WorldWideScience

Sample records for nanosecond region thesis

  1. Nano-Second Isomers in Neutron-Rich Ni Region Produced by Deep-Inelastic Collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2001-01-01

    Nuclear structure of the doubly magic 68 Ni and its neighbors has been studied by spectroscopic techniques. Developing a new instrument isomer-scope, we have measured γ rays from nano-second isomers produced in heavy-ion deep-inelastic collisions with great sensitivity. (author)

  2. Gamma-ray Spectroscopy of Nano-second Isomers in Neutron-rich Ni Region Produced by Deep-inelastic Collisions

    Science.gov (United States)

    Ishii, Tetsuro; Asai, Masato; Kleinheinz, Peter; Matsuda, Makoto; Ichikawa, Shinichi; Makishima, Akiyasu; Ogawa, Masao

    2001-10-01

    We have been studying nuclear structure of neutron-rich nuclei produced by heavy-ion deep-inelastic collisions at the JAERI Tandem Booster facility. In our method using an `isomer-scope', γ-rays only from isomers with T_1/2 > 1ns are measured by shielding Ge detectors from prompt γ rays emitted at the target position. Atomic numbers of isomers can be also identified by detecting projectile-like fragments with Si Δ E-E detectors. Until now, we have found several new isomers in neutron-rich Ni region using about 8 MeV/nucleon ^70Zn, ^76Ge and ^82Se beams and a ^198Pt target of 4.3 mg/cm^2 thickness. In the doubly magic ^68_28Ni_40, the (ν g_9/2^2 ν p_1/2-2)8^+ isomer with T_1/2=23(1) ns was found. In its neighbor nuclei ^69,71Cu, the 19/2^- isomers were found and the energy levels decaying from the isomers can be calculated very accurately by a parameter-free shell model calculation using experimental energy levels as two-body residual interactions. I will also briefly discuss nano-second isomers in ^32,33Si and ^34P produced by 9 MeV/nucleon ^37Cl beams.

  3. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  4. Bachelor Thesis

    OpenAIRE

    Štěpánková, Lenka

    2017-01-01

    The aim of the bachelor thesis was to create a survey of characteristics of pork meat quality including pH45, pH24, colour, water holding capacity, texture, intramuscular fat content and influences that affect the meat quality, i.e. breed, sex, slaughter weight, nutrition and feed, stabling technology, treatment, transport to the slaughterhouse, method of stunning and way of slaughter. The meat quality is also conditioned by the chemical composition, physical and technological features of the...

  5. Thesis Proposal

    DEFF Research Database (Denmark)

    Sloth, Erik

    2010-01-01

    de konkrete forskningsprojekter. Denne ’omvendte’ argumentationsgang er begrundet i det faktum at ph.d. afhandlingens kerne netop er de forskningsbaserede artikler. Den teoretiske gennemgang fungerer således som en kontekstualisering af forskningsprojekterne. I den teoretiske gennemgang starter jeg......Strukturen i Thesis proposal er følgende: Først præsenteres mine konkrete empiriske forskningsprojekter som skal munde ud i afhandlingens artikler. Jeg præsenterer herefter de teoretiske overvejelser omkring oplevelsesbegrebet og forbrugerkulturteori som danner baggrund for at jeg er nået frem til...

  6. Teaching the Thesis

    Science.gov (United States)

    Carroll, Joyce Armstrong

    2012-01-01

    Writing a good thesis provides a successful foundation for composing an essay. Teaching how to do that, however, is quite another matter. Teachers often say to students, "Find a thesis," or "Get a thesis," or "Bring in a thesis statement tomorrow," as if students could order one like a pizza, command it like a pet pooch, or grasp one out of thin…

  7. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    Property change during nanosecond pulse laser annealing of amorphous. NiTi thin film ... near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning ... ratio, shape recovery, damping capacity, chemical resistance, biocompatibility and ...

  8. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  9. Nanosecond laser damage investigations in nonlinear crystals

    International Nuclear Information System (INIS)

    Hildenbrand, A.

    2008-11-01

    Lasers become more and more powerful and compact. This raises laser induced damage issues in optical components, especially in nonlinear crystals. This thesis deals with nanosecond laser damage investigations in nonlinear crystals used for frequency conversion (KTP, KDP, LBO) and electro-optic applications (RTP, KDP). First, due to nonlinear and anisotropic effects of the crystals, the development of a metrology dedicated to laser damage studies of crystals was necessary. This metrology was then applied to the study of KTP and RTP isomorphous crystals, and LBO crystals. The influence of many parameters on the laser damage resistance, such as wavelength, polarization and crystal orientation, was studied allowing a better understanding of the laser damage phenomena in these crystals. Moreover, laser induced damage characterization was realized on these crystals with a high number of shots and in the real operating conditions, showing that the laser damage threshold of the component depends on its use. For example, the coexistence of multiple wavelengths inside the crystal takes a great part in the damage phenomena. (author)

  10. The Tractable Cognition Thesis

    Science.gov (United States)

    van Rooij, Iris

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the "Tractable Cognition thesis": Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories…

  11. The Tractable Cognition thesis

    NARCIS (Netherlands)

    Rooij, I.J.E.I. van

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by

  12. CMS Thesis Award

    CERN Multimedia

    2004-01-01

    The 2003 CMS thesis award was presented to Riccardo Ranieri on 15 March for his Ph.D. thesis "Trigger Selection of WH → μ ν b bbar with CMS" where 'WH → μ ν b bbar' represents the associated production of the W boson and the Higgs boson and their subsequent decays. Riccardo received his Ph.D. from the University of Florence and was supervised by Carlo Civinini. In total nine thesis were nominated for the award, which was judged on originality, impact within the field of high energy physics, impact within CMS and clarity of writing. Gregory Snow, secretary of the awarding committee, explains why Riccardo's thesis was chosen, ‘‘The search for the Higgs boson is one of the main physics goals of CMS. Riccardo's thesis helps the experiment to formulate the strategy which will be used in that search.'' Lorenzo Foà, Chairperson of the CMS Collaboration Board, presented Riccardo with an commemorative engraved plaque. He will also receive the opportunity to...

  13. The Las Vegas Thesis

    Science.gov (United States)

    Sughrua, William

    2010-01-01

    Following "reflexive ethnography" and utilizing an approach of "performative narrative" and "layered text", this article explores how Bachelor of Arts students in the Teaching of English as a Foreign Language program at a public university in Mexico successfully manage the writing of an inductive-oriented thesis in…

  14. Writing a Thesis Differently

    Science.gov (United States)

    Honan, Eileen; Bright, David

    2016-01-01

    In this paper we explore the contributions that Deleuze and Guattari have made to thinking/writing language and how these ideas can be put to work in producing a doctoral thesis. We contribute to the field of work within what Patti Lather and Elizabeth St Pierre have called the "post-qualitative" movement, where researchers attempt to…

  15. The Unobservability Thesis

    DEFF Research Database (Denmark)

    Overgaard, Søren

    2017-01-01

    implications for the mindreading debate. On the other line of interpretation, UT may matter to the mindreading debate, in particular if we think of it as a thesis about the possible contents of perceptual experience. The upshot is that those who believe UT has implications for the mindreading debate need...

  16. ATLAS Thesis Awards 2015

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on Thursday 25 February. The winners also presented their work in front of members of the ATLAS Collaboration. Winners: Javier Montejo Berlingen, Barcelona (Spain), Ruth Pöttgen, Mainz (Germany), Nils Ruthmann, Freiburg (Germany), and Steven Schramm, Toronto (Canada).

  17. Going beyond the Thesis

    Science.gov (United States)

    Smith, Andrew C.

    2010-01-01

    Most every writing teacher can relate to the curse of reading yet another incoherent essay, the contents of which resemble an unorganized junk drawer of thoughts. Such essays cry out for a main idea. The remedy is a thesis, and teachers rightly take pains to help students discover this. Yet in spite of this, writing teachers ought to bear in mind…

  18. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  19. [Albert Schwietzer's doctoral thesis].

    Science.gov (United States)

    Gorn, M F

    1993-06-01

    A review on Albert Schweitzer's doctoral thesis "The psychiatric study on Jesus" and his analysis of the delirium of persecution, megalomania and hallucination in order to refuse different authors hypothesis about the Jesus, psychosis or paranoia. The author highlights the symbolism of Schweitzer's decision for studying medicine and dedicating his life and efforts to the full of need men of Africa so the importance of his philosophic studies on the western culture.

  20. Numerical Study of Control of Flow Separation Over a Ramp with Nanosecond Plasma Actuator

    Science.gov (United States)

    Zheng, J. G.; Khoo, B. C.; Cui, Y. D.; Zhao, Z. J.; Li, J.

    2016-06-01

    The nanosecond plasma discharge actuator driven by high voltage pulse with typical rise and decay time of several to tens of nanoseconds is emerging as a promising active flow control means in recent years and is being studied intensively. The characterization study reveals that the discharge induced shock wave propagates through ambient air and introduces highly transient perturbation to the flow. On the other hand, the residual heat remaining in the discharge volume may trigger the instability of external flow. In this study, this type of actuator is used to suppress flow separation over a ramp model. Numerical simulation is carried out to investigate the interaction of the discharge induced disturbance with the external flow. It is found that the flow separation region over the ramp can be reduced significantly. Our work may provide some insights into the understanding of the control mechanism of nanosecond pulse actuator.

  1. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  2. Dynamic of ozone formation in nanosecond microwave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M. [Inst. of Applied Physics, Novgorod (Russian Federation)] [and others

    1995-12-31

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local {open_quotes}ozone holes{close_quotes}. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength {Lambda} = 0.8 and 3cm, pulse duration {tau} = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10{sup 3} Hz. The working gases were air and oxygen under pressure p = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions in a closed volume and in case of their diffusion spreading.

  3. Dynamic of ozone formation in nanosecond microwave discharges

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local {open_quotes}ozone holes{close_quotes}. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength {lambda} = 0.8 and 3cm, pulse duration {tau} = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10{sup 3} Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading.

  4. Review of the thesis: Remnyova S.V. Crime prevention in Leningrad and the Leningrad Region between the later 1950s and the first half of the 1960s

    Directory of Open Access Journals (Sweden)

    Frolov Vasiliy Vladimirovich

    2017-10-01

    Full Text Available This article analyses the thesis “Crime prevention in Leningrad and the Leningrad Region between the later 1950s and the first half of the 1960s” (St. Petersburg, 2016. 254 p. for a Candidate Degree in History by S.V. Remneva as well as the structure and logic of work, the validity of the conclusions, the merits of research and its controversial points. Special attention was paid to the analysis of interaction between the public and law enforcement agencies in crime fighting in the second half of the 1950s and the first half of the 1960s. In conclusion the reviewer pays attention on the idea that the presented facts, assessments and results can be used to develop textbooks on the history of crime, the history of law enforcement community, the history of Leningrad and the Leningrad Region.

  5. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  6. Investigating the quasiparticle dynamics operating in the electrodes of superconducting tunnel junctions using nanosecond phonon pulses

    CERN Document Server

    Steele, A

    2000-01-01

    this thesis data from phonon experiments are used to directly determine values for the parameters of an STJ such as the quasiparticle loss and tunnel rates in its electrodes. It is also shown how the input energy, in the form of phonons capable of breaking Cooper pairs, and the corresponding charge output from the device can be determined. These values are then compared with those obtained from x-ray absorption data. This thesis is concerned with the use of nanosecond phonon pulses to study quasiparticle behaviour in the electrodes of high-quality niobium superconducting tunnel junctions (STJs). This work is part of a collaboration with the Astrophysics Research and Development Division of the European Space Agency (ESA) at ESTEC. STJs are being widely investigated as photon detectors over a broad range of the electromagnetic spectrum. They potentially offer excellent energy resolution, time response and photon counting capabilities. The primary aim of this research was to use phonon pulses to investigate qua...

  7. Arbejdspapir til Thesis-seminar

    DEFF Research Database (Denmark)

    Damkjaer, Maja Sonne

    2014-01-01

    Arbejdspapir til Thesis-seminar afholdt ved Forskningsseminar i Forskningsprogrammet: Medier, Kommunikation og Samfund, Institut for Æstetik og Kommunikation, Aarhus Universitet. Afhandlingens teoretiske afsnit....

  8. Gas Discharge Produced by Strong Microwaves of Nanosecond Duration

    International Nuclear Information System (INIS)

    Vikharev, A.L.

    2000-01-01

    The results of the investigation of nanosecond microwave discharge are reviewed. Nanosecond microwave discharge is a new branch of gas discharge physics. The paper lists base types of microwave generators used to produce nanosecond discharge and classifies the discharges relative to their base parameters: the way the discharge gets localized in a limited space, amplitude and frequency of microwave field, gas pressure, duration of microwave pulses. The laboratory experiments performed and the new effects which appear in nanosecond microwave discharge are briefly summarized. Different applications of such a discharge are analyzed on the basis of the experimental modelling. (author)

  9. Nanosecond KTN varifocal lens without electric field induced phase transition

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Yin, Stuart (Shizhuo); Hoffman, Robert C.

    2017-08-01

    This paper presents a nanosecond speed KTN varifocal lens. The tuning principle of varifocal lens is based on the high-speed refractive index modulation from the nanosecond speed tunable electric field. A response time on the order of nanoseconds was experimentally demonstrated, which is the fastest varifocal lens reported so far. The results confirmed that the tuning speed of the KTN varifocal lens could be significantly increased by avoiding the electric field induced phase transition. Such a nanosecond speed varifocal lens can be greatly beneficial for a variety of applications that demand high speed axial scanning, such as high-resolution 3D imaging and high-speed 3D printing.

  10. Arbejdspapir til Thesis-seminar

    DEFF Research Database (Denmark)

    Damkjaer, Maja Sonne

    2014-01-01

    Arbejdspapir til Thesis-seminar afholdt ved Forskningsseminar i Forskningsprogrammet: Medier, Kommunikation og Samfund, Institut for Æstetik og Kommunikation, Aarhus Universitet. Afhandlingens teoretiske afsnit.......Arbejdspapir til Thesis-seminar afholdt ved Forskningsseminar i Forskningsprogrammet: Medier, Kommunikation og Samfund, Institut for Æstetik og Kommunikation, Aarhus Universitet. Afhandlingens teoretiske afsnit....

  11. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  12. PNG-300 a nanosecond pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.C.; Devkin, B.V.

    1985-01-01

    The design and operation of a nanosecond-pulse neutron generator is reported. It was constructed for the measurement of prompt neutron and gamma radiation in experimental studies of fast neutron reactions by time of flight techniques. The acceleration voltage is 300 kV and the total resolution of the generator-neutron spectrometer system is 2 ns. The ion-optical system, the vacuum system and the control of the neutron generator is described in detail. The equipment was used for prompt neutron and gamma radiation induced in construction materials. (R.P.)

  13. Nanomaterials synthesis at atmospheric pressure using nanosecond discharges

    International Nuclear Information System (INIS)

    Pai, David Z

    2011-01-01

    The application of nanosecond discharges towards nanomaterials synthesis at atmospheric pressure is explored in this perspective article. First, various plasma sources are evaluated in terms of the energy used to include one atom into the nanomaterial, which is shown to depend strongly on the electron temperature. Because of their high average electron temperature, nanosecond discharges could be used to achieve nanofabrication at a lower energy cost, and therefore with better efficiency, than with other plasma sources at atmospheric pressure. Transient spark discharges and nanosecond repetitively pulsed (NRP) discharges are suggested as particularly useful examples of nanosecond discharges generated at high repetition frequency. Nanosecond discharges also generate fast heating and cooling rates that could be exploited to produce metastable nanomaterials.

  14. Relaxation in polymer electrolytes on the nanosecond timescale

    International Nuclear Information System (INIS)

    Mao, G.; Fernandez-Perea, R.; Price, D.L.; Saboungi, M.-L.; Howells, W.S.

    2000-01-01

    The relation between mechanical and electrical relaxation in polymer/lithium-salt complexes is a fascinating and still unresolved problem in condensed-matter physics, yet has an important bearing on the viability of such materials for use as electrolytes in lithium batteries. At room temperature, these materials are biphasic: they consist of both fluid amorphous regions and salt-enriched crystalline regions. Ionic conduction is known to occur predominantly in the amorphous fluid regions. Although the conduction mechanisms are not yet fully understood, it is widely accepted that lithium ions, coordinated with groups of ether oxygen atoms on single or perhaps double polymer chains, move through re-coordination with other oxygen-bearing groups. The formation and disruption of these coordination bonds must be accompanied by strong relaxation of the local chain structure. Here we probe the relaxation on a nanosecond timescale using quasielastic neutron scattering, and we show that at least two processes are involved: a slow process with a translational character and one or two fast processes with a rotational character. Whereas the former reflects the slowing-down of the translational relaxation commonly observed in polyethylene oxide and other polymer melts, the latter appears to be unique to the polymer electrolytes and has not (to our knowledge) been observed before. A clear picture emerges of the lithium cations forming crosslinks between chain segments and thereby profoundly altering the dynamics of the polymer network.

  15. Nanostructures and nanosecond dynamics at the polymer/filler interface

    Science.gov (United States)

    Koga, Tad; Barkley, Deborah; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Taniguchi, Takashi

    We report in-situ nanostructures and nanosecond dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in polymer solutions (from dilute to concentrated solutions). The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene (a good solvent) to label the BPL for ``contrast-matching'' small-angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the NSE results show that the dynamics of the swollen bound chains in the polymer solutions can be explained by the collective dynamics, the so-called ``breathing mode''. Intriguingly, it was also indicative that the collective dynamics is independent of the polymer concentrations and is much faster than that predicted from the solution viscosity. We will discuss the mechanism at the bound polymer-free polymer interface at the nanometer scale. T.K. acknowledges the financial support from NSF Grant (CMMI-1332499).

  16. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  17. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  18. Challenges for Better thesis supervision.

    Science.gov (United States)

    Ghadirian, Laleh; Sayarifard, Azadeh; Majdzadeh, Reza; Rajabi, Fatemeh; Yunesian, Masoud

    2014-01-01

    Conduction of thesis by the students is one of their major academic activities. Thesis quality and acquired experiences are highly dependent on the supervision. Our study is aimed at identifing the challenges in thesis supervision from both students and faculty members point of view. This study was conducted using individual in-depth interviews and Focus Group Discussions (FGD). The participants were 43 students and faculty members selected by purposive sampling. It was carried out in Tehran University of Medical Sciences in 2012. Data analysis was done concurrently with data gathering using content analysis method. Our data analysis resulted in 162 codes, 17 subcategories and 4 major categories, "supervisory knowledge and skills", "atmosphere", "bylaws and regulations relating to supervision" and "monitoring and evaluation". This study showed that more attention and planning in needed for modifying related rules and regulations, qualitative and quantitative improvement in mentorship training, research atmosphere improvement and effective monitoring and evaluation in supervisory area.

  19. Fatalism as a Metaphysical Thesis

    Directory of Open Access Journals (Sweden)

    Ulrich Meyer

    Full Text Available ABSTRACT Even though fatalism has been an intermittent topic of philosophy since Greek antiquity, this paper argues that fate ought to be of little concern to metaphysicians. Fatalism is neither an interesting metaphysical thesis in its own right, nor can it be identified with theses that are, such as realism about the future or determinism.

  20. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    Science.gov (United States)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  1. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  2. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  3. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  4. Lessons from a doctoral thesis.

    Science.gov (United States)

    Peiris, A N; Mueller, R A; Sheridan, D P

    1990-01-01

    The production of a doctoral thesis is a time-consuming affair that until recently was done in conjunction with professional publishing services. Advances in computer technology have made many sophisticated desktop publishing techniques available to the microcomputer user. We describe the computer method used, the problems encountered, and the solutions improvised in the production of a doctoral thesis by computer. The Apple Macintosh was selected for its ease of use and intrinsic graphics capabilities. A scanner was used to incorporate text from published papers into a word processing program. The body of the text was updated and supplemented with new sections. Scanned graphics from the published papers were less suitable for publication, and the original data were replotted and modified with a graphics-drawing program. Graphics were imported and incorporated in the text. Final hard copy was produced by a laser printer and bound with both conventional and rapid new binding techniques. Microcomputer-based desktop processing methods provide a rapid and cost-effective means of communicating the written word. We anticipate that this evolving technology will have increased use by physicians in both the private and academic sectors.

  5. Diagnosing the thesis scandal in academic community

    Directory of Open Access Journals (Sweden)

    Dmitriy M. Feldman

    2014-01-01

    Full Text Available Events that occurred in 2013 as a result of illegal assignment of academic degrees, acquired the nature of scandal. According to the author, thesis scandal has provided a deeper understanding of the essence of processes both in the scientific and educational community and in the whole socio-humanitarian sphere of Russian society. The scandal, which affected many deputies of the State Duma, governors of some Russian regions and senior government officials, has attracted attention of Russian political leaders and the general public. It uncovered many shortcomings of existing approaches to the determination of qualification level of the research and education community's members, the viability of the universities; revealed the real challenges to the successful development of science and higher education. Thesis scandal showed values which define the state of social and humanitarian spheres of Russian society, the relations within the scientific and educational community and the results of reforms in it. Analyzing the situation in domestic science, the problems specific to the Russian scientific and educational community, the author is not limited to the conclusion that this scandal has deep socio-cultural reasons. The author has to declare, that forced borrowings of alien norms and principles for domestic science, promising to come to the fore in the future, today turn into the traditional desire to take the lead on the "top-down" indicators.

  6. La tesis de título de Guillermo Ulriksen Becker (1952: Bases para la Planeación Regional del Norte Chico: Provincias de Atacama y Coquimbo. /Graduation Project (Thesis of the architect William Ulriksen Becker (1952: Basis for Region Planning of the “Norte Chico”: Atacama and Coquimbo provinces.

    Directory of Open Access Journals (Sweden)

    Pávez Reyes, María Isabel

    2008-06-01

    Full Text Available Se presenta la tesis de título en planeamiento regional de Guillermo Ulriksen Becker (n.1905 – m. 1979 presentada en 1953 en la, entonces, “Facultad de Arquitectura” de la Universidad de Chile: Bases para la Planeación Regional del Norte Chico: Provincias de Atacama y Coquimb. Este estudio que constituye no sólo una radiografía del estado del desarrollo del Norte Chico hace cincuenta y cinco años, sino que también un señalamiento del potencial posible de desarrollar en la perspectiva del largo plazo, y de los aspectos negativos que se van sucediendo o pudieran suceder atentando contra dicho potencial./This work presents the graduation project of Guillermo Ulriksen (1905-1979. That thesis was presented to get the title of architect in the then called "Facultad de Arquitectura" of the Universidad de Chile, and it shows a complete scan of the development of the "Norte Chico", 55 years ago, indicating its potentials in a long term basis.

  7. Study of laser-induced damage on the exit surface of silica components in the nanosecond regime in a multiple wavelengths configuration

    International Nuclear Information System (INIS)

    Chambonneau, Maxime

    2014-01-01

    In this thesis, laser-induced damage phenomenon on the surface of fused silica components is investigated in the nanosecond regime. This phenomenon consists in an irreversible modification of the material. In the nanosecond regime, laser damage is tightly correlated to the presence of non-detectable precursor defects which are a consequence of the synthesis and the polishing of the components. In this thesis, we investigate laser damage in a multiple wavelengths configuration. In order to better understand this phenomenon in these conditions of irradiation, three studies are conducted. The first one focuses on damage initiation. The results obtained in the single wavelength configurations highlight a coupling in the multiple wavelengths one. A comparison between the experiments and a model developed during this thesis enables us to improve the knowledge of the fundamental processes involved during this damage phase. Then, we show that post mortem characterizations of damage morphology coupled to an accurate metrology allow us to understand both the nature and also the chronology of the physical mechanisms involved during damage formation. The proposed theoretical scenario is confirmed through various experiments. Finally, we study damage growth in both the single and the multiple wavelengths cases. Once again, this last configuration highlights a coupling between the wavelengths. We show the necessity to account for the spatial characteristics of the laser beams during a growth session. (author) [fr

  8. Numerical Simulation of Nanosecond-Pulse Electrical Discharges

    Science.gov (United States)

    2012-01-01

    permittivity of free space. B. Gas Properties and Boundary Conditions The 15-species, 42-process formulation described previously was employed...Jiang, N., Adamovich, I. V., and Lempert, W. R., \\Nitric Oxide Density Measurements in Air and Air/ Fuel Nanosecond Pulse Discharges by Laser Induced

  9. Thermal processes in gallium arsenide during nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ivlev, G.D.; Malevich, V.L.

    1990-01-01

    Phase changes in the surface layers of semiconductors during irradiation by nanosecond laser pulses have been the subject of large numbers of papers. The authors have performed numerical modeling and an experimental study of phase changes in the surface layers of single crystal gallium arsenide heated by single pulses of ruby laser light

  10. Performance of the Fitch generator in a nanosecond electron accelerator

    International Nuclear Information System (INIS)

    Chernyj, V.V.

    1976-01-01

    The operation of the Fitch generator in the nanosecond electron accelerator is discussed. The operating principle of the generator is based on the inversion of the voltage at the storage capacitances. Only one discharger is employed in the discharge circuit of the generator which provides for decreasing the generator impedance to 24 Ohms. The maximum accelerating voltage equals 0.6 MV

  11. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film. S K Sadrnezhaad Noushin Yasavol Mansoureh Ganjali Sohrab Sanjabi. Volume 35 Issue 3 June 2012 pp 357-364 ...

  12. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    Science.gov (United States)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  13. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  14. On the nature of emissions of polymethyl methacrylate excited by an electron beam of subnanosecond or nanosecond duration

    Science.gov (United States)

    Oleshko, V. I.; Baksht, E. Kh.; Burachenko, A. G.; Tarasenko, V. F.

    2017-02-01

    The results of studies of the physical nature of emissions produced in polymethyl methacrylate excited by electron beams of a subnanosecond or a nanosecond duration are presented. The spatial, amplitude, and spectral-kinetic properties of emissions have been examined under an electron beam energy density varying from 10-4 to 4 × 10-1 J/cm2. It has been found that cathodoluminescence is the primary type of emission under low energy densities of the electron beam. When the energy density of a nanosecond electron beam and/or the number of pulses of excitation by a subnanosecond electron beam were increased, an electrical breakdown of polymethyl methacrylate occurred in the irradiated region. This process was accompanied by a burst of emission of dense, low-temperature plasma.

  15. Online thesis guidance management information system

    Science.gov (United States)

    Nasution, T. H.; Pratama, F.; Tanjung, K.; Siregar, I.; Amalia, A.

    2018-03-01

    The development of internet technology in education is still not maximized, especially in the process of thesis guidance between students and lecturers. Difficulties met the lecturers to help students during thesis guidance is the limited communication time and the compatibility of schedule between students and lecturer. To solve this problem, we designed an online thesis guidance management information system that helps students and lecturers to do thesis tutoring process anytime, anywhere. The system consists of a web-based admin app for usage management and an android-based app for students and lecturers.

  16. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  17. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air

    International Nuclear Information System (INIS)

    Wu, B.; Shin, Y. C.; Pakhal, H.; Laurendeau, N. M.; Lucht, R. P.

    2007-01-01

    It has been generally believed in literature that in nanosecond laser ablation, the condensed substrate phase contributes mass to the plasma plume through surface evaporation across the sharp interface between the condensed phase and the vapor or plasma phase. However, this will not be true when laser intensity is sufficiently high. In this case, the target temperature can be greater than the critical temperature, so that the sharp interface between the condensed and gaseous phases disappears and is smeared into a macroscopic transition layer. The substrate should contribute mass to the plasma region mainly through hydrodynamic expansion instead of surface evaporation. Based on this physical mechanism, a numerical model has been developed by solving the one-dimensional hydrodynamic equations over the entire physical domain supplemented by wide-range equations of state. It has been found that model predictions have good agreements with experimental measurement for plasma front location, temperature, and electron number density. This has provided further evidence (at least in the indirect sense), besides the above theoretical analysis, that for nanosecond laser metal ablation in air at sufficiently high intensity, the dominant physical mechanism for mass transfer from the condensed phase to the plasma plume is hydrodynamic expansion instead of surface evaporation. The developed and verified numerical model provides useful means for the investigation of nanosecond laser-induced plasma at high intensities

  18. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air.

    Science.gov (United States)

    Wu, B; Shin, Y C; Pakhal, H; Laurendeau, N M; Lucht, R P

    2007-08-01

    It has been generally believed in literature that in nanosecond laser ablation, the condensed substrate phase contributes mass to the plasma plume through surface evaporation across the sharp interface between the condensed phase and the vapor or plasma phase. However, this will not be true when laser intensity is sufficiently high. In this case, the target temperature can be greater than the critical temperature, so that the sharp interface between the condensed and gaseous phases disappears and is smeared into a macroscopic transition layer. The substrate should contribute mass to the plasma region mainly through hydrodynamic expansion instead of surface evaporation. Based on this physical mechanism, a numerical model has been developed by solving the one-dimensional hydrodynamic equations over the entire physical domain supplemented by wide-range equations of state. It has been found that model predictions have good agreements with experimental measurement for plasma front location, temperature, and electron number density. This has provided further evidence (at least in the indirect sense), besides the above theoretical analysis, that for nanosecond laser metal ablation in air at sufficiently high intensity, the dominant physical mechanism for mass transfer from the condensed phase to the plasma plume is hydrodynamic expansion instead of surface evaporation. The developed and verified numerical model provides useful means for the investigation of nanosecond laser-induced plasma at high intensities.

  19. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  20. Nanosecond pulsed laser ablation of silicon in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, R.; Anvari, J.Z.; Mansour, N. [Shahid Beheshti University, Department of Physics, Tehran (Iran)

    2009-03-15

    Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface's ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent. (orig.)

  1. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, optimizing processing conditions.

  2. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy

    International Nuclear Information System (INIS)

    Wei, Wenfu; Wu, Jian; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-01-01

    We investigate the evolution of the species from both the target and the air, and the plasma parameter distribution of the nanosecond laser-produced plasmas in atmospheric air. The technique used is spatially resolved optical emission spectroscopy. It is argued that the N II from the air, which is distributed over a wider region than the target species in the early stages of the discharge, is primarily formed by the shock wave. The ionized species have a larger expansion velocity than the excited atoms in the first ∼100 ns, providing direct evidence for space-charge effects. The electron density decreases with the distance from the target surface in the early stages of the discharge, and both the electron density and the excited temperature variation in the axial direction are found to become insignificant at later stages

  3. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  4. Time-resolved optical probing of nanosecond laser-induced breakdown plasma in polymethyl methacrylate (PMMA)

    Science.gov (United States)

    Mahdieh, Mohammad Hossein; Jafarabadi, Marzieh Akbari; Katoozi, Delaram

    2018-02-01

    In this paper, laser-induced optical breakdown in a transparent dielectric was studied by pump-probe beam method. The breakdown was induced by Nd:YAG nanosecond laser beam in polymethyl methacrylate (PMMA). The main laser beam was separated by a splitter and used as probe beam. An appropriate optics used to direct the probe beam passing through the breakdown region perpendicularly to the pump laser beam. Using fast photodiodes and oscilloscope, the transmitted/ reflected signals (associated with the probe/ pump beam) were monitored. Analyzing these signals can be used to describe the breakdown process. The results show that the dynamics of transmissivity and reflectivity of the produced plasma depend on the pump laser intensity.

  5. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  6. The image of a nanosecond laser plasma in its own optical radiation

    Science.gov (United States)

    Fronya, A. A.; Borisenko, N. G.; Puzyrev, V. N.; Sahakyan, A. T.; Starodub, A. N.; Yakushev, O. F.

    2017-12-01

    The results of experiments on the interaction of nanosecond laser radiation (wavelength of 1.06 μm and a radiation power density of 1012–1013 W/cm2) with targets from various materials (Cu, (C2H4)n, TAC) are presented in the paper. In the experiments images of the plasma in own optical radiation in the wavelength range 0.4–1.1 μm were obtained. In one shot of laser images at wavelengths corresponding to the radiation of the harmonics 2ω 0, 3/2ω 0, 5/2ω 0, and at the frequency of laser radiation ω 0 were recorded. Using the obtained images the spatial characteristics of the radiating regions of the plasma, as well as the radiated energy for each of the harmonics, were estimated.

  7. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  8. Power nanosecond pulse shaping by means of RCD-generators with peaking circuits based on diode current breakers

    CERN Document Server

    Grekhov, I V; Korotkov, S V; Stepanyants, A L; Khristyuk, D V

    2002-01-01

    One considered the basic principles to design nanosecond region generators based on reverse-connected dynistos (RCD) with diode current breaker base output peaking circuits. Paper presents the results of experimental investigation in intense generator based on RCD, peaking pulsed transformer and high-voltage diode breaker from a set of series-connected drift diodes with abrupt reset. Generator at 1 kHz frequency commutates voltage pulses with approx 45 kV amplitude, approx 50 ns duration and approx 10 ns rise front to 25 ohm load

  9. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  10. Patterning of silicon differences between nanosecond and femtosecond laser pulses

    Science.gov (United States)

    Weingärtner, M.; Elschner, R.; Bostanjoglo, O.

    1999-01-01

    Si (100) surfaces were exposed to 8 ns and 100 fs laser pulses with fluences≤3 J/cm 2 and ≤0.5 J/cm 2, respectively. Transient stages and final patterns were investigated by pulsed photoelectron microscopy and scanning electron plus light interference microscopy. Though the pattern formation extends for both pulse lengths over the same time of some 10 ns, the patterns are different. Nanosecond pulses produce smooth craters and remove a covering oxide. Femtosecond pulses ablate an oxide-free Si surface and produce flat pits covered by nanodrops, whereas oxide-covered surfaces are converted to a foam, which solidifies to a blistered structure.

  11. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    Science.gov (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  12. Mechanically driven millimeter source of nanosecond X-ray pulses

    Science.gov (United States)

    Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J.

    2010-06-01

    The emission of nanosecond pulses of ≈20 keV photons having a total energy of GeVs which are generated by peeling millimeter wide strips of pressure sensitive adhesive (PSA) tape in a partial pressure of air (≈10-3 Torr) is demonstrated. The X-ray spectrum is similar to that obtained by peeling much wider bands of PSA, implying that the characteristic length for the sequence of processes that govern this phenomenon is less than 1 mm. These experiments demonstrate that MEMS-type X-ray generators are technologically feasible.

  13. Effect of Nanosecond RF Pulses on Mitochondrial Membranes

    Science.gov (United States)

    Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.

    2017-12-01

    Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.

  14. Advice for Writing a Thesis (Based on What Examiners Do)

    Science.gov (United States)

    Golding, Clinton

    2017-01-01

    In the article, "What examiners do: What thesis students should know", we identified 11 things that thesis examiners do as they read and judge a thesis. But, we left a gap in the research: knowing this, What should thesis students do to write for their examiners? In this article, I fill the gap. The advice for thesis students is: first,…

  15. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    Science.gov (United States)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  16. Influence of ion transport on discharge propagation of nanosecond dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Hua, Weizhuo; Koji, Fukagata

    2017-11-01

    A numerical study has been conducted to understand the streamer formation and propagation of nanosecond pulsed surface dielectric barrier discharge of positive polarity. First we compared the result of different grid configuration to investigate the influence of x and y direction grid spacing on the streamer propagation. The streamer propagation is sensitive to y grid spacing especially at the dielectric surface. The streamer propagation velocity can reach 0.2 cm/ns when the voltage magnitude is 12 kV. A narrow gap was found between the streamer and dielectric barrier, where the plasma density is several orders of magnitude smaller than the streamer region. Analyses on the ion transport in the gap and streamer regions show the different ion transport mechanisms in the two different region. In the gap region, the diffusion of electron toward the dielectric layer decreases the seed electron in the beginning of voltage pulse, resulting that ionization avalanche does not occur. The streamer region is not significantly affected by the diffusion flux toward the dielectric layer, so that ionization avalanche takes place and leads to dramatic increase of plasma density.

  17. Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Hua, Weizhuo; Fukagata, Koji

    2018-04-01

    Two-dimensional numerical simulation of a surface dielectric barrier discharge (SDBD) plasma actuator, driven by a nanosecond voltage pulse, is conducted. A special focus is laid upon the influence of grid resolution on the computational result. It is found that the computational result is not very sensitive to the streamwise grid spacing, whereas the wall-normal grid spacing has a critical influence. In particular, the computed propagation velocity changes discontinuously around the wall-normal grid spacing about 2 μm due to a qualitative change of discharge structure. The present result suggests that a computational grid finer than that was used in most of previous studies is required to correctly capture the structure and dynamics of streamer: when a positive nanosecond voltage pulse is applied to the upper electrode, a streamer forms in the vicinity of upper electrode and propagates along the dielectric surface with a maximum propagation velocity of 2 × 108 cm/s, and a gap with low electron and ion density (i.e., plasma sheath) exists between the streamer and dielectric surface. Difference between the results obtained using the finer and the coarser grid is discussed in detail in terms of the electron transport at a position near the surface. When the finer grid is used, the low electron density near the surface is caused by the absence of ionization avalanche: in that region, the electrons generated by ionization is compensated by drift-diffusion flux. In contrast, when the coarser grid is used, underestimated drift-diffusion flux cannot compensate the electrons generated by ionization, and it leads to an incorrect increase of electron density.

  18. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  19. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    Science.gov (United States)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  20. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  1. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N.N., E-mail: nnn_1900@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Imamova, S.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Obara, M. [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  2. Award for the best CMS thesis

    CERN Multimedia

    2003-01-01

    The 2002 CMS PhD Thesis Award for has been presented to Giacomo Luca Bruno for his thesis defended at the University of Pavia in Italy and entitled "The RPC detectors and the muon system for the CMS experiment at the LHC". His work was supervised by Sergio P. Ratti from the University of Pavia. Since April 2002, Giacomo has been employed as a research fellow by CERN's EP Division. He continues to work on CMS in the areas of data acquisition and physics reconstruction and selection. Last Monday he received a commemorative engraved plaque from Lorenzo Foà, chairman of the CMS Collaboration Board. He will also receive expenses paid to an international physics conference to present his thesis results. Giacomo Luca Bruno with Lorenzo Foà

  3. ALICE gives its first thesis awards

    CERN Multimedia

    2008-01-01

    For the first time the ALICE collaboration has given two of its doctoral students awards for their outstanding theses. Winners Christian Holm Christensen and Zaida Conesa del Valle holding their awards.On 29 October the ALICE collaboration honoured two students for their outstanding theses at a ceremony held at CERN. The two awards, one of which was given for a physics thesis and the other for a technical thesis, went to Zaida Conesa Del Valle (Laboratoire de physique subatomique et des technologies associées) and Christian Holm Christensen (Niels Bohr Institute) respectively. "It is very gratifying to see that the collaboration appreciates our work," said Zaida Conesa del Valle, winner of the physics award for her thesis: Performance of the ALICE Muon Spectrometer. Weak Boson Production and Measurement in Heavy Ion Collisions at the LHC. "I also feel specially thankful to all the people who worked with me," she added. "It was pl...

  4. Action learning in undergraduate engineering thesis supervision

    Directory of Open Access Journals (Sweden)

    Brad Stappenbelt

    2017-03-01

    Full Text Available In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative, investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and student adoption of the action learning process were also examined. The action learning environment implemented had a measurable significant positive effect on student academic performance, their ability to cope with the stresses associated with conducting a research thesis, the depth of learning, the development of autonomous learners and student perception of the research thesis experience. The present study acts as an addendum to a smaller scale implementation of this action learning approach, applied to supervision of third and fourth year research projects and theses, published in 2010.

  5. Presentation master thesis at EAPRIL 2015 Conference

    NARCIS (Netherlands)

    Iris Sutherland; Richard Kragten; Zac Woolfitt

    2015-01-01

    Three graduates of the Inholland Master Leren en Innoveren (Zac Woolfitt, Iris Sutherland and Richard Kragten) each presented their master thesis in an interactive 'flipped' session which involved providing content in advance via a video for those attending the session. The session was well attended

  6. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which is...

  7. FCO's Thesis was Genesis of Training Program

    OpenAIRE

    Center for Homeland Defense and Security

    2012-01-01

    Center for Homeland Defense and Security, OUT OF THE CLASSROOM Download the paper: Thesis: Preparing Federal Coordinating Officers (FCOs) to Operate in Chemical, Biological, Radiological, and Nuclear (CBRN) Environments” When established in the late 1990s, the role of a federal...

  8. Action Learning in Undergraduate Engineering Thesis Supervision

    Science.gov (United States)

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches…

  9. The Extended Mind Thesis and Mechanistic Explanations

    DEFF Research Database (Denmark)

    Fazekas, Peter

    2013-01-01

    The Extended Mind Thesis (EMT) is traditionally formulated against the bedrock of functionalism, and ongoing debates are typically bogged down with questions concerning the exact relationship between EMT and different versions of functionalism. In this paper, I offer a novel ally for EMT: the new...

  10. The Thesis, the Pendulum and the Battlefield

    Science.gov (United States)

    Ameri, Amir

    2015-01-01

    The debate over the design thesis is often entangled in the dialectics of the practical and the theoretical. Whether the argument is waged and weighted in favour of a practical emphasis or a theoretical emphasis, or more insidious, a judicious balance between the two, what is inevitably assumed in the debate is the possibility of drawing and/or…

  11. Finding the Genesis for a Thesis

    Science.gov (United States)

    Caroll, Joyce Armstrong

    2013-01-01

    This article describes a prewriting heuristics strategy that can help students find the genesis of their thesis. The 3 functions of the heuristic procedure are that it aids in retrieving relevant information stored in the mind; draws attention to important information that can be further researched or accessed; and prepares the mind for the…

  12. Numerical simulation of nanosecond-pulse electrical discharges

    Science.gov (United States)

    Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M.

    2013-02-01

    Recent experiments with a nanosecond-pulse, dielectric barrier discharge at the stagnation point of a Mach 5 cylinder flow have demonstrated the formation of weak shock waves near the electrode edge, which propagate upstream and perturb the bow shock. This is a promising means of flow control, and understanding the detailed physics of the conversion of electrical energy into gas motion will aid in the design of efficient actuators based on the concept. In this work, a simplified configuration with planar symmetry was chosen as a vehicle to develop a physics-based model of nanosecond-pulse discharges, including realistic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced plasma kinetic model (23 species and 50 processes) was developed to capture the dominant species and reactions for energy storage and thermalization in the discharge. The kinetic model included electronically and vibrationally excited species, and several species of ions and ground state neutrals. The governing equations included the Poisson equation for the electric potential, diffusion equations for each neutral species, conservation equations for each charged species, and mass-averaged conservation equations for the bulk gas flow. The results of calculations with this model highlighted the path of energy transfer in the discharge. At breakdown, the input electrical energy was transformed over a time scale on the order of 1 ns into chemical energy of ions, dissociation products, and vibrationally and electronically excited particles. About 30% of this energy was subsequently thermalized over a time scale of 10 µs. Since the thermalization time scale was faster than the acoustic time scale, the heat release led to the formation of weak shock waves originating near the sheath edge, consistent with experimental observations. The computed translational temperature rise (40 K) and nitrogen vibrational temperature rise (370 K) were of the same order of magnitude as

  13. Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas

    Science.gov (United States)

    Manish, Jugroot

    2016-10-01

    Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters—and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics—namely gas heating and electric field reversals. supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) — Discovery Grant (No. 342369)

  14. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  15. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  16. Removal of Tattoos by Q-Switched Nanosecond Lasers.

    Science.gov (United States)

    Karsai, Syrus

    2017-01-01

    Tattoo removal by Q-switched nanosecond laser devices is generally a safe and effective method, albeit a time-consuming one. Despite the newest developments in laser treatment, it is still not possible to remove every tattoo completely and without complications. Incomplete removal remains one of the most common challenges. As a consequence, particular restraint should be exercised when treating multicoloured tattoos, and patients need to be thoroughly informed about remaining pigment. Other frequent adverse effects include hyper- and hypopigmentation as well as ink darkening; the latter is particularly frequent in permanent make-up. Scarring is also possible, although it is rare when treatment is performed correctly. It is becoming more widespread for laser operators to encounter allergic reactions and even malignant tumours in tattoos, and treating these conditions requires a nuanced approach. © 2017 S. Karger AG, Basel.

  17. Method for integrating a train of fast, nanosecond wide pulses

    International Nuclear Information System (INIS)

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  18. Revival of femtosecond laser plasma filaments in air by a nanosecond laser.

    Science.gov (United States)

    Zhou, Bing; Akturk, Selcuk; Prade, Bernard; André, Yves-Bernard; Houard, Aurélien; Liu, Yi; Franco, Michel; D'Amico, Ciro; Salmon, Estelle; Hao, Zuo-Qiang; Lascoux, Noelle; Mysyrowicz, André

    2009-07-06

    Short lived plasma channels generated through filamentation of femtosecond laser pulses in air can be revived after several milliseconds by a delayed nanosecond pulse. Electrons initially ionized from oxygen molecules and subsequently captured by neutral oxygen molecules provide the long-lived reservoir of low affinity allowing this process. A Bessel-like nanosecond-duration laser beam can easily detach these weakly bound electrons and multiply them in an avalanche process. We have experimentally demonstrated such revivals over a channel length of 50 cm by focusing the nanosecond laser with an axicon.

  19. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  20. Jarrow, Electronic Thesis, and Dissertation Software

    Directory of Open Access Journals (Sweden)

    James MacDonald

    2012-10-01

    Full Text Available Collecting and disseminating theses and dissertations electronically is not a new concept. Tools and platforms have emerged to handle various components of the submission and distribution process. However, there is not a tool that handles the entirety of the process from the moment the student begins work on their thesis to the dissemination of the final thesis. The authors have created such a tool which they have called Jarrow. After reviewing available open-source software for theses submission and open-source institutional repository software this paper discusses why and how Jarrow was created and how it works. Jarrow can be downloaded and the project followed at http://code.library.unbc.ca.

  1. Towards a doctoral thesis through published works.

    Science.gov (United States)

    Breimer, L H; Mikhailidis, D P

    1993-01-01

    Doctoral theses submitted in medical schools under a system dependent on publications (Sweden) and one which was not (UK) were compared. A subset consisting of UK theses containing papers (about 1/3 of all UK theses) was used. The publication-based theses gave candidates a significantly higher (P thesis despite no requirement of publication. A publication-based doctorate should be introduced on trial in parallel with the existing systems to ensure efficiency and international comparability.

  2. The thesis of stages fourteen years later

    Science.gov (United States)

    Beeby, C. E.

    1980-12-01

    The author indicates the changes and additions he would make to his book ` The Quality of Education in Developing Countries' (1966) if he were re-writing it in 1980. He would make clearer that his primary interest is in a continuum of change, the process of growth of a school system, and that the `stages' are only a convenient non-mathematical artifact to make the thesis more useful to administrators and planners. In the light of more recent developments and experiences, he now gives new stress to the pluralism of objectives at the stage of Meaning, and discusses the political, social, cultural and financial reasons why a country may choose not to take the difficult step from stage III to stage IV. Recent forms of alternative education, particularly those embodying plans for lifelong education, offer some hope of bypassing his thesis of stages. More consideration is given to constraints other than that of teacher qualification, though the difficulty of changing the skills, habits, attitudes and purposes in the teaching profession remain the chief obstacle to qualitative growth. Particular attention is paid to `crash' programmes where processes that are, by their very nature, successive are compressed into simultaneous or almost simultaneous ones. Some implications of the thesis of stages for teacher training are briefly dealt with. Regarding the application of the thesis to secondary education, he maintains that a better model of growth would be one based on the capacity of secondary education to respond to the changing economic and social demands of the community. Finally, he suggests three methods of testing his hypotheses and pleads that more consideration be given to building up a body of educational, theory based on the experience of developing countries over the past three decades.

  3. Action learning in undergraduate engineering thesis supervision

    OpenAIRE

    Stappenbelt, Brad

    2017-01-01

    In the present action learning implementation, twelve action learning sets were conducted over eight years. The action learning sets consisted of students involved in undergraduate engineering research thesis work. The concurrent study accompanying this initiative investigated the influence of the action learning environment on student approaches to learning and any accompanying academic, learning and personal benefits realised. The influence of preferred learning styles on set function and s...

  4. EVALUATING THE ASSESSMENT OF UNDERGRADUATE THESIS EXAMINATION

    Directory of Open Access Journals (Sweden)

    Adip Arifin

    2017-12-01

    Full Text Available Thesis examination is one of the crucial phases for students in undergraduate level. During the examination, they are required to perform best to get the maximum score which commonly is equal to six credits. Looking at the big portion of credit, the examination highly determines the student‘s GPA at last. In order to get the accurate and fair score, the appropriate assessment must be implemented by the board of examiners. The form of assessment may vary from one institution to another. This paper is aimed at discussing as well as evaluating the assessment of undergraduate thesis examination at STKIP PGRI Ponorogo, East Java, Indonesia. The evaluation was based on the principles of good assessment adapted from Brown (2003 comprised of practicality, reliability, validity, and authenticity. Based on the result of evaluation, the form of assessment on undergraduate thesis examination administered at STKIP PGRI Ponorogo hasn‘t fully fulfilled the principles of good assessment. The findings also revealed that some assessment indicators need to be improved, such as the formulation of statement, the number of assessment item, and the technical procedure on how to administer the assessment.

  5. THE INFLUENCE OF NANOSECOND ELECTROMAGNETIC PULSES TO OBTAIN TIN AND THE PROPERTIES OF ITS ALLOYS

    Directory of Open Access Journals (Sweden)

    V. G. Komkov

    2012-01-01

    Full Text Available Experimentally found that the effect of nanosecond electromagnetic pulses to melt the charge, while the carbon thermal recovery of the tin ore, accelerates the formation of the metallic phase.

  6. Fiber Coupled Pulse Shaper for Sub-Nanosecond Pulse Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II effort will develop an all-diode laser and fiber optic based, single frequency, sub-nanosecond pulsed laser source...

  7. Comparison of Heat Affected Zone due to nanosecond and femtosecond laser pulses using Transmission Electronic Microscopy

    OpenAIRE

    Le Harzic, Ronan; Huot, Nicolas; Audouard, Eric; Jonin, Christian; Laporte, Pierre; Valette, Stéphane; Fraczkievic, Anna; Fortunier, Roland

    2002-01-01

    International audience; This letter presents a method aimed at quantifying the dimensions of the heat-affected zone ~HAZ!, produced during nanosecond and femtosecond laser–matter interactions. According to this method, 0.1 mm thick Al samples were microdrilled and observed by a transmission electronic microscopy technique. The holes were produced at laser fluences above the ablation threshold in both nanosecond and femtosecond regimes ~i.e., 5 and 2 J/cm2, respectively!. The grain size in the...

  8. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD 50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  9. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.

    Science.gov (United States)

    Stacey, M; Fox, P; Buescher, S; Kolb, J

    2011-10-01

    We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Y Al-Hadeethi

    Full Text Available Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM. Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX. The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  11. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Science.gov (United States)

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  12. Gene electrotransfer enhanced by nanosecond pulsed electric fields

    Directory of Open Access Journals (Sweden)

    Siqi Guo

    2014-01-01

    Full Text Available The impact of nanosecond pulsed electric fields (nsPEFs on gene electrotransfer has not been clearly demonstrated in previous studies. This study was conducted to evaluate the influence of nsPEFs on the delivery of plasmids encoding luciferase or green fluorescent protein and subsequent expression in HACAT keratinocyte cells. Delivery was performed using millisecond electric pulses (msEPs with or without nsPEFs. In contrast to reports in the literature, we discovered that gene expression was significantly increased up to 40-fold by applying nsPEFs to cells first followed by one msEP but not in the opposite order. We demonstrated that the effect of nsPEFs on gene transfection was time restricted. The enhancement of gene expression occurred by applying one msEP immediately after nsPEFs and reached the maximum at posttreatment 5 minutes, slightly decreased at 15 minutes and had a residual effect at 1 hour. It appears that nsPEFs play a role as an amplifier without changing the trend of gene expression kinetics due to msEPs. The effect of nsPEFs on cell viability is also dependent on the specific pulse parameters. We also determined that both calcium independent and dependent mechanisms are involved in nsPEF effects on gene electrotransfer.

  13. Parametric studies on the nanosecond laser micromachining of the materials

    Science.gov (United States)

    Tański, M.; Mizeraczyk, J.

    2016-12-01

    In this paper the results of an experimental studies on nanosecond laser micromachining of selected materials are presented. Tested materials were thin plates made of aluminium, silicon, stainless steel (AISI 304) and copper. Micromachining of those materials was carried out using a solid state laser with second harmonic generation λ = 532 nm and a pulse width of τ = 45 ns. The effect of laser drilling using single laser pulse and a burst of laser pulses, as well as laser cutting was studied. The influence of laser fluence on the diameter and morphology of a post ablation holes drilled with a single laser pulse was investigated. The ablation fluence threshold (Fth) of tested materials was experimentally determined. Also the drilling rate (average depth per single laser pulse) of holes drilled with a burst of laser pulses was determined for all tested materials. The studies of laser cutting process revealed that a groove depth increases with increasing average laser power and decreasing cutting speed. It was also found that depth of the laser cut grooves is a linear function of number of repetition of a cut. The quantitative influence of those parameters on the groove depth was investigated.

  14. Generation of sub-nanosecond pulses using peaking capacitor

    Directory of Open Access Journals (Sweden)

    Madhu Palati

    2017-05-01

    Full Text Available This paper discusses the analysis, simulation and design of a peaking circuit comprising of a peaking capacitor, spark gap and load circuit. The peaking circuit is used along with a 200 kV, 20 J Marx generator for generation of sub-nanosecond pulses. A high pressure chamber to accommodate the peaking circuit was designed and fabricated and tested upto a pressure of 70 kg/cm2. Total estimated values of the capacitance and inductance of the peaking circuit are 10 pF and 72 nH respectively. At full charging voltage, the peaking capacitor gets charged to a peak voltage of 394.6 kV in 15 ns. The output switch is closed at this instant. From Analysis & Simulation, the output current & rise time (with a matched load of 85 Ω are 2.53 kA and 0.62 ns.

  15. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    Science.gov (United States)

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  16. What Examiners Do: What Thesis Students Should Know

    Science.gov (United States)

    Golding, Clinton; Sharmini, Sharon; Lazarovitch, Ayelet

    2014-01-01

    Although many articles have been written about thesis assessment, none provide a comprehensive, general picture of what examiners do as they assess a thesis. To synthesise this diverse literature, we reviewed 30 articles, triangulated their conclusions and identified 11 examiner practices. Thesis examiners tend to be broadly consistent in their…

  17. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-06

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  18. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  19. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator.

    Science.gov (United States)

    Lassen, Mikael; Lamard, Laurent; Feng, Yuyang; Peremans, Andre; Petersen, Jan C

    2016-09-01

    A trace-gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite-element simulations and is experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator. The sensor is used for spectroscopic measurements on methane in the 3.1-3.5 μm wavelength region with a resolution bandwidth of 1  cm-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at the optimum integration time for the QEPAS sensor is 32 ppbv at 190 s, and that the background noise is due solely to the thermal noise of the QTF.

  20. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  1. The Lenoir thesis revisited: Blumenbach and Kant.

    Science.gov (United States)

    Zammito, John H

    2012-03-01

    Timothy Lenoir launched the historical study of German life science at the end of the 18th century with the claim that J. F. Blumenbach's approach was shaped by his reception of the philosophy of Immanuel Kant: a 'teleomechanism' that adopted a strictly 'regulative' approach to the character of organisms. It now appears that Lenoir was wrong about Blumenbach's understanding of Kant, for Blumenbach's Bildungstrieb entailed an actual empirical claim. Moreover, he had worked out the decisive contours of his theory and he had exerted his maximal influence on the so-called 'Göttingen School' before 1795, when Lenoir posits the main influence of Kant's thought took hold. This has crucial significance for the historical reconstruction of the German life sciences in the period. The Lenoir thesis can no longer serve as the point of departure for that reconstruction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Thermal Signature Identification System (TheSIS)

    Science.gov (United States)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  3. The metallic thread in a patchwork thesis

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Emily A. [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    This thesis contains research that is being prepared for publication. Chapter 2 presents research on water and THF solvated macrocyclic Rh and Co compounds and the effects of different axial ligands (NO2, NO, Cl, CH3) on their optical activity. Chapter 3 involves the study of gas-phase Nb mono and dications with CO and CO2. Chapter 4 is a study of reactions of CO and CO2 with Ta mono and dications. Chapter 5 is a study on virtual orbitals, their usefulness, the use of basis sets in modeling them, and the inclusion of transition metals into the QUasi Atomic Minimal Basis (QUAMBO) method.68-72 Chapter 6 presents the conclusions drawn from the work presented in this dissertation.

  4. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  5. Acquisition of a Nanosecond Laser Flash Photolysis Spectrometer to Enhance Understanding of Photochemistry and Reaction Kinetics in Undergraduate Research/Curriculum

    Science.gov (United States)

    2016-03-31

    Most often these reactions are reported from the perspective of the electron donors; there is a gap in understanding of these reactions from the...hundred nanoseconds at 400 nm and a slow decay absorption partly attributed to •NBS (Scheme 1). Scheme 1 10 The radical anion of 1,4-DNB...showed peaks in the near IR region at 870 and 910 nm attributed to the radical anion of 1,4-DNB (1,4-DNB -• ) . The first order rate constants obtained

  6. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    Science.gov (United States)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  7. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  8. Traveling wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  9. Travelling-wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  10. Imaging of the ejection process of nanosecond laser-induced forward transfer of gold

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Sun, Chao; Huis in 't Veld, Bert; Lohse, Detlef

    2014-01-01

    Laser-induced forward transfer is a direct-write process suitable for high precision 3D printing of several materials. However, the driving forces related to the ejection mechanism of the donor ma-terial are still under debate. So far, most of the experimental studies of nanosecond LIFT, are based

  11. Low-dielectric layer increases nanosecond electric discharges in distilled water

    OpenAIRE

    Ahmad Hamdan; Min Suk Cha

    2016-01-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge i...

  12. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    Science.gov (United States)

    2013-01-01

    employed to compute the electric potential: ∇2φ = −ζ/0 (10) where 0 is the permittivity of free space. The electric field was found from E = −∇φ. C...Density Measurements in Air and Air/ Fuel Nanosecond Pulse Discharges by Laser Induced Fluorescence,” Journal of Physics D: Applied Physics, Vol. 42

  13. A nanosecond high voltage pulse device for accelerator time analytical system

    International Nuclear Information System (INIS)

    Lou Binqiao; Ding Furong; Xue Zhihua; Wang Xuemei; Shen Dingyu

    2002-01-01

    A nanosecond high voltage pulse device has been designed. The pulse rise time is 10 ns. The pulse voltage reached 16000 V. This device has been used to accelerator time analytical system, its resolution time is less than 0.8%

  14. An Investigation of Generic Structures of Pakistani Doctoral Thesis Acknowledgements

    Science.gov (United States)

    Rofess, Sakander; Mahmood, Muhammad Asim

    2015-01-01

    This paper investigates Pakistani doctoral thesis acknowledgements from genre analysis perspective. A corpus of 235 PhD thesis acknowledgements written in English was taken from Pakistani doctoral theses collected from eight different disciplines. HEC Research Repository of Pakistan was used as a data sources. The theses written by Pakistani…

  15. What Works for Doctoral Students in Completing Their Thesis?

    Science.gov (United States)

    Lindsay, Siân

    2015-01-01

    Writing a thesis is one of the most challenging activities that a doctoral student must undertake and can represent a barrier to timely completion. This is relevant in light of current and widespread concerns regarding doctoral completion rates. This study explored thesis writing approaches of students post or near Ph.D. completion through…

  16. Collaborating for Success: Team Teaching the Engineering Technical Thesis

    Science.gov (United States)

    Keating, Terrence; Long, Mike

    2012-01-01

    This paper will examine the collaborative teaching process undertaken at College of the North Atlantic-Qatar (CNA-Q) by Engineering and the Communication faculties to improve the overall quality of engineering students' capstone projects known as the Technical Thesis. The Technical Thesis is divided into two separate components: a proposal stage…

  17. Linguistic Error Analysis on Students' Thesis Proposals

    Science.gov (United States)

    Pescante-Malimas, Mary Ann; Samson, Sonrisa C.

    2017-01-01

    This study identified and analyzed the common linguistic errors encountered by Linguistics, Literature, and Advertising Arts majors in their Thesis Proposal classes in the First Semester 2016-2017. The data were the drafts of the thesis proposals of the students from the three different programs. A total of 32 manuscripts were analyzed which was…

  18. Bridging Knowledge: A Collective Undergraduate Thesis Development Approach

    Science.gov (United States)

    Holdsworth, Jason K.; Arun, Özgür

    2017-01-01

    While there are various approaches to gerontological and geriatrics (and social sciences) education globally, a component commonly included in undergraduate education is a final thesis project. In Turkey, the Department of Gerontology at Akdeniz University has undertaken a unique approach to thesis development that values and draws on accessing…

  19. Honors Thesis Preparation: Evidence of the Benefits of Structured Curricula

    Science.gov (United States)

    Engel, Steven

    2016-01-01

    A recent study of honors curricula across the nation indicates that 75.6% of honors programs and colleges at four-year institutions have thesis or capstone requirements (Savage and Cognard-Black). In addition to institutions with thesis requirements, many more also have the option for students to complete theses. For example, an earlier study…

  20. Text Analysis of Chemistry Thesis and Dissertation Titles

    Science.gov (United States)

    Scalfani, Vincent F.

    2017-01-01

    Programmatic text analysis can be used to understand patterns and reveal trends in data that would otherwise be difficult or impossible to uncover with manual coding methods. This work uses programmatic text analysis, specifically term frequency counts, to study nearly 10,000 chemistry thesis and dissertation titles from 1911-2015. The thesis and…

  1. Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Carter, J Chance; Colston, Bill W; Angel, S Michael

    2004-09-20

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

  2. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  3. How to create a journal article from a thesis.

    Science.gov (United States)

    Ahern, Kathy

    2012-01-01

    To identify strategies to assist in the publication of research arising from a postgraduate thesis or dissertation. There are many benefits to publishing a journal article from a completed thesis, including contributing knowledge to the writer's chosen field, career enhancement and personal satisfaction. However, there are also numerous obstacles for the newly graduated student in crafting an article fit for a specialist publication from a thesis. The author conducted a search of the title, abstract and keywords of the Cinahl, Scopus and Proquest databases, from 1990 to 2010: The author searched for the words: 'journal article' or 'manuscript; 'thesis' or 'dissertation'. The author excluded papers if: they pertained to allocation of authorship to someone other than the academic adviser; related to undergraduate issues rather than graduate dissertations; were discussions of the merits of a PhD by 'publication' instead of 'by thesis'; were not published in a peer-reviewed journal; or were not in English. The relationship between adviser and student changes as the student becomes a graduate, and new roles for the student and adviser need to be negotiated. Students need to realise that writing a paper from a thesis is usually going to be more difficult than they anticipate, but the application of strategies discussed in this paper should make the task manageable. Furthermore, universities might wish to consider alternatives in which published papers emerge before the examination of a thesis, such as requiring students to write a paper as part of their coursework.

  4. Attitudes on Conducting Thesis Research in a Developing Country.

    Science.gov (United States)

    Mason, S. C.; And Others

    1987-01-01

    Reports on a survey conducted to study attitudes toward agronomy graduate students conducting thesis research in developing countries. Compares perceptions of executive officers of international program offices and departments of agronomy, and major professors. (TW)

  5. Dynamics in protein powders on the nanosecond-picosecond time scale are dominated by localized motions.

    Science.gov (United States)

    Nickels, Jonathan D; García Sakai, Victoria; Sokolov, Alexei P

    2013-10-03

    We present analysis of nanosecond-picosecond dynamics of Green Fluorescence Protein (GFP) using neutron scattering data obtained on three spectrometers. GFP has a β-barrel structure that differs significantly from the structure of other globular proteins and is thought to result in a more rigid local environment. Despite this difference, our analysis reveals that the dynamics of GFP are similar to dynamics of other globular proteins such as lysozyme and myoglobin. We suggest that the same general concept of protein dynamics may be applicable to all these proteins. The dynamics of dry protein are dominated by methyl group rotations, while hydration facilitates localized diffusion-like motions in the protein. The latter has an extremely broad relaxation spectrum. The nanosecond-picosecond dynamics of both dry and hydrated GFP are localized to distances of ∼1-3.5 Å, in contrast to the longer range diffusion of hydration water.

  6. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Tarasenko, V F; Baksht, E H; Kostyrya, I D; Lomaev, M I; Rybka, D V

    2008-01-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF 6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    International Nuclear Information System (INIS)

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-01-01

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated

  9. Radial Distribution of the Nanosecond Dielectric Barrier Discharge Current in Atmospheric-Pressure Air

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.

  10. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Science.gov (United States)

    Huege, Tim

    2017-03-01

    Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this "beacon correction" using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  11. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Directory of Open Access Journals (Sweden)

    Huege Tim

    2017-01-01

    Full Text Available Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this “beacon correction” using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  12. [The importance of thesis in specialization courses in Medicine].

    Science.gov (United States)

    Ramiro-H, Manuel; Cruz-A, Enrique

    2016-01-01

    The development of a thesis goes far beyond a mere compliance with the methodological requirements and evidence that students have sufficient knowledge that the profession demands. A thesis is usually the first academic and research work that students publish, it is also the result of commitment and dedication to the field of medicine in which they will be developing, which reflects motivations and interests, as well as their reflection to a specific problem.

  13. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  14. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses.

    Science.gov (United States)

    Scaffidi, Jon; Pender, Jack; Pearman, William; Goode, Scott R; Colston, Bill W; Carter, J Chance; Angel, S Michael

    2003-10-20

    Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

  15. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

    OpenAIRE

    Muratori, Claudia; Pakhomov, Andrei G.; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O. N.

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-d...

  16. Luminous phase of nanosecond discharge in deionized water: morphology, propagation velocity and optical emission.

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pongrác, Branislav; Babický, Václav; Člupek, Martin; Lukeš, Petr

    2017-01-01

    Roč. 26, č. 7 (2017), č. článku 07LT01. ISSN 0963-0252 R&D Projects: GA ČR(CZ) GA15-12987S Institutional support: RVO:61389021 Keywords : water * nanosecond discharge * emission spectra * breakdown Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.302, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6595/aa758d

  17. Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation

    KAUST Repository

    Paeng, Dongwoo

    2015-03-27

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Low-cost Cu flexible transparent conducting electrodes (FTCEs) are fabricated by facile nanosecond laser ablation. The fabricated Cu FTCEs show excellent opto-electrical properties (transmittance: 83%, sheet resistance: 17.48 Ω sq-1) with outstanding mechanical durability. Successful demonstration of a touch-screen panel confirms the potential applicability of Cu FTCEs to the flexible optoelectronic devices.

  18. Fundamental Physics and Engineering of Nanosecond-Pulsed Nonequilibrium Microplasma in Liquid Phase without Bubbles

    Science.gov (United States)

    2013-01-04

    support avalanche formation is on the order of microseconds for a 40kV pulse of rise time 20ns [6, 11]. Discharges which form in to therefore...generated by nanosecond pulse power supply Synchronization of the discharge with the camera shutter was controlled using the camera’s internal...Transmission line analysis was used to determine the voltage and current behaviour of the discharge based on line delays and pulse reflections. 4

  19. In Vivo Targeted Gene Transfer by Direct Irradiation with Nanosecond Pulsed Laser

    Science.gov (United States)

    Ogura, Makoto; Sato, Shunichi; Ashida, Hiroshi; Obara, Minoru

    2004-10-01

    We demonstrated in vivo targeted gene transfer to rat skin by direct irradiation with nanosecond laser pulses without major side effects. Expressions of enhanced green fluorescent protein (EGFP) were observed only in the area irradiated with laser pulses; in the skin, epidermal cells were selectively transfected. Unlike other physical methods, this method enables noncontact gene transfer. Moreover, the laser intensity required in this method is as low as 20 MW/cm2, and thus fiber-based beam delivery is possible.

  20. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses

    Science.gov (United States)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald

    2006-05-01

    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  1. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    Science.gov (United States)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  2. Graduate Students’ Satisfaction on the Thesis Advising Practices

    Directory of Open Access Journals (Sweden)

    Susan S. Janer

    2017-02-01

    Full Text Available This descriptive action research focused on the satisfaction of the students on the advising practices of their thesis advisers. The 28 respondents of the study were purposively and incidentally chosen. The findings, derived from the use of unstructured interview and survey questionnaire, revealed that most of the students are satisfied with their thesis advisers in terms of their knowledge of student’s research, professional characteristics and qualities, and personality factors as revealed by the overall weighted mean values of 2.68, 2.72, and 2.72 respectively. The students along thesis advising observed various practices of the faculty members. Students chose their advisers based on their availability, field of specialization, and coaching and mentoring abilities. Based on the findings, this study recommends that the faculty members be given more training to further enhance their abilities in thesis advising. The college may also tap other research-reputable faculty members to become research advisers. An orientation activity among the students may also be conducted to assist them in choosing the faculty member with an appropriate research reputation and also to brief them on the roles they will play as thesis advisers. The need to revisit the policies of the School of Graduate Studies (SGS is also highly recommended. Hence, this study proposes some amendments on the existing guidelines of the department along thesis advising.

  3. Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields.

    Science.gov (United States)

    Merla, C; Apollonio, F; Paffi, A; Marino, C; Vernier, P T; Liberti, M

    2017-07-01

    To explore the promising therapeutic applications of short nanosecond electric pulses, in vitro and in vivo experiments are highly required. In this paper, an exposure system based on monopole patch antenna is reported to perform in vivo experiments on newborn mice with both monopolar and bipolar nanosecond signals. Analytical design and numerical simulations of the antenna in air were carried out as well as experimental characterizations in term of scattering parameter (S 11 ) and spatial electric field distribution. Numerical dosimetry of the setup with four newborn mice properly placed in proximity of the antenna patch was carried out, exploiting a matching technique to decrease the reflections due to dielectric discontinuities (i.e., from air to mouse tissues). Such technique consists in the use of a matching dielectric box with dielectric permittivity similar to those of the mice. The average computed electric field inside single mice was homogeneous (better than 68 %) with an efficiency higher than 20 V m -1  V -1 for the four exposed mice. These results demonstrate the possibility of a multiple (four) exposure of small animals to short nanosecond pulses (both monopolar and bipolar) in a controlled and efficient way.

  4. Numerical Simulation of a Nanosecond-Pulse Discharge for High-Speed Flow Control

    Science.gov (United States)

    Poggie, Jonathan; Adamovich, Igor

    2012-10-01

    Numerical calculations were carried out to examine the physics of the operation of a nanosecond-pulse, single dielectric barrier discharge in a configuration with planar symmetry. This simplified configuration was chosen as a vehicle to develop a physics based nanosecond discharge model, including realistic air plasma chemistry and compressible bulk gas flow. First, a reduced plasma kinetic model was developed by carrying out a sensitivity analysis of zero-dimensional plasma computations with an extended chemical kinetic model. Transient, one- dimensional discharge computations were then carried out using the reduced kinetic model, incorporating a drift-diffusion formulation for each species, a self-consistent computation of the electric potential using the Poisson equation, and a mass-averaged gas dynamic formulation for the bulk gas motion. Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on bow shock control with a nanosecond discharge in a Mach 5 cylinder flow. The computational results qualitatively reproduce many of the features observed in the experiments, including the rapid thermalization of the input electrical energy and the consequent formation of a weak shock wave. At breakdown, input electrical energy is rapidly transformed (over roughly 1 ns) into ionization products, dissociation products, and electronically excited particles, with subsequent thermalization over a relatively longer time-scale (roughly 10 μs).

  5. Operation of a load current multiplier on a nanosecond mega-ampere pulse forming line generator

    Directory of Open Access Journals (Sweden)

    A. S. Chuvatin

    2010-01-01

    Full Text Available We investigate the operation of a load current multiplier (LCM on a pulse-forming-line nanosecond pulse-power generator. Potential benefits of using the LCM technique on such generators are studied analytically for a simplified case. A concrete LCM design on the Zebra accelerator (1.9 Ohm, ∼1  MA, 100 ns is described. This design is demonstrated experimentally with high-voltage power pulses having a rise time of dozens of nanoseconds. Higher currents and magnetic energies were observed in constant-inductance solid-state loads when a better generator-to-load energy coupling was achieved. The load current on Zebra was increased from the nominal 0.8–0.9 MA up to about 1.6 MA. This result was obtained without modifying the generator energetics or architecture and it is in good agreement with the presented numerical simulations. Validation of the LCM technique at a nanosecond time scale is of importance for the high-energy-density physics research.

  6. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  7. Overview of the application of nanosecond electron beams for radiochemical sterilization

    International Nuclear Information System (INIS)

    Kotov, Y.A.; Sokovnin, S.Y.

    2000-01-01

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys), and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS

  8. Overview of the application of nanosecond electron beams for radiochemical sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, Y.A.; Sokovnin, S.Y.

    2000-02-01

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys), and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS.

  9. Nanosecond UV lasers stimulate transient Ca2+elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  10. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A

    2016-03-16

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  11. Studies of nanosecond pulsed power for modifications of biomaterials and nanomaterials (SWCNT)

    Science.gov (United States)

    Chen, Meng-Tse

    This work investigates the modification of biological materials through the applications of modern nanosecond pulsed power, along with other forms of nanotechnologies. The work was initially envisaged as a study of the effect of intense nanosecond pulsed electric fields on cancer cells. As the work progressed, the studies suggested incorporation of additional technologies, in particular, cold plasmas, and carbon nanotubes. The reasons for these are discussed below, however, they were largely suggested by the systems that we were studying, and resulted in new and potentially important medical therapies. Using nanosecond cold plasmas powered with nanosecond pulses, collaboration with endodontists and biofilm experts demonstrated a killing effect on biofilms deep within root canals, suggesting a fundamentally new approach to an ongoing problem of root canal sterilization. This work derived from the application of nanosecond pulsed power, resulting in effective biofilm disinfection, without excessive heating, and is being investigated for additional dental and other medical applications. In the second area, collaboration with medical and nanotube experts, studies of gliomamultiforme (GBM) led to the incorporation of functionalized carbon nanotubes. Single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates demonstrated that the entry mechanism of the single-walled carbon nanotubes (SWCNTs) was through an energy-dependent endocytotic pathway. Finally, a monotonic pH sensitivity of the intracellular fluorescence emission of SWCNT-FC conjugates in human ovarian cancer cells suggests these conjugates may serve as intracellular pH sensors. Light-stimulated intracellular hydrolysis of the amide linkage and localized intracellular pH changes are proposed as mechanisms. The use of SWCNTs for cancer therapy of gliomas, resulting in hyperthermia effect after 808 nm infrared radiations, absorbed specifically by SWCNTs but not by biological tissue. Heat was only

  12. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  13. Importance and benefits of the doctoral thesis for medical graduates

    Directory of Open Access Journals (Sweden)

    Giesler, Marianne

    2016-02-01

    Full Text Available Introduction: The majority of medical graduates in Germany complete a doctorate, even though a doctoral degree is not necessary for the practice of medicine. So far, little is known about doctoral candidates’ view on the individual benefit a doctoral thesis has for them. Consequently, this is the subject of the present investigation.Method: Data from surveys with graduates of the five medical faculties of Baden-Württemberg from the graduation years 2007/2008 (N=514 and 2010/2011 (N=598 were analysed.Results: One and a half years after graduating 53% of those interviewed had completed their doctorate. When asked about their motivation for writing a doctoral thesis, participants answered most frequently “a doctorate is usual” (85% and “improvement of job opportunities” (75%, 36% said that an academic career has been their primary motive. Less than 10% responded that they used their doctoral thesis as a means to apply for a job. The proportion of graduates working in health care is equally large among those who have completed a thesis and those who have not. Graduates who pursued a thesis due to scientific interest are also currently more interested in an academic career and recognise more opportunities for research. An implicit benefit of a medical thesis emerged with regard to the self-assessment of scientific competences as those who completed a doctorate rated their scientific competencies higher than those who have not.Discussion: Although for the majority of physicians research interest is not the primary motivation for completing a doctorate, they might nevertheless achieve some academic competencies. For graduates pursuing an academic career the benefit of completing a medical thesis is more obvious.

  14. Importance and benefits of the doctoral thesis for medical graduates.

    Science.gov (United States)

    Giesler, Marianne; Boeker, Martin; Fabry, Götz; Biller, Silke

    2016-01-01

    The majority of medical graduates in Germany complete a doctorate, even though a doctoral degree is not necessary for the practice of medicine. So far, little is known about doctoral candidates' view on the individual benefit a doctoral thesis has for them. Consequently, this is the subject of the present investigation. Data from surveys with graduates of the five medical faculties of Baden-Württemberg from the graduation years 2007/2008 (N=514) and 2010/2011 (N=598) were analysed. One and a half years after graduating 53% of those interviewed had completed their doctorate. When asked about their motivation for writing a doctoral thesis, participants answered most frequently "a doctorate is usual" (85%) and "improvement of job opportunities" (75%), 36% said that an academic career has been their primary motive. Less than 10% responded that they used their doctoral thesis as a means to apply for a job. The proportion of graduates working in health care is equally large among those who have completed a thesis and those who have not. Graduates who pursued a thesis due to scientific interest are also currently more interested in an academic career and recognise more opportunities for research. An implicit benefit of a medical thesis emerged with regard to the self-assessment of scientific competences as those who completed a doctorate rated their scientific competencies higher than those who have not. Although for the majority of physicians research interest is not the primary motivation for completing a doctorate, they might nevertheless achieve some academic competencies. For graduates pursuing an academic career the benefit of completing a medical thesis is more obvious.

  15. [Analysis of master degree thesis of otolaryngology head and neck surgery in Xinjiang].

    Science.gov (United States)

    Ayiheng, Qukuerhan; Niliapaer, Alimu; Yalikun, Yasheng

    2010-12-01

    To understand the basic situation and development of knowledge structure and ability of master degree of Otolaryngology Head and Neck Surgery in Xinjiang region in order to provide reference to further improve the quality of postgraduate students. Fourty-six papers of Otolaryngology master degree thesis were reviewed at randomly in terms of types, subject selection ranges as well as statistical methods during 1998-2009 in Xinjiang region in order to analyze and explore its advantages and characteristics and suggest a solution for its disadvantages. In 46 degree thesis, nine of them are scientific dissertations accounting for 19.57%, 37 are clinical professional degree thesis, accounting for 80.43%. Five are Experimental research papers, 30 are clinical research papers, 10 are clinical and experimental research papers, 1 of them is experimental epidemiology research paper; in this study, the kinds of diseases including every subject of ENT, various statistical methods are involved; references are 37.46 in average, 19.55 of them are foreign literatures references in nearly 5 years are 13.57; four ethnic groups are exist in postgraduate students with high teaching professional level of tutors. The clinical research should be focused in order to further research on ENT common diseases, the application of advanced research methods, the full application of the latest literature, tutors with high-level, training of students of various nationalities, basic research needs to be innovative and should be focus the subject characteristics, to avoid excessive duplication of research.

  16. Rethinking neuroethics in the light of the extended mind thesis.

    Science.gov (United States)

    Levy, Neil

    2007-09-01

    The extended mind thesis is the claim that mental states extend beyond the skulls of the agents whose states they are. This seemingly obscure and bizarre claim has far-reaching implications for neuroethics, I argue. In the first half of this article, I sketch the extended mind thesis and defend it against criticisms. In the second half, I turn to its neuroethical implications. I argue that the extended mind thesis entails the falsity of the claim that interventions into the brain are especially problematic just because they are internal interventions, but that many objections to such interventions rely, at least in part, on this claim. Further, I argue that the thesis alters the focus of neuroethics, away from the question of whether we ought to allow interventions into the mind, and toward the question of which interventions we ought to allow and under what conditions. The extended mind thesis dramatically expands the scope of neuroethics: because interventions into the environment of agents can count as interventions into their minds, decisions concerning such interventions become questions for neuroethics.

  17. The validation of the Supervision of Thesis Questionnaire (STQ).

    Science.gov (United States)

    Henricson, Maria; Fridlund, Bengt; Mårtensson, Jan; Hedberg, Berith

    2018-02-17

    The supervision process is characterized by differences between the supervisors' and the students' expectations before the start of writing a bachelor thesis as well as after its completion. A review of the literature did not reveal any scientifically tested questionnaire for evaluating nursing students' expectations of the supervision process when writing a bachelor thesis. The aim of the study was to determine the construct validity and internal consistency reliability of a questionnaire for measuring nursing students' expectations of the bachelor thesis supervision process. The study had a developmental and methodological design carried out in four steps including construct validity and internal consistency reliability statistical procedures: construction of the items, assessment of face validity, data collection and data analysis. This study was conducted at a university in southern Sweden, where students on the "Nursing student thesis, 15 ECTS" course were consecutively selected for participation. Of the 512 questionnaires distributed, 327 were returned, a response rate of 64%. Five factors with a total variance of 74% and good communalities, ≥0.64, were extracted from the 10-item STQ. The internal consistency of the 10 items was 0.68. The five factors were labelled: The nature of the supervision process, The supervisor's role as a coach, The students' progression to self-support, The interaction between students and supervisor and supervisor competence. A didactic, useful and secure questionnaire measuring nursing students' expectations of the bachelor thesis supervision process based on three main forms of supervision was created. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, David [Univ. of California, Davis, CA (United States)

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  19. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  20. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  1. AN ASSESSMENT OF SPATIAL SCALE AND THEMATIC FOCUS OF PUBLICATIONS AND DIPLOMA THESIS OF SLOVAKIAN GEOGRAPHICAL INSTITUTES

    Directory of Open Access Journals (Sweden)

    Slavomír BUCHER

    2013-12-01

    Full Text Available The article explores the formation of regional identity with regard to scale and topic in works and final thesis of Slovak geography students from selected geographic institutions and departments. Taking into account papers and diploma thesis of students, we tried to discover how the authors perceive and form the image of a region of the theme and spatial scale of their works. If geographers in their publications and articles deal with specific topics of their subject research area - physical geography, settlement systems, composed of urban centres, economic activities in the region, or spatial intra-regional relations, thus they are forming the space material base, indispensable for the development of regional consciousness and identity itself.

  2. Deterring weapons of mass destruction terrorism. Master`s thesis

    Energy Technology Data Exchange (ETDEWEB)

    LeHardy, F.A.

    1997-12-01

    This thesis examines terrorist acts involving the use of weapons of mass destruction (WMD) against unsuspecting civilians by the Aum Shinrikyo and Rajneesh cults. The proliferation of WMD (i.e., nuclear, chemical, and biological weapons) has created a concern that terrorists might use WMD. Despite obvious signs, these groups were not identified as terrorists until after they committed terrorist attacks. This thesis identifies common characteristics of terrorists that have used WMD in the past and generates indicators of non-state actors that might commit WMD terrorism in the future.

  3. A functional programming interpreter. M.S. Thesis

    Science.gov (United States)

    Robison, Arch Douglas

    1987-01-01

    Functional Programming (FP) sup BAC87 is an alternative to conventional imperative programming languages. This thesis describes an FP interpreter implementation. Superficially, FP appears to be a simple, but very inefficient language. Its simplicity, however, allows it to be interpreted quickly. Much of the inefficiency can be removed by simple interpreter techniques. This thesis describes the Illinois Functional Programming (IFP) interpreter, an interactive functional programming implementation which runs under both MS-DOS and UNIX. The IFP interpreter allows functions to be created, executed, and debugged in an environment very similar to UNIX. IFP's speed is competitive with other interpreted languages such as BASIC.

  4. Supervisors' perspective on medical thesis projects and dropout rates: survey among thesis supervisors at a large German university hospital.

    Science.gov (United States)

    Can, Elif; Richter, Felicitas; Valchanova, Ralitsa; Dewey, Marc

    2016-10-14

    To identify underlying causes for failure of medical thesis projects and the constantly high drop-out rate in Germany from the supervisors' perspective and to compare the results with the students' perspective. Cross-sectional survey. Online questionnaire for survey of medical thesis supervisors among the staff of Charité-Universitätsmedizin Berlin, Germany. Published, earlier longitudinal survey among students for comparison. 1069 thesis supervisors participated. Data are presented using descriptive statistics, and the χ 2 test served to compare the results among supervisors with the earlier data from the longitudinal survey of doctoral students. Not applicable. This survey is an observational study. Of 3653 potential participants, 1069 (29.3%) supervising 3744 doctoral candidates participated in the study. Supervisors considered themselves to be highly motivated and to offer adequate supervision. On the other hand, 87% stated that they did not feel well prepared for thesis supervision. Supervisors gave lack of timeliness of doctoral students and personal differences (p=0.024 and p=0.001) as the main reasons for terminating thesis projects. Doctoral students predominantly mentioned methodological problems and difficult subjects as critical issues (p=0.001 and pthesis supervisors and medical students feel ill prepared for their roles in the process of a medical dissertation. Contradictory reasons for terminating medical thesis projects based on supervisors' and students' self-assessment suggest a lack of communication and true scientific collaboration between supervisors and doctoral students as the major underlying issue that requires resolution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo.

    Science.gov (United States)

    Muratori, Claudia; Pakhomov, Andrei G; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O N

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose-treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.

  6. Imaging and electron energy-loss spectroscopy using single nanosecond electron pulses.

    Science.gov (United States)

    Picher, Matthieu; Bücker, Kerstin; LaGrange, Thomas; Banhart, Florian

    2018-03-13

    We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Consistency and Inconsistency in PhD Thesis Examination

    Science.gov (United States)

    Holbrook, Allyson; Bourke, Sid; Lovat, Terry; Fairbairn, Hedy

    2008-01-01

    This is a mixed methods investigation of consistency in PhD examination. At its core is the quantification of the content and conceptual analysis of examiner reports for 804 Australian theses. First, the level of consistency between what examiners say in their reports and the recommendation they provide for a thesis is explored, followed by an…

  8. Motivation in medical students: a PhD thesis report.

    Science.gov (United States)

    Kusurkar, Rashmi

    2012-08-01

    The aims of this thesis were to gather insights and investigate the factors influencing, outcomes and applications of medical students' motivation. This thesis consists of three literature reviews, four research papers and two application papers. Two research studies investigated the relationships of student motivation with study strategy, effort and academic performance through structural equation modelling and cluster analysis. The relationships of age, maturity, gender and educational background with motivation were investigated through multiple regression analysis. The results of this thesis were 1. Developments in medical education appear to have undervalued student motivation. 2. Motivation is an independent variable in medical education; intrinsic motivation is significantly associated with deep study strategy, high study effort and good academic performance. 3. Motivation is a dependent variable in medical education and is significantly affected by age, maturity, gender, educational background; intrinsic motivation is enhanced by providing students with autonomy, feedback and emotional support. 4. Strength of motivation for medical school can be reliably measured by Strength of Motivation for Medical School questionnaire. The conclusion of this thesis was that it is important to give consideration to motivation in medical education because intrinsic motivation leads to better learning and performance and it can be enhanced through giving students autonomy in learning, feedback about competence and emotional support.

  9. Artistic freedom. The challenge of thesis supervision in an art ...

    African Journals Online (AJOL)

    Rigorous science – Artistic freedom. The challenge of thesis supervision in an art university. K Rinne, P Sivenius. Abstract. No Abstract. South African Journal of Higher Education Vol. 21 (8) 2007: pp. 1091-1102. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Magnus Strandqvist: 50th anniversary of his doctoral thesis.

    Science.gov (United States)

    Kajanti, M J

    1994-01-01

    This article is dedicated to Magnus Strandqvist's famous doctoral thesis "Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut- und Lippenkarzinomen" published in Acta Radiologica in 1944. After a short biography of Strandqvist some central points of his work and their influence on future development of modern radiotherapy are presented.

  11. Assessing the Doctoral Thesis When It Includes Published Work

    Science.gov (United States)

    Sharmini, Sharon; Spronken-Smith, Rachel; Golding, Clinton; Harland, Tony

    2015-01-01

    In this article we explore how examiners assess a thesis that includes published work. An online survey was used to gather data on approaches to assessing publication-based theses (PBTs). The respondents were 62 supervisors who had experience examining PBTs across a range of disciplines at a research-intensive university in New Zealand. Nearly…

  12. The Doctoral Thesis and Supervision: The Student Perspective

    Science.gov (United States)

    Kiguwa, Peace; Langa, Malose

    2009-01-01

    The doctoral thesis constitutes both a negotiation of the supervision relationship as well as mastery and skill in participating in a specific community of practice. Two models of supervision are discussed: the technical rationality model with its emphasis on technical aspects of supervision, and the negotiated order model with an emphasis on…

  13. PhD thesis: Multipartite entanglement and quantum algorithms

    OpenAIRE

    Alsina, Daniel

    2017-01-01

    PhD thesis dealing with various aspects of multipartite entanglement, such as entanglement measures, absolutely maximally entangled states, bell inequalities, entanglement spectrum and quantum frustration. Also some quantum algorithms run with the IBM quantum computer are covered, together with others applied to adiabatic quantum computation and quantum thermodynamics.

  14. The Thesis Black Market: Present State and Background

    Science.gov (United States)

    Gang, Wang

    2007-01-01

    The superficial reason for the existence of the thesis black market is the glut of theses and the shortage of publishing space; behind that is the skewed academic assessment system. Today, the following circumstances can be found in virtually all institutions of higher education in China: (1) A master's degree student must, during the two or…

  15. From proposal to thesis: writing an undergraduate dissertation

    OpenAIRE

    Feather, Denis

    2013-01-01

    This book is full of useful advice and tips on how to write your thesis, taking you through the whole process: from getting started and collecting data to handing it in. The information Denis Feather provides here is based on ten years of teaching research methodologies and supervising students at all levels.

  16. The Jailing of America's Homeless: Evaluating the Rabble Management Thesis

    Science.gov (United States)

    Fitzpatrick, Kevin M.; Myrstol, Brad

    2011-01-01

    The authors of this article test hypotheses derived from Irwin's rabble management thesis. The analysis uses data from 47,592 interviews conducted with jailed adults in 30 U.S. cities as part of the Arrestee Drug Abuse Monitoring program. Clearly, homeless persons are overrepresented among those arrested and booked into local jails. Bivariate…

  17. Support for Different Roles in Software Engineering Master's Thesis Projects

    Science.gov (United States)

    Host, M.; Feldt, R.; Luders, F.

    2010-01-01

    Like many engineering programs in Europe, the final part of most Swedish software engineering programs is a longer project in which the students write a Master's thesis. These projects are often conducted in cooperation between a university and industry, and the students often have two supervisors, one at the university and one in industry. In…

  18. Turning Points: Improving Honors Student Preparation for Thesis Completion

    Science.gov (United States)

    Patino, Cynthia

    2012-01-01

    This dissertation is an action research study that had as its primary goal to increase retention of honors college students at Arizona State University by implementing an additional advising session during the fifth semester of their academic career. Introducing additional, strategically-timed support for the honors thesis and demystifying the…

  19. A Supervisor's Roles for Successful Thesis and Dissertation

    Science.gov (United States)

    Mhunpiew, Nathara

    2013-01-01

    The success of a thesis or a dissertation for a graduate student relies upon the roles of their supervisor. The student not only needs to be equipped with the knowledge, but also be able to manage others and external factors at the same time. The journey during the period of conducting research is mixed with various tasks. Five supportive roles of…

  20. Number of objectives and conclusions in dissertations and thesis

    Directory of Open Access Journals (Sweden)

    Liebano Richard Eloin

    2005-01-01

    Full Text Available PURPOSE: To analyze the number of objectives and conclusions presented in dissertations and thesis defended at Federal University of São Paulo - Paulista School of Medicine (UNIFESP - EPM. METHODS: It was realized a search in the master degree dissertations and doctor degree thesis defended at Federal University of São Paulo - Paulista School of Medicine in the years 2002 and 2003 that were found available in the central library of this university. RESULTS: From 723 master dissertations analyzed, 62 (8,57% presented only one objective and one conclusion, 134 (18,53% presented one objective and more than one conclusion and 527 (72,89% had more than one objective and more than one conclusion. From 502 doctor thesis analyzed, 23 (4,58% presented only one objective and one conclusion, 123 (24,50% presented one objective and more than one conclusion and 376 (74,90% had more than one objective and more than one conclusion.. CONCLUSIONS: It wasn't found in researched literature the number of objectives and conclusions a scientific work must have. A highest number of thesis and dissertations presented more than one objective and more than one conclusion.

  1. Characteristics of undergraduate medical thesis of a Peruvian public university

    Directory of Open Access Journals (Sweden)

    Betty Castro Maldonado

    2015-09-01

    Full Text Available Introduction: The undergraduate thesis rather than a requirement to graduate, are a way of doing research. Previous studies show a thesis published between 2.7% to 17.6% in indexed journals. Objective: Describe the characteristics of the undergraduate thesis of the Faculty of a medical school. Bibliometric study. 221 theses were reviewed, collecting: Year, number of authors, advisers, and references, study population, and national priorities for health research. A search was performed on Google Scholar to assess publication. Descriptive statistics were used. Results: Being lower production in the years 2008-2010 was observed. 91.6% had one advisor, 76% descriptive, 82.8% in hospital population, and 62.4% of adults. Theses displayed between 2010-2014 72.9% did not correspond to any national health research priority. Only 6.8% was based on literature of the last five years. Only 9 (4.1% were published in a scientific journal indexed. Conclusions: The undergraduate thesis were characterized as descriptive, hospital, adults, literature based on outdated and not in line with the national priorities for health research. The publication is low.

  2. Seminar for Master's Thesis Projects: Promoting Students' Self-Regulation

    Science.gov (United States)

    Miedijensky, Shirley; Lichtinger, Einat

    2016-01-01

    This study presents a thesis seminar model aimed at promoting students' self-regulation. Students' perceptions regarding the contribution of the seminar to their learning process were characterized and the seminar's effect upon their self-regulation expressions was examined. Data was collected using questionnaires and analyzed thematically. The…

  3. Thesis Writing Challenges for Non-Native MA Students

    Science.gov (United States)

    Sadeghi, Karim; Shirzad Khajepasha, Arash

    2015-01-01

    Writing in a second (L2)/foreign language is generally a challenging activity, and writing an MA thesis, as an example of academic enterprise, can be daunting when done in a language in which the writer is not fully competent. The challenge such a genre of writing poses for L2 writers has not been properly addressed. To fill in the gap in this…

  4. Study of the pulsation of an ion accelerator giving 20 nano-second pulses

    International Nuclear Information System (INIS)

    Cosnac, B. de

    1965-03-01

    In order to measure fast neutron spectra by the time-of-flight method, we have studied a pulsed ion-source which has been placed on the 600 kV electrostatic accelerator at Fontenay-aux-Roses. We examine successively: the ion-source itself, its extraction device, the focussing equipment and the pulsation system constituted by a slit which is swept by the beam. Using this ion-source it is possible to obtain a direct current of deutons of over 800 μA, and clouds having a duration which can be adjusted to between 15 and 40 nano-seconds. (author) [fr

  5. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  6. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays.

    Science.gov (United States)

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2016-06-15

    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena.

  7. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  8. Analysis of the plastic deformation of AISI 304 steel induced by the nanosecond laser pulse

    Science.gov (United States)

    Moćko, W.; Radziejewska, J.; Sarzyński, A.; Strzelec, M.; Marczak, J.

    2017-05-01

    The paper presents result of experimental and numerical tests of plastic deformation of austenitic steel generated by a nanosecond laser pulse. The shock wave generated by the laser pulse was used to induce local plastic deformation of the material. The study examined the possibility of using the process to develop a laser forming of materials under ultra-high strain rate. It has been shown that the laser pulse with intensity 2.5 GW/cm2 induces a repeatable plastic deformation of commercially available 304 steel without thermal effects on the surface.

  9. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    Science.gov (United States)

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  10. 100  J-level nanosecond pulsed diode pumped solid state laser.

    Science.gov (United States)

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  11. Nanosecond high-voltage generators for supplying the kickers of charged particle accelerators

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Matveev, Yu.G.; Shvedov, D.A.

    2000-01-01

    The high-voltage nanosecond generators (VNG) of rectangular pulses, developed for supplying the injection and extraction kickers of the accelerator-storage complexes are considered in this work. The pulse hydrogen thyratrons and gas-filled discharges are used as commutators in those generators. If necessary, the VNG pulses fronts may be shortened up to 2-3 ns in the coaxial lines, filled with ferrite rings. The mechanism of the pulse fronts shortening was considered earlier. The basis parameters of the VNG various types are presented [ru

  12. Mono-energetic ions emission by nanosecond laser solid target irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Muoio, A., E-mail: Annamaria.Muoio@lns.infn.it [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G.A.P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Trifirò, A. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Sezione INFN, Catania (Italy)

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser–matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  13. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    Science.gov (United States)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  14. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  15. Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers

    Science.gov (United States)

    Hao, YUAN; Wenchun, WANG; Dezheng, YANG; Zilu, ZHAO; Li, ZHANG; Sen, WANG

    2017-12-01

    In this paper, a long line-shape dielectric barrier discharge excited by a nanosecond pulse and AC is generated in atmospheric air for the purpose of discussing the uniformity, stability and ability of aramid fiber treatment. The discharge images, waveforms of current and voltage, optical emission spectra, and gas temperatures of both discharges are compared. It is found that nanosecond pulsed discharge has a more uniform discharge morphology, higher energy efficiency and lower gas temperature, which indicates that nanosecond pulsed discharge is more suitable for surface modification. To reduce the water contact angle from 96° to about 60°, the energy cost is only about 1/7 compared with AC discharge. Scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy are employed to understand the mechanisms of hydrophilicity improvement.

  16. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  17. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    Science.gov (United States)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  18. A CMOS delay locked loop and sub-nanosecond time-to-digital converter chip

    International Nuclear Information System (INIS)

    Santos, D.M.; Dow, S.F.; Flasck, J.M.; Levi, M.E.

    1996-01-01

    Phase-locked loops have been employed in the past to obtain sub-nanosecond time resolution in high energy physics and nuclear science applications. An alternative solution based on a delay-locked loop (DLL) is described. This solution allows for a very high level of integration yet still offers resolution in the sub-nanosecond regime. Two variations on this solution are outlined. A novel phase detector, based on the Mueller C-element, is used to implement a charge pump where the injected charge approaches zero as the loop approaches lock on the leading edge of an input clock reference. This greatly reduces timing jitter. In the second variation the loop locks to both the leading and trailing clock edges. In this second implementation, software coded layout generators are used to automatically layout a highly integrated, multichannel, time-to-digital converter (TDC) targeted for one specific frequency. The two circuits, DLL and TDC, are implemented in CMOS 1.2 microm and 0.8 microm technologies, respectively. Test results show a timing jitter of less than 30 ps for the DLL circuit and less than 190 ps integral and differential nonlinearity for the TDC circuit

  19. Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses

    Science.gov (United States)

    Pérez-Gutiérrez, Francisco G.; Evans, Rodger; Camacho-López, Santiago; Aguilar, Guillermo

    2010-02-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light intensity and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present measurements of pressure transients originated when 6 ns laser pulses are incident on agar gels with varying linear absorption coefficient, mechanical properties and irradiation geometry using laser radiant exposures above threshold for bubble formation. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this work is to evaluate the relative contribution of each absorption mechanism to mechanical effects in agar gel. Real time pressure transients are recorded with PVDF piezoelectric sensors and time-resilved imaging from 50 μm to 10 mm away from focal point.

  20. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  1. Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products

    International Nuclear Information System (INIS)

    Yu, Jin-lu; He, Li-ming; Ding, Wei; Zhao, Zi-chen; Zhang, Hua-lei

    2016-01-01

    Highlights: • Most of the O 2 particles become O 2 (V1) in high temperature. • The O 3 molecules are produced mainly by decayed O atoms. • NO molecules are obtained by decayed N 2 (A3), N(2D) and N(2P) at the first stage, NO molecules are obtained by decayed N atoms at last. - Abstract: Based on nonequilibrium plasma dynamics of air discharge, the kinetic model simulating plasma discharge products induced by nanosecond pulse discharge in air is presented in this work. Then the paper compares the calculation of model with experimental results of references, and verifies the accuracy of the model. The evolution characteristics of nanosecond pulse discharge plasma under different air temperatures are obtained. Because the O, O 3 and NO have close relationship with the combustion, their formation mechanisms are discussed especially. With increasing temperature, there is no significant addition in O atoms and O 3 molecules. It is found that most of the O 2 molecules become O 2 (V1) in higher temperature. The decreasing time of the O atoms is in accordance with the increasing time of O 3 molecules. Thus, the O 3 molecules are produced mainly by decayed O atoms. Increased air temperature will not produce more active particles which could assist the combustion. With the increasing temperature, the particle number density of NO increases fast. At last, they have reached an equilibrium value of the same.

  2. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  3. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    Science.gov (United States)

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  4. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

    Science.gov (United States)

    Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.

    2018-03-01

    An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

  5. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  6. Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Lavisse, L.; Lucas, M.C. Marco de [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Hebert, D. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Potin, V.; Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles spatial localization in the plume induced by a pulsed laser. Black-Right-Pointing-Pointer Plasma plume obtained by laser irradiation. Black-Right-Pointing-Pointer Particles and debris formation. Black-Right-Pointing-Pointer Powder generation. Black-Right-Pointing-Pointer Conditions of formation. - Abstract: Nanoparticles formation in a laser-induced plasma plume in the ambient air has been investigated by using numerical simulations and physical models. For high irradiances, or for ultrashort laser pulses, nanoparticles are formed by condensation, as fine powders, in the expanding plasma for very high pairs of temperature and pressure. At lower irradiances, or nanosecond laser pulses, another thermodynamic paths are possible, which cross the liquid-gas transition curve while laser is still heating the target and the induced plasma. In this work, we explore the growth of nanoparticles in the plasma plume induced by nanosecond pulsed lasers as a function of the laser irradiance. Moreover, the influence of the ambient gas has also been investigated.

  7. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    Science.gov (United States)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  8. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  9. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  10. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  11. 'Moving source': test realization at VEPP-3 of a diffraction experiment with nanosecond time resolution

    CERN Document Server

    Mishnev, S I; Fedotov, M G; Tolochko, B P

    2000-01-01

    The purpose of this work is a demonstration of the basic possibility of the practical realization of the 'moving source' idea for X-ray diffraction with nanosecond time resolution. The idea of 'moving source' was published earlier. The principle of this idea is: a quick change of electron trajectory by the kicker is responsible for a quick change of direction of synchrotron radiation (SR). In such a way a 'moving source' can be created. Using the 'moving source' it is possible to scan a sample with the SR beam. As a result, diffraction with nanoseconds time resolution can be achieved . The experiment at the VEPP-3 storage ring has confirmed such a possibility. The following answers to the main questions were received: (1) SR intensities are enough for obtaining satisfactory statistics from one bunch (2) it is possible to realize synchronization of an impact with the motion of electrons in the storage ring and with the systems of image registration ; (3) it is possible to compensate the betatron oscillation wh...

  12. Selective removal of carious dentin using a nanosecond pulsed laser with a wavelength of 6.02 μm

    Science.gov (United States)

    Ishii, Katsunori; Saiki, Masayuki; Yasuo, Kenzo; Yamamoto, Kazuyo; Yoshikawa, Kazushi; Awazu, Kunio

    2010-04-01

    Conventional laser light sources for the treatment of a hard tissue in dental (Er:YAG laser, Er,Cr:YSGG laser and CO2 laser etc.) are good for removal of caries. However these lasers cannot achieve to give a selective treatment effect for caries without a side effect for normal tissue. The objective of this study is to develop the less-invasive treatment technique of carious dentin by selective absorption effect using the laser with a wavelength of 6.02 μm which corresponds to an absorption peak of organic matters called amide 1 band. Mid-infrared nanosecond pulsed laser by difference-frequency generation was used for the experiment of selective treatment. A tunable wavelength range, pulse width and repetition rate is from 5.5 to 10 μm, 5 ns and Hz, respectively. The laser with a wavelength of 6.02 μm and predetermined energy parameters was irradiated to the plate of carious dentin model which is made by soaking in lactic acid solution. After laser irradiation, the surface and cross-sectional surface of samples were observed by a scanning electron microscope (SEM). Average power density about 15 W/cm2 realized to excavate a demineralized region (carious dentin model) selectively in a SEM observation. In the same energy condition, serious side effect was not observed on the surface of normal dentin. A wavelength of 6.02 μm realizes a selective excavation of carious dentin. Using 6.02 μm is a novel and promising technique toward to next-generation dental treatment procedure for realizing MI.

  13. Actuation of a lean-premixed flame by diffuse non-equilibrium nanosecond-pulsed plasma at atmospheric pressure

    Science.gov (United States)

    Evans, M. D. G.; Bergthorson, J. M.; Coulombe, S.

    2017-11-01

    This study investigates the effect of diffuse non-equilibrium nanosecond-pulsed plasma at atmospheric pressure on a lean-premixed CH4-air flame (ϕ = 0.65, P ˜ 0.3 kW). The domain of diffuse plasma existence is explored for both the case of the cold flow (no flame) and the case where a flame is stabilized downstream. The dynamics of plasma propagation and the flame displacement, following a high-voltage pulse, were measured using intensified charge-coupled device imaging. The energy of the plasma was measured using electrical probes and measurements of the second positive system of nitrogen were used to determine the rotational temperature and vibrational populations in the plasma. The effect of plasma on a flame was investigated by varying the pulse repetition frequency gradually from 1 to 7 kHz. Time-resolved imaging of the plasma emission shows that the primary streamer travels at higher velocities with increased pulsing frequency and with the presence of a flame ignited downstream of the discharge. Time-resolved imaging of the flame, following a high-voltage pulse, shows that the flame moves upstream into the unburned methane-air mixture with increased pulsing frequency. As the flame is displaced upstream, the nature of the discharge also changes, whereby less energy is coupled to the gas volume. Spectroscopic results reveal that the region in which the flame stabilizes is that of highest vibrational excitation and lowest rotational temperature. This actuation method is evidence of low-temperature chemical flame enhancement and potential control of a lean-premixed laminar flame at atmospheric pressure.

  14. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Dimitrov, I.G. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. Black-Right-Pointing-Pointer The alteration of the produced colloids during one month was investigated. Black-Right-Pointing-Pointer Optical transmission spectra of the samples were measured from 350 to 800 nm. Black-Right-Pointing-Pointer TEM measurements were made of as-prepared colloids and on the 30-th day. Black-Right-Pointing-Pointer Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  15. Guide for thesis quality at CEA / Physical Sciences Division

    International Nuclear Information System (INIS)

    Renault, J.Ph.; Rotureau, P.; Skaza, F.; Lapoux, V.; Saas, St.; Nguyen, F.; Chaleard, C.; Thromat, N.; Pussieux, Th.; Duc, R.

    2003-01-01

    Thesis is a basic component of scientific research. It has to be successful, for the student whose future depends widely on it, as well as for the host laboratory awaiting a profitable return on investment. The present guide, dedicated to students and their managers, aims to lead them to success by implementing a customized Quality approach. That tool, built as following the DSM Quality referential, wants to be, like this latter one: 'Useful, Usable, Used'. (authors)

  16. The bibliographic study in the doctoral thesis: Methodological aspects

    Directory of Open Access Journals (Sweden)

    Silvia DULSCHI

    2017-06-01

    Full Text Available The purpose of the article is to support and develop the scientific creativity of researchers, to increase the quality and efficiency of the research. The message underlines the importance of knowing and analyzing the research degree of the problem in the doctoral thesis, in order for the PhD candidate to demonstrate its own contribution to the development of the research.

  17. An Examination of the Neural Unreliability Thesis of Autism.

    Science.gov (United States)

    Butler, John S; Molholm, Sophie; Andrade, Gizely N; Foxe, John J

    2017-01-01

    An emerging neuropathological theory of Autism, referred to here as "the neural unreliability thesis," proposes greater variability in moment-to-moment cortical representation of environmental events, such that the system shows general instability in its impulse response function. Leading evidence for this thesis derives from functional neuroimaging, a methodology ill-suited for detailed assessment of sensory transmission dynamics occurring at the millisecond scale. Electrophysiological assessments of this thesis, however, are sparse and unconvincing. We conducted detailed examination of visual and somatosensory evoked activity using high-density electrical mapping in individuals with autism (N = 20) and precisely matched neurotypical controls (N = 20), recording large numbers of trials that allowed for exhaustive time-frequency analyses at the single-trial level. Measures of intertrial coherence and event-related spectral perturbation revealed no convincing evidence for an unreliability account of sensory responsivity in autism. Indeed, results point to robust, highly reproducible response functions marked for their exceedingly close correspondence to those in neurotypical controls. © The Author 2016. Published by Oxford University Press.

  18. Regional disparities in Hungary

    OpenAIRE

    Czabán, Vera

    2015-01-01

    In the past decades, exacerbating regional disparities in the European Union as well as the newly joined Eastern European states have led to a growing interest in examining the spatial embeddedness of development. Hungary, a small and very monocentric country, has experienced rapid growth in the region of its capital city and its surrounding, whereas formerly lagging regions continued to fall behind. This thesis examines growing regional disparities in Hungary in order to provide a more compr...

  19. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-01-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30–40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  20. System-Level Demonstration of a Dynamically Reconfigured Burst-Mode Link Using a Nanosecond Si-Photonic Switch

    DEFF Research Database (Denmark)

    Forencich, Alex; Kamchevska, Valerija; Dupuis, Nicolas

    2018-01-01

    Using a novel FPGA-based network emulator, microsecond-scale packets with 12.5-20-Gb/s data are generated, routed through a nanosecond Si-photonic switch, and received in a fast-locking burst-mode receiver. Error-free links with <382-ns system-level switching are shown....

  1. Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage.

    Science.gov (United States)

    Jobling, A I; Guymer, R H; Vessey, K A; Greferath, U; Mills, S A; Brassington, K H; Luu, C D; Aung, K Z; Trogrlic, L; Plunkett, M; Fletcher, E L

    2015-02-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by drusen deposits and thickened Bruch's membrane (BM). This study details the capacity of nanosecond laser treatment to reduce drusen and thin BM while maintaining retinal structure. Fifty patients with AMD had a single nanosecond laser treatment session and after 2 yr, change in drusen area was compared with an untreated cohort of patients. The retinal effect of the laser was determined in human and mouse eyes using immunohistochemistry and compared with untreated eyes. In a mouse with thickened BM (ApoEnull), the effect of laser treatment was quantified using electron microscopy and quantitative PCR. In patients with AMD, nanosecond laser treatment reduced drusen load at 2 yr. Retinal structure was not compromised in human and mouse retina after laser treatment, with only a discrete retinal pigment epithelium (RPE) injury, and limited mononuclear cell response observed. BM was thinned in the ApoEnull mouse 3 mo after treatment (ApoEnull treated 683 ± 38 nm, ApoEnull untreated 890 ± 60 nm, C57Bl6J 606 ± 43 nm), with the expression of matrix metalloproteinase-2 and -3 increased (>260%). Nanosecond laser resolved drusen independent of retinal damage and improved BM structure, suggesting this treatment has the potential to reduce AMD progression. © FASEB.

  2. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    Science.gov (United States)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2–O2–Ar, CH4–O2–Ar, C3H8–O2–Ar, and C2H4–O2–Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2–Ar and O2–Ar mixtures, the atoms decay by three-body recombination. In H2–O2–Ar, CH4–O2–Ar, and C3H8–O2–Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2–Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the

  3. Comparison of two picosecond lasers to a nanosecond laser for treating tattoos: a prospective randomized study on 49 patients.

    Science.gov (United States)

    Lorgeou, A; Perrillat, Y; Gral, N; Lagrange, S; Lacour, J-P; Passeron, T

    2018-02-01

    Q-switched nanosecond lasers demonstrated their efficacy in treating most types of tattoos, but complete disappearance is not always achieved even after performing numerous laser sessions. Picosecond lasers are supposed to be more efficient in clearing tattoos than nanosecond lasers, but prospective comparative data remain limited. To compare on different types of tattoos the efficacy of a nanosecond laser with two types of picosecond lasers. We conducted a prospective randomized study performed from December 2014 to June 2016 on adult patients with all types of tattoos. The tattoos were divided into two halves of equal size. After randomization, half of the tattoo was treated with a picosecond laser and the other half with a nanosecond laser. The evaluation was performed on standardized pictures performed before treatment and 2 months after the last session, by two physicians, not involved in the treatment, blinded on the type of treatments received. The main end point was a clearance above 75% of the tattoos. A total of 49 patients were included. Professional tattoos represented 85.7%, permanent make-up 8.2% and non-professional tattoo 6.1%. The majority were black or blue and 10.2% were polychromatic. No patient was lost during follow-up. A reduction of 75% or more of the colour intensity was obtained for 33% of the tattoos treated with the picosecond lasers compared to 14% with the nanosecond laser (P = 0.008). An improvement superior to 75% was obtained in 34% monochromic black or blue tattoos with the picosecond lasers compared to 9% for the nanosecond laser. Only one of the five polychromic tattoos achieved more than 75% of improvement with the two types of laser. Our results show a statistically significant superiority of the picosecond lasers compared to the nanosecond laser for tattoo clearance. However, they do not show better efficacy for polychromic tattoos and the difference in terms of side-effects was also minimal with a tendency of picosecond

  4. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    Science.gov (United States)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  5. Experimental investigation on the repetitively nanosecond pulsed dielectric barrier discharge with the parallel magnetic field

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Ren, Chunsheng

    2018-02-01

    The effects of a parallel magnetic field on the unipolar positive nanosecond pulsed dielectric barrier discharge are experimentally investigated through electrical and spectral measurements. The discharge is produced between two parallel-plate electrodes in the ambient air with a parallel magnetic field of 1.4 T. Experimental results show that both the discharge intensity and uniformity are improved in the discharge with the parallel magnetic field. The intensity ratio of the spectrum at 371.1 nm and 380.5 nm, which describes the average electron density, is increased by the parallel magnetic field. Meanwhile, the intensity ratio of the spectrum at 391.4 nm and 337.1 nm, which describes the electron temperature, is also increased. It is speculated that both the average electron density and the electron temperature are increased by the parallel magnetic field. The aforementioned phenomena have been explained by the confinement effect of the parallel magnetic field on the electrons.

  6. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment

    Science.gov (United States)

    Chen, Xinhua; Swanson, R. James; Kolb, Juergen F.; Nuccitelli, Richard; Schoenbach, Karl H.

    2011-01-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (Pelectric fields surrounding the needle electrodes. PMID:19730404

  7. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Science.gov (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  8. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  9. Temporally resolved imaging on quenching and re-ignition of nanosecond underwater discharge

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2012-12-01

    Full Text Available This paper presents the temporally resolved images of plasma discharge in de-ionized water. The discharge was produced by high voltage pulses with 0.3 ns rise time and 10 ns duration. The temporal resolution of the imaging system was one nanosecond. A unique three-stage process, including a fast ignition at the leading edge of the pulse, quenching at the plateau of the pulse, and self re-ignition at the trailing edge of the pulse, was observed in a single pulse cycle. The maximum measured propagation velocity of the plasma discharge was about 1000 km/s. The possibility of direct ionization in water under high reduced electric field conditions was discussed.

  10. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, T., E-mail: trivas@uvigo.es [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Lopez, A.J.; Ramil, A. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Fiorucci, M.P. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Silanes, M.E. López de [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.I. Forestales. Universidad de Vigo, Campus Pontevedra. 36005 Pontevedra Spain (Spain); García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P. [Grupo de Investigación en Microprocesado de Materiales con Laser. Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca Spain (Spain)

    2013-08-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO{sub 4} laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  11. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    International Nuclear Information System (INIS)

    Rivas, T.; Lopez, A.J.; Ramil, A.; Pozo, S.; Fiorucci, M.P.; Silanes, M.E. López de; García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P.

    2013-01-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO 4 laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  12. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    Science.gov (United States)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  13. Ultraviolet part of transient absorption spectrum induced in liquid ammonia by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Farhataziz

    1977-01-01

    The absorption spectra induced in neat liquid ammonia and ammoniacal solution of N 2 O by nanosecond pulse radiolysis have been measured for wavelength range 250 to 325 nm. The results indicate that the absorption spectrum induced in liquid ammonia is a composite of absorption spectra of e/sub am/ - and NH 2 . The absorptions due to e/sub am/ - decrease with decreasing wavelength, and are attributed to the tail of the absorption spectrum (maximum absorption in near infrared) of e/sub am/ - . The absorption spectrum for NH 2 has a shoulder at approximately 255 nm. In liquid ammonia at 23 0 C, the extinction coefficient for NH 2 at 250 nm is 1.1 x 10 3 M -1 cm -1

  14. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  15. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  16. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses

    Science.gov (United States)

    Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman

    2017-09-01

    In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.

  17. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    Science.gov (United States)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  18. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    Science.gov (United States)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  19. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane.

  20. Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing

    Science.gov (United States)

    Lien, Yu-Chung; Shieh, Jia-Min; Huang, Wen-Hsien; Tu, Cheng-Hui; Wang, Chieh; Shen, Chang-Hong; Dai, Bau-Tong; Pan, Ci-Ling; Hu, Chenming; Yang, Fu-Liang

    2012-04-01

    The ultrafast metal-gate silicon quantum-dot (Si-QD) nonvolatile memory (NVM) with program/erase speed of 1 μs under low operating voltages of ± 7 V is achieved by thin tunneling oxide, in situ Si-QD-embedded dielectrics, and metal gate. Selective source/drain activation by green nanosecond laser spike annealing, due to metal-gate as light-blocking layer, responds to low thermal damage on gate structures and, therefore, suppresses re-crystallization/deformation/diffusion of embedded Si-QDs. Accordingly, it greatly sustains efficient charge trapping/de-trapping in numerous deep charge-trapping sites in discrete Si-QDs. Such a gate nanostructure also ensures excellent endurance and retention in the microsecond-operation Si-QD NVM.

  1. Numerical analysis on optical limiting performance of a series of phthalocyanines for nanosecond pulses

    International Nuclear Information System (INIS)

    Miao Quan; Ding Hongjuan; Wang Chuankui; Sun Yuping; Gel'mukhanov, Faris

    2012-01-01

    The optical limiting properties of a series of peripherally substituted phthalocyanines with different central metals and axial chloride ligand for nanosecond pulses have been studied by solving numerically the two-dimensional paraxial field equation together with the rate equations using the Crank–Nicholson method. It is shown that all of these compounds exhibit good optical limiting behaviour, and phthalocyanines with heavier central metals have better optical limiting performance due to the faster intersystem crossing caused by the enhanced spin–orbit coupling. The major mechanism of optical limiting for long pulses is the sequential (singlet–singlet)×(triplet–triplet) nonlinear absorption. Dynamics of populations is characterized mainly by the effective transfer time of the population from the ground state to the lowest triplet state. The long lifetime of the triplet state is important but not determinant. In addition, the performance of optical limiting strongly depends on the thickness and concentration of the absorber. (paper)

  2. Surface modification of PET films using dielectric barrier discharge driven by repetitive nanosecond-pulses

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Long Kaihua; Wang Jue; Zhang Dongdong; Yan Ping; Zhou Yuanxiang

    2010-01-01

    In this paper, surface treatment of PET films for improving the hydrophilicity using DBD excited by unipolar nanosecond-pulses is presented. Homogeneous and filamentary discharge are obtained under certain experimental conditions and then used to modify the surface of PET films. The properties of PET films before and after treatment are characterized with water contact angle measurement, atomic force microscope and X-ray photoelectron spectroscope. The experimental results show that static water contact angles decrease after DBD plasma treatment and the observed contact angle is changed from 80 degree for the untreated samples to 20 degree after treatment. However, the decrease of contact angles is not continuous and it will reach a saturation state after certain treatment time. The improvement of surface hydrophilicity can be attributed to the enhancement of the surface roughness and introduction of oxygen-containing polar functional groups. In contrast with the filamentary DBD treatment, the homogenous DBD is more effective in PET surface treatment. (authors)

  3. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  4. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Science.gov (United States)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  5. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  6. OSETI with STACEE: a search for nanosecond optical transients from nearby stars.

    Science.gov (United States)

    Hanna, D S; Ball, J; Covault, C E; Carson, J E; Driscoll, D D; Fortin, P; Gingrich, D M; Jarvis, A; Kildea, J; Lindner, T; Mueller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2009-05-01

    We have used the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons/m(2) at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets, and they are relatively close to Earth. Each star was observed for 10 minutes, and we found no evidence for laser pulses in any of the data sets. Key Words: Search for extraterrestrial intelligence-Optical search for extraterrestrial intelligence-Interstellar communication-Laser.

  7. Surface modification of Ti6Al4V by nanosecond laser ablation for biomedical applications

    Science.gov (United States)

    Fiorucci, M. P.; López, A. J.; Ramil, A.

    2015-04-01

    This paper presents the surface textured process of biometal Ti6Al4V by means of 355 nm Nd:YVO4 nanosecond laser. Our target is to create structures with sizes which favour osseointegration. In this work a pattern of parallel grooves was generated after a deep analysis of the irradiation parameters involved. Ablation modifies not only the topography but also physico-chemical properties of the metal surface. Changes in the morphology and the physico-chemical state of the laser induced groove pattern were studied by a scanning electron microscopy, X-ray diffraction and X- ray photoelectron spectroscopy, which revealed, among others, an increase of micro roughness and a oxide layer entirely formed by TiO2, which can improve biocompatibility properties of the textured surface.

  8. Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles

    International Nuclear Information System (INIS)

    Siems, A; Weber, S A L; Boneberg, J; Plech, A

    2011-01-01

    The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle-liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

  9. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Science.gov (United States)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  10. Feynman's thesis: A new approach to quantum theory

    International Nuclear Information System (INIS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schroedinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was

  11. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    Science.gov (United States)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  12. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  13. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    Science.gov (United States)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  14. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  15. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    Science.gov (United States)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  16. Project families: A new concept for student thesis activities

    DEFF Research Database (Denmark)

    Goltermann, Per; Ottosen, Lisbeth M.; Schmidt, Jacob Wittrup

    2017-01-01

    this concept for 100+ students with experimental activities and found a major improvement in their learning, grades, interaction and behaviour in the laboratories, just as they now provides a strong support for the supervisors’ research. The use of resources for the supervision and the support......The students’ activities during their final thesis work have been organised in project families, i.e. a group of individual student project organized in a shared learning environment. The aim is more efficient supervision and support, simultaneously to improved learning. DTU Byg have now tested...

  17. Utopia - dystopia : documentation of the thesis Utopia/dystopia

    OpenAIRE

    Christogiannopoulou Klappenbach, Anastasia

    2009-01-01

    I will start my thesis project with an analyse of current innovations in technology and new materials to find out what possible potential they may offer for new design solutions. The focus will be on inventions of disruptive technologies of the past and the present and how they change our way of life. An interesting point is to draw conclusions from how the consequences of these technological milestones impact our everyday life. An example is the influence of the internet (in the bigger and t...

  18. Usability evaluation of user interface of thesis title review system

    Science.gov (United States)

    Tri, Y.; Erna, A.; Gellysa, U.

    2018-03-01

    Presentation of programs with user interface that can be accessed online through the website of course greatly provide user benefits. User can easily access the program they need. There are usability values that serve as a benchmark for the success of a user accessible program, ie efficiency, effectiveness, and convenience. These usability values also determine the development of the program for the better use. Therefore, on the review title thesis program that will be implemented in STT Dumai was measured usability evaluation. It aims to see which sides are not yet perfect and need to be improved to improve the performance and utilization of the program. Usability evaluation was measured by using smartPLS software. Database used was the result of respondent questionnaires that include questions about the experience when they used program. The result of a review of thesis title program implemented in STT Dumai has an efficiency value of 22.615, the effectiveness of 20.612, and satisfaction of 33.177.

  19. [Postdoctoral lecturer thesis in medicine: academic competence or career booster?].

    Science.gov (United States)

    Sorg, H; Betzler, C; Grieswald, C; Schwab, C G G; Tilkorn, D J; Hauser, J

    2016-06-01

    The postdoctoral lecturer thesis in medicine represents an essential success factor for the career of a physician; however, there is controversial discussion on whether this reflects academic competence or is more a career booster. In this context we conducted a survey among postdoctoral medical lecturers with the aim to evaluate the significance of this qualification. The online survey was performed using a questionnaire requesting biographical parameters and subjective ratings of topics concerning the postdoctoral lecturer thesis. Overall 628 questionnaires were included in the study. The significance of the postdoctoral qualification was rated high in 68.6 % and was seen to be necessary for professional advancement in 71.0 %. The chances of obtaining a full professorship after achieving a postdoctoral qualification were rated moderate to low (68.1 %); nevertheless, 92.3 % would do it again and 86.5 % would recommend it to colleagues. Accordingly, 78.8 % were against its abolishment. Wishes for reforms included standardized federal regulations, reduced dependency on professors and more transparency. The postdoctoral lecturer qualification in medicine is highly valued and the majority of responders did not want it to be abolished. Although the chances for a full professorship were only rated low, successful graduation seems to be beneficial for the career; however, there is a need for substantial structural and international changes.

  20. TCP Packet Trace Analysis. M.S. Thesis

    Science.gov (United States)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  1. The challenge of giving written thesis feedback to nursing students.

    Science.gov (United States)

    Tuvesson, Hanna; Borglin, Gunilla

    2014-11-01

    Providing effective written feedback on nursing student's assignments can be a challenging task for any assessor. Additionally, as the student groups tend to become larger, written feedback is likely to gain an overall more prominent position than verbal feedback. Lack of formal training or regular discussion in the teaching faculty about the skill set needed to provide written feedback could negatively affect the students' learning abilities. In this brief paper, we discuss written feedback practices, whilst using the Bachelor of Science in Nursing thesis as an example. Our aim is to highlight the importance of an informed understanding of the impact written feedback can have on students. Creating awareness about this can facilitate the development of more strategic and successful written feedback strategies. We end by offering examples of some relatively simple strategies for improving this practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mentors or Directors of Thesis, is he author?

    Directory of Open Access Journals (Sweden)

    María das Graças TARGINO

    2014-07-01

    Full Text Available Over time, with the profound changes in the learning and in research provided by technological advances, and especially because of the extreme value of higher education and scientific research, there is an intense discussion around the old and worn slogan "publish or perish". Increasingly, mentors or directors of thesis and university papers, en general, put themselves as first author or coauthor of work performed by their students, by the argument that the author, as activity and process, suffers herself social, cultural, economic and political mutations. This is a topic that arouses controversy and leads to conceptual changes, which require the deconstruction of its foundations, which, however, must respect the ethic behaviour

  3. An investigation into the cumulative breakdown process of polymethylmethacrylate in quasi-uniform electric field under nanosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang; Cang Su, Jian; Bo Zhang, Xi; Feng Pan, Ya; Min Wang, Li; Peng Fang, Jin; Sun, Xu; Lui, Rui [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, P.O. Box 69 Branch 13, Xi' an 710024 (China)

    2013-08-15

    A group of complete images on the discharge channel developed in PMMA in quasi-uniform electric field under nanosecond pulses are observed with an on-line transmission microscope. The characteristics of the cumulative breakdown process are also generalized, which include initiating from the vicinity of the cathode, developing to the anode with a branch-like shape, and taking on a wormhole appearance when final breakdown occurs. The concluded characteristics are explained by referring to the conceptions of “low density domain” and “free radical” and considering the initial discharge channel as a virtual needle. The characteristics are helpful for designers to enhance the lifetime of insulators employed on a nanosecond time scale.

  4. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.

    Science.gov (United States)

    Poitrasson, Franck; Mao, Xianglei; Mao, Samuel S; Freydier, Rémi; Russo, Richard E

    2003-11-15

    We compared the analytical performance of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The benefit of ultrafast lasers was evaluated regarding thermal-induced chemical fractionation, that is otherwise well known to limit LA-ICPMS. Both lasers had a Gaussian beam energy profile and were tested using the same ablation system and ICPMS analyzer. Resulting crater morphologies and analytical signals showed more straightforward femtosecond laser ablation processes, with minimal thermal effects. Despite a less stable energy output, the ultrafast laser yielded elemental (Pb/U, Pb/Th) and Pb isotopic ratios that were more precise, repeatable, and accurate, even when compared to the best analytical conditions for the nanosecond laser. Measurements on NIST glasses, monazites, and zircon also showed that femtosecond LA-ICPMS calibration was less matrix-matched dependent and therefore more versatile.

  5. Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields.

    Science.gov (United States)

    Moreau, David; Lefort, Claire; Burke, Ryan; Leveque, Philippe; O'Connor, Rodney P

    2015-10-01

    The temperature-dependent fluorescence property of Rhodamine B was used to measure changes in temperature at the cellular level induced by either infrared laser light exposure or high intensity, ultrashort pulsed electric fields. The thermal impact of these stimuli were demonstrated at the cellular level in time and contrasted with the change in temperature observed in the extracellular bath. The method takes advantage of the temperature sensitivity of the fluorescent dye Rhodamine B which has a quantum yield linearly dependent on temperature. The thermal effects of different temporal pulse applications of infrared laser light exposure and of nanosecond pulsed electric fields were investigated. The temperature increase due to the application of nanosecond pulsed electric fields was demonstrated at the cellular level.

  6. [Publications of medical thesis defended in Lille school of medicine].

    Science.gov (United States)

    Benotmane, Ilies; Glatz, Nicolas; Bihan, Solenn; Legrand, Fanny; Gosset, Didier; Boulanger, Eric

    2012-07-01

    The purpose of this study was to determine the future, in terms of scientific publication, of medical thesis (MT) defended in the Medical School of Lille 2 University (MSL2U) between January 1st, 2001 and December 31st, 2007. The collection of MT published as a corresponding scientific article was realized from PubMed(®). For every corresponding article, we determined the journal Impact Factor (IF), the language of publication and the rank of the student and his MT director in the author list. Analyses were also realized according to the group of speciality of the TM. In all, 11.3% of the 2150 MT defended in the MSL2U were followed up by a scientific publication. The average IF was 2.32 with a median at 1.75 and extreme values from 0 to 14.78. Seventy percent of the articles were published in English. The rank of the student was placed before his MT director (2.06 vs. 3.15). The MT defended by students in the field of medical specialities presented the highest rate of publication (25.1%). The general medicine was the second speciality the most productive in term of number of published articles (n=49) after medical specialities (n=103). The MT director and the PhD students must be more motivated to publish their results. The value of 11.3% could be considered as weak but, because of a huge lack of references, it is impossible to compare our results to those of other French medical schools. It remains important to reform the objectives and the modalities of the writing of a MT: should we not have to turn to thesis called "on article"? Copyright © 2012. Published by Elsevier Masson SAS.

  7. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    Science.gov (United States)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  8. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    Science.gov (United States)

    2016-05-02

    Article 3. DATES COVERED (From - To) 15 Jun 2015 – 1 Dec 2015 4. TITLE AND SUBTITLE Evaluation of the Genetic Response of U937 and Jurkat Cells to 10...analysis, we evaluated how two commonly studied cell types, U937 and Jurkat , respond to nsEP exposure. We hypothesized that by studying the genetic...evidence that the interaction of nsEPs with cells involves mechanical stress. 15. SUBJECT TERMS Jurkat , Mechanical Stress, Microarray, Nanosecond

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  10. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  11. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    International Nuclear Information System (INIS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  12. Observing non-equilibrium state of transport through graphene channel at the nano-second time-scale

    Science.gov (United States)

    Mishra, Abhishek; Meersha, Adil; Raghavan, Srinivasan; Shrivastava, Mayank

    2017-12-01

    Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.

  13. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    International Nuclear Information System (INIS)

    Gribkov, V.; Karpinski, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; Strzyzewski, P.; Tomaszewski, K.; Dubrovsky, A.

    2006-01-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ∼760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of congruent with 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a ''single-shot detection system'' for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system

  14. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    Science.gov (United States)

    Gribkov, V.; Dubrovsky, A.; Karpiński, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; StrzyŻewski, P.; Tomaszewski, K.

    2006-12-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ˜760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of ≅ 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a "single-shot detection system" for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system.

  15. [Medical degree earned with a thesis in medical schools of Lima, 2011: characteristics, motivations and perceptions].

    Science.gov (United States)

    Mejia, Christian R; Inga-Berrospi, Fiorella; Mayta-Tristán, Percy

    2014-01-01

    We surveyed physicians who obtained their medical degree with a thesis in 2011 from the seven medical schools in Lima to know the characteristics of the degree by thesis process, as well as participants’ motivations and perceptions of that process. We included 98 students who did a thesis (87% of total); 99% conducted observational thesis, 30% did so in groups of three. The main motivation was that it was good for their curriculum vitae (94%). At the university where the thesis is compulsory, the process began with the choice of topic and adviser. Perceived “greatest” and “least” difficulty in the process was the completion of administrative procedures (53%) and selection of their advisor (11%), respectively. Administrative timeliness and processes should be reviewed so as not to impede the completion of thesis, since the new University Act requires the completion of a thesis to graduate.

  16. Graduate Formation in Intellectual Property in Brazil: A Study Based on Academic Production of Thesis and Dissertations

    Directory of Open Access Journals (Sweden)

    Heitor de Paula Filho

    2009-07-01

    Full Text Available The aim of this paper is to present information on the graduate formation in Intellectual Property in Brazil based on academic production of thesis and dissertations. This study analyzed data from 278 documents indexed in Bank of Thesis of Capes. The results show that: 1 only in the last years started the formation of professionals at the master’s and doctorate degree levels being necessary efforts for learning and training in the area; 2 the formation of competences is much concentrated in the Southeast and South regions of the country and in the area of Law being necessary to correct these asymmetries; and 3 the principal focus of this academic production is related to intellectual property policy followed by patents.

  17. Special Features of Lasing on N2, N2 +, Ar, Ne, and CO2 Transitions Pumped by a Nanosecond Transverse Discharge

    Science.gov (United States)

    Ivanov, N. G.; Losev, V. F.; Prokop'ev, V. E.

    2016-10-01

    Special features of lasing in the most widespread molecular and atomic gases excited by a nanosecond transverse discharge are investigated. It is shown that the maximum of the lasing band on the C3Пu - B3Пg transition of the 0-0 vibrational molecular nitrogen band depends on the composition and pressure of the employed gas mixture and can be tuned from 0.2 to 0.3 nm. Simultaneous lasing on nitrogen molecules and ions at the wavelengths λ = 337.1 and 427.8 nm, respectively, is possible at a certain nitrogen content in the He/N2 mixture. Wherein, regions of lasing at different wavelengths are spatially separated in the output beam cross section. To obtain maximal energy of laser radiation in argon at λ = 912.3 nm, high He pressures (4 atm) and maximal charge voltages (25 kV) are required. The most probable reason for the limited lifetime of a CO2 laser is the accumulation of CN molecules in the mixture.

  18. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water

    Science.gov (United States)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-03-01

    Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.

  19. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McIntosh, Kathryn Gallagher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Judge, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Campbell, Keri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis J. [Applied Spectra Inc., Fremont, CA (United States)

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  20. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  1. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment. PMID:26728251

  2. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    Science.gov (United States)

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  5. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  6. Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser.

    Science.gov (United States)

    Zong, Yan P; Liu, Xian H; Du, Xi W; Lu, Yi R; Wang, Mei Y; Wang, Guang Y

    2013-01-01

    Using 532 nm parallel nanosecond pulsed laser, the decolorization of methylene blue (MB) in aqueous suspensions of gold nanoparticles (GNPs) was studied. The effects of various experimental parameters, such as irradiation time, laser energy, and initial MB concentration on the decolorization rate were investigated. Experiments using real samples of textile dyeing wastewater were also carried out to examine the effectiveness of the method in more complex samples. From the results, the following conclusions may be drawn: (i) Under the optimum conditions (pH 7.19, 135 mJ laser energy, 4 mg/L MB concentration, and 11.6 mg/L GNP concentration), the rate of MB decolorization could reach 94% in 15 min. The decolorization follows pseudo-first-order kinetics; (ii) The amount of MB decreased rapidly during the decolorization. No intermediates of the decolorization could be detected by high-performance liquid chromatography. These observations indicate that MB was decolorized through a very rapid degradation mechanism; (iii) The rate of MB decolorization increased with the increase in laser energy (at laser energies of 0 to 135 mJ); and, (iv) The efficient decolorization of MB in real samples of textile dyeing wastewater was achieved at a decolorization rate of about 85% in 15 min.

  7. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  8. Low-dielectric layer increases nanosecond electric discharges in distilled water

    KAUST Repository

    Hamdan, Ahmad

    2016-10-24

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity (ε) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ε of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  9. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  10. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    International Nuclear Information System (INIS)

    LaGrange, Thomas; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley; Kim, Judy S.; Browning, Nigel D.

    2008-01-01

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions

  11. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    Science.gov (United States)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  12. Tuning the Thermal Isomerization of Phenylazoindole Photoswitches from Days to Nanoseconds.

    Science.gov (United States)

    Simeth, Nadja A; Crespi, Stefano; Fagnoni, Maurizio; König, Burkhard

    2018-02-28

    The growing interest in light-driven molecular switches and optical oscillators led to the development of molecules that are able to interconvert from a stable to a metastable configuration upon photochemical triggering and to return to the thermodynamically stable form as soon as the light stimulus is removed. Controlling a wide range of back-isomerization lifetimes in the dark is a crucial goal for potential application of these compounds such as molecular machines. We herein present a novel class of easily synthesizable azo photoswitches based on the arylazoindole core. Most notably, minimal modifications of the core, such as methylation, dramatically change the Z-to-E thermal isomerization rate from days (Me in position 1) to the nanosecond range (Me in position 2). Moreover, fine-tuning of the Z-to-E lifetimes can be achieved choosing a proper dimethyl sulfoxide-water (or buffered water) solvent mixture. The photochemical and thermal mechanisms have been elucidated by a thorough computational and spectroscopic analysis. This allowed to detect three different pathways of thermal isomerization and to identify the hydrazone tautomer of the phenylazoindole as the major actor in the fast Z-E thermal isomerization of the NH-substituted switch in protic media.

  13. Nanosecond electrical explosion of thin aluminum wire in vacuum: experimental and computational investigations

    International Nuclear Information System (INIS)

    Cochrane, Kyle Robert; Struve, Kenneth William; Rosenthal, Stephen Edgar; McDaniel, Dillon Heirman; Sarkisov, Gennady Sergeevich; Deeney, Christopher

    2004-01-01

    The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a ∼100 (micro)m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of ∼100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed.

  14. Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses

    International Nuclear Information System (INIS)

    Kumar, Brijesh; Soni, R K

    2008-01-01

    We report fabrication of submicrometre size laser-induced periodic surface structures (ripples) on single crystalline InP by nanosecond (ns) pulsed Nd : YAG laser beam irradiation of fourth harmonic wavelength (266 nm) in HF electrolyte. The ripples are orientated parallel to the laser polarization direction and power spectral density analysis reveals reduction in the spatial period of the ripples with increasing number of laser shots. The formation of periodic structures in the presence of electrolyte is empirically explained on the basis of photoelectrochemical etching and variation of periodicity with refractive index change on laser energy and number of laser pulses. From the analysis of energy dispersive x-ray, photoluminescence (PL) and micro-Raman spectroscopy measurements on the rippled surface we conclude that the ripple structures are capped with a thin layer of In 2 O 3 . Further, a blue shift of 0.328 eV compared with the band-edge luminescence of InP is estimated from the PL spectrum of the structure fabricated with 200 laser shots. The blue shift of the PL peak is attributed to the quantum confinement effect in the nanometre size structures in the rippled surface. Micro-Raman spectra show good crystalline quality of the surface at lower number of laser shots and its degradation caused by oxidation at the higher number of shots

  15. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  16. Comparative study of two-photon fluorescent bio-markers at nanosecond and femtosecond pulsed excitation

    Science.gov (United States)

    Peterson, Burl H.; Sarkisov, Sergey S.; Nesterov, V. N.; Curley, Michael J.; Urbas, Augustine; Patel, Darayas N.; Wang, J.-C.

    2007-02-01

    In this study we investigate visible fluorescence of cytotoxic bio-markers (molecular probes) based on the derivatives of piperidone at femtosecond infrared pulsed laser excitation. The subject of this investigation is the origin of the fluorescence. Does it originate from the excited state absorption, which occurs only at slow, nanosecond excitation, or is it due to intrinsic multi-photon absorption? In the past, it has been shown indirectly, through the laser photolysis study, that the contribution of the excited state absorption is minimal for several compounds of such type. The results of direct experiments with an infrared femtosecond fiber laser as an excitation source described here support this hypothesis. The observed dependence of the fluorescence on the pump power indicated the contribution of not only two-photon, but multi-photon routes of excitation. Additionally, it was shown that the spectral features of the fluorescence correlate with the presence of glycine, an amino acid that is one of the building blocks of proteins in a cell. The implication of this result is, in addition to their anticancer action, the compounds can possibly be used for fluorescent diagnostics of cancer and multi-photon fluorescent microscopy of malignant cell cultures using portable infrared fiber lasers as excitation sources.

  17. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  18. Dynamics of liquid nanodroplet formation in nanosecond laser ablation of metals

    Science.gov (United States)

    Mazzi, A.; Gorrini, F.; Miotello, A.

    2017-10-01

    The laser ablation mechanisms of metallic targets leading to liquid nanodroplet ejection are of wide interest both from a fundamental point of view and for applications in various fields, especially when nanoparticle synthesis is required. The phase explosion process was recognized as the driving mechanism of the expulsion of a mixture of vapor and liquid nanodroplets in the short pulse laser ablation of metals. A model based on thermodynamics that links the theory of homogeneous vapor bubble nucleation to the size distribution of the generated liquid nanoclusters has been recently proposed. The present work aims to take a step ahead to remove some assumptions made in previous work. Here an improved computational approach allows us to describe time-dependent nucleation in a homogeneous system with no temperature spatial gradients under nanosecond laser irradiation. Numerical results regarding the size distribution of formed liquid clusters and the time evolution of the process are shown for aluminum, iron, cobalt, nickel, copper, silver and gold. Connections with experimental data and molecular dynamics simulations, when available from literature, are reported and discussed.

  19. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.

    Science.gov (United States)

    Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-04-04

    The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.

  20. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments.

    Science.gov (United States)

    García-Aráez, Nuria; Climent, Víctor; Feliu, Juan M

    2008-03-26

    The behavior of water at the interface formed between a quasi-perfect Pt(111) single-crystal electrode and an aqueous electrolyte solution is studied by means of the laser-induced temperature jump method. This method is based on the use of nanosecond laser pulses to suddenly increase the temperature at the interface. The measurement of the response of the interface toward the laser heating under coulostatic conditions provides evidence on the net orientation of water at the interface. Especially interesting is the study of the effect on the interfacial water caused by the selective deposition of foreign metal adatoms, because these bimetallic systems usually exhibit appealing electrocatalytic properties. The T-jump methodology shows that the surface composition strongly affects the interaction of water with the surface. The most representative parameter to characterize this interaction is the potential where water reorientation occurs; this potential shifts in different directions, depending on the relative values of the electronegativity of the adatom and the substrate. These results are discussed in the light of available information about the effect of adatom deposition on the work function and the surface potential of the modified surface. Finally, some implications on the enhancement of the electrocatalytic activity are briefly discussed.

  1. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  2. Low-dielectric layer increases nanosecond electric discharges in distilled water

    Science.gov (United States)

    Hamdan, Ahmad; Cha, Min Suk

    2016-10-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today's research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ɛ ) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ɛ of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  3. Low-dielectric layer increases nanosecond electric discharges in distilled water

    Directory of Open Access Journals (Sweden)

    Ahmad Hamdan

    2016-10-01

    Full Text Available Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.. Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ε is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ε of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  4. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ming; Liu, Jianguo, E-mail: liujg@mail.hust.edu.cn; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-30

    Highlights: • High-adhesion copper patterns on alumina ceramic were obtained conveniently. • Effects of processing parameters on adhesion were investigated. • The adhesion of copper–ceramic was higher than the tensile strength of tin-lead solder. • Failure mechanism was studied by the analysis of fracture surfaces. - Abstract: Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  5. Experimental validation of a phase screen propagation model for nanosecond laser pulses travelling through turbulent atmospheres

    Science.gov (United States)

    Burgess, Christopher; Westgate, Christopher

    2017-10-01

    Applications involving the outdoor use of pulsed lasers systems can be affected by atmospheric turbulence and scintillation. In particular, deterministic prediction of the risk of injury or damage due to pulsed laser radiation can be difficult due to uncertainty over the focal plane fluence of radiation that has traversed through a turbulent medium. In this study, focussed beam profiles of nanosecond laser pulses are recorded for visible laser pulses that have traversed 1400m paths through turbulent atmospheres. Beam profiles are also taken under laboratory conditions. These pulses are characterised in terms of their peak focal plane fluence, total collected energy and Strehl ratio. Measured pulses are then compared statistically to pulse profiles generated by a two-dimensional phase screen propagation model based on the Von Karman power spectrum distribution. The model takes into account the refractive index structure constant (𝐶𝑛2), the wavelength, the path geometry and macroscopic beam steering. Analysis shows good correlation between the measured and simulated data, inferring that the Von Karman phase screen model can be used to predict focal plane fluence distributions for outdoor applications.

  6. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses

    Science.gov (United States)

    Nováková, Eva; Davídková, Marie; Vyšín, Ludék; Burian, Tomáš; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.; Juha, Libor

    2011-06-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugar and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. The complexity of lesions produced in DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. We have studied the nature of DNA damage induced directly by the pulsed 46.9 nm radiation provided by a capillary-discharge Ne-like Ar laser (CDL). Different surface doses were delivered with a repetition rate of a few Hz and an average pulse energy ~ 1 μJ. A simple model DNA molecule, i.e., dried closed-circular plasmid DNA (pBR322), was irradiated. The agarose gel electrophoresis method was used for determination of both SSB and DSB yields. Results are compared with a previous study of plasmid DNA irradiated with a single sub-nanosecond 1-keV X-ray pulse produced by a large-scale, double-stream gas puff target, illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System).

  7. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime.

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal; Purnima

    2012-07-01

    The present work focuses on the nonlinear optical behavior of chalcogenide As(2)S(3) film as well as on bulk material. The thin film of As(2)S(3) grown by thermal evaporation and bulk glass developed by melt-quenched technique has been characterized using nanosecond pulses of Nd:YAG (532 nm) and Nd:YVO(4) (1,064 nm) laser. Using Z-scan technique, the laser induced nonlinear optical parameters viz. nonlinear refractive index (n(2)), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) have been estimated. At 1,064 nm excitation, the materials exhibit stronger nonlinearity as compared to that of 532 nm laser. In case of As(2)S(3) thin film, observed nonlinearity attributes to two-photon absorption. The optical limiting response of chalcogenide film as well as bulk sample has also been reported. The study predicts that the As(2)S(3) thin film is a better optical limiting material than bulk glass due to relatively higher nonlinearity and lower limiting threshold. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Science.gov (United States)

    Sánchez-Aké, C.; Canales-Ramos, A.; García-Fernández, T.; Villagrán-Muniz, M.

    2017-05-01

    Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10-5 Torr). We studied the effect of the laser fluence (200-400 mJ/cm2), thickness of the starting film (∼40-80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  9. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    Science.gov (United States)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of capacitor recovery time.

  10. Faraday cup with nanosecond response and adjustable impedance for fast electron beam characterization

    International Nuclear Information System (INIS)

    Hu Jing; Rovey, Joshua L.

    2011-01-01

    A movable Faraday cup design with simple structure and adjustable impedance is described in this work. This Faraday cup has external adjustable shunt resistance for self-biased measurement setup and 50 Ω characteristic impedance to match with 50 Ω standard BNC coaxial cable and vacuum feedthroughs for nanosecond-level pulse signal measurements. Adjustable shunt resistance allows self-biased measurements to be quickly acquired to determine the electron energy distribution function. The performance of the Faraday cup is validated by tests of response time and amplitude of output signal. When compared with a reference source, the percent difference of the Faraday cup signal fall time is less than 10% for fall times greater than 10 ns. The percent difference of the Faraday cup signal pulse width is below 6.7% for pulse widths greater than 10 ns. A pseudospark-generated electron beam is used to compare the amplitude of the Faraday cup signal with a calibrated F-70 commercial current transformer. The error of the Faraday cup output amplitude is below 10% for the 4-14 kV tested pseudospark voltages. The main benefit of this Faraday cup is demonstrated by adjusting the external shunt resistance and performing the self-biased method for obtaining the electron energy distribution function. Results from a 4 kV pseudospark discharge indicate a ''double-humped'' energy distribution.

  11. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  12. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S.; Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Bulgarian Academy of Sciences, Institute of Electronics, Sofia (Bulgaria); Alexandrov, M.T. [Bulgarian Academy of Sciences, Institute of Experimental Pathology and Parasitology, Sofia (Bulgaria); Karashanova, D.B. [Bulgarian Academy of Sciences, Institute of Optical Materials and Technologies, Sofia (Bulgaria)

    2012-11-15

    A study is presented of the properties of Ag nanoparticles produced by nanosecond pulsed laser ablation in twice-distilled water. An Ag target was immersed in the liquid and irradiated by the fundamental, second, third and fourth harmonics of a Nd:YAG laser system to create different colloids. Two specific boundary values of the laser fluence were applied for each wavelength. The properties of the nanoparticles at different wavelengths of the laser radiation were examined. The characterization of the colloids was performed immediately after their fabrication. Spherical and spherical-like shapes of the nanoparticles created were established. The formation of nanowires was observed when the second and the third harmonics of the laser were used. It is connected with self-absorption of the incident laser light from the already-created nanoparticles and depends also on the laser fluence. The size distribution of the nanoparticles is estimated by transmission electron microscopy. Generally, their mean size and standard deviation decreased as the wavelength of the incident laser light was increased and increased with the increase of the laser fluence. The substantial discrepancy between the results already commented on for both characteristics considered and others, obtained by dynamic light scattering, is discussed. The structure of the nanoparticles was established to be single and polycrystalline, and the phase composition in both cases is identified as consisting of cubic silver. The nanoparticles are slightly oxidized. (orig.)

  13. Economic model for seaborne oil trade. Master`s thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kian-Wah, H.

    1996-03-01

    This thesis aims to provide some insights as to how oil prices and oil flows might vary with the carrying capacity of the tanker fleet as affected by political events. It provides an econometric analysis of tanker freight rates in the modern era and proposes a mathematical (quadratic) programming economic model that links the crude oil market to the supply elasticity of the world oil tanker fleet based on a competitive economy. The economic model can be considered as a version of the Walras-Cassel general-equilibrium system which possesses an economically meaningful equilibrium solution in terms of oil prices, freight rates and the pattern of oil distribution. The implementation of the model is completed using the General Algebraic Modeling System (GAMS). The study concludes with a scenario study showing how the model could be used to examine the importance of South East Asia`s sealanes in world seaborne oil trade. The model shows the economic vulnerability of oil importing nations, especially Japan, the United States, and Western Europe, to a possible closure of South East Asian sealanes.

  14. Software used for diploma thesis at Geoinformatics VSB-TUO

    Directory of Open Access Journals (Sweden)

    Jan Růžička

    2007-12-01

    Full Text Available The paper describes software usage for diploma thesis presented by VSB-TUO students during students conference GISáček. A prepared statistics was build from papers available at web pages of the conference. The prepared statistics is not complete clear view on this area, but I do not have any other simple way how to prepare such statistics.The statistics was build just from the text of the papers. If a student mentioned any software than it is included in the statistics. Summarized results are presented at the following figures with some general comments, that can be useful.The statistics is prepared only for years 2000 – 2006. A last year of the conference was not included, because of problems with availability of the proceedings.Software is categorized to three categories. A category fee contains only software that must be payed. This category includes software that can be obtained by students free of charge, but for firm usage must be payed. A category without fee includes software that can be used free of charge even for firm purposes, but is not available as an open source software. The last category open source includes open source software and in a case of this statistics, all open source software mentioned by students is free of charge as well.

  15. Molecular physiology of seeds. Author-review of the Thesis

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present author-review of the Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  16. The History and Significance of the Incommensurability Thesis

    Science.gov (United States)

    Pearce, James Jacob

    The incommensurability thesis (IT) maintains that there are no non-prejudicial means of choosing between competing theories in the empirical sciences. If true, IT would entail that natural science is a fundamentally subjective or irrational activity. Should this latter claim prove justifiable, then empirical science cannot be regarded as an organ of objective knowledge, and "scientific realism" is eo ipso false. I follow the origin of IT from its pre-history in Logical Positivism, through certain preliminary philosophical developments in the work of Karl Popper, W. V. O. Quine, Stephen Toulmin and N. R. Hanson, to the eventual formulation and introduction of IT by Thomas Kuhn and Paul Feyerabend. I then examine the rigorous criticism of IT by various philosophers since about 1964, and discuss different methods of objective theory comparison which have been advanced by such philosophers as Hilary Putnam, W. H. Newton-Smith, Michael Devitt, Hartry Field, Philip Kitcher and Howard Sankey. I conclude by arguing for two counterintuitive claims: (1) Even if true, IT fails to provide evidence against scientific realism. (2) In fact, the truth of IT actually furnishes evidence for a necessary condition for scientific realism, and hence evidence which can be construed as indirectly favorable to scientific realism.

  17. Enjoy writing your science thesis or dissertation! a step-by-step guide to planning and writing a thesis or dissertation for undergraduate and graduate science students

    CERN Document Server

    Fisher, Elizabeth

    2014-01-01

    This book is a step by step illustrated guide to planning and writing dissertations and theses for undergraduate and graduate science students. Topics covered include advice on writing each section of a thesis as well as general discussions on collecting and organizing references, keeping records, presenting data, interacting with a supervisor and avoiding academic misconduct. Recommendations about how to use word processors and other software packages effectively are included, as well as advice on the use of other resources. A concise summary of important points of English grammar is given, along with appendices listing frequently confused words and wordy phrases to avoid. Further appendices are provided, including one on Si units. The aim is to provide an easy-to-read guide that gives students practical advice about all aspects of writing a science thesis or dissertation, starting from writing a thesis plan and finishing with the viva and corrections to the thesis.

  18. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  19. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  20. A familiar Friend: The Impacts of the Master's Thesis over Four Formative Career Phases.

    Science.gov (United States)

    Hooley, Cole Douglas

    2017-01-01

    Over the course of my career, I have experienced the thesis in different ways. This reflection paper will relay my encounters with, what I am calling, thesis-objects (to borrow a concept from object relations). I encountered the thesis-objects at different phases of my professional development: when I was a student, a supervisor for Smith MSW students, a PhD applicant, and chair of the Alumni Thesis Award Committee. My relationship with each thesis-object has refined me and granted me new perspective and personal growth. When I was a student, the thesis was a coach helping me develop tools to answer important questions. When I was a supervisor, the thesis was a bridge-builder strengthening my relationships with supervisees. Then, when I was a PhD applicant, the thesis was a door-opener providing me means to access PhD opportunities. Now that I am a chair, the thesis is a teacher opening my eyes to new intellectual terrain and pressing social problems.

  1. A familiar Friend: The Impacts of the Master’s Thesis over Four Formative Career Phases

    Science.gov (United States)

    2018-01-01

    Over the course of my career, I have experienced the thesis in different ways. This reflection paper will relay my encounters with, what I am calling, thesis-objects (to borrow a concept from object relations). I encountered the thesis-objects at different phases of my professional development: when I was a student, a supervisor for Smith MSW students, a PhD applicant, and chair of the Alumni Thesis Award Committee. My relationship with each thesis-object has refined me and granted me new perspective and personal growth. When I was a student, the thesis was a coach helping me develop tools to answer important questions. When I was a supervisor, the thesis was a bridge-builder strengthening my relationships with supervisees. Then, when I was a PhD applicant, the thesis was a door-opener providing me means to access PhD opportunities. Now that I am a chair, the thesis is a teacher opening my eyes to new intellectual terrain and pressing social problems. PMID:29479118

  2. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  3. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com [Oak Ridge Institute for Science & Education, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Roth, Caleb C. [Department of Radiological Sciences, University of Texas Health Science Center at San Antonio, TX, 78234 (United States); Kuipers, Marjorie A. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Tolstykh, Gleb P. [General Dynamics IT, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Beier, Hope T. [Optical Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Ibey, Bennett L. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States)

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.

  4. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    Science.gov (United States)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  5. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser

    Science.gov (United States)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang

    2018-02-01

    Micro-structure surface on diamond material is widely used in a series of industrial and scientific applications, such as micro-electromechanical systems (MEMS), nanoelectromechanical systems (NEMS), microelectronics, textured or micro-structured diamond machining tools. The efficient machining of micro-structure on diamond surface is urgently demanded in engineering. In this paper, laser machining square micro-structure on diamond surface was studied with a sub-nanosecond pulsed laser. The influences of laser machining parameters, including the laser power, scanning speed, defocusing quantity and scanning pitch, were researched in view of the ablation depth, material removal rate and machined surface topography. Both the ablation depth and material removal rate increased with average laser power. A reduction of the growth rate of the two parameters was induced by the absorption of the laser plasma plume at high laser power. The ablation depth non-linearly decreased with the increasing of the scanning speed while the material removal rate showed an opposite tendency. The increasing of the defocusing quantity induced complex variation of the ablation depth and the material removal rate. The maximum ablation depth and material removal rate were achieved at a defocusing position. The ablation depth and material removal rate oppositely varied about the scanning pitch. A high overlap ratio was meaningful for achieving a smooth micro-structure surface topography. Laser machining with a large defocusing quantity, high laser power and small scanning pitch was helpful for acquiring the desired micro-structure which had a large depth and smooth micro-structure surface topography.

  6. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    Science.gov (United States)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  7. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  8. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  9. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  10. Lysosomal exocytosis in response to subtle membrane damage following nanosecond pulse exposure

    Science.gov (United States)

    Dalzell, Danielle R.; Roth, Caleb C.; Bernhard, Joshua A.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    The cellular response to subtle membrane damage following exposure to nanosecond electric pulses (nsEP) is not well understood. Recent work has shown that when cells are exposed to nsEP, ion permeable nanopores ( 2nm) created by longer micro and millisecond duration pulses. Macroscopic damage to a plasma membrane by a micropipette has been shown to cause internal vesicles (lysosomes) to undergo exocytosis to repair membrane damage, a calcium mediated process called lysosomal exocytosis. Formation of large pores in the plasma membrane by electrical pulses has been shown to elicit lysosomal exocytosis in a variety of cell types. Our research objective is to determine whether lysosomal exocytosis will occur in response to nanopores formed by exposure to nsEP. In this paper we used propidium iodide (PI) and Calcium Green-1 AM ester (CaGr) to differentiate between large and small pores formed in CHO-K1 cells following exposure to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm. This information was compared to changes in membrane organization observed by increases in FM1-43 fluorescence, both in the presence and absence of calcium ions in the outside buffer. In addition, we monitored the real time migration of lysosomes within the cell using Cellular Lights assay to tag LAMP-1, a lysosomal membrane protein. Both 1 and 20 pulses elicited a large influx of extracellular calcium, while little PI uptake was observed following a single pulse exposure. Statistically significant increases in FM1-43 fluorescence were seen in samples containing calcium suggesting that calcium-triggered membrane repair may be occurring. Lastly, density of lysosomes within cells, specifically around the nucleus, appeared to change rapidly upon nsEP stimulation suggesting lysosomal migration.

  11. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  12. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-01-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm −2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm −2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm −2 . The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  13. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); Canales-Ramos, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790 (Mexico); Villagrán-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico)

    2017-05-01

    Highlights: • Background pressure plays an important role in NPs formation and its characteristics. • The NPs diameter and their size dispersion are smaller when irradiating in vacuum. • The plasmon resonance shifts ∼15 nm to higher frequencies when irradiating in vacuum. • Film partial ablation cannot be neglected for thickness in the range 40–80 nm. • In situ optical techniques monitor the timescale of the process and ablation dynamics. - Abstract: Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10{sup −5} Torr). We studied the effect of the laser fluence (200–400 mJ/cm{sup 2}), thickness of the starting film (∼40–80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  14. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  15. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    Science.gov (United States)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  16. Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity.

    Science.gov (United States)

    Gianulis, Elena C; Casciola, Maura; Xiao, Shu; Pakhomova, Olga N; Pakhomov, Andrei G

    2018-02-01

    Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (<1μs), interpulse intervals. Finally, bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  18. Investigation of finite element: ABC methods for electromagnetic field simulation. Ph.D. Thesis

    Science.gov (United States)

    Chatterjee, A.; Volakis, John L.; Nguyen, J.

    1994-01-01

    The mechanics of wave propagation in the presence of obstacles is of great interest in many branches of engineering and applied mathematics like electromagnetics, fluid dynamics, geophysics, seismology, etc. Such problems can be broadly classified into two categories: the bounded domain or the closed problem and the unbounded domain or the open problem. Analytical techniques have been derived for the simpler problems; however, the need to model complicated geometrical features, complex material coatings and fillings, and to adapt the model to changing design parameters have inevitably tilted the balance in favor of numerical techniques. The modeling of closed problems presents difficulties primarily in proper meshing of the interior region. However, problems in unbounded domains pose a unique challenge to computation, since the exterior region is inappropriate for direct implementation of numerical techniques. A large number of solutions have been proposed but only a few have stood the test of time and experiment. The goal of this thesis is to develop an efficient and reliable partial differential equation technique to model large three dimensional scattering problems in electromagnetics.

  19. A Content Analysis of the Postgraduate Thesis Written on Special Education in Turkey Based on Various Variables (2009-2014)

    Science.gov (United States)

    Demirok, Mukaddes Sakalli; Besgul, Meyrem; Baglama, Basak

    2016-01-01

    The aim of this study was to examine postgraduate thesis studies conducted between the years of 2009 and 2014 in special education field in Turkey based on various variables and figure out how many of these thesis is related with hearing disability. A total number of 146 postgraduate thesis have been found in the thesis scanning center of Higher…

  20. TEFL Graduate Supervisees' Views of Their Supervisors' Supervisory Styles and Satisfaction with Thesis Supervision

    Science.gov (United States)

    Gedamu, Abate Demissie

    2018-01-01

    Thesis supervisor supervisory styles play central roles in enhancing timely and quality completion of thesis works. To this effect, this study aimed at exploring TEFL graduate supervisees' perception of their thesis supervisors' supervisory style(s), the supervisees' level of satisfaction with thesis supervision, and the association between…

  1. Experimental study of mechanical response of artificial tissue models irradiated with Nd:YAG nanosecond laser pulses

    Science.gov (United States)

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Aguilar, Guillermo

    2011-07-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light irradiance and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present three experimental approaches to study pressure transients originated when 6 ns laser pulses are incident on agar gels and water with varying linear absorption coefficient, using laser radiant exposures above and below threshold for bubble formation: (a) PVDF sensors, (b) Time-resolved shadowgraphy and (c) Time-resolved interferometry. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this study is to carry out a comprehensive experimental analysis of the mechanical effects that result when tissue models are irradiated with nanosecond laser pulses to elucidate the relative contribution of linear and nonlinear absorption to bubble formation. Furthermore, we investigate cavitation bubble formation with temperature increments as low as 3 °C.

  2. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    Science.gov (United States)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350–850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018–1019 cm‑3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  3. Design and implementation of a nanosecond time-stamping readout system-on-chip for photo-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, Shebli; Château, Frédéric; Le Provost, Hervé; Louis, Frédéric [CEA/Irfu/SEDI Gif-sur-Yvette (France); Manolopoulos, Konstantinos [Physics Department, University of Athens (Greece); Moudden, Yassir, E-mail: yassir.moudden@cea.fr [CEA/Irfu/SEDI Gif-sur-Yvette (France); Vallage, Bertrand [CEA/Irfu/SPP Gif-sur-Yvette (France); Zonca, Eric [CEA/Irfu/SEDI Gif-sur-Yvette (France)

    2014-01-21

    A readout system suitable for a large number of synchronized photo-detection units has been designed. Each unit embeds a specifically designed fully integrated communicating system based on Xilinx FPGA SoC technology. It runs the VxWorks real-time OS and a custom data acquisition software designed within the Ice middleware framework, resulting in a highly flexible, controllable and scalable distributed application. Clock distribution and delay calibration over customized fixed latency gigabit Ethernet links enable synchronous time-stamping of events with nanosecond precision. The implementation of this readout system on several data-collecting units as well as its performances are described.

  4. On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, A. I.; Baidullaeva, A.; Veleschuk, V. P., E-mail: vvvit@ukr.net; Mozol, P. E.; Boiko, N. I.; Litvin, O. S. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductors Physics (Ukraine)

    2015-02-15

    The formation of nanoscale structures in the unirradiated part of a p-CdTe crystal surface irradiated by a nanosecond ruby laser is revealed and investigated. It is shown that their formation is caused by the effect of the long-range action of a laser pulse with an intensity of I = 20 MW/cm{sup 2}. Nanoscale-structure formation is explained by the influence of the pressure gradient of the surface acoustic wave, in particular, within the “vacancy-pump” mechanism on the surface.

  5. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  6. An Analysis of Current Graduation Thesis Writing by English Majors in Independent Institute

    Science.gov (United States)

    Han, Ying

    2014-01-01

    The paper takes 414 graduates from ZJU in 2011 and 2012, NIT as a case, analyzing the status of their writing of graduation thesis. It is found that a considerable number of students have problems in selection and report of topics, writing of each part and debating in the whole process of graduation thesis. In view of the situation, based on the…

  7. Supporting the Thesis Writing Process of International Research Students through an Ongoing Writing Group

    Science.gov (United States)

    Li, Linda Y.; Vandermensbrugghe, Joelle

    2011-01-01

    Evidence from research suggests writing support is particularly needed for international research students who have to tackle the challenges of thesis writing in English as their second language in Western academic settings. This article reports the development of an ongoing writing group to support the thesis writing process of international…

  8. "Breaking the Mold" in the Dissertation: Implementing a Problem-Based, Decision-Oriented Thesis Project

    Science.gov (United States)

    Archbald, Doug

    2010-01-01

    This article offers lessons from an initiative refashioning the doctoral thesis in an education leadership program. The program serves a practitioner clientele; most are teachers and administrators. The new model for the thesis emphasizes leadership, problem solving, decision making, and organizational improvement. The former model was a…

  9. Thesis by Publication in Education: An Autoethnographic Perspective for Educational Researchers

    Science.gov (United States)

    Merga, Margaret K.

    2015-01-01

    Despite its growing popularity, the thesis by publication is a less conventional format for doctoral dissertations in the field of education. The author successfully undertook a thesis by publication in education from 2012, to submission in 2014. This paper draws on both the literature in the field and the experiences of the author through an…

  10. Student Engagement, Ideological Contest and Elective Affinity: The Zepke Thesis Reviewed

    Science.gov (United States)

    Trowler, Paul

    2015-01-01

    This paper takes up issues raised in two articles by Nick Zepke and portrayed here as "the Zepke thesis". This thesis argues that the literature on, interest in and practices around student engagement in higher education have an elective affinity with neo-liberal ideology. At one level this paper counters many of the assertions that…

  11. [Vagotonía. The medical thesis of Salvador Zubirán].

    Science.gov (United States)

    Delgado, Guillermo; Estañol-Vidal, Bruno

    2012-01-01

    Salvador Zubirán submitted his thesis for his MD degree in 1923. This thesis falls within the context of the new Mexican physiological medicine and denotes the visionary character of its author. Zubirán appears here as the introducer in Mexico of the physiopharmacological approach in autonomic nervous system disorders.

  12. Factors Mediating the Interactions between Adviser and Advisee during the Master's Thesis Project: A Quantitative Approach

    Science.gov (United States)

    Rodrigues Jr., Jose Florencio; Lehmann, Angela Valeria Levay; Fleith, Denise De Souza

    2005-01-01

    Building on previous studies centred on the interaction between adviser and advisee in masters thesis projects, in which a qualitative approach was used, the present study uses factor analysis to identify the factors that determine either a successful or unsuccessful outcome for the masters thesis project. There were five factors relating to the…

  13. Pre-Service Teachers' Beliefs about the Roles of Thesis Supervisors: A Case Study

    Science.gov (United States)

    Tapia Carlín, Rebeca Elena

    2013-01-01

    Trainee beliefs about the roles of thesis supervisors can exert an important influence on timely and successful completion of theses. This research article explores pre-service teacher beliefs about the roles of thesis supervisors through the analysis of their learning diaries. The aim of this study is to identify ways to improve supervisory…

  14. A Tradition Unlike Any Other: Research on the Value of an Honors Senior Thesis

    Science.gov (United States)

    Banks, H. Kay

    2016-01-01

    An honors senior thesis introduces students into a world of scholarship and professional activity in a way that no single course, either semester- or year-long, can do (Anderson, Lyons, and Weiner). Many honors educators consider honors thesis work to be the defining honors experience. For graduate schools, employers, and the students themselves,…

  15. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    Science.gov (United States)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  16. Investigations into localized re-treatment of the retina with a 3-nanosecond laser.

    Science.gov (United States)

    Chidlow, Glyn; Plunkett, Malcolm; Casson, Robert J; Wood, John P M

    2016-08-01

    Subvisual retinal lasers necessarily cause clinically invisible lesions, hence, they could intentionally or inadvertently be targeted at precisely the same or an overlapping location during repeat laser treatment. Herein, we investigated the structural integrity and cellular responses of localized re-treatment using a nanosecond laser (2RT) currently in trials for early age-related macular degeneration. Rats were randomly assigned to one of five groups: sham, subvisual 2RT, subvisual 2RT re-treatment, visual effect 2RT, visual effect 2RT re-treatment. Re-treatment groups were lasered on days 0 and 21; single laser groups were only lasered on day 21. All rats were euthanized at day 28 and eyes were then dissected and processed for immunohistochemistry. For re-treatment, the laser was targeted at precisely the same locations on both delivery occasions. Analytical endpoints included monitoring of retinal vascular integrity overlying lesions, investigation into any potential choroidal neovascularization, assessment of the RPE, quantification of collateral injury to photoreceptors or other neuronal classes, and delineation of glial reactivity. Repeat laser administration to rats caused ostensibly identical retinal-RPE-choroid responses to those obtained in age-matched rats that received only a single application. Specifically, 7 days after treatment, RPE cells were re-populating lesion sites. No obvious consistent differences were evident between the single and repeat laser groups. Moreover, repeat laser caused no (measurable) additive injury to photoreceptors or other retinal neuronal classes from single laser treatment. In re-lasered animals, there was no increase in microglial activity overlying and adjacent to lesion sites relative to single lasered rats. Finally, there was no evidence of choroidal neovascularization after repeat laser treatment. The overall results provide a measure of confidence that re-treatment of patients with 2RT should not provide any

  17. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    mechanism for high irradiance laser ablation. Laser processing parameters were also investigated for nanosecond laser ablation of silicon. Longer incident wavelengths and larger laser beam sizes were associated with higher values of a threshold irradiance.

  18. 'Moving source': feasibility of diffraction experiment with nanosecond time resolution by the fast synchrotron radiation beam scanning

    CERN Document Server

    Tolochko, B P; Mezentsev, N A; Mishnev, S I

    2000-01-01

    We propose combination of electronical and X-ray optical scheme that will allow one to fulfil the diffraction experiment with a nanosecond time resolution. In this scheme, a few bunches of electrons will be in the nearest separatrixes. They will move inside the undulator along the different trajectories and at different moments t sub i. Each trajectory will have a different deviation above the stationary orbit. As a result there will be a shift of the synchrotron radiation (SR) generation point from the equilibrium position. So, a discretely moving source of SR will be created: the SR will be radiated at t sub i moment and from the ith point. For each ith trajectory of electrons (and for SR), a single-coordinate detector D sub i will be placed for diffracted radiation collecting from the ith point of the sample. So, every new X-ray diffraction image will be received within time interval t sub i sub - sub 1 -t sub i which is equal to a few nanoseconds. The exposure time may be as short as the electron bunch du...

  19. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  20. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  1. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water

    KAUST Repository

    Hamdan, Ahmad

    2016-05-17

    Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids. © 2016 IOP Publishing Ltd.

  2. Characterization of combined power plasma jet using AC high voltage and nanosecond pulse for reactive species composition control

    Science.gov (United States)

    Takashima, Keisuke; Konishi, Hideaki; Kato, Toshiaki; Kaneko, Toshiro

    2014-10-01

    In the application studies for both bio-medical and agricultural applications, the roles of the reactive oxide and/or nitride species generated in the plasma has been reported as a key to control the effects and ill-effects on the living organism. The correlation between total OH radical exposure from an air atmospheric pressure plasma jet and the sterilization threshold on Botrytis cinerea is presented. With the increase of the OH radical exposure to the Botrytis cinerea, the probability of sterilization is increased. In this study, to resolve the roles of reactive species including OH radicals, a combined power plasma jet using nanosecond pulses and low-frequency sinusoidal AC high voltage (a few kHz) is studied for controlling the composition of the reactive species. The nanosecond pulses are superimposed on the AC voltage which is in synchronization with the AC phase. The undergoing work to characterize the combined power discharge with electric charge and voltage cycle on the plasma jet will also be presented to discuss the discharge characteristics to control the composition of the reactive species.

  3. Solvent effect on dynamical TPA and optical limiting of BDMAS molecular media for nanosecond and femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yong; Miao Quan; Sun Yuping; Wang Chuankui [College of Physics and Electronics, Shandong Normal University, 250014 Jinan (China); Gel' mukhanov, Faris, E-mail: ckwang@sdnu.edu.cn [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm (Sweden)

    2011-01-14

    The dynamical two-photon absorption (TPA) cross section as well as optical limiting of a 4,4'-bis(dimethylamino) stilbene (BDMAS) molecular medium for the nanosecond and femtosecond laser pulses is studied. This molecular medium can be described by a cascade three-level model in the visible light regime. Our numerical results show that the BDMAS molecular medium exhibits a strong optical limiting behaviour. The saturation TPA in the femtosecond time domain can be observed, and materials with larger nonlinear absorption cross sections would be much easier to saturate. Due to the contribution of the two-step TPA, the dynamical TPA cross section of BDMAS for nanosecond pulses is about three orders of magnitude larger than that for ultrashort femtosecond pulses. Special attention has been paid to the solvent effects on the optimal limiting performance. With an enhancement of the polarity of solvents, the dynamical optical limiting window becomes broader. In the origin of optical limiting, the dynamical TPA cross section of BDMAS decreases when the polarity of solvents increases, which is in good agreement with the experiment.

  4. Solvent effect on dynamical TPA and optical limiting of BDMAS molecular media for nanosecond and femtosecond laser pulses

    International Nuclear Information System (INIS)

    Zhou Yong; Miao Quan; Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2011-01-01

    The dynamical two-photon absorption (TPA) cross section as well as optical limiting of a 4,4'-bis(dimethylamino) stilbene (BDMAS) molecular medium for the nanosecond and femtosecond laser pulses is studied. This molecular medium can be described by a cascade three-level model in the visible light regime. Our numerical results show that the BDMAS molecular medium exhibits a strong optical limiting behaviour. The saturation TPA in the femtosecond time domain can be observed, and materials with larger nonlinear absorption cross sections would be much easier to saturate. Due to the contribution of the two-step TPA, the dynamical TPA cross section of BDMAS for nanosecond pulses is about three orders of magnitude larger than that for ultrashort femtosecond pulses. Special attention has been paid to the solvent effects on the optimal limiting performance. With an enhancement of the polarity of solvents, the dynamical optical limiting window becomes broader. In the origin of optical limiting, the dynamical TPA cross section of BDMAS decreases when the polarity of solvents increases, which is in good agreement with the experiment.

  5. Few-nanosecond pulse switching with low write error for in-plane nanomagnets using the spin-Hall effect

    Science.gov (United States)

    Aradhya, Sriharsha; Rowlands, Graham; Shi, Shengjie; Oh, Junseok; Ralph, D. C.; Buhrman, Robert

    Magnetic random access memory (MRAM) using spin transfer torques (STT) holds great promise for replacing existing best-in-class memory technologies in several application domains. Research on conventional two-terminal STT-MRAM thus far has revealed the existence of limitations that constrain switching reliability and speed for both in-plane and perpendicularly magnetized devices. Recently, spin torque arising from the giant spin-Hall effect in Ta, W and Pt has been shown to be an efficient mechanism to switch magnetic bits in a three-terminal geometry. Here we report highly reliable, nanosecond timescale pulse switching of three-terminal devices with in-plane magnetized magnetic tunnel junctions. We obtain write error rates (WER) down to ~10-5 using pulses as short as 2 ns, in contrast to conventional in-plane STT-MRAM devices where write speeds were limited to a few tens of nanoseconds for comparable WER. Utilizing micro-magnetic simulations, we discuss the differences from conventional MRAM that allow for this unanticipated and significant performance improvement. Finally, we highlight the path towards practical application enabled by the ability to separately optimize the read and write pathways in three-terminal devices.

  6. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits

    Science.gov (United States)

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  7. Fracture Behavior in Nylon 6 Fibers. Ph.D. Thesis

    Science.gov (United States)

    Lloyd, B. A.

    1972-01-01

    Electron paramagnetic resonance (EPR) techniques are used to determine the number of free radicals produced during deformation leading to fracture of nylon 6 fibers. A reaction rate molecular model is proposed to explain some of the deformation and bond rupture behavior leading to fracture. High-strength polymer fibers are assumed to consist of a sandwich structure of disordered and ordered regions along the fiber axis. In the disordered or critical flaw regions, tie chains connecting the ordered or crystalline block regions are assumed to have a statistical distribution in length. These chains are, therefore, subjected to different stresses. The effective length distribution was determined by EPR. The probability of bond rupture was assumed to be controlled by reaction-rate theory with a stress-aided activation energy and behavior of various loadings determined by numerical techniques. The model is successfully correlated with experimental stress, strain, and bond rupture results for creep, constant rate loadings, cyclic stress, stress relaxation and step strain tests at room temperature.

  8. Pulse radiolysis with (sub) nanosecond time resolution using a 3 MV electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.

    1986-01-01

    In this thesis the development of equipment for pulse radiolysis is described and the application of the technique to time-resolved measurements of the fluorescence emission of excited states formed after irradiation of some alkanes is dealt with. A review is given of the development of the pulsed 3MV Van de Graaf electron accelerator for the generation of subnanosecond electron beam pulses and of the development of the equipment for optical detection as accomplished by the author. The initial stage of a further development for shorter pulses and higher time resolution is briefly discussed. A collection of papers on the development of apparatus and a collection of papers dealing with the results obtained from measurements of the fluorescence of excited states, formed by the recombination of electrons and ions in irradiated alkanes such as cyclohexane and the decalines, are included. (Auth.)

  9. The starting of the scientific research: workshops thesis in the Department and in the Faculty

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Caraballo Carmona

    2014-12-01

    Full Text Available This article presents a methodology to develop workshops thesis at the department level by the docto rate beginners. This research process of writing and defending the PhD thesis, will guide the researcher to get familiar with the research process that he develops and achieves. Additionally this article allows the researcher in his thesis workshops to sho w the theoretical knowledge related with the research methodology to ensure base d on science each of the results obtained during the research process. The purpose of this article is that the researcher present s a theoretical - methodological design supported by a high and strict theoretical work.

  10. Design of an integrated team project as bachelor thesis in bioscience engineering

    Science.gov (United States)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-11-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the design of this thesis. Because of the high number of students and the multidisciplinary nature of the graduates, all research divisions of the faculty are asked to participate. The yearly surveys and hearings were used for further optimisation. The actual design of this bachelor thesis is presented and discussed in this paper.

  11. Zilsel's Thesis, Maritime Culture, and Iberian Science in Early Modern Europe.

    Science.gov (United States)

    Leitão, Henrique; Sánchez, Antonio

    2017-01-01

    Zilsel's thesis on the artisanal origins of modern science remains one of the most original proposals about the emergence of scientific modernity. We propose to inspect the scientific developments in Iberia in the early modern period using Zilsel's ideas as a guideline. Our purpose is to show that his ideas illuminate the situation in Iberia but also that the Iberian case is a remarkable illustration of Zilsel's thesis. Furthermore, we argue that Zilsel's thesis is essentially a sociological explanation that cannot be applied to isolated cases; its use implies global events that involve extended societies over large periods of time.

  12. The Radical Plasticity Thesis: How the Brain Learns to be Conscious

    Science.gov (United States)

    Cleeremans, Axel

    2011-01-01

    In this paper, I explore the idea that consciousness is something that the brain learns to do rather than an intrinsic property of certain neural states and not others. Starting from the idea that neural activity is inherently unconscious, the question thus becomes: How does the brain learn to be conscious? I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of meta-representations that characterize and qualify the target first-order representations. Such learned redescriptions, enriched by the emotional value associated with them, form the basis of conscious experience. Learning and plasticity are thus central to consciousness, to the extent that experiences only occur in experiencers that have learned to know they possess certain first-order states and that have learned to care more about certain states than about others. This is what I call the “Radical Plasticity Thesis.” In a sense thus, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves “signal detection on the mind”; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. I illustrate these ideas through neural network models that simulate the relationships between performance and awareness in different tasks. PMID:21687455

  13. Electron Acceleration In Impulsive Solar Flares : extract of a thesis

    CERN Document Server

    Lenters, G T

    1999-01-01

    Impulsive solar flares generate a wide range of photon and particle emissions and hence provide an excellent backyard laboratory for studying particle acceleration processes in astrophysical plasmas. The source of the acceleration remains unidentified, but the basic observations are clear: (1) Hard X-ray and gamma-ray line emission occur simultaneously, indicating that electron and ion acceleration must occur simultaneously; (2) the electron and ion precipitation rates at the foot-points of the flare must be extremely large to account for the photon emission (∼1037 electrons s −1 and ∼1035 protons s−1, respectively), which means that replenishment of the acceleration region (which contains ≈1037 fully ionized hydrogen atoms) is a crucial issue; and (3) there are enhancements of the heavy ion abundances relative to normal coronal values. The basic model proposed assumes the generation of extremely low levels of magnetohydrodynamic (MHD) turb...

  14. A content analysis of the postgraduate thesis written on special education in turkey based on various variables (2009-2014

    Directory of Open Access Journals (Sweden)

    Mukaddes Sakalli Demirok

    2016-06-01

    Full Text Available Abstract The aim of this study was to examine postgraduate thesis studies conducted between the years of 2009 and 2014 in special education field in Turkey based on various variables and figure out how many of these thesis is related with hearing disability. A total number of 146 postgraduate thesis have been found in the thesis scanning center of Higher Education Council (YOK of Turkey. 126 of these thesis were master thesis and 20 of them were doctorate thesis. Data of the research were analyzed in SPSS 20.0 program. According to the results, it was revealed that quantitative method is the most preferred method in postgraduate thesis and there is much more number of master thesis than doctorate thesis. According to the distribution of thesis based on disability group, thesis are mostly related with special education and there is least number of thesis related with dyslexia. Besides, there were not much number of studies conducted with individuals with disability. Recommendations and implications for further research are also provided based on the results.

  15. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    Science.gov (United States)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  16. Thesis Abstract Morphological and phylogeographic analysis of Brazilian tortoises (Testudinidae).

    Science.gov (United States)

    Silva, T L; Venancio, L P R; Bonini-Domingos, C R

    2015-12-29

    The discriminative potentials of biogeography, vocalization, morphology, cytogenetics, hemoglobin, and molecular profiling of cytochrome b as taxonomic techniques for differentiating Brazilian tortoises were evaluated in this study. In Brazil, two species of tortoises are described, Chelonoidis carbonarius and Chelonoidis denticulatus. However, in the present study, some animals that were initially recognized based on morphological characters and coloring did not correspond to the typical pattern of C. carbonarius; these animals were classified as morphotypes 1 and 2. It was proposed that these morphotypes are differentiated species, and they should not be considered as a single taxonomic unit with C. carbonarius. Tortoises analyzed were provided by the National Institute for Amazonian Research (INPA); the Emilio Goeldi Museum, PA; municipal zoos in São José do Rio Preto, SP, and Araçatuba, SP; and the Reginaldo Uvo Leone breeding farm for Wild and Exotic Animals, Tabapuã, SP. Based on the data obtained using biogeographic evaluation of specimens in the literature, it was found that C. carbonarius is distributed in the Northeast Region of Brazil, and no animal of this pattern was observed in the investigated collections. On the other hand, C. denticulatus is found in all the states of the Legal Amazonia. In addition, isolated individual records of this species exist in the Atlantic Forest in Espírito Santo and Rio de Janeiro and in the Midwest Region composed of the states of Goiás, Mato Grosso, and Mato Grosso do Sul. In the Northeast Region, C. denticulatus occurs in the State of Bahia. Morphotype 1 has a wider geographical distribution than C. carbonarius, possibly because of several distribution reports associated with C. carbonarius, indicating erroneous association of morphotype 1 as a single taxonomic unit with C. carbonarius. Morphotype 2 is found only in the states of Pará, Maranhão, and Piauí. These biogeographic data indicate that the

  17. A thesis on fire : Studies of work engagement, Type A behavior and burnout

    OpenAIRE

    Eriksson Hallberg, Ulrika

    2005-01-01

    The overall address of the present thesis is the relationship between being ‘on fire’ and burning out. More specifically, the thesis focused largely on two representations of involvement in work (work engagement and Type A behavior) and their respective relationships to burnout. Another pervasive theme was construct validity in assessing burnout and work engagement. These themes were addressed in four empirical studies, conducted in a sample of health-care workers (Study I) and a sample of in...

  18. STUDENTS’ CRITICAL THINKING IN WRITING A THESIS USING THE TRANSITIVITY SYSTEM

    OpenAIRE

    Emi Emilia

    2016-01-01

    Abstract: Students’ Critical Thinking in Writing a Thesis Using the Transitivity System. This paper reports on a small part of the results of a study in attempting to identify students’ ability and difficulties in writing an English undergraduate thesis in a state university in Indonesia. The paper centres around the students’ ability and difficulties in writing a data presentation and discussion chapter, which are related to critical capacity looked at in this study. The paper begins with a ...

  19. MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing

    DEFF Research Database (Denmark)

    2014-01-01

    MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing......MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing...

  20. [Bibliometric analysis of doctorate thesis on the health sciences area: first part, odontology].

    Science.gov (United States)

    Camps, Diego; Recuero, Yanina; Samar, María Elena; Avila, Rodolfo E

    2005-01-01

    The purpose of the following study was to describe trends in the use of information by dentistry thesists and their research topics in Medical Education, Ethics and History. Of a total of 290 doctorate thesis of the Dentistry Faculty made from 1965 to 2002, were identified: 3 theses on Medical Education and 1 on Ethics. On these, bibliographic quotations from periodic and non periodic publications, as well as quotations from doctorate thesis and congress acts were analyzed. In addition the antiquity of these was analyzed considering a period of five years between the date of accomplishment of the thesis and the one of the used bibliographical quotation. The total of analyzed quotations was of 492, presenting an average of 123 quotations per thesis. 62 per cent of the quotations corresponded to non periodic publications, 37 per cent to periodic publications and 2 per cent to quotations from doctorate thesis and congress acts. In regard of the antiquity of the quotations, 42 per cent was smaller to 5 years and 58 per cent was greater than that period of time. We concluded the doctorate thesis represent the highest degree of scientific and academic expression, and constitute a rich and valuable source of data. The analysis of these theses is very important because it provides information about the trends and innovations on the on the areas of Medical Education, Ethics and History. It would be (very) useful to extend the bibliometric analysis towards other thematic areas, generating a reference for future research.

  1. Assessment of dental student satisfaction with regard to process of thesis educational courses.

    Science.gov (United States)

    Eslamipour, Faezeh; Noroozi, Zahra; Hosseinpour, Kobra

    2015-01-01

    Ensuring achievement of research experience by students is one of the most important goals of the thesis-conduction process and evaluation of student satisfaction with this process is one of the most imperative challenges herein. The aim of this study is to investigate the satisfaction of dental students passing the thesis educational course from the Isfahan Dental School. Sixty-two dental students who had graduated in2011, from the Isfahan Dental School, participated in this descriptive cross-sectional study. The postgraduate Research Experience Questionnaire (PREQ) was used for data collection. The questionnaire evaluated student satisfaction in seven domains: Thesis supervision, skill development, intellectual climate, infrastructure, thesis examination, goals and expectations, and overall satisfaction. The data were analyzed on an SPSS software using descriptive and inferential statistics. The mean score of satisfaction of the participants was 75 ± 12. On the basis of their scores, satisfaction in 3.2% of them was slow, in 33.9%was medium, in 61.3% was good and in 1.6% was high. The highest satisfaction was found to be in thesis supervision and the least was in the intellectual climate domain. There was no significant statistical difference between satisfaction and gender (P = 0.46). Considering the results, to increase student satisfaction for passing the thesis courses, it is necessary to improve the intellectual climate in dental schools and also increase the research budget for more financial support of students to carry out their projects.

  2. Comparative investigation of damage performance on K9 and SiO2 under 1064-nm nanosecond laser irradiation

    Science.gov (United States)

    Liu, Hongjie; Wang, Fengrui; Zhang, Zhen; Huang, Jin; Zhou, Xinda; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2012-01-01

    Laser damage performance of K9 glass and fused silica glass were tested respectively at same experimental condition with 1064 nm nanosecond laser. The initial damage threshold (IDT), the damage growth threshold (DGT) and the damage growth laws of the two optics glass were investigated comparatively. The results show that the damage growth behavior of the two glasses are quite different, for example, the lower damage growth threshold and the higher damage growth coefficient for K9 glass, which can attribute to the difference of the material's damage morphology, optical absorption, residual stress near damage site between the two optics glass. The research is very important to choose transparent optical material applied in high power laser.

  3. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  4. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    Science.gov (United States)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  5. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  6. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis

    1983-01-01

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  7. Numerical simulation of nanosecond pulsed DBD in lean methane–air mixture for typical conditions in internal engines

    International Nuclear Information System (INIS)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-01-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane–air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency. (paper)

  8. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  9. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  10. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  11. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing

    Science.gov (United States)

    He, An; Liu, Wenwen; Xue, Wei; Yang, Huan; Cao, Yu

    2018-03-01

    Recently, metallic superhydrophobic surfaces with ultrahigh adhesion have got plentiful attention on account of their significance in scientific researches and industrial applications like droplet transport, drug delivery and novel microfluidic devices. However, the long lead time and transience hindered its in-depth development and industrial application. In this work, nanosecond laser ablation was carried out to construct grid of micro-grooves on copper surface, whereafter, by applying fast ethanol assisted low-temperature annealing, we obtained surface with superhydrophobicity and ultrahigh adhesion within hours. And the ultrahigh adhesion force was found tunable by varying the groove spacing. Using ultrasonic cleaning as the simulation of natural wear and tear in service, the renewability of superhydrophobicity was also investigated, and the result shows that the contact angle can rehabilitate promptly by the processing of ethanol assisted low-temperature annealing, which gives a promising fast and cheap circuitous strategy to realize the long wish durable metallic superhydrophobic surfaces in practical applications.

  12. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  13. The Honors Thesis: A Handbook for Honors Directors, Deans, and Faculty Advisors. National Collegiate Honors Council Monograph Series

    Science.gov (United States)

    Anderson, Mark; Lyons, Karen; Weiner, Norman

    2014-01-01

    This handbook is intended to help all those who design, administer, and implement honors thesis programs--honors directors, deans, staff, faculty, and advisors--evaluate their thesis programs, solve pressing problems, select more effective requirements or procedures, or introduce an entirely new thesis program. The authors' goal is to provide…

  14. On the Strategies of Graduation Thesis Writing Teaching of Translation Major Undergraduates Based on Eco-Translatology

    Science.gov (United States)

    Lin, Wang

    2017-01-01

    Graduation thesis is an indispensible procedure for each undergraduate, which is crucial for successful graduation, employment, further study and even further development. However, due to most undergraduates' ignorance of academic writing and the deficiency of current thesis writing course, thesis writing ability can hardly be enhanced and…

  15. 7 CFR 3402.6 - Overview of the special international study and/or thesis/dissertation research travel allowance.

    Science.gov (United States)

    2010-01-01

    ... thesis/dissertation research travel allowance. 3402.6 Section 3402.6 Agriculture Regulations of the... GRANTS PROGRAM Program Description § 3402.6 Overview of the special international study and/or thesis... special international study or thesis/dissertation research travel allowance, the Project Director must...

  16. Medical Speciality Thesis: Contribution to a Controversial Issue with a Research Study

    Directory of Open Access Journals (Sweden)

    Mehmet Bilgin SAYDAM

    2015-12-01

    Full Text Available The aquisition of clinical and practical skills is the main target during the speciality training program. On the other hand, acquisition of skills in reading and interpreting scientific knowledge are also important training targets in order to develop and update clinical practice constantly. The process of thesis preparation during the speciality training provides an important opportunity to capture the skills in interpreting scientific knowledge. In Turkey, thesis writing has been obligatory for completion of speciality training for several years. Recently, there has been a discussion about the obligation for clinicians to write a thesis, especially those who are undertaking specialist training in education and research hospitals. The aim of this study was to evaluate the pros and cons of thesis writing during speciality training using a questionnaire that was sent to specialists. This descriptive and analytical study was conducted as an e-questionnaire between December, 2013, and May, 2014. A likert scale consisted of 18 questions has been prepared in accordance with this study. Th e questionnaire was sent to 1536 physicians. 328 of the questionnaires have been included in the study by evaluating the responses obtained from 345 of the participants. Th e response rate was 23%. Th e Cronbach alpha coeff icient was 0.77. Out of the 328 questionnaires, 11.9 %were from Basic Medical Sciences, 57%from Internal Medical Sciences, and 30.2%from Surgical Medical Sciences. Among the respondents, the percentage of specialists, assistant professors, associate professors and professors were 20.7%, 8.2%, 13.7%, and 57.3%, respectively. Independent of specialty field and aff iliation, the respondents concluded that the conduction and thesis writing contributed to their scientific career in spite of the common problems they encountered regarding adequate time for preparation. Furthermore, they concluded that thesis writing had a positive eff ect in the

  17. Thesis Report:

    African Journals Online (AJOL)

    Esayas G

    2012-05-03

    May 3, 2012 ... in its cytoplasmic tail. The objectives of the present study were isolation of the Dectin-1 genes from the human monocyte complementary deoxyribonucleic acid (cDNA), cloning of the isolated human Dectin-1 isoform transcripts into the mammalian expression vector, make a green fluorescent protein (GFP).

  18. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  19. Influence of a high-frequency pulsed nanosecond diffusion discharge in the nitrogen atmosphere on the electrical characteristics of a CdHgTe epitaxial films

    Science.gov (United States)

    Grigoryev, D.; Voitsekhovskii, A.; Korotaev, A.; Lyapunov, D.; Lozovoy, K.; Tarasenko, V.; Shulepov, M.; Erofeev, M.; Ripenko, V.; Dvoretskii, S.; Mikhailov, N.

    2017-05-01

    The effect of a high-frequency nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (CMT) epitaxial films is studied. The measurement of the electrophysical parameters of the CMT specimens upon irradiation shows that that the action of pulses of nanosecond volume discharge leads to changes in the electrophysical properties of CMT epitaxial films due to formation of a near-surface high-conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of CMT narrow-band solid solutions and production of structures heterogeneous with respect to conduction.

  20. [Case control trial on putative factors antagonising the successful project course of MD thesis projects].

    Science.gov (United States)

    Scharfenberg, J; Schaper, K; Krummenauer, F

    2015-05-01

    Award of the degree MD has special relevance in Germany since the underlying research project can be started during the qualification for admission to doctoral training. This leads to a large number of thesis projects with a not always sufficiently pronounced enthusiasm and thus poor chances of success. Accordingly a case control study was undertaken in the Department of Human Medicine, Witten/Herdecke University to investigate reported drop-outs of thesis projects. In autumn 2012 all students in the clinical phases of human medicine education were surveyed using a self-conceived questionnaire on previously initiated or terminated thesis projects, "terminated" is defined as the unsuccessful ending of a project after working for at least 3 months. Individually reported thesis terminations were evaluated using defined items in a 4-stage Likert scale regarding thesis plan and project, subsequently, graduate students who successfully completed a project received the same questionnaire. The items possibly corresponding to process determinants were averaged to a total of 7 dimensions prior to the analysis; the resulting scores were normalised in value ranges 0.0 to 1.0 (1.0 = optimal project situation) whereby individual items could be included in several scores. By means of 5 items a primary endpoint from the faculty's perspective on "compliance with formal procedures" was aggregated; by means of a two-sided Wilcoxon test at the 5 % level students with unsuccessful and successful courses were compared along the corresponding scores. 181 of 276 students from 7 study semesters participated in the screening; details of 17 terminations and 23 currently successful courses could be evaluated in the case control study. For significant differences (p thesis projects to the responsible committees. A weakness is the low number of evaluable self-reported drop-outs as well as the overall moderate response rate. Georg Thieme Verlag KG Stuttgart · New York.

  1. The relation between executing of thesis policies and medical student's theses quality in type medical faculties of Iran

    Directory of Open Access Journals (Sweden)

    Kolahi A.A

    2004-10-01

    Full Text Available Background: Medical students' thesis is equal to six units, which is mandatory for graduation. The purpose of preparing thesis is to familiarize students with research process, methodology, and scientific report writing skill. Purpose: The objective of this study is to determine the relation between executing of thesis policies and medical students' theses quality in type I medical faculties of Iran Methods: To perform this study first, we randomly chose 36 (Total sample=396 medical students' theses in each 11 medical faculties, which completed in 1998-99 academic year. The original theses were evaluated by using a questionnaire. Second, for evaluation of operationalization of thesis policies we use four criteria including, the presence of performance regulations, the proposals approving process, final approving course and presence of a defence session to evaluate thesis in the same medical faculty. Results: In medical faculties that thesis policies were completed, the score of theses was high. In contrast medical faculties with weak policies had low students’ theses scores. Conclusion: Thesis policies are considered as one of the ways to improve the quality of thesis. it is advise at the same time as we should be plan to provide the effective factors for improvement quality of thesis consider strongly the regulations related thesis should be considerate. Keywords: MEDICAL STUDENTS, THESES, REGULATION, and SCORES

  2. Comparison of treatment with an Alexandrite picosecond laser and Nd:YAG nanosecond laser for removing blue-black Chinese eyeliner tattoos.

    Science.gov (United States)

    Zhang, Mengli; Huang, Yuqing; Lin, Tong; Wu, Qiuju

    2018-02-28

    To retrospectively evaluate the efficacy of an Alexandrite picosecond laser versus Nd:YAG nanosecond laser for removing blue-black eyeliner tattoos which have existed more than 10 years. A total of 40 patients were treated with an Alexandrite picosecond laser in our department from August 2015 to July 2017, with a fluence of 1.96-6.37J/cm 2 , spot size of 2.0-3.6 mm, and pulse width of 750 ps. Another 32 patients were treated with an Nd:YAG nanosecond laser, with a fluence of 2.80-7.00 J/cm 2 , spot size of 3 mm, and pulse width of 5-20 ns. All analysed patients completed at least one treatment and follow-up. The median number of treatment for all the patients was 1 (range, 1-4). After a single session, no difference was found between the two lasers for the eyeliner removal (p > 0.05). For the people who achieved an excellent response of tattoo clearance, there was still no difference between the two groups (p > 0.05). Transient side effects were observed in two groups, but neither group had significant adverse reactions. To treat blue-black Chinese eyeliner tattoos over 10 years, Alexandrite picosecond laser does not provide better clearance than the Nd:YAG nanosecond laser.

  3. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  4. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    Science.gov (United States)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  5. Multiply ionization of diethyl ether clusters by 532 nm nanosecond laser: The influence of laser intensity and the electron energy distribution

    International Nuclear Information System (INIS)

    Zhang Nazhen; Wang Weiguo; Zhao Wuduo; Han Fenglei; Li Haiyang

    2010-01-01

    Graphical abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated experimentally and theoretically using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. - Abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. The signal intensity of multiply charged ions and electron energy was measured experimentally. It was shown that the intensity of multiply charged ions increased about 50 times when laser intensity increased from 7.6 x 10 9 to 7.0 x 10 10 W/cm 2 , then saturated as laser intensity increased further. It is interesting that the evolution of the mean value of electron energy was same to that of multiply charged ions. The theoretical calculation showed the ionization potential of atomic ions could be significantly decreased due to the effect of Coulomb screening especially at low laser intensity. It indicated that the electron ionization combined with Coulomb screening effect could explain the production of multiply charged ions in nanosecond laser field.

  6. Reading in Preparation for Writing a PhD Thesis: Case Studies of Experiences

    Science.gov (United States)

    Kwan, Becky S. C.

    2009-01-01

    The paper presents stories of how a group of doctoral students chose the key disciplinary literature that they read in preparation for their thesis-undertaking (RT). The stories were analyzed in light of current understanding of literature reviewing as a situated practice and theory of doctoral education as socio-cognitive apprenticeship. As the…

  7. Two cosmic ray experiments in the 40's, one of them my Phd thesis

    International Nuclear Information System (INIS)

    Steinberger, J.

    2013-01-01

    The experiment of Conversi, Pancini and Piccioni performed in Rome at the end of World War 2 showed that the “mesotron”, now the muon, is not the “Yukawa particle”. My thesis showed that the electron spectrum in mesotron decay is continuous, leading the way to the “universal” Fermi interaction

  8. An Analysis of Written Feedback on a PhD Thesis

    Science.gov (United States)

    Kumar, Vijay; Stracke, Elke

    2007-01-01

    This paper offers an interim analysis of written feedback on a first draft of a PhD thesis. It first looks at two sources of data: in-text feedback and overall feedback. Looking at how language is used in its situational context, we then coded the feedback and developed a model for analysis based on three fundamental functions of speech:…

  9. The Experienced Meaning of Working with a PhD Thesis

    Science.gov (United States)

    Stubb, Jenni; Pyhalto, Kirsi; Lonka, Kirsti

    2012-01-01

    There is a variation in terms of how researchers perceive the nature of research work. Previous research has mainly looked at the members of academia who already have established themselves in the scholarly community. We aimed at exploring the ways in which doctoral students perceived their thesis project and further, the relations of such…

  10. Two cosmic ray experiments in the 40's, one of them my Phd thesis

    CERN Document Server

    Steinberger, J

    2013-01-01

    The experiment of Conversi, Pancini and Piccioni performed in Rome at the end of World War 2 showed that the "mesotron", now the muon, is not the "Yukawa particle". My thesis showed that the electron spectrum in mesotron decay is continuous, leading the way to the "universal" Fermi interaction

  11. Want to Improve Undergraduate Thesis Writing? Engage Students and Their Faculty Readers in Scientific Peer Review

    Science.gov (United States)

    Reynolds, Julie A.; Thompson, Robert J., Jr.

    2011-01-01

    One of the best opportunities that undergraduates have to learn to write like a scientist is to write a thesis after participating in faculty-mentored undergraduate research. But developing writing skills doesn't happen automatically, and there are significant challenges associated with offering writing courses and with individualized mentoring.…

  12. [High frequency of plagiarism in medical thesis from a Peruvian public university].

    Science.gov (United States)

    Saldaña-Gastulo, J Jhan C; Quezada-Osoria, C Claudia; Peña-Oscuvilca, Américo; Mayta-Tristán, Percy

    2010-03-01

    An observational study was conducted to describe the presence of plagiarism in medical thesis in 2008 performed at a public university in Peru. Search for plagiarism in 33 thesis introductions using a Google search algorithm, characterizes of the study type and we search in electronic form if the thesis mentor have published articles in scientific journals. We found evidence of plagiarism in 27/33 introductions, 37.3% (171/479) of all the paragraphs analyzed had some degree of plagiarism, literal plagiarism was the most frequent (20/27) and journals were the most common sources of plagiarism (19/27). The characteristics of the studies were observational (32/33), cross-sectional (30/33), descriptive (25/33) and retrospective (19/33). None of the authors had published in a scientific journal, and only nine of his tutors of them had at least one publication. No association was found between the characteristics of the thesis and the presence of plagiarism. In conclusion, we found a high frequency of plagiarism in theses analyzed. Is responsibility of medical schools take the necessary actions to detect and avoid plagiarism among their students.

  13. Edgeware Security Risk Management: A Three Essay Thesis on Cloud, Virtualization and Wireless Grid Vulnerabilities

    Science.gov (United States)

    Brooks, Tyson T.

    2013-01-01

    This thesis identifies three essays which contribute to the foundational understanding of the vulnerabilities and risk towards potentially implementing wireless grid Edgeware technology in a virtualized cloud environment. Since communication networks and devices are subject to becoming the target of exploitation by hackers (e.g. individuals who…

  14. The "Write" Skills and More: A Thesis Writing Group for Doctoral Students

    Science.gov (United States)

    Ferguson, Therese

    2009-01-01

    Writing groups facilitate the development of research students' written communication skills, which are critical for the competent preparation of theses and publications. This paper describes a Thesis Writing Group for social science doctoral students. Participants indicated that the group not only served a practical role, providing an impetus for…

  15. Breaking the internet: making Stephen Hawking's PhD thesis available open access

    OpenAIRE

    Ammon, Matthias; Smith, Arthur

    2018-01-01

    Slides from a lightning talk (5 minute presentation) by Matthias Ammon (Research Support Librarian, MML Library, University of Cambridge) and Arthur Smith (Open Access Team, Office of Scholarly Communication, University of Cambridge). Presented at Cambridge Libraries Conference 2018. The talk discussed the process and impact of making Stephen Hawking's PhD thesis available as open access.

  16. Thesis: the ''evolutions of the long term European gas market - organisation and costs''

    International Nuclear Information System (INIS)

    Ouvry, V.

    1998-01-01

    This paper presents the main conclusions of the thesis defended by the author on January 30, 1998: recalls of some characteristics of the European gas market, the stakes of the gas market liberation, the regulatory aspects, the tariffs problem, the competition in the gas marketing segment, and different possible modeling of the gas market evolution (contracts, costs, competition). (J.S.)

  17. Cohabitation and marriage in Austria: Assessing the individualization thesis across the life course

    Directory of Open Access Journals (Sweden)

    Caroline Berghammer

    2014-11-01

    Full Text Available Background: Although cohabitation has spread rapidly in Austria during the past decades, it is more a prelude than an alternative to marriage. The individualization thesis serves as a conceptual framework for explaining the rise of cohabiting unions. Objective: Our aim is to understand what motivates people to cohabit and marry from an individualization perspective. The present study was designed to investigate in which ways key notions of the individualization thesis such as commitment, romantic love and risk are reflected in discourses on cohabitation and marriage. Methods: Research is based on data from eight focus group discussions (71 participants conducted in Vienna, Austria, in 2012. This data was analyzed with the help of qualitative methods. Results: The focus group participants regarded cohabitation and marriage as different life course strategies. They felt that young adulthood is a period characterized by uncertain external circumstances, in which people build up commitment in cohabitation without feeling limited in terms of opportunities. As dissolving a cohabiting union entails lower costs, the risk posed by this type of union was considered low. The respondents associated marriage with security and long-term commitment and saw it as an ideal for a later stage in life. They argued that romantic love and individual satisfaction should prevail throughout the entire marriage. Core terms of the individualization thesis - commitment, romantic love, and risk - were perceived differently between cohabitation and marriage. We conclude that the individualization thesis best fits young adulthood and is less relevant for later life stages.

  18. An evolution of trauma care evaluation: A thesis on trauma registry and outcome prediction models

    NARCIS (Netherlands)

    Joosse, P.

    2013-01-01

    Outcome prediction models play an invaluable role in the evaluation and improvement of modern trauma care. Trauma registries underlying these outcome prediction models need to be accurate, complete and consistent. This thesis focused on the opportunities and limitations of trauma registries and

  19. An evaluation of the process and initial impact of disseminating a nursing e-thesis.

    Science.gov (United States)

    Macduff, Colin

    2009-05-01

    This paper is a report of a study conducted to evaluate product, process and outcome aspects of the dissemination of a nursing PhD thesis via an open-access electronic institutional repository. Despite the growth of university institutional repositories which make theses easily accessible via the world wide web, nursing has been very slow to evaluate related processes and outcomes. Drawing on Stake's evaluation research methods, a case study design was adopted. The case is described using a four-phase structure within which key aspects of process and impact are reflexively analysed. In the conceptualization/re-conceptualization phase, fundamental questions about the purpose, format and imagined readership for a published nursing PhD were considered. In the preparation phase, seven key practical processes were identified that are likely to be relevant to most e-theses. In the dissemination phase email invitations were primarily used to invite engagement. The evaluation phase involved quantitative indicators of initial impact, such as page viewing and download statistics and qualitative feedback on processes and product. Analysis of process and impact elements of e-thesis dissemination is likely to have more than intrinsic value. The advent of e-theses housed in web-based institutional repositories has the potential to transform thesis access and use. It also offers potential to transform the nature and scope of thesis production and dissemination. Nursing scholars can exploit and evaluate such opportunities.

  20. "On Course" for Supporting Expanded Participation and Improving Scientific Reasoning in Undergraduate Thesis Writing

    Science.gov (United States)

    Dowd, Jason E.; Roy, Christopher P.; Thompson, Robert J., Jr.; Reynolds, Julie A.

    2015-01-01

    The Department of Chemistry at Duke University has endeavored to expand participation in undergraduate honors thesis research while maintaining the quality of the learning experience. Accomplishing this goal has been constrained by limited departmental resources (including faculty time) and increased diversity in students' preparation to engage in…

  1. Design of an Integrated Team Project as Bachelor Thesis in Bioscience Engineering

    Science.gov (United States)

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-01-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the…

  2. Evaluability Assessment Thesis and Dissertation Studies in Graduate Professional Degree Programs

    Science.gov (United States)

    Walser, Tamara M.; Trevisan, Michael S.

    2016-01-01

    Evaluability assessment (EA) has potential as a design option for thesis and dissertation studies, serving as a practical training experience for both technical and nontechnical evaluation skills. Based on a content review of a sample of EA theses and dissertations from graduate professional degree programs, the authors of this article found that…

  3. The Relation between Feedback Perceptions and the Supervisor-Student Relationship in Master's Thesis Projects

    Science.gov (United States)

    de Kleijn, Renske A. M.; Meijer, Paulien C.; Pilot, Albert; Brekelmans, Mieke

    2014-01-01

    Research supervision can be investigated from social-emotional and cognitive perspectives, but most studies include only one perspective. This study aims to understand the interplay between a social-emotional (supervisor-student relationship) and cognitive (feedback) perspective on the outcomes of master's thesis supervision in specific, by…

  4. Students' Views on Thesis Supervision in International Master's Degree Programmes in Finnish Universities

    Science.gov (United States)

    Filippou, Kalypso; Kallo, Johanna; Mikkilä-Erdmann, Mirjamaija

    2017-01-01

    This paper employs an intercultural perspective to examine students' views on master's thesis supervision and the roles and responsibilities of supervisors and students. The 302 respondents who answered the online questionnaire were enrolled in international master's degree programmes in four Finnish universities. The study revealed asymmetric…

  5. Unblocking Occluded Genres in Graduate Writing: Thesis and Dissertation Support Services at North Carolina State University

    Science.gov (United States)

    Autry, Meagan Kittle; Carter, Michael

    2015-01-01

    In 2013, the Graduate School at North Carolina State University launched Thesis and Dissertation Support Services, a rhetorical, genre-based approach to assisting students with their graduate writing. Through a description of the program's founding, goals, and first year of services, we summarize this genre-based approach that is informed by the…

  6. Brace for impact! A thesis on medical care following an airplane crash

    NARCIS (Netherlands)

    Postma, I.L.E.

    2014-01-01

    In this thesis the events and management of a mass casualty incident (MCI) of an airplane crash are studied from a medical point of view. The incident is broken down into areas that are applicable to other MCIs. it is believed that the detailed study of an exceptional event can provide vital

  7. The Ethical Justification of the Thesis that Separates Law from Morality Through John Austin

    Directory of Open Access Journals (Sweden)

    Galvão Rabelo

    2015-12-01

    Full Text Available The british legal philosopher John Austin stands at the threshold of the evolution of the legal positivist tradition. His work, which dates back to the first half of the 19th century, was especially important to establish the basic elements of this school of legal understanding. Among his contributions to the legal positivist doctrine, lies the creation of the thesis that separates morality from law. Under an ethical context, however, John Austin was an ardent utilitarian who defended the use of the principle of utility as the only rational criteria for the unveiling of superior moral standards (divine laws. Considering both dimensions of his understanding, it has long been wondered if his utilitarian ethics have influenced, somehow, his legal theory, especially in regards to the separation thesis. Said thesis, which is in the center of the legal positivist tradition, has been interpreted in different ways in contemporary legal debate. A particular branch, called ethical positivism, opened new perspectives to the study of this tradition, defending the legal positivism theory as a morally satisfactory theoretical model for the contemporary legal systems. Hence, using the main premise of ethical positivism (which states that there are moral reasons to defend the separation thesis as an interprative and methodological tool, this paper plans on revisiting the link between John Austins legal and ethical convictions, in order to comprehend what were the moral reasons which led him to defend the separation of what law is and what it should be.

  8. Architecture with landscape methods : Doctoral thesis proposal and SANAA Rolex Learning Center Lausanne Sample Field Trip

    NARCIS (Netherlands)

    Jauslin, D.

    2010-01-01

    Contemporary architecture has been strongly influenced by the concept of landscape in recent times. A new mindset evolves that changes the core of the architectural discipline: the organization and composition of architectural space as a landscape. The scope of this thesis is to investigate and

  9. Modelling the Skinner Thesis : Consequences of a Lognormal or a Bimodal Resource Base Distribution

    NARCIS (Netherlands)

    Auping, W.L.

    2014-01-01

    The copper case is often used as an example in resource depletion studies. Despite these studies, several profound uncertainties remain in the system. One of these uncertainties is the distribution of copper grades in the lithosphere. The Skinner thesis promotes the idea that copper grades may be

  10. Structure dynamics of the hemoglobin mutants Hb Hôtel Dieu, HbG Philadelphia, HbJ Mexico, Hb St. Mandé and Hb San Diego, studied by nanosecond-laser-flash photolysis.

    Science.gov (United States)

    Fontaine, M P; Lindqvist, L; Blouquit, Y; Rosa, J

    1989-12-22

    The kinetics of the change from the carboxy to the deoxy conformation of the mutated hemoglobins mentioned in the title and of normal human adult hemoglobin were determined from measurements of light absorption changes occurring up to 50 microseconds after nanosecond-laser photodissociation of the corresponding CO complexes. The spectral evolution of the mutated hemoglobins was found to be similar in its main features to that of normal hemoglobin. The kinetics could be decomposed into two phases with rates 1.1-1.8 x 10(6) s-1 and 0.17-0.34 x 10(6) s-1 (except Hb St. Mandé which displayed only the faster phase). Study of the mutated subunits of HbJ Mexico (alpha subunit) and Hb Hôtel Dieu (beta subunit) showed that they convert exponentially to the stable deoxy state after photodeligation at the same rates as the corresponding subunits of normal Hb: 1.1 x 10(6) s-1 (alpha) and 0.3 x 10(6) s-1 (beta). The results indicate that there is no direct correlation between the kinetics of spectral relaxation in the time range studied and the oxygenation properties for these hemoglobins. However, there is some indication that the kinetics are dependent upon the region of mutation.

  11. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane.

    Science.gov (United States)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Wu, Yun; Ren, Chunsheng

    2018-03-01

    A magnetic field, with the direction parallel to the electric field, is applied to the repetitively unipolar positive nanosecond pulsed dielectric barrier discharge. The effect of the parallel magnetic field on the plasma generated between two parallel-plate electrodes in quiescent air is experimentally studied under different pulse repetition frequencies (PRFs). It is indicated that only the current pulse in the rising front of the voltage pulse occurs, and the value of the current is increased by the parallel magnetic field under different PRFs. The discharge uniformity is improved with the decrease in PRF, and this phenomenon is also observed in the discharge with the parallel magnetic field. By using the line-ratio technique of optical emission spectra, it is found that the average electron density and electron temperature under the considered PRFs are both increased when the parallel magnetic field is applied. The incremental degree of average electron density is basically the same under the considered PRFs, while the incremental degree of electron temperature under the higher-PRFs is larger than that under the lower-PRFs. All the above phenomena are explained by the effect of parallel magnetic field on diffusion and dissipation of electrons.

  13. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    Science.gov (United States)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  14. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP.

    Directory of Open Access Journals (Sweden)

    Caleb C Roth

    Full Text Available Nanosecond electrical pulse (nsEP exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress.

  15. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); Barreiro, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Rivas, T. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); González, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Fiorucci, M.P. [Centro de Investigacións Tecnolóxicas (CIT), University of A Coruña, 15403, Ferrol (Spain)

    2014-05-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  16. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    International Nuclear Information System (INIS)

    Pozo, S.; Barreiro, P.; Rivas, T.; González, P.; Fiorucci, M.P.

    2014-01-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  17. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  18. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    International Nuclear Information System (INIS)

    Tardiveau, P; Moreau, N; Bentaleb, S; Postel, C; Pasquiers, S

    2009-01-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  19. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications

    International Nuclear Information System (INIS)

    Sassaroli, E; Li, K C P; O'Neill, B E

    2009-01-01

    We have modeled, by finite element analysis, the process of heating of a spherical gold nanoparticle by nanosecond laser pulses and of heat transfer between the particle and the surrounding medium, with no mass transfer. In our analysis, we have included thermal conductivity changes, vapor formation, and changes of the dielectric properties as a function of temperature. We have shown that such changes significantly affect the temperature reached by the particle and surrounding microenvironment and therefore the thermal and dielectric properties of the medium need to be known for a correct determination of the temperature elevation. We have shown that for sufficiently low intensity and long pulses, it is possible to establish a quasi-steady temperature profile in the medium with no vapor formation. As the intensity is increased, a phase-change with vapor formation takes place around the gold nanoparticle. As phase-transition starts, an additional increase in the intensity does not significantly increase the temperature of the gold nanoparticle and surrounding environment. The temperature starts to rise again above a given intensity threshold which is particle and environment dependent. The aim of this study is to provide useful insights for the development of molecular targeting of gold nanoparticles for applications such as remote drug release of therapeutics and photothermal cancer therapy.

  20. Reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma

    Science.gov (United States)

    Zhao, Yuefeng; Wang, Chao; Li, Li; Wang, Lijuan; Pan, Jie

    2018-03-01

    In this work, a two-dimensional fluid model is built up to numerically investigate the reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. The calculation results indicate that the electron collisions with CH4 are the key pathways to produce the neutral particles CH2 and CH as well as the charged particles e and CH3+. CH3, H2, H, C2H2, and C2H4 primarily result from the reactions between the neutral particles and CH4. The charge transfer reactions are the significant pathways to produce CH4+, C2H2+, and C2H4+. As to the neutral species CH and H and the charged species CH3+, the reactions between themselves and CH4 contribute to substantial losses of these particles. The ways responsible for losing CH3, H2, C2H2, and C2H4 are CH3 + H → CH4, H2 + CH → CH2 + H, CH4+ + C2H2 → C2H2+ + CH4, and CH4+ + C2H4 → C2H4+ + CH4, respectively. Both electrons and C2H4+ are consumed by the dissociative electron-ion recombination reactions. The essential reaction pathways of losing CH4+ and C2H2+ are the charge transfer reactions.

  1. Selective excavation of human carious dentin using the nanosecond pulsed laser in 5.8-μm wavelength range

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, 5.8 μm wavelength range was found to be effective for selective excavation of human carious dentin.

  2. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties.

    Science.gov (United States)

    Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M

    2017-10-24

    Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.

  3. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze

    2018-04-01

    Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.

  4. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    Science.gov (United States)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  5. Optical evidence for a self-propagating molten buried layer in germanium films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Vega, F.; Chaoui, N.; Solis, J.; Armengol, J.; Afonso, C.N.

    2005-01-01

    This work describes the phase transitions occurring at the film-substrate interface of amorphous germanium films upon nanosecond laser-pulse-induced melting of the surface. Films with thickness ranging from 50 to 130 nm deposited on glass substrates were studied. Real-time reflectivity measurements with subnanosecond time resolution performed both at the air-film and film-substrate interfaces were used to obtain both surface and in-depth information of the process. In the thicker films (≥80 nm), the enthalpy released upon solidification of a shallow molten surface layer induces a thin buried liquid layer that self-propagates in-depth towards the film-substrate interface. This buried liquid layer propagates with a threshold velocity of 16±1 m/s and causes, eventually, melting at the film-substrate interface. In the thinnest film (50 nm) there is no evidence of the formation of the buried layer. The presence of the self-propagating buried layer for films thicker than 80 nm at low and intermediate laser fluences is discussed in terms of the thermal gradient in the primary melt front and the heat released upon solidification

  6. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  7. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  8. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    Science.gov (United States)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  9. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    Science.gov (United States)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  10. Dose dependent translocations of fluorescent probes of PIP2 hydrolysis in cells exposed to nanosecond pulsed electric fields

    Science.gov (United States)

    Tolstykh, Gleb P.; Tarango, Melissa; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Previously, it was demonstrated that small nanometer-sized pores (nanopores) are preferentially formed after exposure to nanosecond pulsed electric fields (nsPEF). We have reported that nanoporation of the plasma membrane directly affects the phospholipids of the cell membrane, ultimately culminating in phosphatidylinositol4,5- bisphosphate (PIP2) intracellular signaling. PIP2, located within the internal layer of the plasma membrane, plays a critical role as a regulator of ion transport proteins, a source of second messenger compounds, and an anchor for cytoskeletal elements. In this proceeding, we present data that demonstrates that nsPEFs initiate electric field dose-dependent PIP2 hydrolysis and/or depletion from the plasma membrane through the observation of the accumulation of inositol1,4,5-trisphosphate (IP3) in the cytoplasm and the increase of diacylglycerol (DAG) on the inner surface of the plasma membrane. The phosphoinositide signaling cascade presented here involves activation of phospholipase C (PLC) and protein kinase C (PKC), which are responsible for a multitude of biological effects after nsPEF exposure. These results expand our current knowledge of nsPEF induced physiological effects, and serve as a basis for development of novel tools for drug independent stimulation or modulation of different cellular functions.

  11. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  12. Nanosecond pulsed electric field (nsPEF) enhance cytotoxicity of cisplatin to hepatocellular cells by microdomain disruption on plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Guo, Danjing; Xu, Yuning [Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Wu, Liming, E-mail: wlm@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 310003 Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, The Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China)

    2016-08-15

    Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.

  13. Nonlinear Optical Properties Tuning in Meso-Tetraphenylporphyrin Derivatives Substituted with Donor/Acceptor Groups in Picosecond and Nanosecond Regimes

    Directory of Open Access Journals (Sweden)

    Guanghong Ao

    2015-03-01

    Full Text Available meso-Tetraphenylporphyrin (TPP and its two substituted derivatives (meso-tetrakis(4-cyanophenylporphyrin [TPP(CN4] and meso-tetrakis(4-methoxyphenylporphyrin [TPP(OMe4] were synthesized. Their nonlinear absorption and refraction properties were studied using the Z-scan technique in the picosecond (ps and nanosecond (ns regimes. The open aperture Z-scan results reveal that TPP and TPP(CN4 display an identical reverse saturable absorption (RSA character in the ps and ns regimes. While TPP(OMe4 exhibits a transition from saturable absorption (SA to RSA in the ps regime and a typical RSA character in the ns regime. The closed aperture Z-scan results show that TPP(CN4 and TPP(OMe4 have regular enhancement of the magnitude of nonlinear refraction as compared to their parent TPP in both the ps and ns regimes. In addition, the second-order molecular hyperpolarizabilities (γ of these three porphyrins are calculated, and the γ values of TPP(CN4 and TPP(OMe4 are remarkable larger than that of TPP. The introduction of the electron-withdrawing group CN and the electron-donating group OMe into TPP has enhanced its nonlinear refraction and γ value, and tuned its nonlinear absorption (TPP(OMe4, which could be useful for porphyrin-related applications based on the desired NLO properties.

  14. Anti-bacterial selenium nanoparticles produced by UV/VIS/NIR pulsed nanosecond laser ablation in liquids

    International Nuclear Information System (INIS)

    Guisbiers, G; Khachatryan, E; Arellano-Jimenez, M J; Nash, K L; Wang, Q; Webster, T J; Larese-Casanova, P

    2015-01-01

    The ability to produce nanoparticles free of any surface contamination is very challenging especially for bio-medical applications. Using a pulsed nanosecond Nd-YAG laser, pure selenium nanoparticles have been synthesized by irradiating selenium powder (99.999%) immerged in de-ionized water and ethanol. The wavelength of the laser beam has been varied from the UV to NIR (355, 532 and 1064 nm) and its effect on the particle size distribution has been studied by dynamic light scattering (DLS) and transmission electronic microscopy (TEM), revealing then the production of selenium quantum dots (size < 4 nm) by photo-fragmentation. It has been found that the crystallinity of the nanoparticles depends on their size. The zeta-potential measurement reveals that the colloidal solutions produced in de-ionized water were stable while the ones synthesized in ethanol agglomerate. The concentration of selenium has been measured using inductively coupled plasma mass spectrometry (ICP-MS). The anti-bacterial effect of selenium nanostructures has been analyzed on E. Coli bacteria. Finally, selenium quantum dots produced by this method can also be useful for quantum dot solar cells. (letter)

  15. Broadband supercontinuum generation in a telecommunication fibre pumped by a nanosecond Tm, Ho:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li [Department of control engineering, Naval Aeronautical and Astronautical University, Yantai 264001 (China); Ju You-Lun; Wang Yue-Zhu [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-31

    Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensity variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)

  16. Nanosecond molecular relaxations in lipid bilayers studied by high energy-resolution neutron scattering and in situ diffraction.

    Science.gov (United States)

    Rheinstädter, Maikel C; Seydel, Tilo; Salditt, Tim

    2007-01-01

    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid-supported phospholipid bilayers of the model system deuterated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine, hydrated with heavy water. Wave-vector-resolved quasielastic neutron scattering is used to determine relaxation times tau , which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented by both energy-resolved and energy-integrated in situ diffraction. From a combined analysis of the inelastic data in the energy and time domains, the corresponding character of the relaxation, i.e., the exponent of the exponential decay, is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics.

  17. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  18. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  19. Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    García-Merino, J.A.; Martínez-González, C.L.; Miguel, C.R. Torres-San [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Martínez-Gutiérrez, H. [Centro de Nanociencia y MicroNanotecnología del Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico)

    2015-04-15

    Highlights: • Carbon nanotubes were prepared by an aerosol pyrolysis method. • Thermal phenomena were induced by nanosecond irradiation. • Photoconductive and nonlinear optical properties were evaluated. • A monostable multivibrator function in carbon nanotubes was analyzed. - Abstract: The influence of the optical absorption exhibited by multi-wall carbon nanotubes on their photothermal, photoconductive and nonlinear optical properties was evaluated. The experiments were performed by using a Nd:YAG laser system at 532 nm wavelength and 1 ns pulse duration. The observations were carried out in thin film samples conformed by carbon nanotubes prepared by an aerosol pyrolysis method; Raman spectroscopy studies confirmed their multi-wall nature. Theoretical and numerical calculations based on the heat equation allow us to predict the temporal response of the induced effects associated to the optical energy transference. A two-wave mixing method was employed to explore the third order nonlinear optical response exhibited by the sample. A dominant thermal process was identified as the main physical mechanism responsible for the optical Kerr effect. Potential applications for developing a monostable multivibrator exhibiting different time-resolved characteristics were analyzed.

  20. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    Science.gov (United States)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  1. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage

    Science.gov (United States)

    Tardiveau, P.; Moreau, N.; Bentaleb, S.; Postel, C.; Pasquiers, S.

    2009-09-01

    The dynamics of a point-to-plane corona discharge induced in high pressure air under nanosecond scale high overvoltage is investigated. The electrical and optical properties of the discharge can be described in space and time with fast and precise current measurements coupled to gated and intensified imaging. Under atmospheric pressure, the discharge exhibits a diffuse pattern like a multielectron avalanche propagating through a direct field ionization mechanism. The diffuse regime can exist since the voltage rise time is much shorter than the characteristic time of the field screening effects, and as long as the local field is higher than the critical ionization field in air. As one of these conditions is not fulfilled, the discharge turns into a multi-channel regime and the diffuse-to-filamentary transition strongly depends on the overvoltage, the point-to-plane gap length and the pressure. When pressure is increased above atmospheric pressure, the diffuse stage and its transition to streamers seem to satisfy similarity rules as the key parameter is the reduced critical ionization field only. However, above 3 bar, neither diffuse avalanche nor streamer filaments are observed but a kind of streamer-leader regime, due to the fact that mechanisms such as photoionization and heat diffusion are not similar to pressure.

  2. Acceptance of a systematic review as a thesis: survey of biomedical doctoral programs in Europe.

    Science.gov (United States)

    Puljak, Livia; Sapunar, Damir

    2017-12-12

    Systematic reviews (SRs) have been proposed as a type of research methodology that should be acceptable for a graduate research thesis. The aim of this study was to analyse whether PhD theses in European biomedical graduate programs can be partly or entirely based on SRs. In 2016, we surveyed individuals in charge of European PhD programs from 105 institutions. The survey asked about acceptance of SRs as the partial or entire basis for a PhD thesis, their attitude towards such a model for PhD theses, and their knowledge about SR methodology. We received responses from 86 individuals running PhD programs in 68 institutions (institutional response rate of 65%). In 47% of the programs, SRs were an acceptable study design for a PhD thesis. However, only 20% of participants expressed a personal opinion that SRs meet the criteria for a PhD thesis. The most common reasons for not accepting SRs as the basis for PhD theses were that SRs are 'not a result of a PhD candidate's independent work, but more of a team effort' and that SRs 'do not produce enough new knowledge for a dissertation'. The majority of participants were not familiar with basic concepts related to SRs; questions about meta-analyses and the type of plots frequently used in SRs were correctly answered by only one third of the participants. Raising awareness about the importance of SRs and their methodology could contribute to higher acceptance of SRs as a type of research that forms the basis of a PhD thesis.

  3. The social life of regions : salmon farming and the regionalization of development in Chilean Patagonia

    NARCIS (Netherlands)

    Blanco Wells, G.E.

    2009-01-01

    This thesis explores a sociological approach towards understanding the contemporary process by which certain territorial relations are grouped under the notion of region. The research adopts an ethnographic perspective to reconstruct the social life of regions by focusing not only on the processes

  4. ENVIRONMENTAL MANAGEMENT AND SUSTAINABLE TOURISM DEVELOPMENT IN THE ANNAPURNA REGION, NEPAL

    OpenAIRE

    Kc, Gandip

    2013-01-01

    The purpose of this thesis was to examine the perception of environmental impacts of tourism in the Annapurna region. The explosion in trekking tourism has upset the ecological balance and contributed with a significant impact on natural environment. This thesis has reviewed the overall picture of tourism development in Nepal, consequences of environmental impacts and creation of the Annapurna Conservation Area Project. The other objective of this thesis was to find out the difficulties of en...

  5. Innovation Potential of the Murmansk Region

    OpenAIRE

    Atkova, Irina

    2011-01-01

    The Finnish-Russian trade relations regardless of the geographical proximity remain underdeveloped. The objective necessity to disseminate information about economic attractiveness and innovation potential of the Murmansk region in the Finnish business environment emanates from the above said. Thus, the object of the thesis project is the cross-boarder economic cooperation between Finnish Lapland and the Murmansk region, the topic being the innovational potential of the Murmansk region. The a...

  6. Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions. Thesis. Final Report; [Utah

    Science.gov (United States)

    Day, R. L.; Petersen, G. W.

    1983-01-01

    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.

  7. Publishing a Master’s Thesis: A Guide for Novice Authors

    Science.gov (United States)

    Resta, Robert G.; McCarthy Veach, Patricia; Charles, Sarah; Vogel, Kristen; Blase, Terri

    2010-01-01

    Publication of original research, clinical experiences, and critical reviews of literature are vital to the growth of the genetic counseling field, delivery of genetic counseling services, and professional development of genetic counselors. Busy clinical schedules, lack of time and funding, and training that emphasizes clinical skills over research skills may make it difficult for new genetic counselors to turn their thesis projects into publications. This paper summarizes and elaborates upon a presentation aimed at de-mystifying the publishing process given at the 2008 National Society of Genetic Counselors Annual Education Conference. Specific topics include familiarizing prospective authors, particularly genetic counseling students, with the basics of the publication process and related ethical considerations. Former students’ experiences with publishing master’s theses also are described in hopes of encouraging new genetic counselors to submit for publication papers based on their thesis projects. PMID:20076994

  8. The new "new racism" thesis: limited government values and race-conscious policy attitudes.

    Science.gov (United States)

    Gainous, Jason

    2012-01-01

    Some contend that Whites’ application of values to form opinions about race-conscious policy may constitute a subtle form of racism. Others challenge the new racism thesis, suggesting that racism and values are exclusive in their influence. Proponents of the thesis assert that many Whites’ attitudes about such policy are structured by a mix of racism and American individualism. The author suggests that an even more subtle form of racism may exist. Racism may actually be expressed in opposition to big government. The test results presented here indicate that the effects of limited-government values on attitudes about race-conscious policy are conditional on levels of racial prejudice for many Whites, whereas the effects on racially ambiguous social welfare policy attitudes are not. The author contends that these results provide support to the argument that racism still exists and has found a new subtle expression.

  9. Eugenics and moral authorship. Analysis of a Habermas´s thesis

    Directory of Open Access Journals (Sweden)

    César Ortega Esquembre

    2017-08-01

    Full Text Available The aim of this paper is to study the Jürgen Habermas´s vision of genetic manipulation; in particular, it will be addressed critically his assumption that the genetically engineered person would loose his awareness of authorship. In the author´s view, positive genetic intervention —one that is to genetically enhance the subject— would eliminate the awareness of authorship of that subject, as well as his self-understanding as moral agent. Two aspects of the question will be approached: firstly, the correctness or incorrectness of Habermas´s thesis. Secondly, the relevance of the thesis to oppose positive eugenics. Could be other arguments considered within Habermas´s conceptual framework to oppose positive eugenics?

  10. Protestant Clergy and the Culture Wats: An Empirical Test of Hunter's Thesis.

    Science.gov (United States)

    Uecker, Jeremy E; Lucke, Glenn

    2011-12-01

    This study instead focuses on culture wars among religious elites-clergy-and tests three aspects of the culture wars thesis: (1) whether cultural wars exist at all among religious elites, (2) whether clergy attitudes are polarized on these issues, and (3) whether religious authority or religious affiliation is more salient in creating culture wars cleavages. Using data from a large random sample of Protestant clergy, we find a substantial amount of engagement in culture wars by all types of Protestant clergy. The amount of polarization is more attributable to views of religious authority (i.e., biblical inerrancy) than to religious tradition. Moreover, polarization among clergy is somewhat more evident on culture wars issues than on other social and political issues. These findings are generally supportive of the culture wars thesis and should help return examinations of culture wars back to where they were originally theorized to be waged: among elites.

  11. Conference "The Cultural Alchemy of the Exact Sciences : Revisiting the Forman Thesis"

    CERN Document Server

    Kojevnikov, Alexei; Trischler, Helmuth; Weimar culture and quantum mechanics : selected papers by Paul Forman and contemporary perspectives on the Forman thesis

    2011-01-01

    This volume reprints Paul Forman's classic papers on the history of physics in post-World War I Germany and the invention of quantum mechanics. The Forman thesis has become famous as the first argument in favor of the cultural conditioning of scientific knowledge, in particular for its demonstration of the historical connection between the culture of Weimar Germany - known for its irrationality and antiscientism - and the emerging concept of quantum acausality.This volume reprints Paul Forman's classic papers on the history of physics in post-World War I Germany and the invention of quantum mechanics. The Forman thesis has become famous as the first argument in favor of the cultural conditioning of scientific knowledge, in particular for its demonstration of the historical connection between the culture of Weimar Germany - known for its irrationality and antiscientism - and the emerging concept of quantum acausality. At the 2007 international conference in Vancouver, Canada, leading historians of physics disc...

  12. India`s nuclear weapons posture: The end of ambiguity. Master`s thesis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.D.

    1996-12-01

    This thesis examines the future of India`s nuclear weapons posture. Since testing a nuclear device in 1974, India been able to produce weapons material within its civilian nuclear power program. Despite having this nuclear weapons capability, India prefers to maintain an ambiguous nuclear posture. New pressures in the post-cold war era -- the loss of the Soviet Union as a strategic ally, the indefinite extension of the nuclear nonproliferation treaty, the rise of Hindu nationalism, and India`s growing participation in the global economy -- have the potential to derail India`s current nuclear policy. This thesis identifies the domestic and international pressures on India, and assesses the prospects for India to retain its ambiguous policy, renounce the nuclear option, or assemble an overt nuclear arsenal.

  13. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    Science.gov (United States)

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  14. Learning Cultures in Travel and Tourism: A Critique of Manuela du Bois-Reymond's Trendsetter Learner Thesis

    Science.gov (United States)

    Morrison, Andrew

    2011-01-01

    This article aims to contribute to the discussion surrounding Manuela du Bois-Reymond's important "trendsetter learner" thesis and, in so doing, to join the wider debate about post-compulsory learning cultures. The article outlines the trendsetter learner thesis and then considers recent criticisms that it has attracted. While the author…

  15. Final Thesis Models in European Teacher Education and Their Orientation towards the Academy and the Teaching Profession

    Science.gov (United States)

    Råde, Anders

    2014-01-01

    This study concerns different final thesis models in the research on teacher education in Europe and their orientation towards the academy and the teaching profession. In scientific journals, 33 articles support the occurrence of three models: the portfolio model, with a mainly teaching-professional orientation; the thesis model, with a mainly…

  16. A Cross-Country Study on Research Students' Perceptions of the Role of Supervision and Cultural Knowledge in Thesis Development

    Science.gov (United States)

    McGinty, Suzanne Claire; Koo, Yew Lie; Saeidi, Mahnaz

    2010-01-01

    This paper presents preliminary findings from a research study in Australia, Malaysia and Iran on students' perceptions of the roles of supervisor and student in the production of their thesis and the contribution of their cultural knowledge to thesis development. The 360 respondents who answered an online survey were studying for their Master's…

  17. [Eleven thesis on the archive of scientific research, for a new patrimonial and scientific policy].

    Science.gov (United States)

    Müller, Bertrand

    2015-12-01

    Abstracting the main content of a recent report on the bad state of the archives of scientific research, this paper puts forward eleven thesis likely to feed, in this time of numeric transition to a new documentary regime and to a new patrimonial policy. The recent numeric conditions impose to set new archival pratices, more proactive, anticipative and prospective. Archives of scientific research must be thought in a double memorial and scientific dimension, and not only as a patrimonial or historical one.

  18. Challenging the degeneration thesis: the role of democracy in worker cooperatives?

    OpenAIRE

    Langmead, Kiri

    2017-01-01

    This paper uses data collected through written narratives, focus groups and participant observation in three small UK worker cooperatives to investigate the role of democracy in maintaining cooperatives’ dual social-economic characteristic and resisting degeneration. More specifically, it adds to limited empirical literature countering the degeneration thesis by arguing that ongoing processes of individual-collective alignment, understood as central to the practice of democracy, help cooperat...

  19. [Doctor's degree thesis of Tomasz Adolf Wołkowiński "Carditidis rheumaticae historia"].

    Science.gov (United States)

    Stembrowicz, W

    2001-01-01

    In 1817 on the University of Vilnius Faculty of Medicine, T. A. Wołkowiński, a student of the eminent clinician Józef Frank, defended his doctor's degree thesis about a direct relation between rheumatic disease and cardiomegaly. It was probably the first paper in Poland describing with details the rheumatic heart disease. Unfortunately we don't know much about T. A. Wołkowiński's life.

  20. CHDS Thesis Series Fall 2016 - Unintended Consequences of Fracking for Local Communities [video

    OpenAIRE

    Center for Homeland Defense and Security Naval Postgraduate School

    2017-01-01

    The advent of hydraulic fracturing and the ability to bore horizontal wells have changed the energy industry for better and worse since 2005. Advancements have dramatically increased the extraction of oil from shale, but the controversial process, commonly known as fracking, has transformed North Dakota’s Bakken into a major producer of oil that has affected global oil markets. The questions asked in this thesis were as follows: What are the effects of unconventional shale oil exploration on ...