WorldWideScience

Sample records for nanosize titanium dioxide

  1. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Precipitated nanosized titanium dioxide for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, S.A. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine); Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Lisnycha, T.V. [Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Chernukhin, S.I. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine)

    2011-02-15

    Two types of titanium dioxide samples precipitated from aqueous solutions of titanium tetrachloride are investigated. Crystalline materials are obtained by means of neutralization of TiCl{sub 4} with the solution of an alkali metal hydroxide. The change of the order of mixing leads to amorphous materials. The evolution of the samples upon the thermal treatment is characterized using XRD, SEM, TEM and porosity studies. The application of crystalline TiO{sub 2} as an electrode material in lithium-ion 2016 sample cells enable one to yield specific currents up to 3350 mA g{sup -1}. On the other hand, the thermal treatment of initially amorphous materials does not lead to complete crystallization, and the presence of amorphous TiO{sub 2} is well seen as the so-called capacity behavior of cyclic voltammetry curves. (author)

  3. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  4. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Wils, Regitze Sølling

    2017-01-01

    Nanosized titanium dioxide (TiO2) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences...... culture studies also demonstrate increased levels of oxidatively damaged DNA after exposure to TiO2. There are relatively few studies on animal models where DNA strand breaks and oxidatively damaged DNA have been tested with reliable methods. Collectively, this review shows that exposure to nanosized TiO2...... of the tested TiO2. In the present review, we assess the role of certain methodological issues and publication bias. The analysis shows that studies on DNA strand breaks without proper assay controls or very low intra-group variation tend to show statistically significant effects. Levels of oxidatively damaged...

  5. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Hong F

    2017-08-01

    both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO2 during the prenatal period. Therefore, the application of nano-TiO2 should be carried out with caution. Keywords: nanosized titanium dioxide, maternal exposure, embryonic toxicity, skeleton developmental suppression

  6. Characterization of food-grade titanium dioxide: the presence of nanosized particles.

    Science.gov (United States)

    Yang, Yu; Doudrick, Kyle; Bi, Xiangyu; Hristovski, Kiril; Herckes, Pierre; Westerhoff, Paul; Kaegi, Ralf

    2014-06-03

    Titanium dioxide (TiO2) is widely used in food products, which will eventually enter wastewater treatment plants and terrestrial or aquatic environments, yet little is known about the fraction of this TiO2 that is nanoscale, or the physical and chemical properties of TiO2 that influence its human and environmental fate or toxicity. Instead of analyzing TiO2 properties in complex food or environmental samples, we procured samples of food-grade TiO2 obtained from global food suppliers and then, using spectroscopic and other analytical techniques, quantified several parameters (elemental composition, crystal structure, size, and surface composition) that are reported to influence environmental fate and toxicity. Another sample of nano-TiO2 that is generally sold for catalytic applications (P25) and widely used in toxicity studies, was analyzed for comparison. Food-grade and P25 TiO2 are engineered products, frequently synthesized from purified titanium precursors, and not milled from bulk scale minerals. Nanosized materials were present in all of the food-grade TiO2 samples, and transmission electron microscopy showed that samples 1-5 contained 35, 23, 21, 17, and 19% of nanosized primary particles (average hydrodynamic diameter of >100 nm. Food-grade samples contained phosphorus (P), with concentrations ranging from 0.5 to 1.8 mg of P/g of TiO2. The phosphorus content of P25 was below inductively coupled plasma mass spectrometry detection limits. Presumably because of a P-based coating detected by X-ray photoelectron spectroscopy, the ζ potential of the food-grade TiO2 suspension in deionized water ranged from -10 to -45 mV around pH 7, and the iso-electric point for food-grade TiO2 (grade materials, and although the presence of amorphous TiO2 could not be ruled out, it is unlikely on the basis of Raman analysis. The food-grade TiO2 was solar photoactive. Cationic dyes adsorbed more readily to food-grade TiO2 than P25, indicating very different potentials for

  7. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  8. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    Science.gov (United States)

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  9. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties

    Science.gov (United States)

    Bogdan, Janusz; Jackowska-Tracz, Agnieszka; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-02-01

    Nanotechnology is a field of science that is nowadays developing in a dynamic way. It seems to offer almost endless opportunities of contribution to many areas of economy and human activity, in general. Thanks to nanotechnology, the so-called nanomaterials can be designed. They present structurally altered materials, with their physical, chemical and biological properties entirely differing from properties of the same materials manufactured in microtechnology. Nanotechnology creates a unique opportunity to modify the matter at the level of atoms and particles. Therefore, it has become possible to obtain items displaying new, useful properties, i.e. self-disinfecting and self-cleaning surfaces. Those surfaces are usually covered by a thin layer of a photocatalyst. The role of the photocatalyst is most of the time performed by the nanosized titanium dioxide (nano-TiO2). Excitation of nano-TiO2 by ultraviolet radiation initiates advanced oxidation processes and reactions leading to the creation of oxygen vacancies that bind water particles. As a result, photocatalytic surfaces are given new properties. Those properties can then be applied in a variety of disciplines, such as medicine, food hygiene, environmental protection or building industry. Practically, the applications include inactivation of microorganisms, degradation of toxins, removing pollutants from buildings and manufacturing of fog-free windows or mirrors.

  10. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application

    Directory of Open Access Journals (Sweden)

    Mansour GHORBANPOUR

    2015-11-01

    Full Text Available  Application of nanotechnology is now widely distributed overall the life, especially in agricultural systems. This study intended to indicate the impacts of nano-sized titanium dioxide particles (NT and bulk (BT on antioxidant enzymes activities including superoxide dismutase (SOD, peroxidase (POX and catalase (CAT, and variations of two major tropane alkaloids such as hyoscyamine (HYO and scopolamine (SCO in Hyoscyamus niger L. Plants were treated with different concentrations of NT and BT (0, 20, 40 and 80 mg l-1. Alkaloids extracted were identified by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analysis. Results showed that SOD activity increased with increasing titanium dioxide concentration in both nano-particles and bulk treated plants. However, the highest and the lowest POX activity were observed in plants exposed to NT at 40 mg l-1 and control, respectively. Generally, all tested enzymes activities were higher in NT treated plants that those of BT except CAT activity at 80 mg l-1. The highest alkaloids content values, HYO: 0.286 g kg-1 and SCO: 0.126 g kg-1, were achieved in plants treated with NT at 80 and 20 mg l-1, respectively. The maximum and minimum plant biomass and subsequently total alkaloids yield were obtained in plants exposed to NT at 40 mg l-1 and controls, respectively. Our results suggest that NT in appropriate level (40 mg l-1 may act as an elicitor for biochemical responses and tropane alkaloids biosynthesis in H. niger plants. 

  11. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  12. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry Characterisation of Nanomaterials in Biological Samples

    NARCIS (Netherlands)

    Krystek, Petra; Tentschert, Jutta; Nia, Yacine; Trouiller, Benedicte; Noël, Laurent; Goetz, Mario E.; Papin, Arnaud; Luch, Andreas; Guérin, Thierry; De Jong, Wim H.

    2014-01-01

    Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its

  13. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  14. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  15. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  16. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  17. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  18. The effect of doping titanium dioxide nanoparticles on phase transformation, photocatalytic activity and anti-bacterial properties

    Science.gov (United States)

    Buzby, Scott Edward

    Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage

  19. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  20. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  1. Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin.

    Science.gov (United States)

    Shahin, Nancy N; Mohamed, Maha M

    2017-11-01

    This study investigated the effect of short-term oral exposure to nano-sized titanium dioxide (nTiO 2 ) on Wistar rat prostate and testis, and the associating reproductive-related alterations. The study also evaluated the potential ameliorative effect of the natural flavonoid, morin, on nTiO 2 -induced aberrations. Intragastric administration of nTiO 2 (50mg/kg/day for 1, 2 and 3weeks) increased testicular gamma-glutamyltransferase (γ-GT) activity and decreased testicular steroidogenic acute regulatory protein (StAR) and c-kit gene expression, serum testosterone level and sperm count. nTiO 2 -treated rats also exhibited prostatic and testicular altered glutathione levels, elevated TNF-α levels, up-regulated Fas, Bax and caspase-3 gene expression, down-regulated Bcl-2 gene expression and enhanced prostatic lipid peroxidation. Sperm malformation and elevated testicular acid phosphatase (ACP) activity and malondialdehyde level, serum prostatic acid phosphatase activity, prostate specific antigen (PSA), gonadotrophin and estradiol levels occurred after the 2 and 3week regimens. Morin (30mg/kg/day administered intragastrically for 5weeks) mitigated nTiO 2 -induced prostatic and testicular injury as evidenced by lowering serum PSA level, testicular γ-GT and ACP activities and TNF-α level, along with hampering both intrinsic and extrinsic apoptotic pathways. Moreover, morin alleviated prostatic lipid peroxidation, raised prostatic glutathione level, and relieved testicular reductive stress. Additionally, morin increased testicular StAR and c-kit mRNA expression, raised the sperm count, reduced sperm deformities and modified the altered hormone profile. Histopathological evaluation supported the biochemical findings. In conclusion, morin could ameliorate nTiO 2 -induced prostatic and testicular injury and the corresponding reproductive-related aberrations via redox regulatory, anti-inflammatory and anti-apoptotic mechanisms, promoting steroidogenesis and

  2. Classification of titanium dioxide; Clasificacion del dioxido de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Garcia C, R.M.; Maya M, M.E. [Secretaria de Hacienda y Credito Publico de Mexico, Mexico (Mexico); Ita T, A. De [Universidad Autonoma Metropolitana Azcapotzalco, Mexico (Mexico); Palacios G, J. [Instituto Politecnico Nacional (Mexico)

    2002-07-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO{sub 2}. The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  3. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan. A study in mice

    Directory of Open Access Journals (Sweden)

    Vibenholt Anni

    2010-06-01

    Full Text Available Abstract Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181. Methods Time-mated mice (C57BL/6BomTac were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2 with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test. Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  4. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens J; Löschner, Katrin; Larsen, Erik H; Birkedal, Renie K; Vibenholt, Anni; Boisen, Anne-Mette Z; Wallin, Håkan; Vogel, Ulla

    2010-06-14

    Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  5. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  6. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  7. Sorption kinetics of cesium on hydrous titanium dioxide

    International Nuclear Information System (INIS)

    Altas, Y.; Tel, H.; Yaprak, G.

    2003-01-01

    Two types of hydrous titanium dioxide possessing different surface properties were prepared and characterized to study the sorption kinetics of cesium. The effect of pH on the adsorption capacity were determined in both type sorbents and the maximum adsorption percentage of cesium were observed at pH 12. To elucidate the kinetics of ion-exchange reaction on hydrous titanium dioxide, the isotopic exchange rates of cesium ions between hydrous titanium dioxides and aqueous solutions were measured radiochemically and compared with each other. The diffusion coefficients of Cs + ion for Type1 and Type2 titanium dioxides at pH 12 were calculated as 2.79 x 10 -11 m 2 s -1 and 1.52 x 10 -11 m 2 s -1 , respectively, under particle diffusion controlled conditions. (orig.)

  8. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    Science.gov (United States)

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  10. Peroxy-Titanium Complex-based inks for low temperature compliant anatase thin films.

    Science.gov (United States)

    Shabanov, N S; Asvarov, A Sh; Chiolerio, A; Rabadanov, K Sh; Isaev, A B; Orudzhev, F F; Makhmudov, S Sh

    2017-07-15

    Stable highly crystalline titanium dioxide colloids are of paramount importance for the establishment of a solution-processable library of materials that could help in bringing the advantages of digital printing to the world of photocatalysis and solar energy conversion. Nano-sized titanium dioxide in the anatase phase was synthesized by means of hydrothermal methods and treated with hydrogen peroxide to form Peroxy-Titanium Complexes (PTCs). The influence of hydrogen peroxide on the structural, optical and rheological properties of titanium dioxide and its colloidal solutions were assessed and a practical demonstration of a low temperature compliant digitally printed anatase thin film given. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  12. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  13. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  14. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat.

    Science.gov (United States)

    Farrell, Thomas P; Magnuson, Berna

    2017-08-01

    Titanium dioxide (TiO 2 ) is a white color additive that has a long history of global approval and use in food. There is, however, considerable confusion regarding the applicability of the biological effects of novel, engineered, nano-sized forms of TiO 2 developed for nonpigmentary applications to the safety of oral exposure to food grade TiO 2 pigment. The objective of this study was to assess the absorption, distribution, and routes of excretion in rats after oral exposure to food grade TiO 2 . Four different grades of TiO 2 (200 ppm) or control (0 ppm) diets were fed to rats for 7 consecutive days, followed by control diet only for 1, 24, or 72 h. Concentrations of titanium in liver, kidney and muscle were mainly below the limit of detection (titanium above the LOD were in the range of 0.1 to 0.3 mg/kg wet weight for all groups. Whole blood concentrations of titanium were titanium was equivalent to titanium in tissues following consumption of diets containing 200 ppm food grade TiO 2 . No differences in systemic absorption of the 4 forms of TiO 2 were observed indicating that the bioavailability of TiO 2 is consistently low for the range of particle sizes and morphologies examined in this study. © 2017 Institute of Food Technologists®.

  15. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...

  16. Kinetic study of synthesis of Titanium carbide by methano thermal reduction of Titanium dioxide

    International Nuclear Information System (INIS)

    Alizadeh, R.; Ostrovski, O.

    2011-01-01

    Reduction of the Titanium dioxide, TiO 2 , by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150 d egree C to 1450 d egree C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method was used for determination of the extent of reduction rate. The gas products of the reaction are mostly CO and trace amount of CO 2 and H 2 O. The synthesized product powder was characterized by X-ray diffraction for elucidating solid phase compositions. The effect of varying temperature was studied during the reduction. The conversion-time data have been interpreted by using the grain model. For first order reaction with respect to methane concentration, the activation energy of titanium dioxide reduction by methane is found to be 51.4 kcal/g mole. No detailed investigation of kinetic and mechanism of the reaction was reported in literatures.

  17. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  18. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  19. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers

    International Nuclear Information System (INIS)

    Esthappan, Saisy Kudilil; Kuttappan, Suma Kumbamala; Joseph, Rani

    2012-01-01

    Highlights: ► Wet synthesis method was used for the synthesis of TiO 2 nano particles. ► Mechanical properties of polypropylene fibers were increased by the addition of TiO 2 nanoparticles. ► Thermal stability of polypropylene fiber was improved significantly by the addition of TiO 2 nano particles. ► TiO 2 nanoparticles dispersed well in polypropylene fibers. -- Abstract: Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.

  20. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    International Nuclear Information System (INIS)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J.

    2011-01-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  1. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    Science.gov (United States)

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  2. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.

    Science.gov (United States)

    Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S

    2015-04-01

    Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.

  3. Nanosized TiO[subscript 2] for Photocatalytic Water Splitting Studied by Oxygen Sensor and Data Logger

    Science.gov (United States)

    Zhang, Ruinan; Liu, Song; Yuan, Hongyan; Xiao, Dan; Choi, Martin M. F.

    2012-01-01

    Photocatalytic water splitting by semiconductor photocatalysts has attracted considerable attention in the past few decades. In this experiment, nanosized titanium dioxide (nano-TiO[subscript 2]) particles are used to photocatalytically split water, which is then monitored by an oxygen sensor. Sacrificial reagents such as organics (EDTA) and metal…

  4. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2) particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0...

  5. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  6. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice

    DEFF Research Database (Denmark)

    Jackson, Petra; Halappanavar, Sabina; Hougaard, Karin Sorig

    2013-01-01

    We investigated effects of maternal pulmonary exposure to titanium dioxide (UV-Titan) on prenatally exposed offspring. Time-mated mice (C57BL/6BomTac) were inhalation exposed (1 h/day to 42 mg UV-Titan/m(3) aerosolised powder or filtered air) during gestation days (GDs) 8-18. We evaluated DNA...... strand breaks using the comet assay in bronchoalveolar lavage (BAL) cells and livers of the time-mated mice (5 and 26-27 days after inhalation exposure), and in livers of the offspring (post-natal days (PND) 2 and 22). We also analysed hepatic gene expression in newborns using DNA microarrays. UV-Titan...

  7. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  8. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  9. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants.

    Science.gov (United States)

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the

  10. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants

    Directory of Open Access Journals (Sweden)

    Tamás Zoltán Agócs

    2016-12-01

    Full Text Available Advanced oxidation processes (AOPs are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2 applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP, was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure

  11. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  12. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  13. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    Science.gov (United States)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  14. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    Science.gov (United States)

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates

    International Nuclear Information System (INIS)

    Shih Yanghsin; Zhuang Chengming; Tso Chihping; Lin Chenghan

    2012-01-01

    Metal oxide nanoparticles (NPs) are receiving increasing attention due to their increased industrial production and potential hazardous effect. The process of aggregation plays a key role in the fate of NPs in the environment and the resultant health risk. The aggregation of commercial titanium dioxide NP powder (25 nm) was investigated with various environmentally relevant solution chemistries containing different concentrations of monovalent (Na + , K + ) and divalent (Ca 2+ ) electrolytes. Titanium dioxide particle size increased with the increase in ion concentration. The stability of titanium dioxide also depended on the ionic composition. Titanium dioxide aggregated to a higher degree in the presence of divalent cations than monovalent ones. The attachment efficiency of NPs was constructed through aggregation kinetics data, from which the critical coagulation concentrations for the various electrolytes are determined (80, 19, and 1 meq/L for Na + , K + , and Ca 2+ , respectively). Our results suggest that titanium dioxide NP powders are relatively unstable in water and could easily be removed by adding multivalent cations so hazardous potentials decrease in aquatic environment.

  16. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    Science.gov (United States)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  17. Preparation and elementary research on electrocatalytic hydrogen evolution of highly ordered titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wu Qinglong; Liao Junsheng; Bai Yun

    2010-01-01

    Well ordered and uniform titanium dioxide nanotube arrays were fabricated by anodiaing process from a bath containing 1% NaF, 1mol/L Na 2 SO 4 , 0.5 mol/L H 2 SO 4 at room temperature. Surface morphology of titanium dioxide nanotube arrays were observed with SEM. The formation process of titanium dioxide nanotube arrays was suggested by current-time transient. Its catalytic hydrogen evolution behavior was studied by electrochemical measurements in a 5%(mass fraction) H 2 SO 4 solution. The results showed that the titanium dioxide nanotube arrays on titanium had better hydrogen evolution activity and trace palladium lead to the maximum electrocatalytic activity of hydrogen production. (authors)

  18. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  19. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  20. Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments

    Science.gov (United States)

    There are challenges associated with performing research on titanium dioxide NPs in aquatic environments particularly marine systems. A critical focus for current titanium dioxide NP research in aquatic environments needs to be on optimizing methods for differentiating naturally...

  1. Titanium dioxide in dental enamel as a trace element and its variation with bleaching.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey

    2018-06-01

    Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.

  2. The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Leng, Y.X.; Chen, J.Y.; Yang, P.; Sun, H.; Huang, N.

    2007-01-01

    In this work, titanium oxide films were deposited on Ti6Al4V and Si (1 0 0) by DC unbalanced magnetron sputtering method at different oxygen pressure. X-ray diffraction (XRD), microhardness tests, pin-on-disk wear experiments, surface contact angle tests and platelet adhesion investigation were conducted to evaluate the properties of the films. The corrosion behavior of titanium dioxide films was characterized by potentiodynamic polarization. The results showed that titanium oxide films deposited by unbalance magnetron sputtering were compact and could obviously enhance microhardness, wear resistance of titanium alloy substrate. Potentiodynamic polarization curves showed that Ti-6Al-4V deposited with titanium dioxide films had lower dissolution currents than that of the uncoated one. The results of in vitro hemocompatibility analyses indicated that the blood compatibility of the titanium dioxide films with bandgap 3.2 eV have better blood compatibility

  3. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

    International Nuclear Information System (INIS)

    Lee, Myung Jin; Kim, Ji Ho; Park, Young Tae

    2010-01-01

    We have carried out the surface modification of photocatalytic TiO 2 with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state 29 Si MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water

  4. Correlation of lattice distortion with photocatalytic activity of titanium dioxide

    International Nuclear Information System (INIS)

    Wang Xia; Shui Miao; Li Rongsheng; Song Yue

    2008-01-01

    The photocatalytic activity of titanium dioxide dispersions on X-3B pigment degradation has been investigated. A variety of factors that would influence the photocatalytic activity such as crystallite size, lattice distortion, and anatase content are discussed in detail. It is found that lattice distortion is the most important one among these factors and is expected to inhibit the hole and electron pair recombination. It determines, to some extent, the photocatalytic efficiency of titanium dioxide dispersions

  5. Structure and amphoteric properties of titanium dioxide gels

    International Nuclear Information System (INIS)

    Kertesz, C.

    1991-01-01

    Mechanisms responsible for the in-solution ion retention by titanium dioxide are studied. Mineral oxide gel formation and structure are described and various titanium dioxide gel synthesis modes are presented. A two-phase model, taking into account the porous nature of the solid and allowing for the application of the mass action law, is adopted. The oxide amphoteric properties are studied with the potentiometric titration technique. Hysteresis loops are imputed to the slowness of the acid-basic neutralization reaction. The main characteristics are determined: isoelectric point, cation and anion retention capacity. Depending on the suspension agitation, the speed limiting factor may be the diffusion in the film or the diffusion in the particle. 60 fig., 128 ref

  6. Titanium dioxide. An effective additive for minimisation of alkali vaporisation; Titandioxidadditiv. En effektiv tillsats foer att minska alkalifoeraangning

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Groenberg, Carola; Oehrman, Olov

    2008-10-15

    If an additive of titanium dioxide can limit the release of alkali under practical combustion conditions it may significantly reduce the ash related operational problems in real furnaces. The aim with this project is therefore to investigate if an additive of titanium dioxide could reduce the vaporisation of alkali during practical combustion conditions and determine the optimum mixing ratio between the fuel and titanium dioxide. Controlled combustion experiments with varied amounts of titanium dioxide in straw pellets were performed in a pellet burner together with sampling of particles in the flue gas (impactor and absolute filter), analysis of the flue gas composition (FTIR) and chemical analyses of the collected particles and bottom ashes (ICP, SEM/EDS, and XRD). The experimental results from this study showed that an increasing amount of titanium dioxide additive reduced the concentration of fine particles in the flue gas. The particle concentration was reduced from 241 mg/Nm3 to 163 mg/Nm3 for an optimum amount of titanium dioxide additive. Furthermore, the concentration of HCl and SO{sub 2} in the flue gas increased when the titanium dioxide was introduced to the straw pellets. Independent of titanium dioxide additive or not, no titanium was detected in the submicron particles. This indicates that titanium is a refractory element that is not vaporised during the combustion process. The chemical composition of the flue gas particles was also influenced by titanium dioxide additive. In general, the amounts of O, Na, and P were increased in the same time as the amounts of S, Cl, and K were reduced when more titanium dioxide was introduced to the straw pellets. From the particle concentration in the flue gas and the chemical composition of the fine particles, the particle bound elemental concentration of Na, P, S, Cl, and K could be estimated. From this investigation the concentration of potassium in the flue gas was reduced from 126 mg/Nm3 to 77 mg/Nm3 when

  7. A Study on Kaolin and Titanium dioxide affecting Physical Properties of Electrocoating

    International Nuclear Information System (INIS)

    Yang, Wonseog; Hwang, Woonsuk

    2013-01-01

    The electrocoating for automotive bodies is pigmented with a mixture of titanium dioxide and kaolin. In this study, the effects of titanium dioxide and kaolin contents in coating on electrodeposition process, drying, and surface properties such as surface roughness, gloss, impact resistance and corrosion resistance were investigated. Titanium dioxide and kaolin in coating do not have a decisive effect on curing reaction during drying and corrosion resistance but on gloss, surface roughness, impact resistance and electrodeposition process of coating. According to its size and shape on coating surface, pigment contents increased during drying process. However, the contents of kaolin and TiO 2 in coating didn't affect the corrosion resistance on zinc phosphated substrate, and the curing properties

  8. The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Larsen, Martin R

    2009-01-01

    Titanium dioxide has very high affinity for phosphopeptides and it has become an efficient alternative to already existing methods for phosphopeptide enrichment from complex samples. Peptide loading in a highly acidic environment in the presence of 2,5-dihydroxybenzoic acid (DHB), phthalic acid......, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding from nonphosphorylated peptides. The enriched phosphopeptides bound to the titanium dioxide are subsequently eluted from the micro-column using an alkaline buffer. Titanium dioxide chromatography is extremely...... tolerant towards most buffers used in biological experiments. It is highly robust and as such it has become one of the methods of choice in large-scale phospho-proteomics. Here we describe the protocol for phosphopeptide enrichment using titanium dioxide chromatography followed by desalting...

  9. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material

    Directory of Open Access Journals (Sweden)

    Donya Ramimoghadam

    2014-01-01

    Full Text Available Anatase titanium dioxide nanoparticles (TiO2-NPs were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, thermogravimetric analysis (TGA, ultraviolet visible spectra (UV-Vis, and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.

  10. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    DEFF Research Database (Denmark)

    Husain, Mainul; Saber, Anne Thoustrup; Guo, Charles

    2013-01-01

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162......μg/mouse. Mice were sampled 1, 3, and 28days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific q...

  11. Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Hui; Yang Lu

    2012-01-01

    A thin layer of nanoparticle titanium dioxide was immobilized on polyamide 6 (PA6) fiber using titanium sulfate and urea at low temperature hydrothermal condition. The titanium dioxide loaded fabric was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermal gravimetry techniques. The optical and mechanical properties, water absorption and degradation of methylene blue dye under ultraviolet (UV) irradiation of the PA6 fabric before and after treatments were also examined. It was found that when PA6 fabric was treated in titanium sulfate and urea aqueous solution, anatase nanocrystalline titanium dioxide was synthesized and simultaneously adhered onto the fiber surface. The average crystal size of titanium dioxide nanoparticles was about 13.2 nm. The thermal behavior of PA6 fiber distinctly changed and the onset decomposition temperature decreased. As compared with the untreated fabric, the protection against UV radiation was improved. The water absorbency increased slightly. As the fabric dimensions were reduced in warp and weft directions, the breaking load and tensile strain increased to some extent. The titanium dioxide coated fabric could degradate methylene blue dye under UV irradiation. - Highlights: ► We employed a method to immobilize TiO 2 nanoparticle on polyamide fiber. ► We fabricated the TiO 2 -coated polyamide fabric with the photocatalytic activity. ► The modification method may be suitable for the potential applications.

  12. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment.

    Science.gov (United States)

    Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-09-15

    Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  14. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles.

    Science.gov (United States)

    Mercier-Bonin, Muriel; Despax, Bernard; Raynaud, Patrice; Houdeau, Eric; Thomas, Muriel

    2018-04-13

    Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.

  15. Fast and Straightforward Synthesis of Luminescent Titanium(IV Dioxide Quantum Dots

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2017-01-01

    Full Text Available The nucleus of titania was prepared by reaction of solution titanium oxosulphate with hydrazine hydrate. These titania nuclei were used for titania quantum dots synthesis by a simple and fast method. The prepared titanium(IV dioxide quantum dots were characterized by measurement of X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM, high-resolution electron microscopy (HRTEM, and selected area electron diffraction (SAED. The optical properties were determined by photoluminescence (PL spectra. The prepared titanium(IV dioxide quantum dots have the narrow range of UV excitation (365–400 nm and also a close range of emission maxima (450–500 nm.

  16. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  17. High-pressure behavior of nano titanium dioxide

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    2002-01-01

    Nanocrystalline rutile Titanium dioxide has been studied by X-ray diffraction at ambient temperature up to 47.4 GPa. The material is found to transform to the monoclinic baddeleyite structure between 20 and 30 GPa, which is higher than the corresponding pressure range for bulk material. Upon deco...

  18. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells.

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-11-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO(2)) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO(2), either uncoated (TiO(2)-1, hydrophilic) or coated with stearic acid (TiO(2)-2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO(2)-1, but not TiO(2)-2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO(2)-1 and TiO(2)-2 treatments. However, TiO(2)-2, but not TiO(2)-1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO(2)-1 and TiO(2)-2 resulted in intracellular ROS formation, TiO(2)-2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO(2)-2, but not TiO(2)-1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO(2) toxicity acquired a tumorigenic phenotype. TiO(2)-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO(2) has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells.

  19. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide

    International Nuclear Information System (INIS)

    Wazne, Mahmoud; Meng, Xiaoguang; Korfiatis, George P.; Christodoulatos, Christos

    2006-01-01

    A novel nanocrystalline titanium dioxide was used to treat depleted uranium (DU)-contaminated water under neutral and alkaline conditions. The novel material had a total surface area of 329 m 2 /g, total surface site density of 11.0 sites/nm 2 , total pore volume of 0.415 cm 3 /g and crystallite size of 6.0 nm. It was used in batch tests to remove U(VI) from synthetic solutions and contaminated water. However, the capacity of the nanocrystalline titanium dioxide to remove U(VI) from water decreased in the presence of inorganic carbonate at pH > 6.0. Adsorption isotherms, Fourier transform infrared (FTIR) spectroscopy, and surface charge measurements were used to investigate the causes of the reduced capacity. The surface charge and the FTIR measurements suggested that the adsorbed U(VI) species was not complexed with carbonate at neutral pH values. The decreased capacity of titanium dioxide to remove U(VI) from water in the presence of carbonate at neutral to alkaline pH values was attributed to the aqueous complexation of U(VI) by inorganic carbonate. The nanocrystalline titanium dioxide had four times the capacity of commercially available titanium dixoide (Degussa P-25) to adsorb U(VI) from water at pH 6 and total inorganic carbonate concentration of 0.01 M. Consequently, the novel material was used to treat DU-contaminated water at a Department of Defense (DOD) site

  20. Studies of the surface of titanium dioxide. IV. The hydrogen-deuterium equilibration reaction

    International Nuclear Information System (INIS)

    Iwaki, T.; Katsuta, K.; Miura, M.

    1981-01-01

    The interaction of hydrogen with the surface of titanium dioxide has been studied in connection with the hydrogen-reduction mechanism of titanium dioxide, by means of such measurements as weight decrease, magnetic susceptibility, hydrogen uptake, and electrical conductance. It was postulated in the previous study that the rate-determining step of the hydrogen-reduction reaction may be the formation of surface hydroxyl groups, followed by the rapid removal of water molecules from the surface. In this study, the interactions between hydrogen and the surface of titanium dioxide were investigated by measuring the hydrogen-deuterium equilibration reaction, H 2 + D 2 = 2HD, at temperatures above 200 0 C on both surfaces before and after hydrogen reduction to compare the differences in the reactivities

  1. Reusable photocatalytic titanium dioxide-cellulose nanofiber films

    Science.gov (United States)

    Alexandra Snyder; Zhenyu Bo; Robert Moon; Jean-Christophe Rochet; Lia. Stanciu

    2013-01-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet (UV) irradiation. Cellulose nanofibers (CNFs) act as an attractive matrix material for the suspension of photocatalytic particles due to their desirable mechanical and optical properties. In this work, TiO2...

  2. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  3. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers.

    Science.gov (United States)

    Pele, Laetitia C; Thoree, Vinay; Bruggraber, Sylvaine F A; Koller, Dagmar; Thompson, Richard P H; Lomer, Miranda C; Powell, Jonathan J

    2015-09-02

    Exposure to persistent engineered nano and micro particles via the oral route is well established. Animal studies have demonstrated that, once ingested, a small proportion of such particles translocate from the gastrointestinal tract to other tissues. Exposure to titanium dioxide is widespread via the oral route, but only one study has provided indirect evidence (total titanium analyses) of absorption into the blood stream in humans. We sought to replicate these observations and to provide additional evidence for particulate uptake. Human volunteers with normal intestinal permeability were orally administered 100 mg pharmaceutical/food grade titanium dioxide. Blood samples were collected from 0.5 to 10 h post ingestion and analysed for the presence of reflectant bodies (particles) by dark field microscopy, and for total titanium by inductively coupled plasma mass spectrometry (ICP-MS). Blood film analyses implied early absorption of particles (2 h) with a peak maximum at 6 h following ingestion. The presence of these reflectant particles in blood roughly mirrored the levels of total titanium by ICP-MS, providing good evidence for the latter being a measure of whole particle (titanium dioxide) absorption. This study shows that a fraction of pharmaceutical/food grade titanium dioxide is absorbed systemically by humans following ingestion. It confirms that at least two routes of particle uptake may exist in the human gut- one proximal and one distal. Further work should quantify human exposure and uptake of such persistent particles.

  4. Titanium dioxide enrichment of sialic acid-containing glycopeptides

    DEFF Research Database (Denmark)

    Palmisano, Giuseppe; Lendal, Sara E; Larsen, Martin Røssel

    2011-01-01

    the glycosylation site of N-linked sialylated glycoproteins. The method relies on the specificity of titanium dioxide affinity chromatography to isolate sialic acid-containing glycopeptides. After enzymatic release of the glycans, the enriched sialylated glycopeptides are analyzed by mass spectrometry...

  5. Interaction of titanium and vanadium with carbon dioxide in heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskii, V.Y.; Lyapunov, A.P.; Radomysel'skii, I.D.

    1986-01-01

    To obtain prediction data on the change in properties of titaniumand vanadium-base powder metallurgy materials operating in a carbon dioxide atmosphere, and also to clarify the mechanism of their interaction with the gas in this work, gravimetric investigations of specimens heated at temperatures of 300-1000 C and an x-ray diffraction analysis of their surface were made and the composition of the gas in the heating chamber was studied. The results of the investigations indicate a similarity between the mechanisms of interaction of titanium and vanadium with carbon dioxide including the formation of oxides on the surface of the metal with subsequent carbidization at temperatures above 800 C. On the basis of the data obtained, it may be concluded that the operating temperature limits of titanium- or vanadium-base materials in carbon dioxide must not exceed 400 and 600 C, respectively

  6. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  7. Sorption rate of uranyl ions by hyphan cellulose exchangers and by hydrated titanium dioxide

    International Nuclear Information System (INIS)

    Ambe, F.; Burba, P.; Lieser, K.H.

    1979-01-01

    Sorption of uranyl ions by the cellulose exchanger Hyphan proceeds rather fast. Two steps are observed with half-times of the order of 10 s and 2 min. The majority of the uranyl ions is bound in 1 min. Sorption of uranyl ions by titanium dioxide is a very slow process. For particle sizes between 0,1 and 0,5 mm the half-time is about 3 h and equilibrium is attained in about 1 day. The effect of stirring suspensions of inorganic sorbents like titanium dioxide in solution is investigated in detail. Sorption of uranyl ions by titanium dioxide and change in pH in solution are measured simultaneously as a function of time. (orig.) [de

  8. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  9. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  10. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    Science.gov (United States)

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  11. Titanium Dioxide Nanoparticles: a Risk for Human Health?

    Science.gov (United States)

    Grande, Fedora; Tucci, Paola

    2016-01-01

    Titanium dioxide (TiO2) is a natural oxide of the element titanium with low toxicity, and negligible biological effects. The classification as bio-inert material has given the possibility to normal-sized (>100 nm) titanium dioxide particles (TiO2-NPs) to be extensively used in food products and as ingredients in a wide range of pharmaceutical products and cosmetics, such as sunscreens and toothpastes. Therefore, human exposure may occur through ingestion and dermal penetration, or through inhalation route, during both the manufacturing process and use. In spite of the extensively use of TiO2-NPs, the biological effects and the cellular response mechanisms are still not completely elucidated and thus a deep understanding of the toxicological profile of this compound is required. The main mechanism underlining the toxicity potentially triggered by TiO2-NPs seems to involve the reactive oxygen species (ROS) production, resulting in oxidative stress, inflammation, genotoxicity, metabolic change and potentially carcinogenesis. The extent and type of cell damage strongly depend on chemical and physical characteristics of TiO2-NPs, including size, crystal structure and photo-activation. In this mini-review, we would like to discuss the latest findings on the adverse effects and on potential human health risks induced by TiO2-NPs exposure.

  12. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  13. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    Science.gov (United States)

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Imaging flow cytometry assays for quantifying pigment grade titanium dioxide particle internalization and interactions with immune cells in whole blood.

    Science.gov (United States)

    Hewitt, Rachel E; Vis, Bradley; Pele, Laetitia C; Faria, Nuno; Powell, Jonathan J

    2017-10-01

    Pigment grade titanium dioxide is composed of sub-micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell-particle associations could be determined in immune cells of human whole blood at "real life" concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle-bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  15. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies

    Science.gov (United States)

    Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela

    2018-01-01

    The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318

  16. Temperature dependence and P/Ti ratio in phosphoric acid treatment of titanium dioxide and powder properties.

    Science.gov (United States)

    Onoda, H; Matsukura, A

    2015-02-01

    Titanium dioxide has photocatalytic activity and is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium dioxide was shaken with phosphoric acid to synthesize a white pigment for cosmetics. Titanium dioxide was treated with 0.1 mol/L of phosphoric acid at various P/Ti molar ratios, and then shaken in hot water for 1 h. The chemical composition, powder properties, photocatalytic activity, colour phase, and smoothness of the obtained powder were studied. The obtained materials indicated XRD peaks of titanium dioxide, however the peaks diminished subsequent to phosphoric acid treatment. The samples included small particles with sub-micrometer size. The photocatalytic activity of the obtained powders decreased, decomposing less sebum on the skin. Samples prepared at high P/Ti ratio with high shaking temperature indicated low whiteness in in L*a*b* colour space. The shaking and heating temperature and P/Ti ratio had influence on the smoothness of the obtained materials. Phosphoric acid treatment of titanium dioxide is an effective method to inhibit photocatalytic activity for a white pigment. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Nanomaterial Case Studies: Nanoscale Titanium Dioxide (External Review Draft)

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental asses...

  18. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  19. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    International Nuclear Information System (INIS)

    Huppmann, T.; Leonhardt, S.; Krampe, E.; Wintermantel, E.; Yatsenko, S.; Radovanovic, I.; Bastian, M.

    2014-01-01

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO 2 ) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO 2 for antimicrobial efficacy is to deposit a thin TiO 2 coating on the surface. In contrast to the common way of applying a coating, TiO 2 particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO 2 P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO 2 -PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result

  20. Critical review of the safety assessment of titanium dioxide additives in food.

    Science.gov (United States)

    Winkler, Hans Christian; Notter, Tina; Meyer, Urs; Naegeli, Hanspeter

    2018-06-01

    Nanomaterial engineering provides an important technological advance that offers substantial benefits for applications not only in the production and processing, but also in the packaging and storage of food. An expanding commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide (TiO 2 ), which confers a white color and increased opacity with an optimal particle diameter of 200-300 nm. However, size distribution analyses showed that batches of food-grade TiO 2 always comprise a nano-sized fraction as inevitable byproduct of the manufacturing processes. Submicron-sized TiO 2 particles, in Europe listed as E 171, are widely used as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not possible to derive a safe daily intake of TiO 2 from the available long-term feeding studies in rodents. Also, the use of TiO 2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps as to local gastrointestinal effects of TiO 2 particles, primarily on the mucosa and the gut-associated lymphoid system. Tissue distributions after oral administration of TiO 2 differ from other exposure routes, thus limiting the relevance of data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospective assessment of TiO 2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of novel nano-sized or submicron-sized particles added deliberately to food.

  1. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Directory of Open Access Journals (Sweden)

    Braun Armin

    2009-09-01

    Full Text Available Abstract Background Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2 nanosized particles (NSP and microsized particles (MSP on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized. Methods A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope. Results TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p min slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p 2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m and γmin (21.1 ± 0.4 mN/m. Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae. Conclusion TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.

  2. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  3. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles.

    Science.gov (United States)

    Jones, Kate; Morton, Jackie; Smith, Ian; Jurkschat, Kerstin; Harding, Anne-Helen; Evans, Gareth

    2015-03-04

    The study was designed to conduct human in vivo and in vitro studies on the gastrointestinal absorption of nanoparticles, using titanium dioxide as a model compound, and to compare nanoparticle behaviour with that of larger particles. A supplier's characterisation data may not fully describe a particle formulation. Most particles tested agreed with their supplied characterisation when assessed by particle number but significant proportions of 'nanoparticle formulations' were particles >100nm when assessed by particle weight. Oral doses are measured by weight and it is therefore important that the weight characterisation is taken into consideration. The human volunteer studies demonstrated that very little titanium dioxide is absorbed gastrointestinally after an oral challenge. There was no demonstrable difference in absorption for any of the three particle sizes tested. All tested formulations were shown to agglomerate in simulated gastric fluid, particularly in the smaller particle formulations. Further agglomeration was observed when dispersing formulations in polymeric or elemental foods. Virtually no translocation of titanium dioxide particles across the cell layer was demonstrated. This study found no evidence that nanoparticulate titanium dioxide is more likely to be absorbed in the gut than micron-sized particles. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  5. Selective recovery of titanium dioxide from low grade sources

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available that is too fine for use in the chloride process  Perovskite (CaTiO3) resources in Colorado3. The main problem with utilizing a low-grade resource is the amount of chemical wastes produced per unit of pigment of produced. If a TiO2 bearing feedstock... The mineralogical form of the titanium oxide species affects the thermodynamic equilibrium of the reaction. Calcium titanate, CaTiO3 (Perovskite) is more stable than magnesium titanate MgTiO3, (Geikilite) which is more stable than titanium dioxide or ilmenite (Fe...

  6. Nano-scale analysis of titanium dioxide fingerprint-development powders

    International Nuclear Information System (INIS)

    Reynolds, A J; Jones, B J; Sears, V; Bowman, V

    2008-01-01

    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles. Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO 2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO 2 particles and efficacy of print development.

  7. Nano-scale analysis of titanium dioxide fingerprint-development powders

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A J; Jones, B J [Experimental Techniques Centre, Brunei University, Kingston Lane, Uxbridge, Middlesex, UB8 3PH (United Kingdom); Sears, V; Bowman, V [Fingerprint and Footwear Forensics, Home Office Scientific Development Branch, Sandridge, St Albans, Hertfordshire, AL4 9HQ (United Kingdom)], E-mail: b.j.jones@physics.org

    2008-08-15

    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles. Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO{sub 2} particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO{sub 2} particles and efficacy of print development.

  8. Antimicrobial polymers - The antibacterial effect of photoactivated nano titanium dioxide polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Huppmann, T., E-mail: teresa.huppmann@tum.de; Leonhardt, S., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Krampe, E., E-mail: stefan.leonhardt@mytum.de, E-mail: erhard.krampe@tum.de; Wintermantel, E., E-mail: wintermantel@tum.de [Institute of Medical and Polymer Engineering, Technische Universität München (Germany); Yatsenko, S., E-mail: s.yatsenko@skz.de; Radovanovic, I., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de; Bastian, M., E-mail: i.radovanovic@skz.de, E-mail: m.bastian@skz.de [SKZ- German Plastics Center, Würzburg (Germany)

    2014-05-15

    To obtain a polymer with antimicrobial properties for medical and sanitary applications nanoscale titanium dioxide (TiO{sub 2}) particles have been incorporated into a medical grade polypropylene (PP) matrix with various filler contents (0 wt %, 2 wt %, 10 wt % and 15 wt %). The standard application of TiO{sub 2} for antimicrobial efficacy is to deposit a thin TiO{sub 2} coating on the surface. In contrast to the common way of applying a coating, TiO{sub 2} particles were applied into the bulk polymer. With this design we want to ensure antimicrobial properties even after application of impact effects that could lead to surface defects. The filler material (Aeroxide® TiO{sub 2} P25, Evonik) was applied via melt compounding and the compounding parameters were optimized with respect to nanoscale titanium dioxide. In a next step the effect of UV-irradiation on the compounds concerning their photocatalytic activity, which is related to the titanium dioxide amount, was investigated. The photocatalytic effect of TiO{sub 2}-PP-composites was analyzed by contact angle measurement, by methylene blue testing and by evaluation of inactivation potential for Escherichia coli (E.coli) bacteria. The dependence of antimicrobial activity on the filler content was evaluated, and on the basis of different titanium dioxide fractions adequate amounts of additives within the compounds were discussed. Specimens displayed a higher photocatalytic and also antimicrobial activity and lower contact angles with increasing titania content. The results suggest that the presence of titania embedded in the PP matrix leads to a surface change and a photocatalytic effect with bacteria killing result.

  9. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in ...

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. These “case studies” do not represent completed or even preliminary assessments, nor are they intended to serve as a basis for risk management decisions in the near term on these specific uses of nano TiO2. Rather, the intent is to use this document in developing the scientific and technical information needed for future assessment efforts.

  10. Molecular and physiological responses to titanium dioxide ...

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  11. Diffuse Urticarial Reaction Associated with Titanium Dioxide Following Laser Tattoo Removal Treatments.

    Science.gov (United States)

    Willardson, Hal Bret; Kobayashi, Todd T; Arnold, Jason G; Hivnor, Chad M; Bowen, Casey D

    2017-03-01

    Local and generalized allergic reactions following laser tattoo removal have been documented, but are rare. To our knowledge, this is the fourth documented case of widespread urticarial eruptions following laser tattoo removal treatment. Unlike previously documented cases, this patient's reaction was found to be associated with titanium dioxide within the tattoo and her symptoms were recalcitrant to medical therapy. A 46-year-old female experienced diffuse urticarial plaques, erythema, and pruritis following multiple laser tattoo removal treatments with an Nd:YAG laser. The systemic allergic reaction was recalcitrant to increasing doses of antihistamines and corticosteroids. The tattoo was finally surgically excised. The excised tissue was analyzed by scanning electron microscopy and energy-dispersive X-ray analysis and contained high levels of titanium dioxide. Two weeks following the excision, and without the use of medical therapy, the patient had complete resolution of her generalized urticaria. Ours is the first documented case of a diffuse urticarial reaction following laser tattoo removal treatments that shows a strong association to titanium dioxide within the tattoo pigment. Herein, we describe a novel surgical approach to treat recalcitrant generalized allergic reaction to tattoo pigment.

  12. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell

    International Nuclear Information System (INIS)

    Tu, Min; Huang, Yi; Li, Hai-Ling; Gao, Zhong-Hong

    2012-01-01

    Highlights: ► Nitrite increased photo-toxicity of nano-TiO 2 on human keratinocyte cells in a dose-dependant manner. ► Morphological study suggested the cell death may be mediated by apoptosis inducing factor. ► Protein nitration was generated in the cells, and the most abundant nitrated protein was identified as cystatin-A. ► Tyr35 was the most likely site to be nitrated in cystatin-A. -- Abstract: Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  13. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells

    Science.gov (United States)

    Krüger, Kristin; Cossais, François; Neve, Horst; Klempt, Martin

    2014-05-01

    Nanosized titanium dioxide (TiO2) particles are widely used as food additive or coating material in products of the food and pharmaceutical industry. Studies on various cell lines have shown that TiO2 nanoparticles (NPs) induced the inflammatory response and cytotoxicity. However, the influences of TiO2 NPs' exposure on inflammatory pathways in intestinal epithelial cells and their differentiation have not been investigated so far. This study demonstrates that TiO2 NPs with particle sizes ranging between 5 and 10 nm do not affect enterocyte differentiation but cause an activation of inflammatory pathways in the human colon adenocarcinoma cell line Caco-2. 5 and 10 nm NPs' exposures transiently induce the expression of ICAM1, CCL20, COX2 and IL8, as determined by quantitative PCR, whereas larger particles (490 nm) do not. Further, using nuclear factor (NF)-κB reporter gene assays, we show that NP-induced IL8 mRNA expression occurs, in part, through activation of NF-κB and p38 mitogen-activated protein kinase pathways.

  14. Ion exchange centres of sorption of alkaline and alkaline-earth cations on hydrated titanium and tin dioxides

    International Nuclear Information System (INIS)

    Denisova, T.A.; Perekhozheva, T.N.; Sharigin, L.M.; Pletnev, R.N.

    1986-01-01

    The nature of exchange centres of one- and two-charged cations on hydrated titanium and tin dioxides by means of paramagnetic resonance method is studied. The sorption of cations of Na + , Cs + , Ca 2+ was carried out at 25 and 90 deg C at ph=5.0-10.4 on samples of hydrated titanium dioxide and hydrated tin dioxide, obtained by sol gel method and calcined at 150 deg C and 300 deg C accordingly.

  15. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study.

    Science.gov (United States)

    Harini, P; Mohamed, Kasim; Padmanabhan, T V

    2014-01-01

    To improve the flexural strength of polymethylmethacrylate (PMMA). To evaluate whether the incorporation of titanium dioxide nanoparticles in polymethylmethacrylate (PMMA) increases the flexural strength and to compare the different concentrations of titanium dioxide nanoparticles and its relation to flexural strength. Study was conducted in Sri Ramachandra University utilizing 40 specimens manufactured from clear heat polymerizing acrylic resin. Forty specimens of clear heat polymerizing acrylic resin of dimensions 65 Χ 10 Χ 3 mm as per ISO 1,567 standardization were fabricated and were grouped into A (CONTROL) with no titanium dioxide (TiO2) nanoparticles, B with 0.5 gms of TiO 2 nanoparticles, C with 1 gm of TiO 2 nanoparticles and D with 2.5 gms of TiO 2 nanoparticles added.The concentrations of titanium dioxide in each group were 1 wt%, 2 wt% and 5 wt%. Universal testing machine INSTRON was used to load at the center of the specimen with a cross head speed of 1.50 mm/min and a span length of 40.00 mm. ANOVA and multiple comparisons are carried out using the independent t-test. The ANOVA result shows that there is a significant difference between the groups with respect to the mean flexural strength. Highest mean flexural strength is observed in Group D, while the lowest is seen in Group A. Independent t-test revealed that there was a statistical significance between Group A and Group D (0.041) and between Group B and Group D (0.028). The results concluded that polymethylmethacrylate reinforced with different concentrations of titanium dioxide nanoparticles showed superior flexural strength than those of normal PMMA.

  16. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  17. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    Science.gov (United States)

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  18. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    Mazilier, C.

    1988-01-01

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti0 2 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry [fr

  19. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Science.gov (United States)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  20. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  1. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    Science.gov (United States)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  2. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  3. Nano-sized titanium dioxide-induced splenic toxicity: A biological pathway explored using microarray technology

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lei [Medical College of Soochow University, Suzhou 215123 (China); Wang, Ling [Library of Soochow University, Suzhou 215123 (China); Sang, Xuezi; Zhao, Xiaoyang; Hong, Jie; Cheng, Shen; Yu, Xiaohong; Liu, Dong; Xu, Bingqing; Hu, Renping; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Gui, Suxin [Medical College of Soochow University, Suzhou 215123 (China); Hong, Fashui, E-mail: Hongfsh_cn@sina.com [Medical College of Soochow University, Suzhou 215123 (China)

    2014-08-15

    Highlights: • Exposure to TiO{sub 2} NPs could be accumulated in the spleen. • Exposure to TiO{sub 2} NPs caused spleen lesions in mice. • Exposure to TiO{sub 2} NPs resulted in immune dysfunction in mice. • Exposure to TiO{sub 2} NPs caused alteration of 1041 genes expression of known function in the spleen. - Abstract: Titanium dioxide nanoparticles (TiO{sub 2} NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO{sub 2} NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10 mg/kg body weight TiO{sub 2} NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO{sub 2} NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO{sub 2} NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO{sub 2} NPs.

  4. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric

    International Nuclear Information System (INIS)

    Karimi, Loghman; Yazdanshenas, Mohammad Esmail; Khajavi, Ramin; Rashidi, Abosaeed; Mirjalili, Mohammad

    2015-01-01

    Graphical abstract: - Highlights: • Producing superior photo-active cotton fabric using graphene/titanium dioxide nanocomposite. • Optimizing processing conditions using response surface methodology. • Obtaining significant photo-activity properties on cotton fabric by this method under sun irradiation. • Possessing excellent antimicrobial activity with low cytotoxicity on human fibroblasts. - Abstract: A new facile route based on cotton fabric coated with graphene/titanium dioxide nanocomposite is reported to produce photo-active cellulose textiles. A thin layer of graphene oxide has been produced on cotton fabrics by a dip-dry process. The graphene oxide-coated cotton fabrics were then immersed in titanium trichloride aqueous solution to yield a fabric coated with graphene/titanium dioxide nanocomposite. The photo-activity efficiency of the coated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. To obtain the optimum condition, the response surface methodology (RSM) through the central composite design was applied and the role of both graphene oxide and titanium trichloride concentrations on photo-activity efficiency was investigated. The physicochemical properties of the prepared samples has been characterized by a series of techniques, including Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of the application of graphene/titanium dioxide nanocomposite on the physical properties of the cotton fabric, such as tensile strength, bending rigidity and crease recovery angle has been analyzed. Other characteristics of treated fabrics such as antibacterial, antifungal and cytotoxicity were also investigated. Cotton fabric coated with optimum concentrations of graphene oxide and titanium trichloride obtained significant photo-activity efficiency under UV and sunlight irradiations. Moreover, the graphene/titanium

  5. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  6. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    Science.gov (United States)

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  7. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Boercker, J E; Enache-Pommer, E; Aydil, E S

    2008-01-01

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na 2 Ti 2 O 4 (OH) 2 nanotubes through hydrothermal oxidation in NaOH. Next, the Na 2 Ti 2 O 4 (OH) 2 nanotubes were converted to H 2 Ti 2 O 4 (OH) 2 nanotubes by ion exchange. Finally, the H 2 Ti 2 O 4 (OH) 2 nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na 2 Ti 2 O 4 (OH) 2 sheets, which exfoliate and spiral into nanotubes. The Na 2 Ti 2 O 4 (OH) 2 nanotubes are immersed in HCl solution to replace the Na + ions with H + ions. During the topotactic transformation of H 2 Ti 2 O 4 (OH) 2 nanotubes to anatase TiO 2 nanowires, the sheets made of edge bonded TiO 6 octahedra in the H 2 Ti 2 O 4 (OH) 2 nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO 2 nanowire films were suitable for use as dye-sensitized solar cell photoanodes

  8. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation.

    Science.gov (United States)

    Lopes, F S; Oliveira, J R; Milani, J; Oliveira, L D; Machado, J P B; Trava-Airoldi, V J; Lobo, A O; Marciano, F R

    2017-12-01

    Recently, the development of coatings to protect biomedical alloys from oxidation, passivation and to reduce the ability for a bacterial biofilm to form after implantation has emerged. Diamond-like carbon films are commonly used for implanted medical due to their physical and chemical characteristics, showing good interactions with the biological environment. However, these properties can be significantly improved when titanium dioxide nanoparticles are included, especially to enhance the bactericidal properties of the films. So far, the deposition of hydroxyapatite on the film surface has been studied in order to improve biocompatibility and bioactive behavior. Herein, we developed a new route to obtain a homogeneous and crystalline apatite coating on diamond-like carbon films grown on 304 biomedical stainless steel and evaluated its antibacterial effect. For this purpose, films containing two different concentrations of titanium dioxide (0.1 and 0.3g/L) were obtained by chemical vapor deposition. To obtain the apatite layer, the samples were soaked in simulated body fluid solution for up to 21days. The antibacterial activity of the films was evaluated by bacterial eradication tests using Staphylococcus aureus biofilm. Scanning electron microscopy, X-ray diffraction, Raman scattering spectroscopy, and goniometry showed that homogeneous, crystalline, and hydrophilic apatite films were formed independently of the titanium dioxide concentration. Interestingly, the diamond-like films containing titanium dioxide and hydroxyapatite reduced the biofilm formation compared to controls. A synergism between hydroxyapatite and titanium dioxide that provided an antimicrobial effect against opportunistic pathogens was clearly observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    Science.gov (United States)

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  10. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  11. Characterization of biodegradable polycaprolactone containing titanium dioxide micro and nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Govorčin Bajsić, E.; Ocelić Bulatović, V.; Šlouf, Miroslav; Šitum, Ana

    2014-01-01

    Roč. 8, č. 7 (2014), s. 536-540 ISSN 2010-376X R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : morphology * polycaprolactone * thermal properties Subject RIV: EA - Cell Biology http://waset.org/Publication/characterization-of-biodegradable-polycaprolactone-containing-titanium-dioxide-micro-and-nanoparticles/9998694

  12. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    Science.gov (United States)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  13. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems

    International Nuclear Information System (INIS)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio

    2009-01-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO 2 stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO 2 nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  14. Nano Titanium Dioxide Environmental Matters: State of the Science Literature Review

    Science.gov (United States)

    The purpose of this report is to compile and summarize currently-available information pertaining to the manufacturing, processing, use, and end-of-life for nanoscale titanium dioxide (nano-TiO2). The focus of the report is to identify, summarize, and present informat...

  15. Microwave synthesis of Titanium Dioxide nanotubes for use in water treatment

    CSIR Research Space (South Africa)

    Sikhwivhilu, L

    2010-09-01

    Full Text Available various methods have been used to synthesise Titanium Dioxide (TiO2) (also known as Titania) nanoparticles hydrothermal synthesis in the presence of a base solution, has proved to be an effective approach to prepare 1D nanostructures of TiO2...

  16. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Science.gov (United States)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  17. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Po-I; Chung, Li-Ching; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Ma, Chen-Chi M.; Chang, Min-Chao

    2013-01-01

    The nanostructured anatase titanium dioxide/activated carbon composite material for capacitive deionization electrode was prepared in a short time by a lower temperature two-step microwave-assisted ionothermal (sol–gel method in the presence of ionic liquid) synthesis method. This method includes a reaction and a crystallization step. In the crystallization step, the ionic liquid plays a hydrothermal analogy role in driving the surface anatase crystallization of amorphous titanium dioxide nanoparticles formed in the reaction step. The energy dispersive spectroscopic study of the composite indicates that the anatase titanium dioxide nanoparticles are evenly deposited in the matrix of activated carbon. The electrochemical property of the composite electrode was investigated. In comparison to the pristine activated carbon electrode, higher specific capacitance was observed for the nanostructured anatase titanium dioxide/activated carbon composite electrode, especially when the composite was prepared with a molar ratio of titanium tetraisopropoxide/H 2 O equal to 1:15. Its X-ray photoelectron spectroscopic result indicates that it has the highest amount of Ti-OH. The Ti-OH group can enhance the wetting ability and the specific capacitance of the composite electrode. The accompanying capacitive deionization result indicates that the decay of electrosorption capacity of this composite electrode is insignificant after five cycle tests. It means that the ion electrosorption–desorption becomes a reversible process

  18. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    Science.gov (United States)

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  19. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide

    Science.gov (United States)

    Nano-titanium dioxide (nano-Ti02) catalyzes many reactions under UV radiation and is hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six different samples of nano-Ti02 and exposed to UVA radiation. The Ti02 ...

  20. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products

    Science.gov (United States)

    Yang, Yu; Capco, David G.; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677

  1. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, J E; Enache-Pommer, E; Aydil, E S [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455 (United States)], E-mail: aydil@umn.edu

    2008-03-05

    Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes through hydrothermal oxidation in NaOH. Next, the Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes by ion exchange. Finally, the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} sheets, which exfoliate and spiral into nanotubes. The Na{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes are immersed in HCl solution to replace the Na{sup +} ions with H{sup +} ions. During the topotactic transformation of H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes to anatase TiO{sub 2} nanowires, the sheets made of edge bonded TiO{sub 6} octahedra in the H{sub 2}Ti{sub 2}O{sub 4}(OH){sub 2} nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO{sub 2} nanowire films were suitable for use as dye-sensitized solar cell photoanodes.

  2. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products.

    Science.gov (United States)

    Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.

  3. Development and Characterization of Titanium Dioxide Gel with Encapsulated Bacteriorhodopsin for Hydrogen Production.

    Science.gov (United States)

    Johnson, Kaitlin E; Gakhar, Sukriti; Risbud, Subhash H; Longo, Marjorie L

    2018-06-06

    We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol-particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-Visible spectroscopy of BR-titania gels show that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmole hydrogen mL -1 hr -1 , an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to crosslink BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water-splitting.

  4. Study of effect of chromium on titanium dioxide phase transformation ...

    Indian Academy of Sciences (India)

    Administrator

    Study of effect of chromium on titanium dioxide phase transformation by A Bellifa (pp 669–677). Figure S1. Structural ... 4 × 1⋅9486; 2 × 1⋅9799. Octahedral packing. 2 × 2 shared edges. 8 free edges. 3 shared edges. 4 corners. 5 free edges. 2 parallel shared edges. 2 corners. 10 free edges. O. O. Coordination scheme.

  5. Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Kamaraj

    2014-12-01

    Full Text Available This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution. Titanium sheet was used as the sacrificial anode and galvanized iron sheet was used as the cathode. The optimization of different experimental parameters like initial ion concentration, current density, pH, temperature, etc., on the removal efficiency of manganese was carried out. The maximum removal efficiency of 97.55 % was achieved at a current density of 0.08 A dm-2 and pH of 7.0. The Langmuir, Freundlich and Redlich Peterson isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The adsorption of manganese preferably followed the Langmuir adsorption isotherm. The adsorption kinetics was modelled by first- and second- order rate models and the adsorption kinetic studies showed that the adsorption of manganese was best described using the second-order kinetic model. Thermodynamic parameters indicate that the adsorption of manganese on hydrous titanium dioxide was feasible, spontaneous and exothermic.

  6. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  7. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  8. Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Mazzolini, P.; Casari, C. S.; Russo, V.; Li Bassi, A.; Kavan, Ladislav

    2017-01-01

    Roč. 232, APR 2017 (2017), s. 44-53 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : titanium dioxide * tantalum doping * electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  9. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, Siti Umairah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Ismail, Siti Norazian, E-mail: fitrah@salam.uitm.edu.my; Hashib, Syafiza Abd, E-mail: fitrah@salam.uitm.edu.my [Faculty of Chemical Engineering, UniversitiTeknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Naim, M. Nazli [Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  10. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  11. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass

    NARCIS (Netherlands)

    Moll, Janine; Klingenfuss, Florian; Widmer, Franco; Gogos, Alexander; Bucheli, Thomas D.; Hartmann, Martin; van der Heijden, Marcel G.A.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are the most produced NPs worldwide and have great potential to be utilized in agriculture as additives for plant protection products. However, concerns have been raised that some NPs may negatively affect crops and soil microbial communities, including

  12. HIGH-QUALITY ORNAMENTAL FINE CONCRETES MODIFIED BY NANOPARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    Bazhenov Yuriy Mikhaylovich

    2012-10-01

    Full Text Available Ultrasonic method of generation of a stable suspension of nano-particles of titanium dioxide and the strengthening properties of the ornamental fine concrete that contains cement binders with a nano-dispersed additive constitute the subject of the research covered by the authors. Nanoparticles react with the basic chemical elements that compose the concrete and act as crystallization centres. Therefore, the concrete porosity is reduced, while physical and technology-related properties of the ornamental fine concrete are improved. The authors have proven that the application of the nano-dispersed additive that contains titanium dioxide influences the processes of the structure formation in respect of fine ornamental concretes and improves the strength, as well as the water and cold resistance of fine concretes. The improvement is attributed to the dense concrete structure and strong adhesion between cement grains and between the cement and the aggregate. This conclusion is based on the data obtained through the employment of an electronic microscope used to identify the porosity of fine concretes.

  13. Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont

    NARCIS (Netherlands)

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; Van Der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two

  14. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Jensen, Keld A.

    2010-01-01

    to a nanoparticulate UV-filter (UV-titan L181). Methods: Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring...... the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Conclusion: Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally...

  15. Nanosized lithium titanates produced by plasma technique

    International Nuclear Information System (INIS)

    Grabis, J; Orlovs, A; Rasmane, Dz

    2007-01-01

    The synthesis of nanosized lithium titanates is studied by evaporation of coarse grained commercially available titanium and lithium carbonate particles in radio-frequency plasma flow with subsequent controlling formation and growth conditions of product particles. In accordance with the XRD analysis the phase composition of the obtained powders is determined by feeding rate of precursors and strongly by ratio of lithium and titanium. The Li 2 TiO 3 and Li 4 Ti 5 O 12 particles containing small amounts of extra phases were obtained at ratio of Li/Ti = 2 and Li/Ti = 0.8 respectively, feeding rate of precursors being in the range of 0.6-0.9 kg/h. Specific surface area of powders is in the range of 20-40 m2/g depending on concentration of vapours in gas flow and cooling rate of the products. Additional calcination of nanosize particles at 800-900 deg. C improves phase composition of lithium titanates

  16. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    Science.gov (United States)

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  17. Bioaccumulation, Subacute Toxicity, and Tissue Distribution of Engineered Titanium Dioxide Nanoparticles in Goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    Mehmet Ates

    2013-01-01

    Full Text Available The increased use of nanosized materials is likely to result in the release of these particles into the environment. It is, however, unclear if these materials are harmful to aquatic animals. In this study, the sublethal effects of exposure of low and high concentrations of titanium dioxide nanoparticles (TiO2 NPs on goldfish (Carassius auratus were investigated. Accumulation of TiO2 NPs increased from 42.71 to 110.68 ppb in the intestine and from 4.10 to 9.86 ppb in the gills of the goldfish with increasing exposure dose from 10 to 100 mg/L TiO2 NPs. No significant accumulation in the muscle and brain of the fish was detected. Malondialdehyde as a biomarker of lipid oxidation was detected in the liver of the goldfish. Moreover, TiO2 NPs exposure inhibited growth of the goldfish. Although there was an increase (8.1% in the body weights of the goldfish for the control group, in the low and high exposure groups 1.8% increase and 19.7% decrease were measured, respectively. The results of this study contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and highlight the importance of characterization of NPs in understanding their behavior, uptake, and effects in aquatic systems and in fish.

  18. Preparation and integration of nanostructured titanium dioxide

    KAUST Repository

    Zeng, Hua Chun

    2011-10-01

    Titanium dioxide (TiO2) is a chemically stable nontoxic transition-metal oxide associated with a wide range of existing chemical engineering processes. In this short review, recent research endeavors in preparation and integration of nanostructured TiO2 materials system will be featured and discussed for their potential new applications. Because material development always plays pivotal roles in the progress of a particular engineering discipline, the reviewed subjects will provide useful information to stimulate nanoscale research of chemical engineering, linking established fundamentals with practical applications. Some critical issues and challenges regarding further development of this important functional material for nanotechnology will also be addressed. © 2011 Elsevier Ltd. All rights reserved.

  19. Titanium di-oxide films using a less hygroscopic colloidal precursor

    Energy Technology Data Exchange (ETDEWEB)

    Vandana,, E-mail: vandana1@nplindia.org; Batra, Neha; Kumar, Praveen; Sharma, Pooja; Singh, P.K., E-mail: pksingh@nplindia.org

    2014-04-01

    We report the study of titanium dioxide films (TiO{sub 2}) using titanium di-isopropoxyl di-2ethyl hexanoate Ti(OC{sub 3}H{sub 7}){sub 2} (C{sub 7}H{sub 15}COO){sub 2} colloidal precursor. This compound is less hygroscopic in nature and easy to use with processes like spin or dip coating. Thin films of TiO{sub 2} are made on silicon substrates and their structural and optical properties are studied. The effect of Ti content in the precursor, sintering temperature and its duration on film thickness and refractive index are investigated. Refractive index shows an increasing trend with the rise in the sintering temperature but remains unchanged with the time. The film thickness decreases with both sintering temperature and time and increases with Ti content in the precursor. Reflectivity measurements show marked reduction in the reflection losses compared to bare silicon surface wherein the film thickness is altered by spin speed. XRD results show anatase phase in the samples sintered at lower temperature (<680 °C), however, a mix of anatase, brookite and rutile phases is seen above this temperature. In the samples sintered above 1100 °C, rutile phase is dominant. These results are supported by the X-ray photoelectron spectroscopy. Atomic force microscopy reveals larger grain size at higher sintering temperature. The titanium dioxide films of desirable thickness and refractive index could be used as an antireflection coating on solar cells. - Highlights: • TiO{sub 2} films are made using titanium di-isopropoxyl di-2ethyl hexanoate precursor. • Effect of Ti content in the precursor, sintering temperature and time is studied. • Refractive index (μ) increases with sintering temperature but is independent of time. • Films of desired thickness and μ could be used as an antireflection coating. • XRD results show that rutile phase dominates in samples sintered above 1100 °C.

  20. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles.

    Science.gov (United States)

    Bachler, Gerald; von Goetz, Natalie; Hungerbuhler, Konrad

    2015-05-01

    Nano-sized titanium dioxide particles (nano-TiO2) can be found in a large number of foods and consumer products, such as cosmetics and toothpaste, thus, consumer exposure occurs via multiple sources, possibly involving different exposure routes. In order to determine the disposition of nano-TiO2 particles that are taken up, a physiologically based pharmacokinetic (PBPK) model was developed. High priority was placed on limiting the number of parameters to match the number of underlying data points (hence to avoid overparameterization), but still reflecting available mechanistic information on the toxicokinetics of nano-TiO2. To this end, the biodistribution of nano-TiO2 was modeled based on their ability to cross the capillary wall of the organs and to be phagocytosed in the mononuclear phagocyte system (MPS). The model's predictive power was evaluated by comparing simulated organ levels to experimentally assessed organ levels of independent in vivo studies. The results of our PBPK model indicate that: (1) within the application domain of the PBPK model from 15 to 150 nm, the size and crystalline structure of the particles had a minor influence on the biodistribution; and (2) at high internal exposure the particles agglomerate in vivo and are subsequently taken up by macrophages in the MPS. Furthermore, we also give an example on how the PBPK model may be used for risk assessment. For this purpose, the daily dietary intake of nano-TiO2 was calculated for the German population. The PBPK model was then used to convert this chronic external exposure into internal titanium levels for each organ.

  1. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  2. Titanium Dioxide Nanoparticles in Food and Personal Care Products

    Science.gov (United States)

    Weir, Alex; Westerhoff, Paul; Fabricius, Lars

    2012-01-01

    Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest exposures because TiO2 content of sweets is higher than other food products, and that a typical exposure for a US adult may be on the order of 1 mg Ti per kilogram body weight per day. Thus, because of the millions of tons of titanium based

  3. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  4. Nanocomposites based on titanium dioxide and polythiophene: structure and properties

    Czech Academy of Sciences Publication Activity Database

    Vu, Q. T.; Pavlík, Martin; Hebestreit, N.; Rammelt, U.; Plieth, W.; Pfleger, Jiří

    2005-01-01

    Roč. 65, 1-2 (2005), s. 69-77 ISSN 1381-5148. [International Conference on Polymers and Organic Chemistry /11./. Prague, 18.06.2004-23.06.2004] R&D Projects: GA AV ČR IAA4050406 Grant - others:European Graduate School: Advanced Polymeric Materials(XE) IGK720 Institutional research plan: CEZ:AV0Z40500505 Keywords : polythiophene * titanium dioxide * nanocomposites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.565, year: 2005

  5. Examining the efficiency of muffle furnance-induced alkaline hydrolysis in determining the titanium content of environmental samples containing engineered titanium dioxide particles

    Science.gov (United States)

    A novel muffle furnace (MF)-based potassium hydroxide (KOH) fusion digestion technique was developed and its comparative digestion and dissolution efficacy for different titanium dioxide nanoparticles (TiO2-NPs)/environmental matrices was evaluated. Digestion of different enviro...

  6. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    Science.gov (United States)

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  7. Relationship between wheat characteristics and nutrient digestibility in broilers: comparison between total collection and marker (titanium dioxide) technique.

    Science.gov (United States)

    Smeets, N; Nuyens, F; Van Campenhout, L; Delezie, E; Pannecoucque, J; Niewold, T

    2015-07-01

    Three wheat cultivars (Orpheus, Rustic, and Viscount) were used to formulate 3 test feeds (62.4% wheat) in a broiler digestibility trial. The diets were fed to male Ross 308 broiler chickens. The wheat cultivars mainly differed in their amount of non-starch polysaccharides ( NSP: ). The cultivar Orpheus was chosen to represent a high amount of NSP (102 g/kg DM), whereas the cultivars Rustic and Viscount represented low amounts of NSP (83.4 g/kg DM and 73.9 g/kg DM, respectively). Furthermore, the cultivars Orpheus and Viscount were feed quality wheat, whereas Rustic was a milling quality wheat. Nutrient digestibilities and AMEn contents of the diets were measured from 18 to 22-days-old by total excreta collection, or with the use of the indigestible marker titanium dioxide. In addition, the ileal viscosity was measured when the broilers were 25-days-old. Wheat cultivar affected N retention, DM digestibility, and AMEn. In general, the feed formulated with the high NSP wheat cultivar Orpheus resulted in the least favorable nutrient digestibilities and AMEn, whereas the results were better when the feed was formulated with the low NSP cultivars Viscount and Rustic. Feeding the Rustic cultivar caused the highest intestinal viscosity, although this was not reflected in the animal responses. Nutrient digestibilities and AMEn content of the diets were lower when calculated with the titanium dioxide marker than with the total excreta collection procedure. Moreover, the P-values of the effect of wheat cultivar on DM digestibility, N retention, crude fat digestibility and AMEn were lower with the use of the titanium dioxide marker. It can be concluded that wheat cultivar affected nutrient digestibility and AMEn, and that the observed differences were related to the amount of NSP. Furthermore, both the titanium dioxide marker and the total excreta collection methods showed the same trends despite the different values obtained. The titanium dioxide marker method was the

  8. Electron microscopic investigation and elemental analysis of titanium dioxide in sun lotion.

    Science.gov (United States)

    Sysoltseva, M; Winterhalter, R; Wochnik, A S; Scheu, C; Fromme, H

    2017-06-01

    The objective of this research was to determine the size, shape and aggregation of titanium dioxide (TiO 2 ) particles which are used in sun lotion as UV-blocker. Overall, six sunscreens from various suppliers and two reference substances were analysed by electron microscopy (EM) techniques in combination with energy dispersive X-ray spectroscopy (EDS). Because of a high fat content in sun lotion, it was impossible to visualize the TiO 2 particles without previous EM sample preparation. Different defatting methods for TiO 2 from sun screens were tested. A novel sample preparation method was developed which allowed the characterization of TiO 2 particles with the help of EM and EDS. Aggregates of titanium dioxide with the size of primary particles varying between 15 and 40 nm were observed only in five products. In the sun lotion with the highest SPF, only few small aggregates were found. In the sun screen with the lowest SPF, the largest aggregates of TiO 2 particles were detected with sizes up to 1.6 μm. In one of the sun lotions, neither TiO 2 nor ZnO was found in spite of the labelling. Instead, approx. 500 nm large diamond-shaped particles were observed. These particles are composed of an organic material as only carbon was detected by EDS. A novel defatting method for sample preparation of titanium dioxide nanoparticles used in sun cosmetics was developed. This method was applied to six different sun lotions with SPF between 30 and 50+. TiO 2 particles were found in only five sunscreens. The sizes of the primary particles were below 100 nm and, according to the EU Cosmetic Regulation, have to be listed on the package with the term 'nano'. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  10. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  11. Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2012-03-01

    Full Text Available Titanium dioxide (TiO2) nanostructures were synthesized by microwave-assisted and conventionally heated hydrothermal treatment of TiO2 powder. The tubular structures were converted to a rodlike shape by sintering the samples at various temperatures...

  12. Acute Toxicity of Intravenously Administered Titanium Dioxide Nanoparticles in Mice

    OpenAIRE

    Xu, Jiaying; Shi, Hongbo; Ruth, Magaye; Yu, Hongsheng; Lazar, Lissy; Zou, Baobo; Yang, Cui; Wu, Aiguo; Zhao, Jinshun

    2013-01-01

    BACKGROUND: With a wide range of applications, titanium dioxide (TiO₂) nanoparticles (NPs) are manufactured worldwide in large quantities. Recently, in the field of nanomedicine, intravenous injection of TiO₂ nanoparticulate carriers directly into the bloodstream has raised public concerns on their toxicity to humans. METHODS: In this study, mice were injected intravenously with a single dose of TiO₂ NPs at varying dose levels (0, 140, 300, 645, or 1387 mg/kg). Animal mortality, blood biochem...

  13. Titanium dioxide thin films for high temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.ed

    2010-10-29

    Titanium dioxide (TiO{sub 2}) thin film gas sensors were fabricated via the sol-gel method from a starting solution of titanium isopropoxide dissolved in methoxyethanol. Spin coating was used to deposit the sol on electroded aluminum oxide (Al{sub 2}O{sub 3}) substrates forming a film 1 {mu}m thick. The influence of crystallization temperature and operating temperature on crystalline phase, grain size, electronic conduction activation energy, and gas sensing response toward carbon monoxide (CO) and methane (CH{sub 4}) was studied. Pure anatase phase was found with crystallization temperatures up to 800 {sup o}C, however, rutile began to form by 900 {sup o}C. Grain size increased with increasing calcination temperature. Activation energy was dependent on crystallite size and phase. Sensing response toward CO and CH{sub 4} was dependent on both calcination and operating temperatures. Films crystallized at 650 {sup o}C and operated at 450 {sup o}C showed the best selectivity toward CO.

  14. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  15. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    International Nuclear Information System (INIS)

    Cendrowski, Krzysztof; Jedrzejczak, Malgorzata; Peruzynska, Magdalena; Dybus, Andrzej; Drozdzik, Marek; Mijowska, Ewa

    2014-01-01

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO 2 -MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO 2 and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO 2 –MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst

  16. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties; Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  17. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties. Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology)

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  18. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  19. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Canulescu, Stela; Dirscherl, Kai

    2013-01-01

    The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology of the c......The photocatalytic properties of titanium dioxide (TiO2) coating in the anatase crystalline structure deposited on aluminium AA1050 alloy and stainless steel S316L substrates were investigated. The coating was prepared by DC magnetron sputtering. The microstructure and surface morphology...... sweep voltammetry, impedance measurements. The microstructure and surface morphology of the coating were similar irrespective of the nature of the substrate, while the photocatalytic behaviour was found to vary depending on the substrate type. In general the TiO2 coating on stainless steel was shown...

  20. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles

    Science.gov (United States)

    Due to their inherent phototoxicity and inevitable environmental release, titanium dioxide nanoparticles (nano-TiO2) are increasingly studied in the field of aquatic toxicology. One of the particular interests is the interactions between nano-TiO2 and natural organic matter (NOM)...

  1. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  2. Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production

    International Nuclear Information System (INIS)

    Spinazzè, Andrea; Cattaneo, Andrea; Limonta, Marina; Bollati, Valentina; Bertazzi, Pier Alberto; Cavallo, Domenico M.

    2016-01-01

    Limited data are available regarding occupational exposure assessment to nano-sized titanium dioxide (nano-TiO_2). The objective of this study is to assess the occupational exposure of workers engaged in the application of nano-TiO_2 onto concrete building materials, by means of a multi-metric approach (mean diameter, number, mass and surface area concentrations). The measurement design consists of the combined use of (i) direct-reading instruments to evaluate the total particle number concentrations relative to the background concentration and the mean size-dependent characteristics of particles (mean diameter and surface area concentration) and to estimate the 8-h time-weighted average (8-h TWA) exposure to nano-TiO_2 for workers involved in different working tasks; and (ii) filter-based air sampling, used for the determination of size-resolved particle mass concentrations. A further estimation was performed to obtain the mean 8-h TWA exposure values expressed as mass concentrations (µg nano-TiO_2/m"3). The multi-metric characterization of occupational exposure to nano-TiO_2 was significantly different both for different work environments and for each work task. Generally, workers were exposed to engineered nanoparticles (ENPs; <100 nm) mean levels lower than the recommended reference values and proposed occupational exposure limits (40,000 particle/cm"3; 300 µg/m"3) and relevant exposures to peak concentration were not likely to be expected. The estimated 8-h TWA exposure showed differences between the unexposed and exposed subjects. For these last, further differences were defined between operators involved in different work tasks. This study provides information on nano-TiO_2 number and mass concentration, size distribution, particles diameter and surface area concentrations, which were used to obtain work shift-averaged exposures.

  3. Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production

    Energy Technology Data Exchange (ETDEWEB)

    Spinazzè, Andrea, E-mail: andrea.spinazze@uninsubria.it; Cattaneo, Andrea; Limonta, Marina [Università degli studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia (Italy); Bollati, Valentina; Bertazzi, Pier Alberto [Università degli Studi di Milano, EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità (Italy); Cavallo, Domenico M. [Università degli studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia (Italy)

    2016-06-15

    Limited data are available regarding occupational exposure assessment to nano-sized titanium dioxide (nano-TiO{sub 2}). The objective of this study is to assess the occupational exposure of workers engaged in the application of nano-TiO{sub 2} onto concrete building materials, by means of a multi-metric approach (mean diameter, number, mass and surface area concentrations). The measurement design consists of the combined use of (i) direct-reading instruments to evaluate the total particle number concentrations relative to the background concentration and the mean size-dependent characteristics of particles (mean diameter and surface area concentration) and to estimate the 8-h time-weighted average (8-h TWA) exposure to nano-TiO{sub 2} for workers involved in different working tasks; and (ii) filter-based air sampling, used for the determination of size-resolved particle mass concentrations. A further estimation was performed to obtain the mean 8-h TWA exposure values expressed as mass concentrations (µg nano-TiO{sub 2}/m{sup 3}). The multi-metric characterization of occupational exposure to nano-TiO{sub 2} was significantly different both for different work environments and for each work task. Generally, workers were exposed to engineered nanoparticles (ENPs; <100 nm) mean levels lower than the recommended reference values and proposed occupational exposure limits (40,000 particle/cm{sup 3}; 300 µg/m{sup 3}) and relevant exposures to peak concentration were not likely to be expected. The estimated 8-h TWA exposure showed differences between the unexposed and exposed subjects. For these last, further differences were defined between operators involved in different work tasks. This study provides information on nano-TiO{sub 2} number and mass concentration, size distribution, particles diameter and surface area concentrations, which were used to obtain work shift-averaged exposures.

  4. Investigation of the thermal decomposition of a new titanium dioxide material

    Czech Academy of Sciences Publication Activity Database

    Palkovská, Monika; Slovák, V.; Šubrt, Jan; Boháček, Jaroslav; Barbieriková, Z.; Brezová, V.; Fajgar, Radek

    2016-01-01

    Roč. 125, č. 3 (2016), s. 1071-1078 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Titanium dioxide * Rod-shaped structure * Thermal analysis * Evolved gas analysis * EPR spectroscopy Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UCHP-M) Impact factor: 1.953, year: 2016

  5. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  6. Radioactive environmental impact assessment for a production project of titanium dioxide by chlorination process

    International Nuclear Information System (INIS)

    Qiu Guohua

    2010-01-01

    Based on the analysis of shifting direction of radionuclide in production process and the environmental investigation and monitoring, the radioactive environmental impact from a production project of titanium dioxide by chlorination process has been analyzed and assessed. The result of radioactive environmental investigation shows that values of assessment factors are in the range of environmental radioactive background. The radioactive environmental sensitive spot has been delineated. The results of radioactive environmental prediction show that the additional doses to workers and residents are 0.59 mSv/a and 9.28 × 10-4 mSv/a respectively which are less than the annual dose limits of administration. The radioactive environmental impact of the production project of the titanium dioxide by chlorination process will meet the needs of national regulations and standards if radiation protection and environmental protection measures are implemented and radioactive environmental monitoring are strengthened. (author)

  7. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse

    Directory of Open Access Journals (Sweden)

    Umezawa Masakazu

    2009-07-01

    Full Text Available Abstract Background Nanotechnology is developing rapidly throughout the world and the production of novel man-made nanoparticles is increasing, it is therefore of concern that nanomaterials have the potential to affect human health. The purpose of this study was to investigate the effects of maternal exposure to nano-sized anatase titanium dioxide (TiO2 on gene expression in the brain during the developmental period using cDNA microarray analysis combined with Gene Ontology (GO and Medical Subject Headings (MeSH terms information. Results Analysis of gene expression using GO terms indicated that expression levels of genes associated with apoptosis were altered in the brain of newborn pups, and those associated with brain development were altered in early age. The genes associated with response to oxidative stress were changed in the brains of 2 and 3 weeks old mice. Changes of the expression of genes associated with neurotransmitters and psychiatric diseases were found using MeSH terms. Conclusion Maternal exposure of mice to TiO2 nanoparticles may affect the expression of genes related to the development and function of the central nervous system.

  8. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  9. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  10. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    Science.gov (United States)

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  11. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  12. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations.

    Science.gov (United States)

    Zane, Andrew; Zuo, Ranfang; Villamena, Frederick A; Rockenbauer, Antal; Digeorge Foushee, Ann Marie; Flores, Kristin; Dutta, Prabir K; Nagy, Amber

    The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.

  13. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  14. Preliminary study towards photoactivity enhancement using a biocompatible titanium dioxide/carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Cendrowski, Krzysztof, E-mail: kcendrowski@zut.edu.pl [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland); Jedrzejczak, Malgorzata [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Peruzynska, Magdalena [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Dybus, Andrzej [West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Science, Laboratory of Molecular Cytogenetic, Dr Judyma 10, Szczecin 71-460 (Poland); Drozdzik, Marek [Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, al. Powstancow Wielkopolskich 72, Szczecin 70-111 (Poland); Mijowska, Ewa [West Pomeranian University of Technology Szczecin, Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Pulaskiego 10, Szczecin 70-322 (Poland)

    2014-08-25

    Graphical abstract: Scheme demonstrating the experimental steps toward the formation of titania/multiwalled carbon nanotubes (TiO{sub 2}-MWCNTs) from multiwalled carbon nanotubes (MWCNT). - Highlights: • Easy and efficient method of impregnation carbon nanotubes with titania. • High photoactivity. • Correlation between the interaction of carbon nanotubes with titania on the photocatalytic properties. • High biocompatibility of the nanotubes. - Abstract: Recent research is focused on the enhancement in photoactivity of titanium dioxide/carbon nanotubes through formation of novel nanocomposites that exhibit a high specific surface area, remarkable electron transfer and biocompatibility. Here, we explore a new synthesis route in the system composed of nanocrystalline titanium dioxide supported on external walls and inner space of multiwalled carbon nanotubes (MWCNT). The advantages of this method are: its simplicity, direct fusion of titanium dioxide particles on the carbon material, and formation of chemical bond Ti–O–C between TiO{sub 2} and MWCNT. Photocatalytic performance of this system has been compared to a commercial catalyst (Degussa P25) in a model reaction of phenol decomposition in/under UV light. The efficiency of the process increased by the factor of 2.5 when the TiO{sub 2}–MWCNT photocatalyst was utilized. Further, the photoactive nanocomposite was analysed towards its biocompatibility in order to establish a safe dose of the catalyst. Its influence on the cells viability was studied on mouse fibroblasts and human liver tissue cells, in the range from 0 to 100 μg/mL. This has revealed that the composite in concentrations up to 25 μg/mL exerted low toxicity, which allowed for finding a compromise between the highest safe dose and acceptable photoactivity of the catalyst.

  15. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    Science.gov (United States)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  16. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    International Nuclear Information System (INIS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-01-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO 2 ) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO 2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO 2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  17. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    Directory of Open Access Journals (Sweden)

    Szura Dominika

    2017-01-01

    Full Text Available Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  18. Pulsed TEA CO2 Laser Irradiation of Titanium in Nitrogen and Carbon Dioxide Gases

    Science.gov (United States)

    Ciganovic, J.; Matavulj, P.; Trtica, M.; Stasic, J.; Savovic, J.; Zivkovic, S.; Momcilovic, M.

    2017-12-01

    Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ˜17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  19. Supporting nanomaterial risk assessment by case studies of nano-titanium dioxide using comprehensive environmental assessment

    Science.gov (United States)

    Here we describe a comprehensive environmental assessment (CEA) approach for two case studies of nano-titanium dioxide (nano-TiO2) in real world applications: water treatment and sunscreen. CEA combines a product life cycle framework with the risk assessment paradigm.

  20. Synthesis of Titanium Dioxide nanoparticles via sucrose ester micelle-mediated hydrothermal processing route

    International Nuclear Information System (INIS)

    Anwar, N.S.; Kassim, A.; Lim, H.N.; Zakarya, S.A.; Huang, N.M.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photo catalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photo reactor. The as-synthesized nanoparticles exhibited higher photo catalytic performance as compared to the commercial counterpart. (author)

  1. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, G. van; Herrera-Rivera, Z.; Helsper, H.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO 2 content and the

  3. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles

    NARCIS (Netherlands)

    Peters, R.J.B.; Bemmel, van M.E.M.; Herrera-Rivera, Z.; Helsper, J.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H.

    2014-01-01

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the

  4. Characterization of the human cerebrospinal fluid phosphoproteome by titanium dioxide affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Bahl, Justyna Maria Czarna; Jensen, Søren Skov; Larsen, Martin R

    2008-01-01

    of phosphorylation aberrations in health and disease. Toward that goal we here describe a method for a comprehensive isolation and identification of phosphorylated tryptic peptides derived from CSF proteins using a simple sample preparation step and titanium dioxide-affinity chromatography followed by MALDI...

  5. Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shigeru Kohtani

    2017-10-01

    Full Text Available Electrons, photogenerated in conduction bands (CB and trapped in electron trap defects (Tids in titanium dioxide (TiO2, play crucial roles in characteristic reductive reactions. This review summarizes the recent progress in the research on electron transfer in photo-excited TiO2. Particularly, the reactivity of electrons accumulated in CB and trapped at Tids on TiO2 is highlighted in the reduction of molecular oxygen and molecular nitrogen, and the hydrogenation and dehalogenation of organic substrates. Finally, the prospects for developing highly active TiO2 photocatalysts are discussed.

  6. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology 3 Rationale – Titanium Cost Build-up Material Cost Ilmenite $0.27/kg Ti sponge Titanium slag $0.75/kg Ti Sponge TiCl4 and TiO2 $3....10/kg Ti Sponge Ti Sponge raw materials costs $5.50/kg Ti Sponge Total Ti Sponge cost $9-$11/kg Ti Sponge Ti ingot $15-17/kg Ti Aluminium $1.7/kg Al Supporting the Manufacturing and Materials Industry in its quest for global competitivenessorting...

  7. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  8. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    Science.gov (United States)

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  9. Point Defects in 3D and 1D Nanomaterials: The Model Case of Titanium Dioxide

    International Nuclear Information System (INIS)

    Knauth, Philippe

    2010-01-01

    Titanium dioxide is one of the most important oxides for applications in energy and environment, such as solar cells, photocatalysis, lithium-ion batteries. In recent years, new forms of titanium dioxide with unusual structure and/or morphology have been developed, including nanocrystals, nanotubes or nanowires. We have studied in detail the point defect chemistry in nanocrystalline TiO 2 powders and ceramics. There can be a change from predominant Frenkel to Schottky disorder, depending on the experimental conditions, e.g. temperature and oxygen partial pressure. We have also studied the local environment of various dopants with similar ion radius, but different ion charge (Zn 2+ , Y 3+ , Sn 4+ , Zr 4+ , Nb 5+ ) in TiO 2 nanopowders and nanoceramics by Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy. Interfacial segregation of acceptors was demonstrated, but donors and isovalent ions do not segregate. An electrostatic 'space charge' segregation model is applied, which explains well the observed phenomena.

  10. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  11. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  12. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    Science.gov (United States)

    2011-02-01

    PROPERTIES OF SURFACE MODIFIED TITANIUM DIOXIDE POWDERS fwn Scivrxc fa SciWcrrs Brendan G. DeLacy RESEARCH AND TECHNOLOGY DIRECTORATE David R. Redding ...NUMBER 5c PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DeLacy, Brendan G. (SAIC) Redding , David R. (ECBC); and Matthews. Joshua 5d. PROJECT NUMBER...X3,300?t>5flm* ** aJI ^-15 SEf Figure 7 - SEM Image #1 of CR-470 •i i .#1. • ^ iW i > hp ^•R^^^Ay *£ $ ^< W^# K HB8 %^ vj\\ X

  13. Toxicity and Fate Comparison between Several Brass and Titanium Dioxide Powders

    Science.gov (United States)

    1993-07-01

    the entire gut without showing any apparent effects . 14. UBJET TEMS1I. NUMBER OF PAGES 27 Daphnia Algae EC50 Aquatic toxicity 11T.PRICE CODE 9...levels of soluble copper and zinc in solution. 3. RESULTS The titanium dioxide ( TiO2 ) materials did not show any apparent toxic effects to daphnia up to...The extended exposure did not show any apparent toxic effects . Long term effects on aquatic org.rnisms exposed to TiO2 are not known. It is apparent

  14. [Influence of titanium dioxide activated under visible light on survival of mold fungi].

    Science.gov (United States)

    Kądziołka, Daria; Rokicka, Paulina; Markowska-Szczupak, Agata; Morawski, Antoni W

    2018-01-01

    In public and residential buildings, fungi are usually found in the dust or growing on building materials medium such. It has been known that a number of their spores may contaminate the indoor environment and deteriorate air quality in accommodation spaces. Previously designed air cleaning systems do not guarantee a complete removal of agents harmful to humans and animals. Therefore, there is a great need to develop a new solution to remove molds from indoor air. In recent years, photocatalysis based on titanium dioxide (TiO2) has been proposed as an effective method for air pollutants removal. The aim of the study was to determine the effect of TiO2 activated under artificial sun light (UV-VIS - ultraviolet - visible spectroscopy) on survival of fungi Penicillium chrysogenum and Aspergillus niger. The commercial P 25 (Aeroxide P 25, Evonik, Germany) and nitrogen modified titanium dioxide (N-TiO2) were used. The microbiological study was performed using Penicillium chrysogenum and Aspergillus niger fungi. The survival of fungi was determined on the basis of changes in their concentration. It was found that N-TiO2 has a stronger antifungal activity against P. chrysogenum and A. niger than P 25. For N-TiO2, the complete elimination of molds was possible after 3 h under artificial solar light activation. The minimal concentration of photocatalyst was 0.01 g×dm-3 (P. chrysogenum) and 0.1 g×dm-3 (A. niger). The nitrogen modification of titanium dioxide produced expected results and N-TiO2 presented good antifungal activity. The findings of the presented investigation can lead to the development of air filter to be used for removal of harmful agents (including molds) from indoor environment. Med Pr 2018;69(1):59-65. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  16. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    Science.gov (United States)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  17. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    Science.gov (United States)

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  18. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  19. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  20. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    Science.gov (United States)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  1. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2016-03-01

    Full Text Available Titanium dioxide (TiO2 has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm and shows a relatively good photocatalytic activity in organic dye (Rhodamine B degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 How to Cite: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016. Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 40-47. (doi:10.9767/bcrec.11.1.414.40-47 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.414.40-47

  2. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  3. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  4. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    NARCIS (Netherlands)

    Dekker, N.H.; Ha, S.; Janissen, R.; Ussembayev, Y.; van Oene, M.M.; Solano Hermosilla, B.P.

    2016-01-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and

  5. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    Science.gov (United States)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  6. Effects of light irradiation on bleaching by a 3.5% hydrogen peroxide solution containing titanium dioxide

    International Nuclear Information System (INIS)

    Suemori, T; Kato, J; Nakazawa, T; Akashi, G; Igarashi, A; Hirai, Y; Kumagai, Y; Kurata, H

    2008-01-01

    A low-concentration hydrogen peroxide solution containing titanium dioxide as a photocatalyst has attracted attention as a safe office bleaching agent. In this study, the influence of different kinds of light on the bleaching effect of this agent was examined. The bleaching agent was applied to hematoporphyrin-stained paper strips that were then irradiated with a 405-nm diode laser (800 mW/cm 2 ), a halogen lamp (720 mW/cm 2 ), or an LED (835 mW/cm 2 ) for 5 minutes. The color was measured spectrophotometrically before treatment and every 30 seconds thereafter, and the effects of bleaching on the strip were assessed using the CIE 1976 L * a * b * color coordinate system. Of the three different irradiation conditions, 405-nm laser irradiation gave the strongest bleaching effect with 3.5% hydrogen peroxide containing titanium dioxide. The laser provides strong irradiance at 405 nm, which corresponds to the absorption range of the bleaching agent, and consequently the largest effect was obtained

  7. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  8. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  9. Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Mirco Bundschuh

    Full Text Available The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna, we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC(50 values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.

  10. Growth and structure of titanium dioxide on the transition metal surfaces Re(10-10) and Ru(0001); Wachstum und Struktur von Titandioxid auf den Uebergangsmetalloberflaechen Re(10-10) und Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, D.

    2007-03-15

    In this work, we studied the growth and structure of titanium dioxide films on two morphologically different transition metal surfaces, namely the trench-like rhenium(10-10) and the hexagonal ruthenium(0001). The following methods were used: X-ray photoelectron and Auger-electron spectroscopy (XPS and AES), low energy electron diffraction (LEED), low energy Helium-ion scattering (LEIS), scanning tunneling microscopy (STM) and X-ray diffraction (XRD). Titanium dioxide films on rhenium(10-10) were synthesized by co-adsorption of titanium vapor in an oxygen atmosphere up to a thickness of 500 Aa and investigated by means of LEED, LEIS, XPS and XRD. In order to calibrate the titanium flux, the growth mode of titanium on the Re(10-10) surface was determined by means of LEIS, XPS and LEED. The growth of titanium dioxide on the hexagonal ruthenium(0001) surface was investigated by means of STM, XPS and AES. Due to the alloying affinity of Ti and Ru, a titanium oxide film pre-grown at low temperature was finally/fully oxidized at elevated temperature and pressure. First experiments concerning the growth of gold on these titanium dioxide films are presented. One important result of the ongoing work is the imaging of gold clusters with 2-5 atoms in the troughs of rutile(110) beside the typically observed clusters with 3 nm diameter by STM. (orig.)

  11. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  12. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films

    International Nuclear Information System (INIS)

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  13. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  14. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    Science.gov (United States)

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  15. Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W. [Chemical; Saslow, Sarah A. [Earth

    2017-11-17

    Technetium-99 (Tc) is a problematic fission product that complicates the long-term disposal of nuclear waste due to its long half-life, high fission yield, and the environmental mobility of pertechnetate, its stable form in aerobic environments. One approach to preventing Tc contamination is through incorporation into durable waste forms based on weathering-resistant minerals such as rutile (titanium dioxide). Here, the incorporation of technetium into titanium dioxide by means of simple, aqueous chemistry is presented. X-ray absorption fine structure spectroscopy and diffuse reflectance spectroscopy indicate that Tc(IV) replaces Ti(IV) within the structure. Rather than being incorporated as isolated Tc(IV) ions, Tc is present as pairs of edge-sharing Tc(IV) octahedra similar to molecular Tc(IV) complexes such as [(H2EDTA)TcIV](u-O)2. Technetium-doped TiO2 was suspended in deionized water under aerobic conditions, and the Tc leached under these conditions was followed for 8 months. The normalized release rate of Tc (LRTc) from the TiO2 particles is low (3×10-6 g m-2 d-1), which illustrates the potential utility of TiO2 as waste form. However, the small size of the as-prepared TiO2 nanoparticles results in estimated retention of Tc for 104 years, which is only a fraction of the half-life of Tc (2×10-5 years).

  16. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  17. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals

    KAUST Repository

    Chen, X.

    2011-01-20

    When used as a photocatalyst, titanium dioxide (TiO 2) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO 2. We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO 2 through hydrogenation. We showed that disorder-engineered TiO 2 nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.

  18. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals

    KAUST Repository

    Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S.

    2011-01-01

    When used as a photocatalyst, titanium dioxide (TiO 2) absorbs only ultraviolet light, and several approaches, including the use of dopants such as nitrogen, have been taken to narrow the band gap of TiO 2. We demonstrated a conceptually different approach to enhancing solar absorption by introducing disorder in the surface layers of nanophase TiO 2 through hydrogenation. We showed that disorder-engineered TiO 2 nanocrystals exhibit substantial solar-driven photocatalytic activities, including the photo-oxidation of organic molecules in water and the production of hydrogen with the use of a sacrificial reagent.

  19. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    Science.gov (United States)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  1. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  2. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  3. The recovery of 99Mo from solutions of irradiated Uranium using a column with nanoparticles of Titanium Dioxide

    International Nuclear Information System (INIS)

    Androne, G. E.; Petre, M.; Lazar, C. G.

    2016-01-01

    Molyibdenum-99 (T½ = 66.02 h) decays by beta emission to 99 Tcm (T½ = 6.02 h). The latter nuclide is used in many nuclear medicine applications. The 99 Mo is produced from irradiated high (HEU) or low (LEU) enriched uranium. In this work a sensitive and selective method for recovering Mo from uranium solution, using a column with titanium dioxide nanoparticles, is developed. The titanium dioxide (TiO 2 ) nanoparticles were synthesized via sol-gel method using titanium tetra-chloride as starting material and urea as a reacting medium. A 40 ml uranium solution containing 450 g/L uranyl nitrate, 1 M HNO 3 , and 4 mg Mo was loaded on a column containing 6 g of TiO 2 sorbent at 75°C. After loading, the column was washed with 1 M HNO 3 and H 2 O. Mo was stripped from the column with 0.1 M NaOH at 25°C. The ICP-MS results indicate that 80-95% of the initial mass of Mo was loaded on the column, and 90-94% of this quantity was recovered in the strip fraction. (authors)

  4. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    Science.gov (United States)

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  5. Biological characterization of coatings based on titanium dioxide doped with metallic elements for antimicrobial applications

    OpenAIRE

    Silva, Isabel Carina Simões da

    2013-01-01

    Dissertação de mestrado em Biofísica e Bionanossistemas The use of semiconductors for processes of self-­‐cleaning, air and water depollution as well as surface disinfection has triggered a great interest in the scientific community. One of the most used semiconductor materials is titanium dioxide (TiO2) due to their large photocatalytic effect, higher oxidati...

  6. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications.

    Science.gov (United States)

    Farias, Emanuel Airton O; Dionisio, Natália A; Quelemes, Patrick V; Leal, Sergio Henrique; Matos, José Milton E; Silva Filho, Edson C; Bechtold, Ivan H; Leite, José Roberto S A; Eiras, Carla

    2014-02-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO2) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO2), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV-VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO2)/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  8. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Science.gov (United States)

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  9. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  10. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  11. Titanium pigmentation. An electron probe microanalysis study

    International Nuclear Information System (INIS)

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-01-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis

  12. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins

    Directory of Open Access Journals (Sweden)

    Koseki H

    2013-02-01

    Full Text Available Hironobu Koseki,1 Tomohiko Asahara,1 Takayuki Shida,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Koumei Baba,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, 2Industrial Technology Center of Nagasaki, Nagasaki, JapanBackground: Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO2 for inhibition of infection was compared with that of stainless steel control pins in an in vivo study.Methods: Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples.Results: Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO2-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO2-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO2-coated pin group was significantly higher (71.4% than in the control pin group (58.2%. The TiO2 was successful in decreasing infection both clinically and histomorphometrically.Conclusion: The photocatalytic bactericidal effect of TiO2 is thought to be useful for inhibiting pin site infection after external fixation.Keywords: titanium dioxide, external fixation, bactericidal activity, Staphylococcus aureus

  13. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water

    International Nuclear Information System (INIS)

    Suryaman, Dhanus; Hasegawa, Kiyoshi

    2010-01-01

    We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L -1 , each: 25 mg L -1 ). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h -1 , whereas by the combined photocatalytic-biological treatment was 10.5 mg h -1 . After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO 2 particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

  14. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water

    Energy Technology Data Exchange (ETDEWEB)

    Suryaman, Dhanus, E-mail: dhanussuryaman@yahoo.com [Agency for the Assessment and Application of Technology, M.H. Thamrin No. 8, Jakarta 10340 (Indonesia); Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Hasegawa, Kiyoshi [Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2010-11-15

    We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L{sup -1}, each: 25 mg L{sup -1}). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h{sup -1}, whereas by the combined photocatalytic-biological treatment was 10.5 mg h{sup -1}. After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO{sub 2} particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

  15. Comparison of the antifungal activity of titanium dioxide based nanosilver packaging and conventional polyethylene packaging in consumed bread

    Directory of Open Access Journals (Sweden)

    H Mohammadi

    2014-12-01

    Full Text Available Using titanium dioxide nanosilver packaging which is antibacterial and resistance to the diffusion of gases such as oxygen is increasing in food industry. Therefore we compared the effect of titanium dioxide based nanosilver packaging and conventional polyethylene packaging - on fungal flora of consuming bread in order to increase the shelf life storage of  consuming bread. One hundred forty four samples of 6 different types of loaf of bread randomly obtained from 12 bakeries in District 2 of Tehran. The samples were packaged with 3%, 5% and 10% nano coatings and also conventional polyethylene coatings as control group. The bacterial examination and monitoring of samples, according to the national standards of Iran was carried out 3 times, on days 1, 3, 7, 14 and 28, of study period.This study showed that the film type and storage period, were main factors which significantly influenced fungal flora of bread. The lowest rate of various fungi growth (%14 was observed in 10% Nano film, while the highest rate of various fungi growth (47% was observed in conventional polyethylene coating (P<0.001. With increasing storage periods,  the number of various fungi increased, however this correlation was not similar in most of breads and fungi types. There were significant difference between them (P = 0.001. According to the results of the present study, due to increasing population growth and in order to improve food security, using packages with nanosilver particles which are based on titanium dioxide, prevails over the polyethylene packages. Therefore using such packages are highly recommended in bakery industry.

  16. The Influence of Various Deposition Techniques on the Photoelectrochemical Properties of the Titanium Dioxide Thin Fil

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Dzik, P.; Veselý, M.; Baudyš, M.; Krýsa, J.; Šolcová, Olga

    2013-01-01

    Roč. 65, č. 3 (2013), s. 452-458 ISSN 0928-0707 R&D Projects: GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GP104/09/P165 Institutional support: RVO:67985858 Keywords : titanium dioxide * photoelectrochemical properties * deposition techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.547, year: 2013

  17. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NARCIS (Netherlands)

    Bartle, S J; Thomson, D U; Gehring, R; van der Merwe, B. D.

    2017-01-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas,

  18. Functionalization of nanoparticle titanium dioxide with different bifunctional organic molecules and trimers of transition compounds for obtaining new materials

    International Nuclear Information System (INIS)

    Rivera Martinez, Maria Cinthya

    2012-01-01

    Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es

  19. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters

    DEFF Research Database (Denmark)

    Panther, Jared G.; Teasdale, Peter R.; Bennett, William W.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved reactive phosphorus (DRP) in fresh and marine waters is reported. The new method, which uses a commercially available titanium dioxide based adsorbent (Metsorb), was evaluated and compared to the well-established fer...

  20. Evaluation of a titanium dioxide-based DGT technique for measuring inorganic uranium species in fresh and marine waters

    DEFF Research Database (Denmark)

    Hutchins, Colin M.; Panther, Jared G.; Teasdale, Peter R.

    2012-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved uranium (U) in freshwater is reported. The new method utilises a previously described binding phase, Metsorb (a titanium dioxide based adsorbent). This binding phase was evaluated and compared to the well-established...

  1. Adsorption of polymethacrylic acid from aqueous solutions on disperse titanium dioxide

    Science.gov (United States)

    Yaremko, Z. M.; Tkachenko, N. G.; Fedushinskaya, L. B.

    2011-10-01

    The state of macromolecules of polymethacrylic acid adsorbed on the surface of disperse titanium dioxide was assessed using a combination of the differential concentration approach to the determination of adsorption and methods for determining the size of disperse adsorbents by dynamic light scattering and sedimentation analysis in the field of centrifugal forces. Three sections were found on the isotherm of adsorption: in the first, isolated islands of adsorbed macromolecules formed; in the second, layers of macromolecules with a different degree of deformation were observed; in the third, determining the adsorption of macromolecules is complicated by other accompanying processes, and assessing the state of macromolecules in the adsorption layer becomes difficult.

  2. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  3. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    International Nuclear Information System (INIS)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues

    2016-01-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO 2 -OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO 2 -OPM from metallic titanium (TiO 2 -Met), and titanium isopropoxide (TiO 2 -Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO 2 -Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO 2 -Iso, resulting in an increase of peroxo groups on the surface, making the TiO 2 -Iso route

  4. Influence of the peroxide group on the surface of titanium dioxide synthesized by the OPM route

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Estela Melare Ribeiro dos; Kubo, Andressa Mayumi; Gorup, Luiz Fernando; Francatto, Patricia; Souza Neto, Francisco Nunes de; Leite, Edson Roberto; Longo, Elson; Camargo, Emerson Rodrigues, E-mail: estelamelare@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: In the context of nanotechnology, there is a growing demand for environmentally sustainable solutions and technological innovations that are linked to reducing energy consumption and minimizing waste generation during the synthesis process. The Oxidant Peroxide Method for titanium dioxide synthesis (TiO{sub 2}-OPM) is based on the oxidation of titanium ions to obtain nanometric powders that are highly reactive particles with controlled morphology. This method is easy and advantageous because it uses reagents of low toxicity, without the necessity to operate in inert atmosphere and at high temperatures. In this work, we obtained nanometric powders of TiO{sub 2}-OPM from metallic titanium (TiO{sub 2}-Met), and titanium isopropoxide (TiO{sub 2}-Iso). Separately, the precursors reacts with hydrogen peroxide in ammoniacal medium in order to compare their reactivity by quantifying the peroxo groups on the surface. Scanning electronic microscopy (SEM) images showed nanoparticles of 10nm of both materials. X-ray diffraction (XRD) patterns showed typical structures of crystalline materials with mixture of anatase and rutile phase of titanium dioxide. Raman spectroscopy also cooperated with the XRD patterns showing vibrational modes of the mixture of phases (anatase and rutile) in both materials. Thermogravimetric analysis (TGA) showed that the two materials lost mass, in which in the first stage (80 - 125 deg C) occurred 24% of loss and in the second stage (235-265 deg C) is between 10% - 13%, and is related to the elimination of peroxo groups at the surface due to thermal treatment. Differential scanning calorimetry (DSC) revealed peaks related to exothermic decomposition of the peroxo groups (200 - 250 deg C) that coincided with peak rates of mass loss in the TGA. And the redox titration showed that the surface of the TiO{sub 2}-Met had peroxo groups in 8.6 % w/w and 10.1 % w/w for TiO{sub 2}-Iso, resulting in an increase of peroxo groups on the surface, making

  5. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    Directory of Open Access Journals (Sweden)

    Smijs TG

    2011-10-01

    Full Text Available Threes G Smijs1–3, Stanislav Pavel4 1Faculty of Science, Open University in The Netherlands, Rotterdam, The Netherlands; 2University of Leiden, Leiden Amsterdam Center for Drug Research, Leiden, The Netherlands; 3Erasmus MC, Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands; 4Charles University, Faculty of Medicine, Department of Dermatology, Pilsen, Czech Republic Abstract: Sunscreens are used to provide protection against adverse effects of ultraviolet (UVB (290–320 nm and UVA (320–400 nm radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2 and zinc oxide (ZnO minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs (<100 nm. This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photocyto- and genotoxicity and have been sporadically observed in viable

  6. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    -column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline...... a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...... solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass...

  7. Dermal Titanium Dioxide Deposition Associated With Intralesional Triamcinolone Injection.

    Science.gov (United States)

    Cohen, Brandon E; Bashey, Sameer; Cole, Christine; Abraham, Jerrold L; Ragsdale, Bruce; Ngo, Binh

    2016-12-01

    Cutaneous discoloration secondary to dermal deposition of titanium dioxide (TiO2) particles is recognized but seldom reported in the literature. In this report, the authors describe the case of a 61-year-old gentleman, with a long history of alopecia areata, who presented with numerous, discrete dark blue macules on the scalp. Scanning electron microscopy with energy dispersive x-ray spectroscopy analysis ultimately identified the macules as deposits of TiO2. The patient had a history of intralesional triamcinolone injections for management of alopecia areata. A sample of generic 0.1% triamcinolone acetonide paste was analyzed and found to contain many TiO2 particles analogous to those seen in the patient's biopsy sample. To the authors' knowledge, this is the first reported case of TiO2 deposition in the dermis likely resulting from topical combined with intralesional triamcinolone injection.

  8. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications;Eletrofiacao de nanofibras de PVDF com nanoparticulas de prata e de prata/dioxido de titanio para aplicacoes antimicrobiais

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de, E-mail: gmolyveira@yahoo.com.b, E-mail: ligialmmc@hotmail.co [Universidade Federal de Sao Carlos (PPGCEM/UFScar), SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Gregorio Filho, Rinaldo; Pessan, Luiz A., E-mail: pessan@ufscar.b, E-mail: gregorio@ufscar.b [Universidade Federal de Sao Carlos (UFScar), SP (Brazil)

    2009-07-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  9. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  10. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  11. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    Science.gov (United States)

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  12. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    Science.gov (United States)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  13. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    Science.gov (United States)

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  14. Integrated titanium dioxide (TiO_2) nanoparticles on interdigitated device electrodes (IDEs) for pH analysis

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO_2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO_2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO_2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO_2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO_2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  15. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya; Yang, Yang; Khan, Jafar I.; Alarousu, Erkki; Guo, Zaibing; Zhang, Xixiang; Zhang, Qiang; Mohammed, Omar F.

    2014-01-01

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  16. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    Graphical abstract: - Highlights: • A novel Ag-loading and TiO 2 -coating technique was used to prepare samples. • The photocatalytic activity of the product was evaluated by removing of Rh B. • The as-synthesized samples showed an excellent photocatalytic activity. - Abstract: A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5–10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO 2 nanocrystals

  17. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  18. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    Science.gov (United States)

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nanostructured titanium dioxide: a control of crystallite size and content of polymorphic phases

    International Nuclear Information System (INIS)

    Boery, Mirella N. de O.; Ono, Eduardo; Manfrim, Tarcio P.; Santos, Juliana S.; Suzuki, Carlos K.

    2010-01-01

    TiO 2 (titanium dioxide) powders and nanoparticles have been largely used in toners and cosmetics. Nowadays, they are mainly focused in photocatalysis, antibacterial coatings, dye-sensitized solar cells, etc. The efficiency is related to photocatalytic properties of TiO 2 nanoparticles, such as crystallite size and phase (anatasio/rutile). In this research, flame aerosol method was used to synthesize TiO 2 nanoparticles by hydrolysis and oxidation of TiCl 4 (titanium tetrachloride). The oxy-hydrogen flame was provided by a five concentric nozzle silica burner. X-ray diffraction was used to identify each TiO 2 nanoparticles phase and scanning electron microscopy was used to observe the size and morphology of nanoparticles. Pure anatase was obtained with H 2 /O 2 ratio ≤ 1.0, and up to 52 wt% of rutile was obtained with H 2 /O 2 ratio > 2.0. Anatase crystal grain size varied from 25 to 38 nm, estimated by Scherrer formula.(author)

  20. Low temperature sol-gel process for optical coatings based on magnesium fluoride and titanium dioxide; Niedertemperatur Sol-Gel Verfahren fuer optische Schichtsysteme auf Basis von Magnesiumfluorid und Titandioxid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Hannes

    2009-09-24

    This work deals with the development of a low temperature sol-gel spincoating process for thin films with thicknesses in the nanometer range based on metal oxides and metal fluorides. Optical films such as anti-reflective (AR) or high reflective coatings are of much interest and consist of alternating dielectric layers of low and high refractive index materials. Regarding the general procedure for the metal fluorides a novel nonaqueous sol-gel synthesis starting from metal alkoxides and alcohol-dissolved HF was used. The coatings were dried and calcined at 100 C. The morphology of these films was characterised with REM, TEM and AFM. EDX and XPS were used to identify the chemical composition and ellipsometry and UV-vis spectroscopy to determine the optical properties of the films. This new process allows the preparation of homogeneous magnesium fluoride and titanium dioxide layers with low roughness (R{sub a} {<=} 1,9 nm) on silicon and quartz substrates. The magnesium fluoride layers are partially amorphous or microcrystalline with crystallite sizes from 2 nm to 10 nm. The titanium dioxide layers are predominantly amorphous. The thicknesses of the magnesium fluoride and titanium dioxide single layers were adjustable between 25 nm and 500 nm depending on the number of coating steps and on the concentration of the used sols. The magnesium fluoride layers had a refractive index of n{sub 500} = 1,36 and the titanium dioxide layers a refraction index of n{sub 500} = 2,05. For the first time, an alternating metal fluoride and oxide multilayer system was produced with a low temperature sol-gel method (consisting of magnesium fluoride and titanium dioxide). Based on the determined optical constants of the magnesium fluoride and titanium dioxide single layers, AR and HR multilayer systems were calculated and fabricated. The transmission spectra of the designs and the corresponding multilayer were in good agreement. Similar results were obtained with the reflection spectra

  1. Literature review on the application of titanium dioxide reactive surfaces on urban infrastructure for depolluting and self-cleaning applications

    CSIR Research Space (South Africa)

    Osburn, L

    2008-03-01

    Full Text Available advantages can also be experienced by the owners of such surfaces due to lower maintenance requirements. It was found that a great deal of research is currently underway in this topic globally and that titanium dioxide reactive surfaces show good potential...

  2. 2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: Preparation, characterization and photocatalytic activity

    Czech Academy of Sciences Publication Activity Database

    Pližingrová, Eva; Klementová, Mariana; Bezdička, Petr; Boháček, Jaroslav; Barbieriková, Z.; Dvoranová, D.; Mazúr, M.; Krýsa, J.; Šubrt, Jan; Brezová, V.

    2017-01-01

    Roč. 281, MAR (2017), s. 165-180 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA14-20744S; GA MŠk(CZ) 7AMB14SK178 Institutional support: RVO:61388980 Keywords : Modified titanium dioxide * Photocatalysis * Plasmonic effect * EPR spectroscopy * Lyophilization * Spin trapping Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.636, year: 2016

  3. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    Science.gov (United States)

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  4. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures

    International Nuclear Information System (INIS)

    Pawar, Sachin A.; Devan, R.S.; Patil, D.S.; Burungale, V.V.; Bhat, T.S.; Mali, S.S.; Shin, S.W.; Ae, J.E.; Hong, C.K.; Ma, Y.R.; Kim, J.H.; Patil, P.S.

    2014-01-01

    Hierarchical titanium dioxide nanostructures have been synthesized by a simple and cost-effective hydrothermal deposition method onto the conducting glass substrates. In order to study the effect of titanium tetrachloride precursor quantity on the growth of TiO 2 ; the thin films of TiO 2 have been synthesized with the variations in the TiCl 4 from 0.4 mL to 1.0 mL at the interval of 0.2 mL. These films are characterized for their optical, structural, compositional, morphological properties using UV-vis spectrophotometer, Photoluminescence, X-ray Diffraction, High resolution transmission electron microscopy, X-ray Photoelectron Spectroscopy and Field Emission Scanning Electron Microscopy techniques. The optical band gap energy is found to increase from 2.74 to 3.06 eV with the increase in TiCl 4 quantities exhibiting a blue shift. XRD patterns show the formation of polycrystalline TiO 2 with the tetragonal crystal structure possessing rutile phase. Rise in the TiCl 4 quantity leads to the decrease in the particle size. The chemical composition and valence states of the constituent elements were analysed by XPS. FESEM images showed the formation of cauliflower-like structure at the highest TiCl 4 precursor quantity. The films were photoelectrochemically active with the maximum current density of 202 μA/cm 2 for the sample prepared at 1.0 mL

  6. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration.

    Science.gov (United States)

    Chen, Zhangjian; Wang, Yun; Zhuo, Lin; Chen, Shi; Zhao, Lin; Chen, Tian; Li, Yang; Zhang, Wenxiao; Gao, Xin; Li, Ping; Wang, Haifang; Jia, Guang

    2015-10-01

    Titanium dioxide nanoparticles (TiO2 NPs) have a broad application prospect in replace with TiO2 used as a food additive, especially used in sweets. Understanding the interaction of TiO2 NPs with sugar is meaningful for health promotion. We used a young animal model to study the toxicological effect of orally administrated TiO2 NPs at doses of 0, 2, 10 and 50 mg/kg per day with or without daily consumption of 1.8 g/kg glucose for 30 days and 90 days. The results showed that oral exposure to TiO2 NPs and TiO2 NPs+glucose both induced liver, kidney, and heart injuries as well as changes in the count of white and red blood cells in a dose, time and gender-dependent manner. The toxicological interactions between orally-administrated TiO2 NPs and glucose were evident, but differed among target organs. These results suggest that it is necessary to limit dietary co-exposure to TiO2 NPs and sugar. Nanotechnology has gained entrance in the food industry, with the presence of nanoparticles now in many food items. Despite this increasing trend, the potential toxic effects of these nanoparticles to human remain unknown. In this article, the authors studied titanium dioxide nanoparticles (TiO2 NPs), which are commonly used as food additive, together with glucose. The findings of possible adverse effects on liver, kidney, and heart might point to a rethink of using glucose and TiO2 NPs combination. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Jell, G.M.R.; Boccaccini, A.R.

    2007-01-01

    Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting.

  8. Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG63 cells

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Hanuš, J.; Drábik, M.; Kylián, O.; Biederman, H.; Lisá, Věra; Bačáková, Lucie

    100A, č. 4 (2012), s. 1016-1032 ISSN 1549-3296 R&D Projects: GA AV ČR(CZ) KAN101120701 Institutional research plan: CEZ:AV0Z50110509 Keywords : titanium dioxide * nanoscale surface roughness * MG63 cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.834, year: 2012

  9. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats

    Science.gov (United States)

    2014-01-01

    Objective The aim of this study was to obtain kinetic data that can be used in human risk assessment of titanium dioxide nanomaterials. Methods Tissue distribution and blood kinetics of various titanium dioxide nanoparticles (NM-100, NM-101, NM-102, NM-103, and NM-104), which differ with respect to primary particle size, crystalline form and hydrophobicity, were investigated in rats up to 90 days post-exposure after oral and intravenous administration of a single or five repeated doses. Results For the oral study, liver, spleen and mesenteric lymph nodes were selected as target tissues for titanium (Ti) analysis. Ti-levels in liver and spleen were above the detection limit only in some rats. Titanium could be detected at low levels in mesenteric lymph nodes. These results indicate that some minor absorption occurs in the gastrointestinal tract, but to a very limited extent. Both after single and repeated intravenous (IV) exposure, titanium rapidly distributed from the systemic circulation to all tissues evaluated (i.e. liver, spleen, kidney, lung, heart, brain, thymus, reproductive organs). Liver was identified as the main target tissue, followed by spleen and lung. Total recovery (expressed as % of nominal dose) for all four tested nanomaterials measured 24 h after single or repeated exposure ranged from 64-95% or 59-108% for male or female animals, respectively. During the 90 days post-exposure period, some decrease in Ti-levels was observed (mainly for NM-100 and NM-102) with a maximum relative decrease of 26%. This was also confirmed by the results of the kinetic analysis which revealed that for each of the investigated tissues the half-lifes were considerable (range 28–650 days, depending on the TiO2-particle and tissue investigated). Minor differences in kinetic profile were observed between the various particles, though these could not be clearly related to differences in primary particle size or hydrophobicity. Some indications were observed for an

  10. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    Science.gov (United States)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  11. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  12. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications

    International Nuclear Information System (INIS)

    Farias, Emanuel Airton O.; Dionisio, Natália A.; Quelemes, Patrick V.; Leal, Sergio Henrique; Matos, José Milton E.; Filho, Edson C. Silva; Bechtold, Ivan H.; Leite, José Roberto S.A.; Eiras, Carla

    2014-01-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO 2 ) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO 2 ), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV–VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO 2 )/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. - Highlights: • Nanocomposite films of PANI and TiO2 prepared by the LbL technique • Ceramic dispersion in PANI improved with CTAB for antimicrobial applications. • Optimized film deposition for synergic interactions of the conjugated materials • Antibacterial activity of the films suggests their use as antimicrobial coatings

  13. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method

    International Nuclear Information System (INIS)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The obtaining of transition metal modified titanium dioxide (TiO 2 ) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  14. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  15. Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    Wang, Wei; Xie, Yibing; Du, Hongxiu; Xia, Chi; Wang, Yong; Tian, Fang

    2014-01-01

    A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO 2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM −1 cm −2 , and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication. (author)

  16. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  17. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  18. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  19. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research.

    Science.gov (United States)

    Cox, Ashley; Venkatachalam, P; Sahi, Shivendra; Sharma, Nilesh

    2016-10-01

    Nanoparticles (NPs) have become widely used in recent years for many manufacturing and medical processes. Recent literature suggests that many metallic nanomaterials including those of silver (Ag) and titanium dioxide (TiO2) cause significant toxic effects in animal cell culture and animal models, however, toxicity studies using plant species are limited. This review examines current progress in the understanding of the effect of silver and titanium dioxide nanoparticles on plant species. There are many facets to this ongoing environmental problem. This review addresses the effects of NPs on oxidative stress-related gene expression, genotoxicity, seed germination, and root elongation. It is largely accepted that NP exposure results in the cellular generation of reactive oxygen species (ROS), leading to both positive and negative effects on plant growth. However, factors such as NP size, shape, surface coating and concentration vary greatly among studies resulting in conflicting reports of the effect at times. In addition, plant species tend to differ in their reaction to NP exposure, with some showing positive effects of NP augmentation while many others showing detrimental effects. Seed germination studies have shown to be less effective in gauging phytotoxicity, while root elongation studies have shown more promise. Given the large increase in nanomaterial applications in consumer products, agriculture and energy sectors, it is critical to understand their role in the environment and their effects on plant life. A closer look at nanomaterial-driven ecotoxicity is needed. Ecosystem-level studies are required to indicate how these nanomaterials transfer at the critical trophic levels affecting human health and biota. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    Science.gov (United States)

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-07

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  1. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  2. Synthesis and application of solar cells of poly (3-decylthiophene/N/titanium dioxide hybrid

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available An organic-inorganic nanocomposite material of poly (3-decylthiophene and titanium dioxide doped with N (P3DT/N/TiO2 were synthesized. Structures were characterized using X-ray diffraction (XRD, infrared spectroscopy (IR, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. Optical and electrochemical properties were determined using UV-visible spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3DT/N/TiO2 was a new p-n semiconductor photoelectric material, and the solar cell prepared with P3DT/N/TiO2 performed well.

  3. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Emanuel Airton O.; Dionisio, Natália A.; Quelemes, Patrick V. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Leal, Sergio Henrique [CCNH, UFABC, Santo André, SP 09210-170 (Brazil); Matos, José Milton E.; Filho, Edson C. Silva [Laboratório Interdisciplinar de Materiais Avançados, LIMAv, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Bechtold, Ivan H. [Departamento de Física — UFSC, Florianópolis, SC 88040-900 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: carla.eiras.ufpi@gmail.com [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAv, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2014-02-01

    Composites prepared from polyaniline (PANI) and the ceramic technology of titanium dioxide (TiO{sub 2}) have been proposed, however, the interaction of these materials with greater control of molecular arrangement becomes attractive in order to achieve properties not previously described or yet the optimization of those already reported. Therefore, in this study, thin hybrid films made of polyaniline (PANI), a conductive polymer, and the technological ceramic, titanium dioxide (TiO{sub 2}), were prepared by the layer-by-layer (LbL) self-assembly technique. The films were characterized by cyclic voltammetry (CV), UV–VIS spectroscopy and atomic force microscopy (AFM). Aiming to improve the dispersion of the ceramic in the polymer matrix, the commercial surfactant, cetyl trimethylammonium bromide (CTAB), was used in the formation of the films. The best condition of deposition was found showing synergic interactions between the conjugated materials. The antibacterial activity of the PANI(TiO{sub 2})/CTAB films was studied and the obtained results suggest their use as antimicrobial coatings. - Highlights: • Nanocomposite films of PANI and TiO2 prepared by the LbL technique • Ceramic dispersion in PANI improved with CTAB for antimicrobial applications. • Optimized film deposition for synergic interactions of the conjugated materials • Antibacterial activity of the films suggests their use as antimicrobial coatings.

  4. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  5. Titanium Dioxide (TiO2) Dye-Sensitized Solar Cells

    Science.gov (United States)

    Alseadi, Anwar Abdulaziz

    With the increasing global energy consumption and diminishing fossil fuels, various renewable and sustainable energies have been harvested in past decades and related devices have been fabricated. Dye-sensitized solar cells (DSSCs) are the most efficient third-generation solar cells to harvest solar energy into electricity directly. Titanium dioxide (TiO2) based DSSCs were invented in 1988 and have attracted more and more attention since then because of low-cost and high efficiency. TiO2 nanoparticles are one kind of popular anode materials of DSSC because of stability, abundance, environment safety, non-toxicity, and excellent photovoltaic properties. In the project, TiO2 nanoparticles with different crystallographic sizes were produced by ball-milling. Physical properties of the produced TiO 2 nanoparticles were characterized by X-ray powder diffraction, UV-visible spectroscopy, and Raman scattering. TiO2-based DSSCs were fabricated and their photovoltaic performances were tested. The effects of TiO2 layer thickness, crystallographic size, and microsphere fillings were investigated. The project enriched our understanding of TiO2-based DSSCs.

  6. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    Science.gov (United States)

    Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.

    2014-05-01

    An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO2) was prepared. SEM and TEM micrographs showed that the spherical TiO2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO2, the rate constant was much higher than for EG and TiO2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO2, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation.

  7. The use of titanium dioxide for selective enrichment of phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    acid (DHB), phthalic acid, lactic acid, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding of non-phosphorylated peptides. The phosphopeptides bound to the TiO2 are subsequently eluted from the chromatographic material using an alkaline buffer. TiO2......Titanium dioxide (TiO2) has very high affinity for phosphopeptides and in recent years it has become one of the most popular methods for phosphopeptide enrichment from complex biological samples. Peptide loading onto TiO2 resin in a highly acidic environment in the presence of 2,5-dihydroxybenzoic...... chromatography is extremely tolerant towards most buffers used in biological experiments, highly robust and as such it has become the method of choice in large-scale phosphoproteomics. Here we describe a batch mode protocol for phosphopeptide enrichment using TiO2 chromatographic material followed by desalting...

  8. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Physicochemical characterization of raw materials and co-products from the titanium dioxide industry

    International Nuclear Information System (INIS)

    Gazquez, M.J.; Bolivar, J.P.; Garcia-Tenorio, R.; Vaca, F.

    2009-01-01

    The present study was conducted to characterize several raw materials and co-products from the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology and physical composition. The main objective was to gain basic information for the future potential application of these co-products in fields such as agriculture, construction, civil engineering, etc. Microscopic studies were performed by applying scanning electron microscopy with X-ray microanalysis (SEM-XRMA) while the mineralogical compositions were analysed by means of the X-ray diffraction (XRD) technique. The concentrations of major elements such as Na, Al, Si, Ca, Ti, Fe, S and K were determined by X-ray fluorescence (XRF), while heavy metals and other trace elements were determined by ICP-MS. The physicochemical characterization of the raw materials used in the titanium dioxide industry, in addition to the characterization of the co-products generated, has enabled the evaluation of the degree of fractionation of different elements and compounds between the different co-products, as well as the control of the possible variations in the physicochemical composition of the raw materials throughout the time and the study of the influence of these variations in the characteristics of the obtained co-products. As a main conclusion of our study, it is possible to indicate that the levels of the pollutant elements associated to the co-products analysed were, in general, within safe limits and, therefore, they could potentially be used in composites as fertilizers or for building materials in road construction, etc. Nevertheless, for the specific application of each of these co-products in agriculture, construction and civil engineering, additional studies need to be performed to evaluate their appropriateness for the proposed application, together with specific studies on their health and environmental impact.

  10. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  11. Processing of spent pickling liquor formed during treatment of titanium products

    Science.gov (United States)

    Bykovsky, N. A.; Rahman, P. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-10-01

    The article presents the research findings on processing of spent acid pickling liquor (SAPL) formed during etching of titanium products. The processing includes neutralizing the SAPL with alkali, filtering, drying and calcining the titanium hydroxide precipitate as well as electrochemical processing of the filtrate in an ion-exchange membrane cell. The proposed SAPL processing procedure allows obtaining titanium dioxide, sodium hydroxide and a mixture of acids. Titanium dioxide can be used in paint-and-varnish industry. The alkali can be used in neutralizing the SAPL. A mixture of acids is suitable for use in etching process of titanium products.

  12. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population

    NARCIS (Netherlands)

    Rompelberg, Cathy; Heringa, Minne B.; Donkersgoed, van Gerda; Drijvers, José; Roos, Agnes; Westenbrink, Susanne; Peters, R.J.B.; Bemmel, van M.E.M.; Brand, Walter; Oomen, Agnes G.

    2016-01-01

    Titanium dioxide (TiO2) is commonly applied to enhance the white colour and brightness of food products. TiO2 is also used as white pigment in other products such as toothpaste. A small fraction of the pigment is known to be present as nanoparticles (NPs). Recent studies with TiO2 NPs indicate that

  13. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    OpenAIRE

    Leung, Solomon

    2008-01-01

    James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2) in various industrial applications (eg, production of paper, plast...

  14. Dióxido de titânio sol-gel: propriedades e comportamento eletrocrômico Sol-gel titanium dioxide: properties and electrochromic behavior

    Directory of Open Access Journals (Sweden)

    Rita Aparecida Zoppi

    2000-12-01

    Full Text Available Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide. Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.

  15. Simple method of preparing nitrogen - doped nanosized TiO2 powders of high photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Dang Thi Thanh Le

    2014-01-01

    Nitrogen-doped nanosized TiO 2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO 2 was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV-vis spectra indicate an increase in absorption of visible light when compared to undoped TiO 2 . The photocatalytic activity of nitrogen-doped TiO 2 powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO 2 powders exhibited much higher photocatalytic activity than undoped TiO 2 . Moreover, the study also showed that, the doping N atoms improve the growth of the TiO 2 crystal and phase transformation. (author)

  16. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Vena N., E-mail: vena.haynes@uconn.edu [University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340 (United States); Ward, J. Evan, E-mail: evan.ward@uconn.edu [University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340 (United States); Russell, Brandon J., E-mail: brandon.russell@uconn.edu [University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340 (United States); Agrios, Alexander G., E-mail: agrios@engr.uconn.edu [University of Connecticut, Department of Civil & Environmental Engineering, 261 Glenbrook Road Unit 3037, Storrs, CT 06269 (United States)

    2017-04-15

    Highlights: • Ecotoxicological approaches are needed to predict effects of photoactive nanomaterials. • Research on effects of photoactive nanomaterials must include defined light fields. • Light fields must be appropriate for depth, latitude, season and water properties. • Physicochemical properties of water can alter light fields and photoreactivity. - Abstract: Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO{sub 2} nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments.

  17. A novel label-free voltammetric immunosensor for the detection of {alpha}-fetoprotein using functional titanium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Wenbin [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: yuanruo@swu.edu.cn; Chai Yaqin; Li Yan; Zhuo Ying [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2008-01-01

    A highly sensitive label-free voltammetric immunosensor was developed based on the functional titanium dioxide nanoparticles (PV-NTiP), which was prepared by capping 1,1'-bis-(2-phosphonoethyl)-4,4'-bipyridinium dibromide (PV) on the surface of the titanium dioxide nanoparticles (NTiP) with covalent attachment. The PV-NTiP has prominent biocompatibility, good electron transfer ability, primarily excellent adsorption, large specific surface area and positively charged environment. As a result, the negatively charged gold nanoparticles (NGP) could be adsorbed on the PV-NTiP modified electrode surface by electrostatic adsorption, and then to immobilize {alpha}-1-fetoprotein antibody (anti-AFP) for the assay of {alpha}-1-fetoprotein (AFP). The fabricated procedures and electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The anti-AFP/NGP/PV-NTiP modified electrode was sensitive to AFP in linear relation between 1.25 and 200 ng/mL with the correlation coefficient of 0.9982, and the detection limit (S/N = 3) is 0.6 ng/mL under the optimal conditions. In addition, the proposed immunosensor exhibits good sensitivity, selectivity, stability and long-term maintenance of bioactivity and it may be used to immobilize other biomoleculars to develop biosensor for the detection of other antigens or biocompounds.

  18. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    International Nuclear Information System (INIS)

    Husain, Mainul; Saber, Anne T.; Guo, Charles; Jacobsen, Nicklas R.; Jensen, Keld A.; Yauk, Carole L.; Williams, Andrew; Vogel, Ulla; Wallin, Hakan; Halappanavar, Sabina

    2013-01-01

    We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO 2 ). Female C57BL/6 mice were exposed to rutile nano-TiO 2 via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO 2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO 2 in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (± 1.3 fold; p 2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities. - Highlights: • Pulmonary effects following exposure to low doses of nano-TiO 2 were examined. • Particle retention in lungs was assessed using nanoscale hyperspectral microscopy. • Particles persisted up to 28 days in lungs in all dose groups. • Inflammation was the pathway affected in the high dose group at all time points. • Ion homeostasis and muscle activity pathways were affected in the low dose group

  19. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  20. Comparison of Dust Release from Epoxy and Paint Nanocomposites and Conventional Products during Sanding and Sawing

    DEFF Research Database (Denmark)

    Gomez, V.; Levin, Marcus; Saber, A. T.

    2014-01-01

    The release of dust generated during sanding or sawing of nanocomposites was compared with conventional products without nanomaterials. Epoxy-based polymers with and without carbon nanotubes, and paints with different amounts of nano-sized titanium dioxide, were machined in a closed aerosol chamber...

  1. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  2. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study.

    Science.gov (United States)

    de Jong, B; Meeder, A M; Koekkoek, K W A C; Schouten, M A; Westers, P; van Zanten, A R H

    2018-07-01

    Among patients admitted to European hospitals or intensive care units (ICUs), 5.7% and 19.5% will encounter healthcare-associated infections (HAIs), respectively, and antimicrobial resistance is emerging. As hospital surfaces are contaminated with potentially pathogenic bacteria, environmental cleanliness is an essential aspect to reduce HAIs. To address the efficacy of a titanium dioxide coating in reducing the microbial colonization of environmental surfaces in an ICU. A prospective, controlled, single-centre pilot study was conducted to examine the effect of a titanium dioxide coating on the microbial colonization of surfaces in an ICU. During the pre- and post-intervention periods, surfaces were cultured with agar contact plates (BBL RODAC plates). Factors that were potentially influencing the bacterial colonization of surfaces were recorded. A repeated measurements analysis within a hierarchic multi-level framework was used to analyse the effect of the intervention, controlling for the explanatory variables. The mean ratio for the total number of colony-forming units (cfus) in a room between the pre- and post-intervention periods was 0.86 (standard deviation 0.57). The optimal model included the following explanatory variables: intervention (P=0.065), week (P=0.002), culture surfaces (P<0.001), ICU room (P=0.039), and interaction between intervention and week (P=0.002) and between week and culture surfaces (P=0.031). The effect of the intervention on the number of cfus from all culture plates in Week 4 between the pre- and post-intervention periods was -0.47 (95% confidence interval -0.24 to - 0.70). This study found that a titanium dioxide coating had no effect on the microbial colonization of surfaces in an ICU. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    Science.gov (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  4. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...... have wide spread technological applications, where a combination of self-cleaning properties has a huge business potential. The results presented in this paper demonstrate superior photocatalytic properties of TiO2 coated aluminium compared to nano-scale TiO2 coating on glass substrate. The thickness...

  5. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  6. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  7. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Directory of Open Access Journals (Sweden)

    Kulkarni M

    2015-02-01

    Full Text Available Mukta Kulkarni,1,* Ajda Flašker,1,* Maruša Lokar,1 Katjuša Mrak-Poljšak,2 Anca Mazare,3 Andrej Artenjak,4 Saša Čučnik,2 Slavko Kralj,5 Aljaž Velikonja,1 Patrik Schmuki,3 Veronika Kralj-Iglič,6 Snezna Sodin-Semrl,2,7 Aleš Iglič11Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 2Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany; 4Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia; 5Department for Materials Synthesis, Institute Jožef Stefan (IJS, Ljubljana, Slovenia; 6Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 7Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia *These authors contributed equally to this workAbstract: Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2 nanotubes (NTs by electrochemical anodization. The zeta potential (ζ-potential of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm. We also showed a dose

  8. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  9. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    Science.gov (United States)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  10. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    Science.gov (United States)

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  11. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  12. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation); Klechkovskaya, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Orekhov, A. S.; Zubavichus, Ya. V. [National Research Centre “Kurchatov Institute” (Russian Federation); Domoroshchina, E. N.; Shegay, A. V. [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation)

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  13. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps

    International Nuclear Information System (INIS)

    Zainal, Zulkarnain; Hui, Lee Kong; Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin; Abdullah, Abdul Halim; Ramli, Irmawati

    2005-01-01

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at ∼28 deg C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis

  14. Ozonation of clofibric acid catalyzed by titanium dioxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  15. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption.

    Science.gov (United States)

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-11-29

    Titanium dioxide (TiO₂) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO₂ NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO₂ NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO₂ (f-TiO₂) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO₂ (g-TiO₂) NPs. The effect of the interactions between the TiO₂ NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO₂ NPs compared to g-TiO₂ NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO₂ NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry.

  16. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  17. Radiation Protection and NORM Residue Management in the Titanium Dioxide and Related Industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The Fundamental Safety Principles (IAEA Safety Standards Series No. SF-1), together with Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (IAEA Safety Standards Series No. GSR Part 3 (Interim)), set out the principles and basic requirements for radiation protection and safety applicable to all activities involving radiation exposure, including exposure to natural sources of radiation. The Safety Guides on Occupational Radiation Protection in the Mining and Processing of Raw Materials (IAEA Safety Standards Series No. RS-G-1.6) and Management of Radioactive Waste from the Mining and Milling of Ores (IAEA Safety Standards Series No. WS-G-1.2) provide guidance on the control of exposure of workers and members of the public to naturally occurring radioactive material (NORM) in industrial activities involving the exploitation of minerals. This guidance applies irrespective of whether the minerals are exploited for their radioactivity content. The titanium dioxide and related industries constitute one of several industry sectors for which the radioactivity content of the minerals and raw materials involved is too small to be of commercial value but is large enough to warrant consideration by the regulatory body concerning the possible need to control exposures of workers and members of the public. This Safety Report has been developed as part of the IAEA's programme to provide for the application of its safety standards in the field of radiation, transport and waste safety. It is a compilation of detailed information on the processes and materials involved in the titanium dioxide and related industries and on the radiological considerations that need to be taken into account by the regulatory body when determining the nature and extent of radiation protection measures to be taken. This is consistent with the graded approach to regulation, in terms of which the application of the requirements of the safety standards is

  18. Mucin secretion induced by titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Eric Y T Chen

    2011-01-01

    Full Text Available Nanoparticle (NP exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2, one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2 NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2 NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2 NPs (<75 nm can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+ signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA. The corresponding changes in cytosolic Ca(2+ concentration were monitored with Rhod-2, a fluorescent Ca(2+ dye. We found that TiO(2 NP-evoked mucin secretion was a function of increasing intracellular Ca(2+ concentration resulting from an extracellular Ca(2+ influx via membrane Ca(2+ channels and cytosolic ER Ca(2+ release. The calcium-induced calcium release (CICR mechanism played a major role in further amplifying the intracellular Ca(2+ signal and in sustaining a cytosolic Ca(2+ increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.

  19. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    Science.gov (United States)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  20. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry

  1. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, W.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom)); Neat, R.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom))

    Performance data on two polymorphs of titanium dioxide (anatase and rutile) operating in a lithium polymer electrolyte cell at 120 C are presented. On the first discharge lithium ions can be electrochemically inserted into both forms to an approximate composition LiTiO[sub 2]. However, only the rutile material cycles with a significant capacity ([proportional to] 0.5 Li/TiO[sub 2]) with an average cell voltage of 1.73 V corresponding to a theoretical energy density of [proportional to] 290 W h kg[sup -1]. Our results are in contrast to earlier work reported on the intercalation of lithium into these phases at room temperature, where only the anatase form was found to intercalate lithium. X-ray diffraction data indicate that the rutile form undergoes a structural change during the first discharge resulting in the formation of a hexagonal form of LiTiO[sub 2].

  2. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter

    2012-01-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  3. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  4. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols

    Directory of Open Access Journals (Sweden)

    Chanbasha Basheer

    2013-01-01

    Full Text Available Titanium dioxide-graphene (TiO2-G composite was used for the photodegradation of alkylphenols in wastewater samples. The TiO2-G composites were prepared via sonochemical and calcination methods. The synthesized composite was characterized by X-ray diffraction (XRD, infrared spectroscopy (IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDX, and fluorescence spectroscopy. The photocatalytic efficiency was evaluated by studying the degradation profiles of alkylphenols using gas chromatography-flame ionization detector (GC-FID. It was found that the synthesized TiO2-G composites exhibit enhanced photocatalytic efficiencies as compared to pristine TiO2. The presence of graphene not only provides a large surface area support for the TiO2 photocatalyst, but also stabilizes charge separation by trapping electrons transferred from TiO2, thereby hindering charge transfer and enhancing its photocatalytic efficiency.

  5. Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Švrček Vladimir

    2009-01-01

    Full Text Available Abstract A silicon nanocrystals (Si-ncs conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene (P3HT polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2 nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.

  6. Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial.

    Science.gov (United States)

    Castro, Margarida; Nogueira, Verónica; Lopes, Isabel; Vieira, Maria N; Rocha-Santos, Teresa; Pereira, Ruth

    2018-05-12

    This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO 2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.

  7. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, Hans; Peters, Ruud J.B.; Bemmel, van Greet; Herrera Rivera, Zahira; Wagner, Stephan; Kammer, von der Frank; Tromp, Peter C.; Hofmann, Thilo; Weigel, Stefan

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass

  8. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems;Obtencao de nanoparticulas de prata/dioxido de titanio pelo metodo Turkevich para aplicacoes antimicrobiais em matrizes polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio, E-mail: gmolyveira@yahoo.com.b, E-mail: acarvalho@ufscar.b [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Carvalho, Antonio Jose Felix de [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil)

    2009-07-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO{sub 2} stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO{sub 2} nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  9. Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes

    International Nuclear Information System (INIS)

    Hamlekhan, Azhang; Shokuhfar, Tolou; Sinha-Ray, Suman; Yarin, Alexander L; Takoudis, Christos; Mathew, Mathew T; Sukotjo, Cortino

    2015-01-01

    Formation of titanium dioxide nanotubes (TNTs) on a titanium surface holds great potential for promoting desirable cellular response. However, prolongation of drug release from these nano-reservoirs remains to be a challenge. In our previous work TNTs were successfully loaded with a drug. In this study the effect of TNTs dimensions on prolongation of drug release is quantified aiming at the introduction of a simple novel technique which overcomes complications of previously introduced methods. Different groups of TNTs with different lengths and diameters are fabricated. Samples are loaded with a model drug and rate of drug release over time is monitored. The relation of the drug release rate to the TNT dimensions (diameter, length, aspect ratio and volume) is established. The results show that an increase in any of these parameters increases the duration of the release process. However, the strongest parameter affecting the drug release is the aspect ratio. In fact, TNTs with higher aspect ratios release drug slower. It is revealed that drug release from TNT is a diffusion-limited process. Assuming that diffusion of drug in (Phosphate-Buffered Saline) PBS follows one-dimensional Fick’s law, the theoretical predictions for drug release profile is compatible with our experimental data for release from a single TNT. (paper)

  10. Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite

    Directory of Open Access Journals (Sweden)

    H. Karyab

    2016-08-01

    Full Text Available Background: Petroleum hydrocarbons are the most important pollutants which threat human health and aquatics. Adsorbents are one of the common equipment in water pollution management; however, their applications have been associated with limitations. Objective: To evaluate the potential of polypropylene/titanium dioxide Nano-composite in adsorption of light petroleum hydrocarbons from water sources. Methods: This experimental study was conducted at school of health, Qazvin University of Medical Sciences in 2014-15. Activation of polypropylene fibers, with 1 cm length and 300 microns diameters, was achieved with wet heating. To synthesize of nano-composite the fibers were coated with nano-titanium dioxide with 20 nm diameter. The sonication was performed at 26 kHz and 100 W of power in 40ºc. The morphology of the fractured surfaces of impact specimens was examined by FESEM. The adsorption rate of petrol and gasoline, as surrogate of TPH, was evaluated in different retention time within polyamide mesh aperture diameter of 250 nm. Average of TPH adsorbing, per unit weight of adsorbent, were analyzed with analysis of variance and Scheffe post hoc tests. Findings: The FESEM micrographs showed that the dispersion of the nano-Tio2 particles was relatively good and only few aggregations exist. The maximum adsorption capacity of petrol and gasoline was obtained in 30 minute. The adsorption rate of gasoline was 6.49±0.10 g/g and oil was 7.01±0.13 g/g. Conclusion: According to the results and in comparison with commercial imported adsorbents, the synthesized Nano-composite had favorable performance. The results show that the polypropylene/Tio2 Nano-composite can be used effectively in light petroleum hydrocarbons removal from polluted water sources.

  11. Titanium dioxide induced inflammation in the small intestine

    Science.gov (United States)

    Nogueira, Carolina Maciel; de Azevedo, Walter Mendes; Dagli, Maria Lucia Zaidan; Toma, Sérgio Hiroshi; Leite, André Zonetti de Arruda; Lordello, Maria Laura; Nishitokukado, Iêda; Ortiz-Agostinho, Carmen Lúcia; Duarte, Maria Irma Seixas; Ferreira, Marcelo Alves; Sipahi, Aytan Miranda

    2012-01-01

    AIM: To investigate the effects of titanium dioxide (TiO2) nanoparticles (NPTiO2) and microparticles (MPTiO2) on the inflammatory response in the small intestine of mice. METHODS: Bl 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight) as NPTiO2 (66 nm), or MPTiO2 (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-α (TNF-α), intracellular interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4+ and CD8+ T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. RESULTS: We found increased levels of T CD4+ cells (cells/mm2) in duodenum: NP 1240 ± 139.4, MP 1070 ± 154.7 vs 458 ± 50.39 (P < 0.01); jejunum: NP 908.4 ± 130.3, MP 813.8 ± 103.8 vs 526.6 ± 61.43 (P < 0.05); and ileum: NP 818.60 ± 123.0, MP 640.1 ± 32.75 vs 466.9 ± 22.4 (P < 0.05). In comparison to the control group, the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12, IL-4, IL-23, TNF-α, IFN-γ and TGF-β. The cytokine production was more pronounced in the ileum (mean ± SE): IL-12: NP 33.98 ± 11.76, MP 74.11 ± 25.65 vs 19.06 ± 3.92 (P < 0.05); IL-4: NP 17.36 ± 9.96, MP 22.94 ± 7.47 vs 2.19 ± 0.65 (P < 0.05); IL-23: NP 157.20 ± 75.80, MP 134.50 ± 38.31 vs 22.34 ± 5.81 (P < 0.05); TNFα: NP 3.71 ± 1.33, MP 5.44 ± 1.67 vs 0.99 ± 019 (P < 0.05); IFNγ: NP 15.85 ± 9

  12. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    International Nuclear Information System (INIS)

    Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.

    2014-01-01

    Graphical abstract: - Highlights: • Preparation of exfoliated graphite (EG) from natural graphite. • Sol–gel anchoring of TiO 2 on exfoliated graphite. • High adsorption and photoactivity was observed for the EG-TiO 2 nanocomposite. • Mechanism of enhancement was proposed. - Abstract: An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO 2 ) was prepared. SEM and TEM micrographs showed that the spherical TiO 2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO 2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO 2 , the rate constant was much higher than for EG and TiO 2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO 2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO 2 , promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation

  13. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  14. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  15. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  16. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  17. Comparison of sunscreens Containing Titanium Dioxide Alone Or In Association With Cocoa, Murumuru Or Cupuaçu Butters

    Directory of Open Access Journals (Sweden)

    Andrea Marronato

    2016-12-01

    Full Text Available Ingredients of natural origin may represent alternatives for formulating sunscreens, without compromising their effectiveness. The literature has shown the antioxidant potential of compounds existing in murumuru (Astrocaryum murmuru, cupuaçu (Theobroma grandiflorum and cocoa (Theobroma cacao butters that recommends further investigation. The objectives of this research were: (1 to develop bioactive photoprotective formulations containing cocoa, murmuru or cupuaçu butters in association with a physical sunscreen (titanium dioxide (TiO2 and (2 determine the possible photoprotective activity of butters and their interactions with the sunscreen. Cocoa, cupuaçu and murumuru butter were individually associated to TiO2 in O / W emulsions. The anti-UVA and UVB efficacy in vitro was estimated by diffuse transmittance analysis in a Labsphere® UV2000S, using quartz plates and Transpore® tape to obtain the SPF (sun protection factor and critical wavelength. Photoprotective formulations containing titanium dioxide and bioactive butters were obtained using Aristoflex® AVC and triglycerides of caprylic capric acid (GTCC. The SPF of the samples containing only TiO2 and formulations containing cocoa, murumuru or cupuassu butters associated with TiO2 ranged from 4 to 5. The critical wavelength values for these formulations ranged from 383.0 to 386.7 nm. The results indicated no increase in the SPF value for formulations containing vegetable butters. The critical wavelength values indicated their potential to absorb part of the UVA radiation.

  18. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  19. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    International Nuclear Information System (INIS)

    Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Hashiba, Masayoshi; Kambara, Tatsunori; Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami; Tomonaga, Taisuke; Myojo, Toshihiko; Yamamoto, Kazuhiro; Kitajima, Shinichi; Horie, Masanori; Kuroda, Etsushi; Morimoto, Yasuo

    2015-01-01

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO 2 ) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO 2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO 2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO 2 may not lead to chronic, irreversible legions in the lung, and that TiO 2 nanoparticles may not have a high potential for lung disorder

  20. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Yukiko, E-mail: y-yoshiura@med.uoeh-u.ac.jp; Izumi, Hiroto [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Oyabu, Takako [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Hashiba, Masayoshi; Kambara, Tatsunori [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Mizuguchi, Yohei; Lee, Byeong Woo; Okada, Takami [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Tomonaga, Taisuke [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan); Myojo, Toshihiko [University of Occupational and Environmental Health, Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences (Japan); Yamamoto, Kazuhiro [National Institute of Advanced Industrial Science and Technology (AIST) (Japan); Kitajima, Shinichi [National Sanatorium Hoshizuka Keiaien (Japan); Horie, Masanori [National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute (HRI) (Japan); Kuroda, Etsushi [Osaka University, Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (Japan); Morimoto, Yasuo [University of Occupational and Environmental Health, Department of Occupational Pneumology, Institute of Industrial Ecological Science (Japan)

    2015-06-15

    In order to investigate the pulmonary toxicity of titanium dioxide (TiO{sub 2}) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO{sub 2} nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO{sub 2} nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO{sub 2} may not lead to chronic, irreversible legions in the lung, and that TiO{sub 2} nanoparticles may not have a high potential for lung disorder.

  1. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Fray, Derek J.

    2003-01-01

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  2. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  3. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    Directory of Open Access Journals (Sweden)

    Ya-Jie Wang

    2014-12-01

    Full Text Available AIM:To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs on embryonic development and retinal neurogenesis. METHODS:The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf. The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS: The1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS, closely resembled their endogenous profile. CONCLUSION:These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity.

  4. Investigation of Titanium Sesquioxide Ti2O3: Synthesis and Physical Properties

    KAUST Repository

    Li, Yangyang

    2016-01-01

    Titanium is one of the earth-abundant elements, and its oxides including titanium dioxide (TiO2) and strontium titanium oxide (SrTiO3) are widely used in technologies of electronics, energy conversion, catalysis, sensing, and so on. Generally

  5. The characteristics of corrosion, radiation degradation and dissolution of titanium alloys

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Choi, B. S.; Lee, D. J.; Chang, M. H.

    2001-12-01

    In order to establish the technical bases of water chemistry design requirement related titanium alloys, we investigated the characteristics of corrosion, activation, radiation degradation, radiation hydrogen embrittlement of titanium alloys and dissolution of titanium dioxide. Titanium alloys generally have high corrosion resistance. Corrosion product release from PT-7M and PT-3V titanium alloy surface for 18 months of operation is negligible, and the corrosion penetration for about 30 years is about 1 μm, while the corrosion rates is not higher than one third of that of austenitic steel. Titanium only converts into Sc-46 with 85 day halflife after neutron irradiation, and its radioactivity is not higher than one thousandth of that produced from nickel. Therefore, under the condition without any neutron irradiation, the radiation damage of titanium alloys would have no problem. Titanium dioxide, that protects the metals from the corrosion, has retrograde solubility in neutral solutions. It does not form any complexes with ligands such as ammonia, but Ti(IV) gets more stable by complexing with water molecules. In conclusion, it is estimated that titanium alloys such as PT-7M would be applicable to steam generator materials

  6. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  7. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  8. Models for the adsorption of uranium on titanium dioxide

    International Nuclear Information System (INIS)

    Jaffrezic-Renault, N.; Poirier-Andrade, H.; Trang, D.H.

    1980-01-01

    A hydrated titanium oxide whose acid-base properties are well defined has been used to study the retention mechanism of uranium as UO 2 2+ (in acidic media) and as UO 2 (CO 3 ) 3 4- (in carbonate media). The influence of various parameters on the distribution coefficient of uranium (pH, [CO 3 2- ]) and of the adsorption of uranium on the electrophoretic mobilities of the titanium oxide have been investigated. It is shown that, in both media, coordinative TiO-UO 2 bonds are formed. These strong bonds explain the high affinity of the titanium oxide for uranium. (orig.)

  9. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Naoki Hashizume

    Full Text Available A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2 is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristics of seven characterized forms of TiO2 and their acute or subacute pulmonary inflammatory toxicity. Examination of the associations between the physicochemical characteristics of the TiO2 and the pulmonary inflammatory responses they induced revealed (1 that differences in the crystallinity or shape of the TiO2 particles were not associated with the acute pulmonary inflammatory response; (2 that particle size was associated with the acute pulmonary inflammatory response; and (3 that TiO2 particles coated with Al(OH3 induced a greater pulmonary inflammatory response than did non-coated particles. We separated the seven TiO2 into two groups: a group containing the six TiO2 with no surface coating and a group containing the one TiO2 with a surface coating. Intratracheal administration to rats of TiO2 from the first group (i.e., non-coated TiO2 induced only acute pulmonary inflammatory responses, and within this group, the acute pulmonary inflammatory response was equivalent when the particle size was the same, regardless of crystallinity or shape. In contrast, intratracheal administration to rats of the TiO2 from the second group (i.e., the coated TiO2 induced a more severe, subacute pulmonary inflammatory response compared with that produced by the non-coated TiO2. Since alteration of the pulmonary inflammatory response by surface treatment may depend on the coating material used, the pulmonary toxicities of coated TiO2 need to be further evaluated. Overall, the present results demonstrate that physicochemical properties may be useful for predicting the

  10. Simultaneous enrichment of cysteine-containing peptides and phosphopeptides using a cysteine-specific phosphonate adaptable tag (CysPAT) in combination with titanium dioxide (TiO2) chromatography

    DEFF Research Database (Denmark)

    Huang, Honggang; Pedersen, Martin Haar; Ibañez-Vea, Maria

    2016-01-01

    to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from...

  11. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Directory of Open Access Journals (Sweden)

    Buford Mary

    2009-12-01

    Full Text Available Abstract Background Titanium dioxide (TiO2 nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere is relatively inert when internalized into a biological model system (in vivo or in vitro. For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension Results TiO2 nanospheres, short ( 15 μm nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

  12. Fotodegradación heterogénea de bisfenol A en agua con dióxido de titanio Heterogeneous photodegradation of bisphenol A in water with titanium dioxide

    Directory of Open Access Journals (Sweden)

    Luisa F. Gómez

    2009-01-01

    Full Text Available Bisphenol A (BPA is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2 was evaluated. High performance liquid chromatography (HPLC was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.

  13. Mediatorless Impedance Studies with Titanium Dioxide Conjugated Gold Nanoparticles for Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Nur Hamidah Abdul Halim

    2017-09-01

    Full Text Available An impedimetric-based biosensor constructed using gold nanoparticles (AuNP entrapped within titanium dioxide (TiO2 particles for hydrogen peroxide (H2O2 detection is the main feature of this research. The matrix of the biosensor employed the surface of TiO2, which was previously modified with an amine terminal group using 3-Aminopropyltriethoxysilane (APTS at a low temperature to create a ready to immobilise surface for the biosensor application. Hemoglobin (Hb, which exhibits peroxidase-like activity, was used as the bioreceptor in the biosensor to detect H2O2 in solution. The analysis was carried out using an alternative impedance method, in which the biosensor exhibited a wide linear range response between 1 × 10−4 M and 1.5 × 10−2 M and a limit of detection (LOD of 1 × 10−5 M without a redox mediator.

  14. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO_2) thin films

    International Nuclear Information System (INIS)

    Nordin, N.; Azizah, N.; Hashim, U.

    2016-01-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO_2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  15. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films

    Science.gov (United States)

    Nordin, N.; Hashim, U.; Azizah, N.

    2016-07-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  16. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  17. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  18. Sonocatalytic injury of cancer cells attached on the surface of a nickel-titanium dioxide alloy plate.

    Science.gov (United States)

    Ninomiya, Kazuaki; Maruyama, Hirotaka; Ogino, Chiaki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    The present study demonstrates ultrasound-induced cell injury using a nickel-titanium dioxide (Ni-TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni-TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm(2) for 30s led to an increased generation of hydroxyl (OH) radicals compared to nickel-titanium (Ni-Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni-TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm(2) for 30s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni-Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni-TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni-TiO2 alloy plates, indicating induction of apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  20. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    International Nuclear Information System (INIS)

    Shinonaga, Togo; Tsukamoto, Masahiro; Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao; Matsushita, Nobuhiro; Xie, Guoqiang; Abe, Nobuyuki

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO 2 ) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO 2 film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO 2 particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO 2 a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  1. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  2. Removal of Congo Red by magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres for water purification.

    Science.gov (United States)

    Li, Leilei; Li, Xiangjun; Duan, Huimin; Wang, Xiaojiao; Luo, Chuannan

    2014-06-14

    Magnetic mesoporous titanium dioxide-graphene oxide (Fe3O4@mTiO2@GO) with a large surface area and a good magnetic responsiveness was synthesized by immobilizing a mesoporous titanium dioxide (mTiO2) shell on the surface of magnetic Fe3O4 nanoparticles prior to binding with graphene oxide (GO). It showed a tunable pore structure and surface properties, and was mechanically strong. The characteristic results of a Fourier transform infrared spectrometer (FTIR), a scanning electron microscope (SEM), a vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) indicated that Fe3O4@mTiO2@GO has been prepared. Fe3O4@mTiO2@GO was used as an adsorbent for the removal of Congo Red (CR) from simulated wastewater with a fast solid-liquid separation in the presence of an external magnetic field. Batch adsorption experiments were performed to evaluate the adsorption conditions and reusability. The results showed that the maximum adsorption capacity was 89.95 mg g(-1), which is much higher than the previously reported values of other absorbent materials. Moreover, the Fe3O4@mTiO2@GO could be repeatedly used via simple treatment without any obvious structure and performance degradation. The adsorption kinetic data were best described by a pseudo-second-order model and the equilibrium adsorptions were well-described by the Freundlich isotherm model. The Fe3O4@mTiO2@GO may be suitable materials for use in CR pollution cleanup if synthesized on a large scale and at a low price in the near future.

  3. Study of a novel cell lysis method with titanium dioxide for Lab-on-a-Chip devices.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2011-06-01

    In this paper, a novel method is proposed and demonstrated to be able to lyse gram-negative (E. coli) bacteria cells for Lab-on-a-Chip applications. The proposed method incorporates using titanium dioxide particles as photocatalysts and a miniaturized UV LED array as an excitation light source to perform cell lysis on microchips. The experimental result demonstrates the feasibility of the proposed prototype device. The working device suggests an inexpensive, easy to be fabricated and effective way for microchip cell lysis. The miniaturized UV LED array and the microchip with a reaction chamber can be easily integrated with other functional components to form a customized whole Lab-on-a-Chip system.

  4. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO 2 ) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO 2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca 2+ decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO 2 . Humic acid could largely low Tl removal efficiency during nMnO 2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO 2 and then removed accompanying with nMnO 2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    Energy Technology Data Exchange (ETDEWEB)

    Ndlovu, Thabile, E-mail: atkuvarega@gmail.com [University of Swaziland, Department of Chemistry, Private Bag 4, Kwaluseni (Swaziland); Kuvarega, Alex T.; Arotiba, Omotayo A. [University of Johannesburg, Department of Applied Chemistry, P.O. Box 17011, Doornfontein 2028, Johannesburg (South Africa); Sampath, Srinivasan [Indian Institute of Science, Department of Inorganic and Physical Chemistry, Bangalore 560012 (India); Krause, Rui W. [Rhodes University, Department of Chemistry, P.O. Box 94, Grahamstown 6140 South Africa (South Africa); Mamba, Bhekie B., E-mail: bmamba@uj.ac.za [University of Johannesburg, Department of Applied Chemistry, P.O. Box 17011, Doornfontein 2028, Johannesburg (South Africa)

    2014-05-01

    Graphical abstract: - Highlights: • Preparation of exfoliated graphite (EG) from natural graphite. • Sol–gel anchoring of TiO{sub 2} on exfoliated graphite. • High adsorption and photoactivity was observed for the EG-TiO{sub 2} nanocomposite. • Mechanism of enhancement was proposed. - Abstract: An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO{sub 2}) was prepared. SEM and TEM micrographs showed that the spherical TiO{sub 2} nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO{sub 2} and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO{sub 2}, the rate constant was much higher than for EG and TiO{sub 2} under visible light irradiation. The enhanced photocatalytic activity of EG-TiO{sub 2} was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO{sub 2}, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation.

  6. Effects of boric acid and borax on titanium dioxide genotoxicity.

    Science.gov (United States)

    Turkez, Hasan

    2008-07-01

    Titanium dioxide (TiO(2)) is a potential carcinogenic/mutagenic agent although it is used in many areas including medical industries and cosmetics. Boron (as boric acid and borax) has also well-described biological effects and therapeutic benefits. In a previous study, sister-chromatid exchanges (SCEs) and micronuclei (MN) rates were assessed in control and TiO(2)-treated (1, 2, 3, 5, 7.5 and 10 microm) human whole blood cultures. The results showed that the rates of SCE (at 2, 3, 5, 7.5 and 10 microm) and MN (at 5, 7.5 and 10 microm) formation in peripheral lymphocytes were increased significantly by TiO(2) compared with the controls. The present study also investigated the genetic effects of boric acid and borax (2.5, 5 and 10 microm) on cultures with and without TiO(2) addition. No significant increase in SCE and MN frequencies were observed at all concentrations of boron compounds. However, TiO(2)-induced SCE and MN could be reduced significantly by the presence of boric acid and borax. In conclusion, this study indicated for the first time that boric acid and borax led to an increased resistance of DNA to damage induced by TiO(2). 2008 John Wiley & Sons, Ltd

  7. Low-Temperature Reverse Microemulsion Synthesis, Characterization, and Photocatalytic Performance of Nanocrystalline Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Zhang Liu

    2012-01-01

    Full Text Available Nanocrystalline titanium dioxide (TiO2 was synthesized in microemulsions by using cetyltrimethylammonium bromide (CTAB as surfactant. In order to investigate the crystal transformation and photoactivity at low temperature, the as-prepared precipitates were aged at 65°C or calcined at various temperatures. Analyses using powder X-ray diffraction (XRD and Fourier transform infrared microscopy (FT-IR showed that precursors without aging or calcination were noncrystal and adsorbed by surfactant. After aging for 6 h, the amorphous TiO2 began to change into anatase. The obtained catalysts, which were synthesized in microemulsions with weight ratios of n-hexanol/CTAB/water as 6 : 3 : 1 and calcined at 500°C, presented the highest photocatalytic degradation rate on methyl orange (MO, while the catalysts, which were aged at 65°C for 90 h, also exhibited an outstanding photocatalytic performance and a little higher than that of the commercial titania photocatalyst Degussa P25.

  8. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Balamurugan, M., E-mail: chem.muruga@gmail.com [Centre for Photonics and Nanotechnology, Sona College of Technology, Salem 636005, Tamilnadu (India); Lippitz, A. [Bundesanstalt für Materialforschung und -prüfung, 6.8 Oberflächenanalytik und Grenzflächenchemie Unter den Eichen 44 – 46, 12203, Berlin (Germany); Fonda, E.; Swaraj, S. [Synchrotron SOLEIL, L’ormes des merisiers, Saint Aubin BP-48, 91192, Gif-Sur-Yvette Cedex (France)

    2016-12-15

    The preparation and characterization of a Titanium dioxide (TiO{sub 2}) by a simple, cost effective, facile and eco-friendly green synthesis method using Peltophorum pterocarpum plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO{sub 2} NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO{sub 2} phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO{sub 2} NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase: rutile phase ratio can be obtained by controlling the experimental conditions.

  9. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    Science.gov (United States)

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.

  10. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    Directory of Open Access Journals (Sweden)

    Janine Moll

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems.

  11. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-01-01

    Full Text Available Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2. The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD.

  12. Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility.

    Science.gov (United States)

    Wang, Yawen; Duo, Fangfang; Peng, Shiqi; Jia, Falong; Fan, Caimei

    2014-09-15

    In this paper, we report a novel polyol process to synthesize highly water-dispersible anatase titanium dioxide (TiO2) nanoparticles (∼5 nm) by the introduction of inorganic oxidizing agent--KIO3. The obtained TiO2 nanoparticles are well dispersible in water at pH≥5.0 and the resulting aqueous dispersion remains stable over months. The superior water-dispersibility of as-formed TiO2 is ascribed to the electrostatic repulsion from carboxylic acid group modified on TiO2 nanoparticles, which is the oxidation product of solvent diethylene glycol (DEG) by KIO3. Based on the characterization results, the formation processes of water-dispersibility TiO2 nanoparticles are proposed. Meanwhile, the synthesized TiO2 nanoparticles are found to be doped by iodine and exhibit excellent photocatalytic activity on degradation of rhodamine-B (RhB) under visible-light irradiation. The further tests demonstrate that the O(2-) is the main active species during photodegradation of RhB. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  14. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  15. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  16. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  17. Determination of Histamine in Silages Using Nanomaghemite Core (γ-Fe2O3-Titanium Dioxide Shell Nanoparticles Off-Line Coupled with Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Natalia Cernei

    2016-09-01

    Full Text Available The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe2O3 functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles’ (PMP surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage.

  18. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  19. Evaluation of the properties of TiO2 films on titanium

    International Nuclear Information System (INIS)

    Panizza, C.

    2009-01-01

    We report the results of laboratory tests concerning the characterization of photo catalytic properties of titanium dioxide films obtained on titanium substrates by using three different techniques for anodizing. Been investigated in scanning electron microscopy, X-ray analysis cyclic voltammetry. [it

  20. Titanium dioxide: inhalation toxicology and epidemiology.

    Science.gov (United States)

    Hext, Paul M; Tomenson, John A; Thompson, Peter

    2005-08-01

    Titanium dioxide (TiO(2)) is manufactured worldwide in large quantities for use in a wide range of applications and is normally considered to be toxicologically inert. Findings of tumours in the lungs of rats exposed chronically to high concentrations of TiO(2), but not in similarly exposed mice or hamsters, suggest that the tumorigenic response may be a rat-specific phenomenon but nonetheless raises concerns for potential human health effects. With the limited toxicological understanding of species differences in response to inhaled TiO(2) and a similarly limited amount of epidemiological information with respect to TiO(2) exposure in the workplace, a consortium of TiO(2) manufacturers in Europe (under the European Chemistry Industry Council; CEFIC) and in North America (under the American Chemistry Council; ACC) initiated a programme of research to investigate inter-species differences as a result of exposure to TiO(2) and to conduct detailed epidemiological surveys of the major manufacturing sites. The toxicology studies exposed rats, mice and hamsters to pigment-grade TiO(2) (PG-TiO(2), 0, 10, 50 and 250 mg m(-3)) or ultrafine TiO(2) (UF-TiO(2), 0, 0.5, 2 and 10 mg m(-3)) for 90 days and the lung burdens and tissue responses were evaluated at the end of the exposure period and for up to 1 year after exposure. Results demonstrated clear species differences. Rats and mice had similar lung burdens and clearance rates while hamsters showed high clearance rates. At high lung particle burdens, rats showed a marked progression of histopathological lesions throughout the post-exposure period while mice and hamsters showed minimal initial lesions with recovery apparent during the post-exposure period. Lung neutrophil responses, a sensitive marker of inflammatory changes, reflected the development or recovery of the histopathological lesions. The use of surface area rather than gravimetric lung burden provided closer correlates of the burden to the biological effect

  1. Determining the efficiency of ZSM-5 zeolite impregnated with nanoparticles of titanium dioxide in the photocatalytic removal of styrene vapors

    Directory of Open Access Journals (Sweden)

    Mojtaba Nakhaei pour

    2017-03-01

    Full Text Available Introduction: Styrene monomer is a volatile organic compound that has many applications particularly in plastic, rubber and paint industries. According to the harmful effects of these compounds on human and environment, reducing and controling of them seem necessary. Therefore, in this study removal of styrene was investigated using photocatalytic process of titanium dioxide nanoparticles stabilized on ZSM-5. Methods: After stabilization of titanium dioxide nanoparticles on ZSM-5 zeolite, BET, SEM and XRD analysis were used to determine the characteristics of nanoparticles. Experiments were conducted at ambient temperature in laboratory scale. Concentration of produced styrene in the experiments was 50 and 300 ppm, and input flow rate was 1 l/min. Results: images and spectra obtained through XRD and SEM-EDAX showed that  nano-catalysts are well- stabilized. The results showed that by increasing of input concentration of styrene from 50 to 300 ppm, photocatalytic removal efficiency are reduced. Also, adsorption capacity of the catalyst bed in concentrations of 50 and 300 ppm was calculated 16.3 and19.4 mg/gr of adsorbent respectively. Conclusion: The results show that the use of hybrid bed can increase the removal efficiency of contaminants. And due to low cost of application of these systems compared to conventional methods, it is recommended that more comprehensive studies to be done regarding the optimization of the parameters affecting the process of photocatalytic removal.

  2. Spacer Thickness-Dependent Electron Transport Performance of Titanium Dioxide Thick Film for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reda E. El-Shater

    2015-01-01

    Full Text Available A titanium dioxide (P25 film was deposited by cast coating as conductive photoelectrode and subsequently immersed in dye solution (N719 to fabricate the photoanode of dye-sensitized solar cells (DSSCs. A plastic spacer was used as a separation and sealant layer between the photoanode and the counter electrode. The effect of the thickness of this spacer on the transfer of electrons in the liquid electrolyte of the DSSCs was studied by means of both IV curves and electrochemical impedance. Using a spacer thickness range of 20 μm to 50 μm, efficiency ranges from 3.73% to 7.22%. The highest efficiency of 7.22% was obtained with an optimal spacer thickness of 40 μm.

  3. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  4. Processing and characterization of titanium dioxide grown on titanium foam for potential use as Li-ion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyelim; Park, Hyeji [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of); Um, Ji Hyun [Integrated Energy Center for Fostering Global Creative Researcher, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Won-Sub [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choe, Heeman, E-mail: heeman@kookmin.ac.kr [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of)

    2017-07-31

    Highlights: • Successful formation of anatase TiO{sub 2} on the surface of Ti foam. • Successful application of TiO{sub 2}/Ti foam anode to lithium ion battery. • TiO{sub 2}/Ti foam anode shows remarkably stable capacity retention. - Abstract: This study investigates the processing and potential application of Ti foams to the anode of lithium-ion batteries (LIBs). Ti foam is successfully synthesized using a water-based freeze-casting process, and anatase titanium dioxide (TiO{sub 2}) is formed on the surface of the Ti foam for application to the anode of LIB. The metallic Ti foam acts as a current collector “platform” with increased surface area and the TiO{sub 2} surface coating acts as an active anode material. Coin-cell test results show that the unique combination of the Ti foam and the TiO{sub 2} coating anode has highly stable cycling properties and can thus be considered promising for use as an advanced anode for LIBs that require high safety and stability. It is anticipated that the use of the unique Ti-foam-based electrode design will not only be limited to LIBs but also will be applied to other energy and environmental areas as a catalyst or filter.

  5. PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2013-12-01

    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  6. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Shinonaga, Togo, E-mail: togo@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Xie, Guoqiang [Institute for Materials Research, Tohoku University, 2-1-1 Karahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Abe, Nobuyuki [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO{sub 2}) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO{sub 2} film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO{sub 2} particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO{sub 2} a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  7. Review of titanium dioxide nanoparticle phototoxicity: Developing a phototoxicity ratio to correct the endpoint values of toxicity tests

    Science.gov (United States)

    2015-01-01

    Abstract Titanium dioxide nanoparticles are photoactive and produce reactive oxygen species under natural sunlight. Reactive oxygen species can be detrimental to many organisms, causing oxidative damage, cell injury, and death. Most studies investigating TiO2 nanoparticle toxicity did not consider photoactivation and performed tests either in dark conditions or under artificial lighting that did not simulate natural irradiation. The present study summarizes the literature and derives a phototoxicity ratio between the results of nano‐titanium dioxide (nano‐TiO2) experiments conducted in the absence of sunlight and those conducted under solar or simulated solar radiation (SSR) for aquatic species. Therefore, the phototoxicity ratio can be used to correct endpoints of the toxicity tests with nano‐TiO2 that were performed in absence of sunlight. Such corrections also may be important for regulators and risk assessors when reviewing previously published data. A significant difference was observed between the phototoxicity ratios of 2 distinct groups: aquatic species belonging to order Cladocera, and all other aquatic species. Order Cladocera appeared very sensitive and prone to nano‐TiO2 phototoxicity. On average nano‐TiO2 was 20 times more toxic to non‐Cladocera and 1867 times more toxic to Cladocera (median values 3.3 and 24.7, respectively) after illumination. Both median value and 75% quartile of the phototoxicity ratio are chosen as the most practical values for the correction of endpoints of nano‐TiO2 toxicity tests that were performed in dark conditions, or in the absence of sunlight. Environ Toxicol Chem 2015;34:1070–1077. © 2015 The Author. Published by SETAC. PMID:25640001

  8. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters

    International Nuclear Information System (INIS)

    Su, Qing; Pan, Bingcai; Pan, Bingjun; Zhang, Qingrui; Zhang, Weiming; Lv, Lu; Wang, Xiaoshu; Wu, Jun; Zhang, Quanxing

    2009-01-01

    In the current study, a new hybrid adsorbent HMO-001 was fabricated by impregnating nanosized hydrous manganese dioxide (HMO) onto a porous polystyrene cation exchanger resin (D-001) for enhanced lead removal from aqueous media. D-001 was selected as a support material mainly because of the potential Donnan membrane effect exerted by the immobilized negatively charged sulfonic acid groups bound to the polymeric matrix, which would result in preconcentration and permeation enhancement of lead ions prior to their effective sequestration by the impregnated HMO. HMO-001 was characterized by scanning electron micrograph (SEM), transmission electron micrograph (TEM), and X-ray diffraction (XRD). Lead adsorption onto HMO-001 was dependent upon solution pH due to the ion-exchange nature, and it can be represented by the Freundlich isotherm model and pseudo-first order kinetic model well. The maximum capacity of HMO-001 toward lead ion was about 395 mg/g. As compared to D-001, HMO-001 exhibited highly selective lead retention from waters in the presence of competing Ca 2+ , Mg 2+ , and Na + at much greater levels than the target toxic metal. Fixed-bed column adsorption of a simulated water indicated that lead retention on HMO-001 resulted in a conspicuous decrease of this toxic metal from 1 mg/L to below 0.01 mg/L (the drinking water standard recommended by WHO). The exhausted adsorbent particles are amenable to efficient regeneration by the binary NaAc-HAc solution for repeated use without any significant capacity loss. All the results validated the feasibility of HMO-001 for highly effective removal of lead from contaminated waters.

  9. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  10. Photocatalytically active titanium dioxide nanopowders: Synthesis, photoactivity and magnetic separation

    International Nuclear Information System (INIS)

    Nikkanen, J-P; Heinonen, S; Saarivirta, E Huttunen; Honkanen, M; Levänen, E

    2013-01-01

    Two approaches were used to obtain nanocrystalline titanium dioxide (TiO 2 ) photocatalyst powders. Firstly, low-temperature synthesis method and secondly liquid flame spraying. The structural properties of the produced powders were determined with X-ray diffraction, transmission electron microscopy and nitrogen adsorption tests. The photocatalytic properties of the powders were studied with methylene blue (MB) discoloration tests. After discolorations tests, TiO 2 was coagulated with magnetite particles using FeCl 3 ·6 H 2 O at a fixed pH value. Magnetic separation of coagulated TiO 2 and magnetite was carried out by a permanent magnet. The obtained results showed that the particle size of the powders synthesized at low-temperature was very small and the specific surface area high. The phase content of the powder was also shown to depend greatly on the acidity of the synthesis solution. Powder synthesized by liquid flame spraying was mixture of anatase and rutile phases with essentially larger particle size and lower specific surface area than those of low-temperature synthesized powders. The MB discoloration test showed that photocatalytic activity depends on the phase structure as well as the specific surface area of the synthesized TiO 2 powder. The magnetic separation of TiO 2 –magnetite coagulate from solution proved to be efficient around pH:8

  11. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  12. Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

    Directory of Open Access Journals (Sweden)

    DAOUD, A. A. D.

    2016-05-01

    Full Text Available The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.

  13. Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; von der Kammer, F.; Hofmann, T.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types...... surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/LTiO(2). The presence of TiO(2) in algal tests......(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity...

  14. Nanomaterials in consumer's goods: the problems of risk assessment

    International Nuclear Information System (INIS)

    Gmoshinski, I V; Khotimchenko, S A

    2015-01-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management. (paper)

  15. Nanomaterials in consumer's goods: the problems of risk assessment

    Science.gov (United States)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  16. A new non-vital tooth bleaching method using titanium dioxide and 3.5% hydrogen peroxide with a 405-nm diode laser or a halogen lamp

    International Nuclear Information System (INIS)

    Suemori, T; Kato, J; Nakazawa, T; Akashi, G; Hirai, Y

    2008-01-01

    To establish a safer and more effective bleaching method for discolored pulpless teeth, we examined bleaching from the pulpal dentin side using a 3.5% hydrogen peroxide solution containing titanium dioxide. The twenty bovine blood-stained discolored enamel-dentin plates of 1.0 mm enamel thickness and 2.0 mm dentin thickness were used. The bleaching agent was applied to the dentin side that was then irradiated with a 405-nm diode laser (800 mW/cm 2 ) or a halogen lamp (720 mW/cm 2 ) for 15 minutes. The bleaching effect was assessed by spectrophotometric measurement of the color of the specimens from the dentin and enamel side for every 5 minutes, and then dentin or enamel surface was examined with a scanning electron microscope. The 3.5% hydrogen peroxide solution containing titanium dioxide proved to have a strong bleaching effect. The color difference after laser irradiation was higher than that after halogen lamp irradiation, however, there was no significant difference between them. No changes in the enamel surface morphology were found and open dentinal tubules with no smear layer were clearly observed at the pulpal dentin surface in both groups

  17. Titanium dioxide (TIO2) thin film and plasma properties in RF magnetron sputtering

    International Nuclear Information System (INIS)

    Ali, Riyaz Ahmad Mohamed; Nayan, Nafarizal

    2013-01-01

    Lately, titanium dioxide (TiO 2 ) films with anatase crystalline property received numerous attentions as unique material properties. There are wide applications of TiO 2 thin film such as for photocatalytic application in solar cell. In the present study, radio frequency (RF) magnetron sputtering technique has been used to produce high dense, homogeneously controllable film layer at low deposition temperature using titanium (Ti) target. The diameter of the Ti target is 3 inch with fixed discharge power of 400W. Magnetron sputtering plasma has been produced in high purity 99.99% Argon (Ar) and 99.99% Oxygen (O 2 ) environment pressure ranging from 5 to 20 mTorr. The TiO2 were growth on silicon and glass substrates. Substrate temperature during deposition was kept constant at 400°C. The distance between target and substrate holder was maintain at 14 cm with rotation of 10 rotation-per-minutes. Our X-ray diffraction result, shows anatase crystalline successfully formed with characterization peaks of plane (101) at 2θ = 25.28°, plane (202) at 2θ = 48.05° and plane (211) at 2θ = 55.06°. In addition, it is our interest to study the plasma properties and optical spectrum of Ti, Ti+ , O- , ArM and Ar+ in the chamber during the deposition process. Result of emission line intensities, electron density and temperature from optical spectroscope and Langmuir probe will be discuss further during the workshop. This works were supported by Graduate Incentive Scheme of Universiti Tun Hussein Onn Malaysia (UTHM) and Fundamental Research Grant Scheme of Ministry of Higher Education, Malaysia. (author)

  18. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  19. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Bin Song

    2016-04-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS, apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.

  20. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins.

    Science.gov (United States)

    Koseki, Hironobu; Asahara, Tomohiko; Shida, Takayuki; Yoda, Itaru; Horiuchi, Hidehiko; Baba, Koumei; Osaki, Makoto

    2013-01-01

    Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO(2)) for inhibition of infection was compared with that of stainless steel control pins in an in vivo study. Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples. Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO(2)-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO(2)-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO(2)-coated pin group was significantly higher (71.4%) than in the control pin group (58.2%). The TiO(2) was successful in decreasing infection both clinically and histomorphometrically. The photocatalytic bactericidal effect of TiO(2) is thought to be useful for inhibiting pin site infection after external fixation.

  1. Titanium dioxide nanoparticles: a review of current toxicological data.

    Science.gov (United States)

    Shi, Hongbo; Magaye, Ruth; Castranova, Vincent; Zhao, Jinshun

    2013-04-15

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.

  2. Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications

    Science.gov (United States)

    Yang, X. H.; Fu, H. T.; Wang, X. C.; Yang, J. L.; Jiang, X. C.; Yu, A. B.

    2014-08-01

    Silver-titanium dioxide (Ag-TiO2) nanostructures have attracted increasing attention because of unique functional properties and potential applications in many areas such as photocatalysis, antibacterial, and self-cleaning coatings. In this study, Ag@TiO2 core-shell nanostructures and Ag-decorated TiO2 particles (TiO2@Ag) (the size of these two nanoparticles is ranging from 200-300 nm) have been synthesized by a developed facile but efficient method. These two types of hybrid nanostructures, characterized by various advanced techniques (TEM, XRD, BET and others), exhibit unique functional properties particularly in antibacterial toward Gram negative Escherichia coli, as a case study. Specifically: (i) the TiO2@Ag nanoparticles are superior in bacterial growth inhibition in standard culture conditions (37 °C incubator) to the Ag@TiO2 core-shell ones, in which silver may dominate the antibacterial performance; (ii) while after UV irradiation treatment, the Ag@TiO2 core-shell nanoparticles exhibit better performance in killing grown bacteria than the TiO2@Ag ones, probably because of the Ag cores facilitating charge separation for TiO2, and thus produce more hydroxyl radicals on the surface of the TiO2 particles; and (iii) without UV irradiation, both TiO2@Ag and Ag@TiO2 nanostructures show poor capabilities in killing mature bacteria. These findings would be useful for designing hybrid metal oxide nanocomposites with desirable functionalities in bioapplications in terms of sterilization, deodorization, and water purification.

  3. Titanium dioxide nanoparticles: a review of current toxicological data

    Science.gov (United States)

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed. PMID:23587290

  4. Effects of titanium dioxide nanoparticles on human keratinocytes.

    Science.gov (United States)

    Wright, Clayton; Iyer, Anand Krishnan V; Wang, Liying; Wu, Nianqiang; Yakisich, Juan S; Rojanasakul, Yon; Azad, Neelam

    2017-01-01

    Titanium dioxide (TiO 2 ) is a ubiquitous whitening compound widely used in topical products such as sunscreens, lotions and facial creams. The damaging health effects of TiO 2 inhalation has been widely studied in rats, mice and humans showing oxidative stress increase, DNA damage, cell death and inflammatory gene upregulation in lung and throat cells; however, the effects on skin cells from long-term topical use of various products remain largely unknown. In this study, we assessed the effect of specific TiO 2 nanoparticles (H 2 TiO 7 ) on a human keratinocyte cell line (HaCaT). We performed a comparative analysis using three TiO 2 particles varying in size (Fine, Ultrafine and H 2 TiO 7 ) and analyzed their effects on HaCaTs. There is a clear dose-dependent increase in superoxide production, caspase 8 and 9 activity, and apoptosis in HaCaTs after treatment with all three forms of TiO 2 ; however, there is no consistent effect on cell viability and proliferation with either of these TiO 2 particles. While there is data suggesting UV exposure can enhance the carcinogenic effects of TiO 2 , we did not observe any significant effect of UV-C exposure combined with TiO 2 treatment on HaCaTs. Furthermore, TiO 2 -treated cells showed minimal effects on VEGF upregulation and Wnt signaling pathway thereby showing no potential effect on angiogenesis and malignant transformation. Overall, we report here an increase in apoptosis, which may be caspase 8/Fas-dependent, and that the H 2 TiO 7 nanoparticles, despite their smaller particle size, had no significant enhanced effect on HaCaT cells as compared to Fine and Ultrafine forms of TiO 2 .

  5. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO{sub 2}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, N.; Azizah, N. [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); School of Microelctronic Engineering, Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia)

    2016-07-06

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO{sub 2}) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  6. Photocatalytic Degradation Effect of μ-Dielectric Barrier Discharge Plasma Treated Titanium Dioxide Nanoparticles on Environmental Contaminant.

    Science.gov (United States)

    Seo, Hyeon Jin; Hwang, Ki-Hwan; Na, Young Hoon; Boo, Jin-Hyo

    2018-09-01

    This study focused on the photocatalytic degradation effect of the μ-dielectric barrier discharge (μ-DBD) plasma treated titanium dioxide (TiO2) nanoparticles on environmental contaminant such as formaldehyde. TiO2 nanoparticles were treated by a μ-DBD plasma source with nitrogen gas. We analyzed the degradation of formaldehyde with the plasma treated TiO2 nanoparticles by UV-visible spectrophotometer (UV-VIS), and demonstrated that the photocatalytic activity of the μ-DBD plasma-treated TiO2 nanoparticles showed significantly high catalytic efficiency rather than without plasma treated TiO2 nanoparticles. Field emission scanning electron microscopes (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle analyzer were used to measure the effects of photocatalytic degradation for the plasma treated TiO2 nanoparticles.

  7. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  8. Sensitivity of bacteria to photoactivated titanium dioxide in comparison with UV irradiation

    International Nuclear Information System (INIS)

    Kersters, Ilse; De Keyser, Tilly; Verstraete, Willy

    1998-01-01

    Titanium dioxide was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed with cultures of Aeromonas hydrophila AWWX1 and Pseudomonas fluorescens R 2 f to evaluate the disinfection capabilities of the reactor. Although a decrease in viable counts was observed with long-wavelength (λ=370 nm) irradiated TiO 2 pellets, direct UV 254 irradiation seems a superior technology for the disinfection of transparent potable water since the viable counts of the test strains declined stronger (2-5 logs) and faster (20x) in UV 254 -treated water than in photoactivated TiO 2 -treated water. Outdoor tests conducted in the summer noonday sun showed that the viable counts of Aeromonas hydrophila AWWX1 decreased strongly (ca 5 log units) in transparent and turbid water samples (750 NTU) exposed to natural sunlight (47,000 lux). The addition of TiO 2 to the solar irradiated waters did not influence the die-off of the strain. These observations indicate that the photocatalytic approach does not offer real prospects as an alternative technology for the disinfection of drinking water. (author)

  9. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  11. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications

    Directory of Open Access Journals (Sweden)

    C. C. Wachesk

    2016-01-01

    Full Text Available The physical and chemical characteristics of diamond-like carbon (DLC films make them suitable for implantable medical and odontological interests. Despite their good interactions with biological environment, incorporated nanoparticles can significantly enhance DLC properties. This manuscript studies the potential of titanium dioxide (TiO2 incorporated-DLC films in dental applications. In this scene, both osteoblasts attachment and spreading on the coatings and their corrosion characteristics in artificial saliva were investigated. The films were grown on 304 stainless steel substrates using plasma enhanced chemical vapor deposition. Raman scattering spectroscopy characterized the film structure. As the concentration of TiO2 increased, the films increased the osteoblast viability (MTT assay, becoming more thermodynamically favorable to cell spreading (WAd values became more negative. The increasing number of osteoblast nuclei indicates a higher adhesion between the cells and the films. The potentiodynamic polarization test in artificial saliva shows an increase in corrosion protection when TiO2 are present. These results show the potential use of TiO2-DLC films in implantable surfaces.

  12. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  13. A rapid tool for determination of titanium dioxide content in white chickpea samples.

    Science.gov (United States)

    Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail

    2018-02-01

    Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In situ titanium dioxide nanoparticles quantitative microscopy in cells and in C. elegans using nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Le Trequesser, Quentin [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Saez, Gladys; Devès, Guillaume; Michelet, Claire; Barberet, Philippe [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France); Delville, Marie-Hélène [CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Seznec, Hervé, E-mail: herve.seznec@cenbg.in2p3.fr [Université de Bordeaux, CENBG, Chemin du solarium, 33175 Gradignan (France); CNRS, UMR 5797, CENBG, Chemin du solarium, 33175 Gradignan (France)

    2014-12-15

    Detecting and tracking nanomaterials in biological systems is challenging and essential to understand the possible interactions with the living. In this context, in situ analyses were conducted on human skin cells and a multicellular organism (Caenorhabditiselegans) exposed to titanium dioxide nanoparticles (TiO{sub 2} NPs) using nuclear microprobe. Coupled to conventional methods, nuclear microprobe was found to be suitable for accurate description of chemical structure of biological systems and also for detection of native TiO{sub 2} NPs. The method presented herein opens the field to NPs exposure effects analyses and more generally to toxicological analyses assisted by nuclear microprobe. This method will show applications in key research areas where in situ imaging of chemical elements is essential.

  15. Cost reductions on a titanium dioxide plant identified by a process integration study at Tioxide UK Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    The purpose of a process integration study is to determine the minimum practical amount of energy required to operate a process and to identify the most appropriate investment strategy which will realise the maximum energy cost savings consistent with a particular company's financial and operating criteria. The process integration method involves the rigorous application of thermodynamics and cost accounting, tempered by practical plant engineering and operability considerations. Tioxide UK Ltd is part of Tioxide Group plc and operates two UK sites for the production of titanium dioxide pigment. The site in question, Greatham works near Hartlepool, produces pigment via the chloride route. The energy costs at Greatham works can amount to pound5 - 6 million/year depending on production levels. (author).

  16. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  17. Obtainment of TiO2 powders solar cells photo electrodes dye sensitized

    International Nuclear Information System (INIS)

    Forbeck, Guilherme; Folgueras, Marilena V.; Chinelatto, Adilson L.

    2012-01-01

    Titanium dioxide in its polymorphic anatase phase, presents interesting properties for solar cells photo electrodes dye sensitized such as the forbidden energy band, high refractive index and high constant dielectric. In this study, powders of nanometric titanium dioxide were produced with predominantly the anatase phase and high surface area. We used the sol-gel method, and titanium tetraisopropoxide as a precursor, which was hydrolyzed in nitric acid solution. The obtained powder was heated to 450 ° C, varying the time for each lot (0, 20 or 120 minutes). The powders were characterized by X-ray diffraction, atomic force microscopy and surface area analysis. For all lots nanosized crystallites predominated. It was observed that in the batch with 120min heating an increase rutile content. The TiO 2 with 20min heating showed high surface area, greater than that of TiO 2 as taken reference

  18. Obtainment of TiO{sub 2} powders solar cells photo electrodes dye sensitized; Obtencao de pos de TiO{sub 2} para fotoeletrodos de celulas solares sensibilizados por corante

    Energy Technology Data Exchange (ETDEWEB)

    Forbeck, Guilherme; Folgueras, Marilena V., E-mail: guilhermeforbeck@hotmail.com [Universidade do Estado de Santa Catarina (PGCE/UDESC), SC (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Chinelatto, Adilson L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Programa de Mestrado em Engenharia e Ciencia dos Materiais

    2012-07-01

    Titanium dioxide in its polymorphic anatase phase, presents interesting properties for solar cells photo electrodes dye sensitized such as the forbidden energy band, high refractive index and high constant dielectric. In this study, powders of nanometric titanium dioxide were produced with predominantly the anatase phase and high surface area. We used the sol-gel method, and titanium tetraisopropoxide as a precursor, which was hydrolyzed in nitric acid solution. The obtained powder was heated to 450 ° C, varying the time for each lot (0, 20 or 120 minutes). The powders were characterized by X-ray diffraction, atomic force microscopy and surface area analysis. For all lots nanosized crystallites predominated. It was observed that in the batch with 120min heating an increase rutile content. The TiO{sub 2} with 20min heating showed high surface area, greater than that of TiO{sub 2} as taken reference.

  19. Fixation of carbon dioxide into dimethyl carbonate over ...

    Science.gov (United States)

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydrating agent or requirement for azeotropic distillation. Prepared for submission to Nature Scientific reports.

  20. Instrument comparison for Aerosolized Titanium Dioxide

    Science.gov (United States)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration

  1. Titanium dioxide-cellulose hybrid nanocomposite and its glucose biosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Maniruzzaman, Mohammad; Jang, Sang-Dong [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of); Kim, Jaehwan, E-mail: jaehwan@inha.ac.kr [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer An organic-inorganic hybrid nanocomposite was fabricated by blending TiO{sub 2} nanoparticles and cellulose solution. Black-Right-Pointing-Pointer The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO{sub 2}. Black-Right-Pointing-Pointer Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. Black-Right-Pointing-Pointer Linear response of the glucose biosensor was obtained in the range of 1-10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO{sub 2})-cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO{sub 2} nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO{sub 2}-cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO{sub 2}-cellulose hybrid nanocomposite via covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1-10 mM. This study demonstrates that TiO{sub 2}-cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  2. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Larue, C; Carriere, M [Laboratoire de Structure et Dynamique par Resonance Magnetique UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Khodja, H [Laboratoire d' Etude des Elements Legers, UMR 9956 CEA-CNRS-IRAMIS, Gif-sur-Yvette (France); Herlin-Boime, N [Laboratoire Francis Perrin URA 2453 CEA-CNRS-IRAMIS, 91191 Gif-sur-Yvette (France); Brisset, F [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR8182 CNRS-University Paris sud, Orsay (France); Flank, A M [LUCIA beamline, SOLEIL synchrotron, Saint-Aubin (France); Fayard, B [Laboratoire de Physique du solide, Orsay, France and ID21 beamline, ESRF, Grenoble (France); Chaillou, S, E-mail: marie.carriere@cea.fr [Unite de Nutrition Azotee des Plantes, INRA, Versailles (France)

    2011-07-06

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO{sub 2}-NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO{sub 2}-NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-{mu}-XRF) imaging and micro-particle induced X-ray emission ({mu}-PIXE) imaging. Moreover, the impact of TiO{sub 2}-NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO{sub 2}-NPs. These results show that TiO{sub 2}-NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  3. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants

    International Nuclear Information System (INIS)

    Larue, C; Carriere, M; Khodja, H; Herlin-Boime, N; Brisset, F; Flank, A M; Fayard, B; Chaillou, S

    2011-01-01

    Nanoparticles (NP) are introduced in a growing number of commercial products and their production may lead to their release in the environment. Plants may be a potential entry point for NP in the food chain. Up to now, results describing NP phytotoxical effects and plant accumulation are scarce and contradictory. To increase knowledge on titanium dioxide NP (TiO 2 -NPs) accumulation and impact on plants, we designed a study on three plant species, namely wheat (Triticum aestivum), oilseed rape (Brassica napus) and Arabidopsis thaliana. These plants were exposed in hydroponics to a panel of well-characterized TiO 2 -NPs, with diameters ranging from 12 to 140 nm, either anatase or rutile. Their accumulation in plant tissues is currently being assessed by complementary imaging techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-X-ray fluorescence (SR-μ-XRF) imaging and micro-particle induced X-ray emission (μ-PIXE) imaging. Moreover, the impact of TiO 2 -NP exposure on germination rate, root elongation, dry biomass and evapotranspiration is evaluated. Preliminary results are presented here, with data collected on wheat plants exposed to 12 nm and 25 nm anatase TiO 2 -NPs. These results show that TiO 2 -NPs are taken up by plants, and do not significantly alter their germination and root elongation. These results underline the necessity of deeper evaluation of nanoparticle ecotoxicity, and particularly on their interaction with plants.

  4. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  5. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  6. [Nanomaterials in cosmetics--present situation and future].

    Science.gov (United States)

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  7. The Potential Liver, Brain, and Embryo Toxicity of Titanium Dioxide Nanoparticles on Mice

    Science.gov (United States)

    Jia, Xiaochuan; Wang, Shuo; Zhou, Lei; Sun, Li

    2017-08-01

    Nanoscale titanium dioxide (nano-TiO2) has been widely used in industry and medicine. However, the safety of nano-TiO2 exposure remains unclear. In this study, we evaluated the liver, brain, and embryo toxicity and the underlying mechanism of nano-TiO2 using mice models. The results showed that titanium was distributed to and accumulated in the heart, brain, spleen, lung, and kidney of mice after intraperitoneal (i.p.) nano-TiO2 exposure, in a dose-dependent manner. The organ/body weight ratios of the heart, spleen, and kidney were significantly increased, and those of the brain and lung were decreased. High doses of nano-TiO2 significantly damaged the functions of liver and kidney and glucose and lipid metabolism, as showed in the blood biochemistry tests. Nano-TiO2 caused damages in mitochondria and apoptosis of hepatocytes, generation of reactive oxygen species, and expression disorders of protective genes in the liver of mice. We found ruptured and cracked nerve cells and inflammatory cell infiltration in the brain. We also found that the activities of constitutive nitric oxide synthases (cNOS), inducible NOS (iNOS), and acetylcholinesterase, and the levels of nitrous oxide and glutamic acid were changed in the brain after nano-TiO2 exposure. Ex vivo mouse embryo models exhibited developmental and genetic toxicity after high doses of nano-TiO2. The size of nano-TiO2 particles may affect toxicity, larger particles producing higher toxicity. In summary, nano-TiO2 exhibited toxicity in multiple organs in mice after exposure through i.p. injection and gavage. Our study may provide data for the assessment of the risk of nano-TiO2 exposure on human health.

  8. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.

    Science.gov (United States)

    Peters, Ruud J B; van Bemmel, Greet; Herrera-Rivera, Zahira; Helsper, Hans P F G; Marvin, Hans J P; Weigel, Stefan; Tromp, Peter C; Oomen, Agnes G; Rietveld, Anton G; Bouwmeester, Hans

    2014-07-09

    Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.

  9. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  10. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome.

    Science.gov (United States)

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-07-01

    Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO 2 ) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO 2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO 2 nanoparticles. The proinflammatory effects of TiO 2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO 2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Oral administration of TiO 2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO 2 -administered mice. In vitro, TiO 2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO 2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO 2 nanoparticles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Chemical and electrochemical synthesis of nano-sized TiO2 anatase for large-area photon conversion

    International Nuclear Information System (INIS)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A.

    2006-01-01

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO 2 particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO 2 (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO 2 with anatase-phase as well. (authors)

  12. Enhanced Performance of Nanoporous Titanium Dioxide Solar Cells Using Cadmium Sulfide and Poly(3-hexylthiophene Co-Sensitizers

    Directory of Open Access Journals (Sweden)

    Murugathas Thanihaichelvan

    2017-09-01

    Full Text Available This work reports the effect of co-sensitization of nanoporous titanium dioxide using Cadmium Sulfide (CdS and poly(3-hexylthiophene (P3HT on the performance of hybrid solar cells. CdS nanolayer with different thicknesses was grown on Titanium Dioxide (TiO2 nanoparticles by chemical bath deposition technique with varying deposition times. Both atomic force microscopy (AFM and UV–Vis–NIR spectroscopy measurements of TiO2 electrode sensitized with and without CdS layer confirm that the existence of CdS layer on TiO2 nanoparticles. AFM images of CdS-coated TiO2 nanoparticles show that the surface roughness of the TiO2 nanoparticle samples decreases with increasing CdS deposition times. Current density–voltage and external quantum efficiency (EQE measurements were carried out for corresponding solar cells. Both short circuit current density (JSC and fill factor were optimized at the CdS deposition time of 12 min. On the other hand, a steady and continuous increment in the open circuit voltage (VOC was observed with increasing CdS deposition time and increased up to 0.81 V when the deposition time was 24 min. This may be attributed to the increased gradual separation of P3HT and TiO2 phases and their isolation at the interfaces. The higher VOC of 0.81 V was due to the higher built-in voltage at the CdS–P3HT interface when compared to that at the TiO2–P3HT interface. Optimized nanoporous TiO2 solar cells with CdS and P3HT co-sensitizers showed external quantum efficiency (EQE of over 40% and 80% at the wavelengths corresponding to strong absorption of the polymer and CdS, respectively. The cells showed an overall average efficiency of over 2.4% under the illumination of 70 mW/cm2 at AM 1.5 condition.

  13. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    Science.gov (United States)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P 400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  14. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    International Nuclear Information System (INIS)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-01

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO_2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L_9(3)"4, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO_2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg"−"1 were found to be a 1:10 soil: water ratio, 40 mW cm"−"2 light intensity, 5% TiO_2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO_2 in soil slurry. This study suggests that TiO_2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO_2 (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO_2 (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by TiO_2.

  15. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate

    International Nuclear Information System (INIS)

    Zhang, Wenli; Kong, Haishen; Lin, Haibo; Lu, Haiyan; Huang, Weimin; Yin, Jian; Lin, Zheqi; Bao, Jinpeng

    2015-01-01

    In this study, PbO 2 electrode was prepared on porous Ti/SnO 2 –Sb 2 O 5 substrate (denoted as 3D-Ti/PbO 2 electrode), and its electrochemical properties were investigated in detail. The electrodeposition mechanism of 3D-Ti/PbO 2 electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM) result showed that the 3D-Ti/PbO 2 electrode possessed porous structure when it was electrodeposited for time less than 30 min. The 3D-Ti/PbO 2 electrode prepared for 10 min had more active sites than the lead dioxide electrode electrodeposited on planar titanium substrate (denoted as 2D-Ti/PbO 2 electrode) and its electrochemical porosity is about 54%. The embedded structure between porous Ti/SnO 2 –Sb 2 O 5 substrate and PbO 2 coating increased the stability of 3D-Ti/PbO 2 electrode. The service life of 3D-Ti/PbO 2 electrode was about 350 h which was much longer than 2D-Ti/PbO 2 electrode. What's more, 3D-Ti/PbO 2 electrode had better electrocatalytic activity towards phenol degradation than 2D-Ti/PbO 2 electrode. - Highlights: • 3D-Ti/PbO 2 electrode was prepared on a porous titanium substrate. • The electrochemical active surface area was investigated. • The activity of 3D-Ti/PbO 2 electrode towards phenol oxidation was investigated. • 3D-Ti/PbO 2 electrode shows superior electrocatalytic activity.

  16. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  17. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    Science.gov (United States)

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials

  18. Role of Carnosine and Melatonin in Ameliorating Cardiotoxicity of Titanium Dioxide Nanoparticles in the Rats

    Directory of Open Access Journals (Sweden)

    Nouf Al-Rasheed

    2015-08-01

    Full Text Available The aim of this work was to study the possible cardiotoxicity of two different doses of 50 nm nano titanium dioxide (n-TiO2 and the possible modulating effects of the use of two natural antioxidants carnosine and melatonin. The results showed that TiO2- NPs produced deleterious effects on rat cardiac tissue as confirmed by the increased levels of serum myoglobin, troponin-T and CK-MB. Increased levels of serum Inflammatory markers represented by the tumor necrosis factor alpha (TNF-α and Interleukin-6 (IL-6 was also noticed. Caspase3 and IGg were elevated compared to the control group in a dose dependant manner. treatment of the rats with Carnosine or melatonin. along with TiO2- NPs administration significantly improved most of the elevated biochemical markers. It was concluded that the use of Carnosine or melatonin could play a beneficial role against deleterious effects of TiO2- NPs

  19. Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Science.gov (United States)

    Prasad, Raju Y.; Chastain, Paul D.; Nikolaishvili-Feinberg, Nana; Smeester, Lisa M.; Kaufmann, William K.; Fry, Rebecca C.

    2013-01-01

    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway. PMID:22770119

  20. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  1. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  2. Spectro-ellipsometric studies of sputtered amorphous Titanium dioxide thin films: simultaneous determination of refractive index, extinction coefficient, and void distribution

    CERN Document Server

    Lee, S I; Oh, S G

    1999-01-01

    Amorphous titanium dioxide thin films were deposited onto silicon substrates by using RF magnetron sputtering, and the index of refraction, the extinction coefficient, and the void distribution of these films were simultaneously determined from the analyses of there ellipsometric spectra. In particular, our novel strategy, which combines the merits of multi-sample fitting, the dual dispersion function, and grid search, was proven successful in determining optical constants over a wide energy range, including the energy region where the extinction coefficient was large. Moreover, we found that the void distribution was dependent on the deposition conditions, such as the sputtering power, the substrate temperature, and the substrate surface.

  3. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    Science.gov (United States)

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Ammendolia

    Full Text Available Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.

  5. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods

    Directory of Open Access Journals (Sweden)

    Aleksandra Wypych

    2014-01-01

    Full Text Available We made comparison of titanium dioxide powders obtained from three syntheses including sol-gel and precipitation methods as well as using layered (tetramethylammonium titanate as a source of TiO2. The obtained precursors were subjected to step annealing at elevated temperatures to transform into rutile form. The transformation was determined by Raman measurements in each case. The resulting products were characterised using Raman spectroscopy and dynamic light scattering. The main goal of the studies performed was to compare the temperature of the transformation in three titania precursors obtained by different methods of soft chemistry routes and to evaluate dielectric properties of rutile products by means of broadband dielectric spectroscopy. Different factors affecting the electrical properties of calcinated products were discussed. It was found that sol-gel synthesis provided rutile form after annealing at 850°C with the smallest particles size about 20 nm, the highest value of dielectric permittivity equal to 63.7, and loss tangent equal to 0.051 at MHz frequencies. The other powders transformed to rutile at higher temperature, that is, 900°C, exhibit lower value of dielectric permittivity and had a higher value of particles size. The correlation between the anatase-rutile transformation temperature and the size of annealed particles was proposed.

  6. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  7. Carbon Dioxide Induced Alkene Extrusion from Bis(pentamethylcyclopentadienyl)titanium(III) Alkyls

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1987-01-01

    Reaction of titanium(III) alkyls, (η5-C5Me5)2TiR (R = Et or Prn), in toluene solution with CO2 proceeds at room temperature with formation of the titanium formate (η5-C5Me5)2TiO2CH, and the corresponding alkene (ethene or propene).

  8. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    Science.gov (United States)

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  10. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  11. Chemical and electrochemical synthesis of nano-sized TiO{sub 2} anatase for large-area photon conversion

    Energy Technology Data Exchange (ETDEWEB)

    Babasaheb, Raghunath Sankapal; Shrikrishna, Dattatraya Sartale; Lux-Steiner, M.Ch.; Ennaoui, A. [Hahn-Meitner-Institut, Div. of Solar Energy Research, Berlin (Germany)

    2006-05-15

    We report on the synthesis of nanocrystalline titanium dioxide thin films and powders by chemical and electrochemical deposition methods. Both methods are simple, inexpensive and suitable for large-scale production. Air-annealing of the films and powders at T = 500 C leads to densely packed nanometer sized anatase TiO{sub 2} particles. The obtained layers are characterized by different methods such as: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Titanium dioxide TiO{sub 2} (anatase) phase with (101) preferred orientation has been obtained for the films deposited on glass; indium doped tin oxide (ITO) and quartz substrates. The powder obtained as the byproduct consists of TiO{sub 2} with anatase-phase as well. (authors)

  12. Water leaching of titanium from ore flotation residue.

    Science.gov (United States)

    Jaworska, Malgorzata M; Guibal, Eric

    2003-01-01

    Copper ore tailings were tested for the stability of titanium submitted to water leaching in three different reactor systems (agitated vessel, bioreactor and percolated fixed-bed column). For each of these systems, titanium extraction did not exceed 1% of the available metal. Biomass removed from ore residue adsorbed a small part of the titanium with sorption capacities below 20-30 mg g(-1), but most of this biomass was sequestered in the ore residue. Oxygen and carbon dioxide concentrations were monitored and changes in concentration correlated with bacteria development at the initial stage of the process and to fungal development in the latter stages.

  13. Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide.

    Science.gov (United States)

    Calza, Paola; Zacchigna, Dario; Laurenti, Enzo

    2016-12-01

    In this paper, the removal of three common dyes (orange I, orange II, and methylorange) and of the anticonvulsant drug carbamazepine from aqueous solutions by means of enzymatic and photocatalytic treatment was studied. Soybean peroxidase (SBP) was used as biocatalyst, both free in solution and immobilized on silica monoliths, and titanium dioxide as photocatalyst. The combination of the two catalysts led to a faster (about two to four times) removal of all the orange dyes compared to the single systems. All the dyes were completely removed within 2 h, also in the presence of immobilized SBP. As for carbamazepine, photocatalytic treatment prevails on the enzymatic degradation, but the synergistic effect of two catalysts led to a more efficient degradation; carbamazepine's complete disappearance was achieved within 60 min with combined system, while up to 2 h is required with TiO 2 only.

  14. Titanium dioxide use (TiO2) in cement matrix as a photocatalyst of nitrogen oxides (NOx)

    International Nuclear Information System (INIS)

    Casagrande, C.A.; Hotza, D.; Repette, W.L.; Jochem, L.F.

    2012-01-01

    The use of titanium dioxide (TiO 2 ) in the photodegradation of nitrogen oxides (NO x ) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO 2 in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NO x tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NO x gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NO x degradation, presenting itself as a promising technique to control environmental pollution

  15. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Zhou, Jian; Jiang, Jin; Wang, Yaan

    2017-12-01

    Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L -1 ) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO 2 ) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO 2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO 2 added to a water matrix and onto nMnO 2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca 2+ cations inhibit Tl removal to a certain extent because the Ca 2+ ions will occupy the Tl adsorption site on nMnO 2 . Moreover, high concentrations of HA (10 mgTOC L -1 ), which notably complexes with and dissolves nMnO 2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a "steady" state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2017. Published by Elsevier Ltd.

  16. Mesoporous titanium-manganese dioxide for sulphur mustard and soman decontamination

    International Nuclear Information System (INIS)

    Stengl, Vaclav; Bludska, Jana; Oplustil, Frantisek; Nemec, Tomas

    2011-01-01

    Highlights: → New nano-dispersive materials for warfare agents decontamination. → 95% decontamination activities for sulphur mustard. → New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn 4+ content affects the decontamination activity; with increasing Mn 4+ content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn 3 7 with 18.6 wt.% Mn and TiMn 5 with 2.1 wt.% Mn, respectively.

  17. Titanium dioxide in our everyday life; is it safe?

    International Nuclear Information System (INIS)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Titanium dioxide (TiO 2 ) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO 2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO 2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO 2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO 2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO 2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO 2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO 2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO 2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO 2 nanoparticles should be used with great care

  18. Titanium dioxide in our everyday life; is it safe?

    Science.gov (United States)

    Skocaj, Matej; Filipic, Metka; Petkovic, Jana; Novak, Sasa

    2011-01-01

    Background Titanium dioxide (TiO2) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO2 nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO2 nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO2 nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO2 nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO2 nanoparticles are classified as “possible carcinogenic to humans” by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO2 nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO2 is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO2 may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. Conclusions Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO2 nanoparticles should be used with great care. PMID:22933961

  19. A review on potential neurotoxicity of titanium dioxide nanoparticles

    Science.gov (United States)

    Song, Bin; Liu, Jia; Feng, Xiaoli; Wei, Limin; Shao, Longquan

    2015-08-01

    As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.

  20. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  1. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis

    DEFF Research Database (Denmark)

    Calvano, Cosima; Jensen, Ole; Zambonin, Carlo

    2009-01-01

    A new micro-solid phase extraction (micro-SPE) procedure based on titanium dioxide microcolumns was developed for the selective extraction of phospholipids (PLs) from dairy products before matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. All...... the extraction steps (loading, washing, and elution) have been optimized using a synthetic mixture of PLs standard and the procedure was subsequently applied to food samples such as milk, chocolate milk and butter. The whole method demonstrated to be simpler than traditional approaches and it appears very...

  2. Analysis of X-ray diffraction of the titanium dioxide (TiO_2) synthesized by the Pechini Method for application in heterogeneous photocatalysis processes

    International Nuclear Information System (INIS)

    Oliveira, P.L.; Araujo, D.S.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2016-01-01

    Titanium dioxide (TiO_2) is a polymorph commonly applied to heterogeneous photocatalysis processes for being relatively inexpensive and photo - stable. It is usually found in three different crystalline phases (anatase, rutile and brookite), which directly interfere in their photocatalytic efficiency. Therefore, this study aimed to investigate the obtainment of TiO_2 by Pechini method in different conditions for application in the heterogeneous photocatalysis process. For this purpose, it was evaluated by analysis of X-ray diffraction (XRD ) the behavior of TiO_2 materials synthesized in proportions of 2:1 and 3:1 (titanium isopropoxide/citric acid), pyrolyzed at 300°C/3h and 400°C /h and calcined at 400°C and 500°C/1h. The results revealed that the TiO_2 samples produced in the ratio of 2:1 and 3:1 isopropoxide/citric acid and calcined at 500°C/h presented the best results. (author)

  3. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    International Nuclear Information System (INIS)

    Rodrigues, D.; Teixeira, P.; Tavares, C.J.; Azeredo, J.

    2013-01-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO 2 ) and, more recently, nitrogen-doped titanium dioxide (N-TiO 2 ) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO 2 coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO 2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10 6 CFU/ml on glass and 2.37 × 10 7 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO 2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne

  4. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Science.gov (United States)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  5. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.

    Science.gov (United States)

    Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie

    2013-10-01

    The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Studying the gelation process of titanium isopropoxide by method of positron annihilation spectroscopy; Studium procesu gelacie izopropoxidu titaniciteho metodou pozitronovej anihilacnej spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Nyblova, D.; Jesenak, K. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia); Sausa, O. [Slovenska akademia vied, Fyzikalny ustav, 84511 Bratislava (Slovakia)

    2013-04-16

    Thank to its harmlessness titanium dioxide is widely utilized material. One of the new areas to use titanium dioxide is photocatalysis, which could be the way to e.g. remove organic pollutants from water or air. Titanium dioxide based gels are perspective form of TiO{sub 2} for photocatalysis because of their high porosity thus high surface area. Positron annihilation spectroscopy is a physical method to study microporous structure and electron energy distribution in materials. We studied gelation process of titanium isopropoxide in ethanol with various amount of water catalyzed by hydrochloric acid by positron annihilation lifetime spectroscopy and doppler broadening of annihilation line in this work. Positronium is weakly formed in TiO{sub 2} in general wherefore it cannot be monitored by positron annihilation spectroscopy very well. Gelation process can be monitored through pick-off annihilation of ortho-positronium. (authors)

  7. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Physical, chemical and radioactive characterization of co-products from titanium dioxide industry for valorization in the cement industry

    International Nuclear Information System (INIS)

    Gazquez, M.J.; Mantero, J.; Bolivar, J.P.; Garcia-Tenorio, R.; Vaca, F.

    2011-01-01

    The present study was conducted to characterize the raw materials (ilmenite and slag), waste (red gypsum) and several co-products (sulphate monohydrate and sulphate heptahydrated) form the titanium dioxide industry in relation to their elemental composition (major, minor and trace elements), granulometry, mineralogy, microscopic morphology, physical composition and radioactive content in order to apply this knowledge in the valorization of the co-products in the fields such a as construction, civil engineering, etc. In particular, the main properties of cements produced with different proportions of red gypsum were studied, and the obtained improvements, in relation to Ordinary Portland Cements (OPC) were evaluated. It was also demonstrated that the levels of pollutants and the radioactive content in the produced RG cements, remain within the regulated safety limits. (Author). 38 refs.

  9. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    Science.gov (United States)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  10. Determination of quercetin using a photo-electrochemical sensor modified with titanium dioxide and a platinum(II)-porphyrin complex

    International Nuclear Information System (INIS)

    Tian, Li; Wang, Binbin; Chen, Ruizhan; Gao, Ye; Chen, Yanling; Li, Tianjiao

    2015-01-01

    A glassy carbon electrode (GCE) was modified with a film containing titanium dioxide and a Pt(II)-porphyrin complex, and its response to quercetin was investigated employing cyclic voltammetry and chronoamperometry. The oxidation current caused by quercetin is largely enhanced under UV illumination. The effects of pH value, mass of TiO 2 in the film, UV illumination time and applied potential were studied. Under optimized conditions, the peak current at a typically applied voltage of +0.4 V depends linearly on the concentration of quercetin in the 0.002 to 50 mg L −1 range. The detection limit (at an SNR of 3) is 0.8 μg L −1 . The method was successfully applied to the determination of quercetin in (spiked) samples of tea and apple juice. (author)

  11. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Science.gov (United States)

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son

    2017-07-01

    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  12. New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent

    DEFF Research Database (Denmark)

    Bennett, William W.; Teasdale, Peter R.; Panther, Jared G.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique, using a titanium dioxide based adsorbent (Metsorb), has been developed and evaluated for the determination of dissolved inorganic arsenic and selenium. AsIII, AsV, and SeIV were found to be quantitatively accumulated by the adsorbent (uptake...... measurement of inorganic arsenic. Reproducibility of the technique in field deployments was good (relative standard deviation arsenic and 0.05 μg L-1 for SeIV. The results of this study confirmed that DGT with Metsorb was a reliable...... and robust method for the measurement of inorganic arsenic and the selective measurement of SeIV within useful limits of accuracy....

  13. Mesoporous titanium-manganese dioxide for sulphur mustard and soman decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Bludska, Jana [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2011-11-15

    Highlights: {yields} New nano-dispersive materials for warfare agents decontamination. {yields} 95% decontamination activities for sulphur mustard. {yields} New materials base on titanium and manganese oxides. -- Abstract: Titanium(IV)-manganese(IV) nano-dispersed oxides were prepared by a homogeneous hydrolysis of potassium permanganate and titanium(IV) oxo-sulphate with 2-chloroacetamide. Synthesised samples were characterised using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (HD or bis(2-chloroethyl)sulphide) and soman (GD or (3,3'-dimethylbutan-2-yl)-methylphosphonofluoridate). Mn{sup 4+} content affects the decontamination activity; with increasing Mn{sup 4+} content the activity increases for sulphur mustard and decreases for soman. The best decontamination activities for sulphur mustard and soman were observed for samples TiMn{sub 3}7 with 18.6 wt.% Mn and TiMn{sub 5} with 2.1 wt.% Mn, respectively.

  14. Luminescent Study of the Binding Interaction on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone with Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Pushpam, S.; Yamini, D.; Ramakrishnan, V.

    2014-07-01

    The photophysical properties of 1,4-dihydroxy-2,3-dimethyl-9,10-anthroquinone (DHDMAQ) in the absence and presence of titanium dioxide (TiO2) nanoparticles have been studied using UV-visible absorption spectroscopy and steady-state fluorescence spectroscopy. The fluorescence intensity of the DHDMAQ decreases as the concentration of TiO2 nanoparticles increases. The quenching is characterized by a Stern-Volmer plot, which displays a positive deviation from linearity. This could be explained by static quenching models. The Stern-Volmer quenching constant, association constant, and binding constant have been calculated. The distance between DHDMAQ and TiO2 nanoparticles has also been evaluated using Forster's theory of non-radiative energy transfer.

  15. Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water

    DEFF Research Database (Denmark)

    Panther, Jared G.; Stewart, Ryan R.; Teasdale, Peter R.

    2013-01-01

    A titanium dioxide-based DGT method (Metsorb-DGT) was evaluated for the measurement of As(V), V(V), Sb(V), Mo(VI), W(VI) and dissolved reactive phosphorus (DRP) in synthetic waters. Mass vs. time DGT deployments at pH 6.06 (0.01 mol L-1 NaNO3) demonstrated linear uptake of all analytes (R2...... for deployment times >4 h (CDGT=0.27-0.72). For ferrihydrite-DGT, CDGT/CSol values in the range 0.92-1.16 were obtained for As(V), V(V) and DRP, however, Mo(VI), Sb(V) and W(VI) could not be measured to within 15% of the solution concentration (C DGT/CSol 0.02-0.83)....

  16. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  17. Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Chang Liu

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 paste was prepared by sol-gel and hydrothermal method with various precursors. Nanostructured mesoporous TiO2 thin-film back electrode was fabricated from the nanoparticle colloidal paste, and its performance was compared with that made of commercial P25 TiO2. The best performance was demonstrated by the DSSC having a 16 μm-thick TTIP-TiO2 back electrode, which gave a solar energy conversion efficiency of 6.03%. The ability of stong adhesion on ITO conducting glass substrate and the high surface area are considered important characteristics of TiO2 thin film. The results show that a thin film with good adhesion can be made from the prepared colloidal paste as a result of alleviating the possibility of electron transfer loss. One can control the colloidal particle size from sol-gel method. Therefore, by optimizing the preparation conditions, TiO2 paste with nanoparticle and narrow diameter distribution was obtained.

  18. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  19. Silver impregnated nanoparticles of titanium dioxide as carriers for {sup 211}At

    Energy Technology Data Exchange (ETDEWEB)

    Cedrowska, Edyta; Lyczko, Monika; Piotrowska, Agata; Bilewicz, Aleksander [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Stolarz, Anna; Trcinska, Agnieszka [Warsaw Univ. (Poland). Heavy Ion Lab.; Szkliniarz, Katarzyna [Silesia Univ. Katowice (Poland). Inst. of Physics; Was, Bogdan [Polish Academy of Science, Cracow (Poland). Inst. of Nuclear Physics

    2016-08-01

    The {sup 211}At radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately use of {sup 211}At is limited, because astatine as the heaviest halogen forms weak bond with carbon atoms in the biomolecules which makes {sup 211}At bioconjugates unstable in physiological conditions. In our work we propose a new solution for binding of {sup 211}At which consists of using nanoparticles of titanium dioxide modified with silver atoms as carriers for {sup 211}At. Ag{sup +} cations have been absorbed on the nanometer-sized TiO{sub 2} particles (15 and 32 nm) through ion exchange process and were reduced in Tollens' reaction. The obtained TiO{sub 2}-Ag nanoparticles were labeled with {sup 211}At. It was found that labeling yields were almost quantitative under reducing conditions, while under oxidizing conditions they dropped to about 80%. The labeled nanoparticles exhibited very high stability in physiological salt, PBS buffer, solutions of peptides (0.001 M cysteine, 0.001 M glutathione) and in human blood serum. To make TiO{sub 2}/Ag nanoparticles well dispersed in water and biocompatible their surface was modified with a silane coupling agent containing poly(ethyleneglycol) molecules. The developed functionalization approach will allow us to attach biomolecules to the TiO{sub 2}/Ag surface.

  20. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain.

    Science.gov (United States)

    Grissa, Intissar; Guezguez, Sabrine; Ezzi, Lobna; Chakroun, Sana; Sallem, Amira; Kerkeni, Emna; Elghoul, Jaber; El Mir, Lassaad; Mehdi, Meriem; Cheikh, Hassen Ben; Haouas, Zohra

    2016-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO 2 NPs is still limited. In our study, we investigate the effects of anatase TiO 2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO 2 NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO 2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO 2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.