-interlayer was found not to be effective at temperatures above 1200 0 C, - the penetration of the buffer layer by fission product containing eutectic additive melt during irradiation can be avoided by using additives which consist of alumina and mullite without an excess of silica, - annealing of LASER-failed irradiated particles and the irradiation test FRJ12-P20 indicate that the efficiency of alumina-silica kernel additives is not altered if the coating becomes defect. (orig.) [de

  3. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  4. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  5. Stress development in particulate, nano-composite and polymeric coatings

    Science.gov (United States)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  6. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  7. Glass-(nAg, nCu) Biocide Coatings on Ceramic Oxide Substrates

    OpenAIRE

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more th...

  8. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  9. Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles

    Science.gov (United States)

    Imshinetsky, Igor M.; Mashtalyar, Dmitriy V.; Sunebryukhov, Sergey L.; Gnedenkov, Sergey V.

    2017-09-01

    The methods to form protective coatings by the plasma electrolytic oxidation method (PEO) in the electrolytic system containing nanosized particles of titanium nitride has been develoted. Tribological and morfological studies of the composite coatings have been carried out. It has been established that the microhardness of the coating with nanoparticles concentration of 3 g/l increases by 2 folds, while the wear resistance - by 2.2 fold, as compared to respective values for the PEO-coating formed in the electrolyte without nanoparticles.

  10. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  11. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  12. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  13. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  14. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  15. Tribological properties of nanosized calcium carbonate filled polyamide 66 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Kaito [Department of Mechanical Engineering, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan (Japan); Nishitani, Yosuke [Department of Mechanical Engineering, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015 Japan (Japan); Kitano, Takeshi [Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. 275, Zlin, 767 72 Czech Republic (Czech Republic); Eguchi, Kenichiro [Shiraishi Central Laboratories, 4-78 Motohama,Amagasaki,Hyogo,660-0085 Japan (Japan)

    2016-03-09

    For the purpose of developing high performance tribomaterials for mechanical sliding parts such as gears, bearings and so on, nanosized calcium carbonate (nano-CaCO{sub 3}) filled polyamide 66 (PA66) nanocomposites were investigated. The nano-CaCO{sub 3} was a kind of precipitated (colloid typed) CaCO{sub 3}, and its average particle size was 40, 80 and 150 nm. Surface treatment was performed by fatty acid on the nano-CaCO{sub 3} and its volume fraction in the nanocomposite was varied from 1 to 20vol.%. These nanocomposites were melt-mixed by a twin screw extruder and injection-molded. Tribological properties were measured by two types of sliding wear testers such as ring-on-plate type and ball-on-plate type one under dry condition. The counterface, worn surface and wear debris were observed by digital microscope and scanning electron microscope. It was found that the nano-CaCO{sub 3} has a good effect on the tribological properties, although the effect on the frictional coefficient and specific wear rate is differed by the volume fraction and the type of sliding wear modes. This is attributed to the change of wear mechanisms, which is the change of form of the transfer films on the counterface and the size of wear debris. It follows from these results that PA66/nano-CaCO{sub 3} nanocomposites may be possible to be the high performance tribomaterials.

  16. The Synthesis and Modification of Nanosized Clickable Latex Particles

    KAUST Repository

    Almahdali, Sarah

    2013-05-01

    This research aims to add to the current knowledge available for miniemulsion polymerization reactions and to use this knowledge to synthesize multifunctional nanosized latex particles that have the potential to be used in catalysis. The physical properties of the latex can be adjusted to suit various environments due to the multiple functional groups present. For this research, styrene, pentafluorostyrene, azidomethyl styrene, pentafluorostyrene with azidomethyl styrene and pentafluorostyrene with styrene latexes were produced, and analyzed by dynamic light scattering. The latexes were synthesized using a miniemulsion polymerization technique found through this research. Potassium oleate and potassium 1,1,2,2,3,3,4,4-nonafluorobutane-1-sulfonate were used as surfactants during the miniemulsion polymerization reaction to synthesize pentafluorostyrene with azidomethyl styrene latex. Transmission electron microscopy data and dynamic light scattering data have been collected to analyze the structure of this latex, and it has been synthesized using a number of conditions, differing in reaction time, surfactant amount and sonication methods. We have also improved the solubility of the latex through a copper(I) catalyzed 1,3-dipolar azide-alkyne reaction, by clicking (polyethylene glycol)5000 onto the azide functional groups.

  17. Structure and organization of nanosized-inclusion-containing bilayer membranes

    Science.gov (United States)

    Ren, Chun-Lai; Ma, Yu-Qiang

    2009-07-01

    Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.

  18. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  19. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    Science.gov (United States)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  20. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    International Nuclear Information System (INIS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2013-01-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4–5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10 4 particles ml −1 . The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles. (paper)

  1. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  2. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    International Nuclear Information System (INIS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-01-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  3. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Science.gov (United States)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  4. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  5. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  6. Conductivity variations in composites of. alpha. -zirconium phosphate and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Slade, R.C.T.; Knowles, J.A. (Dept. of Chemistry, Exeter Univ. (UK))

    Composite proton-conducting solid electrolytes have been formed from {alpha}-zirconium hydrogen phosphate ({alpha}-Zr(HPO{sub 4}){sub 2}.H{sub 2}O, {alpha}-ZrP) and aluminas (Al{sub 2}O{sub 3}) in varying mole ratios. Conductivity variations as a function of temperature have been characterised and compared to that for a delaminated {alpha}-ZrP (no alumina). There are no appreciable conductivity enhancements on composite formation, but conductivity for materials ca. 50 mole% in alumina can be comparable to the delaminated materials. Differential scanning calorimetry shows the composites to have different thermal properties to simple admixtures. High resolution {sup 31}P NMR studies show reaction to form aluminium phosphate at the interface between components. (orig.).

  7. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  8. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  9. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  10. Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer?

    Science.gov (United States)

    Surai, Peter F.; Kochish, Ivan I.; Velichko, Oksana A.

    2017-12-01

    Recently, a comprehensive review paper devoted to roles of nano-Se in livestock and fish nutrition has been published in the Nanoscale Research Letters. The authors described in great details an issue related to nano-Se production and its possible applications in animal industry and medicine. However, molecular mechanisms of nano-Se action were not described and the question of how nano-Se is converted into active selenoproteins is not resolved. It seems likely that the gut microbiota can convert nano-Se into selenite, H2Se or Se-phosphate with the following synthesis of selenoproteins. This possibility needs to be further studied in detail, and advantages and disadvantages of nano-Se as a source of Se in animal/poultry/fish nutrition await critical evaluations.

  11. Influence of Starting Powders on Hydroxyapatite Coatings Fabricated by Room Temperature Spraying Method.

    Science.gov (United States)

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young

    2015-08-01

    Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.

  12. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  13. Characterization of food-grade titanium dioxide: the presence of nanosized particles.

    Science.gov (United States)

    Yang, Yu; Doudrick, Kyle; Bi, Xiangyu; Hristovski, Kiril; Herckes, Pierre; Westerhoff, Paul; Kaegi, Ralf

    2014-06-03

    Titanium dioxide (TiO2) is widely used in food products, which will eventually enter wastewater treatment plants and terrestrial or aquatic environments, yet little is known about the fraction of this TiO2 that is nanoscale, or the physical and chemical properties of TiO2 that influence its human and environmental fate or toxicity. Instead of analyzing TiO2 properties in complex food or environmental samples, we procured samples of food-grade TiO2 obtained from global food suppliers and then, using spectroscopic and other analytical techniques, quantified several parameters (elemental composition, crystal structure, size, and surface composition) that are reported to influence environmental fate and toxicity. Another sample of nano-TiO2 that is generally sold for catalytic applications (P25) and widely used in toxicity studies, was analyzed for comparison. Food-grade and P25 TiO2 are engineered products, frequently synthesized from purified titanium precursors, and not milled from bulk scale minerals. Nanosized materials were present in all of the food-grade TiO2 samples, and transmission electron microscopy showed that samples 1-5 contained 35, 23, 21, 17, and 19% of nanosized primary particles (average hydrodynamic diameter of >100 nm. Food-grade samples contained phosphorus (P), with concentrations ranging from 0.5 to 1.8 mg of P/g of TiO2. The phosphorus content of P25 was below inductively coupled plasma mass spectrometry detection limits. Presumably because of a P-based coating detected by X-ray photoelectron spectroscopy, the ζ potential of the food-grade TiO2 suspension in deionized water ranged from -10 to -45 mV around pH 7, and the iso-electric point for food-grade TiO2 (grade materials, and although the presence of amorphous TiO2 could not be ruled out, it is unlikely on the basis of Raman analysis. The food-grade TiO2 was solar photoactive. Cationic dyes adsorbed more readily to food-grade TiO2 than P25, indicating very different potentials for

  14. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    Science.gov (United States)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  15. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  16. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  17. Behaviour modelling of two aluminas in divergent spherical pyrotechnical experiments

    International Nuclear Information System (INIS)

    Malaise, F.; Tranchet, J.Y.; Collombet, F.

    1997-01-01

    Two pure aluminas of different characteristics have been subjected to the propagation of a longitudinal divergent spherical shock wave through pyrotechnical experiments. An approach combining a phenomenological analysis and numerical 1D-calculations is proposed to study the behaviour of these aluminas submitted to that type of wave loading. The modelling, proposed in a previous paper, is refined and gives satisfying experimentation-calculation correlations. An analysis of the influence exerted by the various encountered phenomena (plastic activity, pore closure, microcracking) is performed. The significant consequence of the activation of damage with an extension criterion is also underlined. (orig.)

  18. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  19. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  20. Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Germani, G.; Schuurman, Y.; Mirodatos, C. [Institut de Recherches sur la Catalyse, CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne (France); Alphonse, P.; Courty, M. [CIRIMAT, UMR-CNRS 5085, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2005-12-15

    Platinum/ceria/alumina catalysts have been prepared by a sol-gel method and coated in the microchannels of stainless steel platelets. These catalysts are very active for the water-gas shift reaction between 300 and 400{sup o}C. Moreover, they are non-pyrophoric and thus well suited for the purification of hydrogen for PEM fuel cells. The obtained coatings show good adherence and catalytic activity. The influence of the amount of platinum and ceria as well as the effect of a binder on the catalytic performance has been investigated. The samples have been characterized before reaction by XRD, SEM and by N{sub 2} adsorption measurements. The kinetics, free from internal diffusion limitations, over these thin films have been described by a power law rate equation. An activation energy of 86kJ/mol has been found and at 260{sup o}C the TOF corresponds to 0.6+/-0.1s{sup -1} for all investigated samples. The superior activity of the platelets compared to the powder samples is attributed to the diffusion limitations inside the powder pellets. Thus catalysts deposited on microstructured platelets lead to a better platinum utilization.

  1. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  2. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  3. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  4. CVD coating of alumina film of CW-[Beta]t-Co cemented carbide by using hydrogen sulphide contained atmosphere. Ryuka suiso wo fukumu CVD fun'iki wo mochiite no WC-[Beta]t-Co choko gokinjo eno Al2O3 hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, M.; Kodama, H. (Toshiba Tungaloy Co. Ltd., Kawasaki (Japan)); Suzuki, H. (Chiba Institute of Technology, Chiba (Japan). Faculty of Engineering)

    1994-06-15

    For the purpose of forming Al2O3, a hard material, of uniform thickness on an ultrahard alloy as base material, addition of H2S gas to the reaction gas was investigated. WC-9 mass% [beta]t-7 mass%Co ([beta]t is a solid solution of 22%Ti, 33%TaC and 45%WC) as base body was covered with TiC, TiN, and Al2O3 successively. At the time of CVD coating of Al2O3, H2S of 0-0.84 vol% was added to the reaction gas (H2 gas containing 2.3%AlCl3 and 2.8%CO2). As the results, the following information was obtained: Thickness (A) of Al2O3 in the edge section and that (B) in the fiat section respectively increase with the addition of H2S of up to 0.3% while A/B decreases in this range of H2S concentration and levels off above 0.3%. And the growth rate of Al2O3 increases with addition of H2S. This fact may be attributed to the reason that H2S is a catalyst of forming H2O in the reaction gas. A possible reason of decrease of A/B is that the S content in Al2O3 is larger in the edge section than in the flat section. The addition of H2S transforms the Al2O3 film to coarse columnar crystals and tends to lower the strength of the film and weaken its contact to the ground. 5 refs., 5 figs.

  5. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  6. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  7. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  8. Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS

    Science.gov (United States)

    Han, Yujun; Chen, Hongfei; Gao, Dong; Yang, Guang; Liu, Bin; Chu, Yajie; Fan, Jinkai; Gao, Yanfeng

    2017-12-01

    The chemical composition of NiCoCrAlHfYSi with a suitable particle size, deposited using an activated combustion-high velocity air fuel (AC-HVAF) spray, is a potentially promising process because dense, continuous and pure alumina can be formed on the surface of the MCrAlY metallic coatings after isothermal oxidation exposure. The NiCoCrAlHfYSi (Amdry386) and NiCoCrAlTaY (Amdry997) coatings were produced using AC-HVAF and APS, respectively. Isothermal oxidation was subsequently conducted at 1050 °C in air for 200 h. This paper compares the characteristics of four coated samples, including the surface roughness, elastic modulus, hardness, oxide content, microstructural characteristics and phase evolution of thermally grown oxides (TGO). The growth of both the TGO and alumina scales in the TGO of the HVAF386 coating was relatively rapid. The θ- to α-alumina phase transformation was strongly determined by the Hf and Si dopants in the HVAF386 coating. Finally, the extent of grain refinement and deformation storage energy in the HVAF997 coatings were determined to be significantly crucial for the θ- to α-alumina phase transformation.

  9. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  10. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    Science.gov (United States)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  11. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.

    Science.gov (United States)

    Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie

    2013-10-01

    The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).

    Science.gov (United States)

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.

  13. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during ... Alumina ceramics are used in wide range of applications due to their .... temperature were recorded by DAQSOFT software in a sep- .... Tubes: Design and Development Capabilities (MTDDC)',.

  14. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  15. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  16. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  17. Improving subcritical crack growth resistance for alumina glass dental composite

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.

    2005-01-01

    The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass

  18. Electrochemical impedance spectroscopy of nanoporous anodic alumina template

    International Nuclear Information System (INIS)

    Shahzad, K.

    2010-01-01

    Room temperature EIS characterization of nanoporous anodic alumina prepared at 40 V and 60 V has been done in 0.3 M oxalic acid solution. Rapid decrease in impedance was observed for the template prepared at 40 V. EIS study of porous anodic alumina template prepared in 0.3 M oxalic acid has been done in different electrolytes. Templates prepared in 0.3 M sulfuric acid solution were also characterized for comparison. Rapid decrease in the thickness of nonporous anodic film was observed with an increase of aggressiveness of electrolyte. Temperature based systematic study of EIS measurement has been done for porous anodic alumina template at different temperatures. Formation of micropores was observed in the nanoporous anodic alumina film formed on aluminum in 0.3 M oxalic acid solution which accelerates the dissolution rate with increase of measurement temperature. In addition to these, electropolishing behavior of pure aluminum has also been studied in different electrolytes and it was observed that electropolishing conditions prior to anodization are extremely important. (author)

  19. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  20. A novel technique for synthesizing dense alumina nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pancholi, A [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Stoleru, V G [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Kell, C D [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2007-05-30

    The formation of highly ordered nanoporous alumina membranes by anodizing high-purity aluminium under optimum conditions (i.e., anodization time, electrolyte temperature, and cell voltage) in various electrolyte solutions is a well established process. In this paper we report on the formation of a wide range of alumina nanostructures, including nanotubes/nanochannels, nanoplates, and nanofibres, by using a technique that involves anodization and etching processing steps similar to the ones that yield nanopores, under slightly modified experimental conditions. The effects of the anodization voltage, time, and temperature, as well as the effects of the etching time, on the formation and the properties of the alumina nanostructures are analysed. We propose a simple analytical model to describe the formation of different types of alumina nanostructures, as a result of irreversible breakage of the pore walls for long etching times. The geometry of the nanostructures and their dimensions, ranging between 10 and 100 nm, were found to be dependent on the pore dimensions and on the location of the cleavage/breakage of the pore walls.