WorldWideScience

Sample records for nanosecond laser impact

  1. Nanosecond laser damage investigations in nonlinear crystals

    International Nuclear Information System (INIS)

    Hildenbrand, A.

    2008-11-01

    Lasers become more and more powerful and compact. This raises laser induced damage issues in optical components, especially in nonlinear crystals. This thesis deals with nanosecond laser damage investigations in nonlinear crystals used for frequency conversion (KTP, KDP, LBO) and electro-optic applications (RTP, KDP). First, due to nonlinear and anisotropic effects of the crystals, the development of a metrology dedicated to laser damage studies of crystals was necessary. This metrology was then applied to the study of KTP and RTP isomorphous crystals, and LBO crystals. The influence of many parameters on the laser damage resistance, such as wavelength, polarization and crystal orientation, was studied allowing a better understanding of the laser damage phenomena in these crystals. Moreover, laser induced damage characterization was realized on these crystals with a high number of shots and in the real operating conditions, showing that the laser damage threshold of the component depends on its use. For example, the coexistence of multiple wavelengths inside the crystal takes a great part in the damage phenomena. (author)

  2. Thermal processes in gallium arsenide during nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ivlev, G.D.; Malevich, V.L.

    1990-01-01

    Phase changes in the surface layers of semiconductors during irradiation by nanosecond laser pulses have been the subject of large numbers of papers. The authors have performed numerical modeling and an experimental study of phase changes in the surface layers of single crystal gallium arsenide heated by single pulses of ruby laser light

  3. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, ...

  4. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  5. Nanosecond pulsed laser ablation of silicon in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, R.; Anvari, J.Z.; Mansour, N. [Shahid Beheshti University, Department of Physics, Tehran (Iran)

    2009-03-15

    Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface's ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent. (orig.)

  6. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film. S K Sadrnezhaad Noushin Yasavol Mansoureh Ganjali Sohrab Sanjabi. Volume 35 Issue 3 June 2012 pp 357-364 ...

  7. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    Property change during nanosecond pulse laser annealing of amorphous. NiTi thin film ... near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning ... ratio, shape recovery, damping capacity, chemical resistance, biocompatibility and ...

  8. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  9. Revival of femtosecond laser plasma filaments in air by a nanosecond laser.

    Science.gov (United States)

    Zhou, Bing; Akturk, Selcuk; Prade, Bernard; André, Yves-Bernard; Houard, Aurélien; Liu, Yi; Franco, Michel; D'Amico, Ciro; Salmon, Estelle; Hao, Zuo-Qiang; Lascoux, Noelle; Mysyrowicz, André

    2009-07-06

    Short lived plasma channels generated through filamentation of femtosecond laser pulses in air can be revived after several milliseconds by a delayed nanosecond pulse. Electrons initially ionized from oxygen molecules and subsequently captured by neutral oxygen molecules provide the long-lived reservoir of low affinity allowing this process. A Bessel-like nanosecond-duration laser beam can easily detach these weakly bound electrons and multiply them in an avalanche process. We have experimentally demonstrated such revivals over a channel length of 50 cm by focusing the nanosecond laser with an axicon.

  10. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  11. Parametric studies on the nanosecond laser micromachining of the materials

    Science.gov (United States)

    Tański, M.; Mizeraczyk, J.

    2016-12-01

    In this paper the results of an experimental studies on nanosecond laser micromachining of selected materials are presented. Tested materials were thin plates made of aluminium, silicon, stainless steel (AISI 304) and copper. Micromachining of those materials was carried out using a solid state laser with second harmonic generation λ = 532 nm and a pulse width of τ = 45 ns. The effect of laser drilling using single laser pulse and a burst of laser pulses, as well as laser cutting was studied. The influence of laser fluence on the diameter and morphology of a post ablation holes drilled with a single laser pulse was investigated. The ablation fluence threshold (Fth) of tested materials was experimentally determined. Also the drilling rate (average depth per single laser pulse) of holes drilled with a burst of laser pulses was determined for all tested materials. The studies of laser cutting process revealed that a groove depth increases with increasing average laser power and decreasing cutting speed. It was also found that depth of the laser cut grooves is a linear function of number of repetition of a cut. The quantitative influence of those parameters on the groove depth was investigated.

  12. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  13. Nanosecond Laser Photolysis of Opaque Heterogeneous Photosensitizers.

    Science.gov (United States)

    1987-10-01

    Willsher spent two weeks in Spain during the Summer working on this project and presented a poster at the XIIth Recunion Bienal de Quimica Organica de la...Real Sociedad Espaiola de Quimica , Cordoba, Spain,23-25 September, entitled "Fase Solida : Contribuci6n de la "Laser Flash Photolysis" a la Elucidacion

  14. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    Femtosecond laser marking may bring con- sistent improvement in the visual and processing quality of the writing (Reif 2010), allowing micromachining with a ..... This paper was realized with the support of EURODOC. “Doctoral Scholarships for research performance at Euro- pean level” Project, financed by European ...

  15. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    Abstract. Based on the lack of consistent literature publications that analyse the effects of laser marking for trace- ability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty ...

  16. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N.N., E-mail: nnn_1900@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Imamova, S.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Obara, M. [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  17. Patterning of silicon differences between nanosecond and femtosecond laser pulses

    Science.gov (United States)

    Weingärtner, M.; Elschner, R.; Bostanjoglo, O.

    1999-01-01

    Si (100) surfaces were exposed to 8 ns and 100 fs laser pulses with fluences≤3 J/cm 2 and ≤0.5 J/cm 2, respectively. Transient stages and final patterns were investigated by pulsed photoelectron microscopy and scanning electron plus light interference microscopy. Though the pattern formation extends for both pulse lengths over the same time of some 10 ns, the patterns are different. Nanosecond pulses produce smooth craters and remove a covering oxide. Femtosecond pulses ablate an oxide-free Si surface and produce flat pits covered by nanodrops, whereas oxide-covered surfaces are converted to a foam, which solidifies to a blistered structure.

  18. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    Science.gov (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  19. Removal of Tattoos by Q-Switched Nanosecond Lasers.

    Science.gov (United States)

    Karsai, Syrus

    2017-01-01

    Tattoo removal by Q-switched nanosecond laser devices is generally a safe and effective method, albeit a time-consuming one. Despite the newest developments in laser treatment, it is still not possible to remove every tattoo completely and without complications. Incomplete removal remains one of the most common challenges. As a consequence, particular restraint should be exercised when treating multicoloured tattoos, and patients need to be thoroughly informed about remaining pigment. Other frequent adverse effects include hyper- and hypopigmentation as well as ink darkening; the latter is particularly frequent in permanent make-up. Scarring is also possible, although it is rare when treatment is performed correctly. It is becoming more widespread for laser operators to encounter allergic reactions and even malignant tumours in tattoos, and treating these conditions requires a nuanced approach. © 2017 S. Karger AG, Basel.

  20. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses

    Science.gov (United States)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald

    2006-05-01

    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  1. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, optimizing processing conditions.

  2. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays.

    Science.gov (United States)

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2016-06-15

    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena.

  3. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses.

    Science.gov (United States)

    Scaffidi, Jon; Pender, Jack; Pearman, William; Goode, Scott R; Colston, Bill W; Carter, J Chance; Angel, S Michael

    2003-10-20

    Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

  4. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    Science.gov (United States)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  5. Molecular signatures in femtosecond laser-induced organic plasmas: comparison with nanosecond laser ablation.

    Science.gov (United States)

    Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2016-01-28

    During the last few years, laser-induced breakdown spectroscopy (LIBS) has evolved significantly in the molecular sensing area through the optical monitoring of emissions from organic plasmas. Large efforts have been made to study the formation pathways of diatomic radicals as well as their connections with the bonding framework of molecular solids. Together with the structural and chemical-physical properties of molecules, laser ablation parameters seem to be closely tied to the observed spectral signatures. This research focuses on evaluating the impact of laser pulse duration on the production of diatomic species that populate plasmas of organic materials. Differences in relative intensities of spectral signatures from the plasmas of several organic molecules induced in femtosecond (fs) and nanosecond (ns) ablation regimes have been studied. Beyond the abundance and origin of diatomic radicals that seed the plasma, findings reveal the crucial role of the ablation regime in the breakage pattern of the molecule. The laser pulse duration dictates the fragments and atoms resulting from the vaporized molecules, promoting some formation routes at the expense of other paths. The larger amount of fragments formed by fs pulses advocates a direct release of native bonds and a subsequent seeding of the plasma with diatomic species. In contrast, in the ns ablation regime, the atomic recombinations and single displacement processes dominate the contribution to diatomic radicals, as long as atomization of molecules prevails over their progressive decomposition. Consequently, fs-LIBS better reflects correlations between strengths of emissions from diatomic species and molecular structure as compared to ns-LIBS. These new results entail a further step towards the specificity in the analysis of molecular solids by fs-LIBS.

  6. Comparison of Heat Affected Zone due to nanosecond and femtosecond laser pulses using Transmission Electronic Microscopy

    OpenAIRE

    Le Harzic, Ronan; Huot, Nicolas; Audouard, Eric; Jonin, Christian; Laporte, Pierre; Valette, Stéphane; Fraczkievic, Anna; Fortunier, Roland

    2002-01-01

    International audience; This letter presents a method aimed at quantifying the dimensions of the heat-affected zone ~HAZ!, produced during nanosecond and femtosecond laser–matter interactions. According to this method, 0.1 mm thick Al samples were microdrilled and observed by a transmission electronic microscopy technique. The holes were produced at laser fluences above the ablation threshold in both nanosecond and femtosecond regimes ~i.e., 5 and 2 J/cm2, respectively!. The grain size in the...

  7. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  8. Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields.

    Science.gov (United States)

    Moreau, David; Lefort, Claire; Burke, Ryan; Leveque, Philippe; O'Connor, Rodney P

    2015-10-01

    The temperature-dependent fluorescence property of Rhodamine B was used to measure changes in temperature at the cellular level induced by either infrared laser light exposure or high intensity, ultrashort pulsed electric fields. The thermal impact of these stimuli were demonstrated at the cellular level in time and contrasted with the change in temperature observed in the extracellular bath. The method takes advantage of the temperature sensitivity of the fluorescent dye Rhodamine B which has a quantum yield linearly dependent on temperature. The thermal effects of different temporal pulse applications of infrared laser light exposure and of nanosecond pulsed electric fields were investigated. The temperature increase due to the application of nanosecond pulsed electric fields was demonstrated at the cellular level.

  9. Online Monitoring of Nanoparticles Formed during Nanosecond Laser Ablation.

    Czech Academy of Sciences Publication Activity Database

    Nováková, H.; Holá, M.; Vojtíšek-Lomb, M.; Ondráček, Jakub; Kanický, V.

    2016-01-01

    Roč. 125, NOV 1 (2016), s. 52-60 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 Keywords : laser ablation * fast mobility particle sizer * inductively coupled plasma mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.241, year: 2016

  10. Comparison of two picosecond lasers to a nanosecond laser for treating tattoos: a prospective randomized study on 49 patients.

    Science.gov (United States)

    Lorgeou, A; Perrillat, Y; Gral, N; Lagrange, S; Lacour, J-P; Passeron, T

    2018-02-01

    Q-switched nanosecond lasers demonstrated their efficacy in treating most types of tattoos, but complete disappearance is not always achieved even after performing numerous laser sessions. Picosecond lasers are supposed to be more efficient in clearing tattoos than nanosecond lasers, but prospective comparative data remain limited. To compare on different types of tattoos the efficacy of a nanosecond laser with two types of picosecond lasers. We conducted a prospective randomized study performed from December 2014 to June 2016 on adult patients with all types of tattoos. The tattoos were divided into two halves of equal size. After randomization, half of the tattoo was treated with a picosecond laser and the other half with a nanosecond laser. The evaluation was performed on standardized pictures performed before treatment and 2 months after the last session, by two physicians, not involved in the treatment, blinded on the type of treatments received. The main end point was a clearance above 75% of the tattoos. A total of 49 patients were included. Professional tattoos represented 85.7%, permanent make-up 8.2% and non-professional tattoo 6.1%. The majority were black or blue and 10.2% were polychromatic. No patient was lost during follow-up. A reduction of 75% or more of the colour intensity was obtained for 33% of the tattoos treated with the picosecond lasers compared to 14% with the nanosecond laser (P = 0.008). An improvement superior to 75% was obtained in 34% monochromic black or blue tattoos with the picosecond lasers compared to 9% for the nanosecond laser. Only one of the five polychromic tattoos achieved more than 75% of improvement with the two types of laser. Our results show a statistically significant superiority of the picosecond lasers compared to the nanosecond laser for tattoo clearance. However, they do not show better efficacy for polychromic tattoos and the difference in terms of side-effects was also minimal with a tendency of picosecond

  11. In Vivo Targeted Gene Transfer by Direct Irradiation with Nanosecond Pulsed Laser

    Science.gov (United States)

    Ogura, Makoto; Sato, Shunichi; Ashida, Hiroshi; Obara, Minoru

    2004-10-01

    We demonstrated in vivo targeted gene transfer to rat skin by direct irradiation with nanosecond laser pulses without major side effects. Expressions of enhanced green fluorescent protein (EGFP) were observed only in the area irradiated with laser pulses; in the skin, epidermal cells were selectively transfected. Unlike other physical methods, this method enables noncontact gene transfer. Moreover, the laser intensity required in this method is as low as 20 MW/cm2, and thus fiber-based beam delivery is possible.

  12. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    Science.gov (United States)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  13. Bombyx mori silk protein films microprocessing with a nanosecond ultraviolet laser and a femtosecond laser workstation: theory and experiments

    Science.gov (United States)

    Lazare, S.; Sionkowska, A.; Zaborowicz, M.; Planecka, A.; Lopez, J.; Dijoux, M.; Louména, C.; Hernandez, M.-C.

    2012-01-01

    Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of ˜hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>˜1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments "horizontally suspended by both ends" (0.25 μm diameter and 10 μm length) of silk biopolymer were observed upon irradiation with large fluences.

  14. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films

    International Nuclear Information System (INIS)

    Ko, Seung H.; Pan Heng; Hwang, David J.; Chung, Jaewon; Ryu, Sangil; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2007-01-01

    Ablation of gold nanoparticle films on polymer was explored using a nanosecond pulsed laser, with the goal to achieve feature size reduction and functionality not amenable with inkjet printing. The ablation threshold fluence for the unsintered nanoparticle deposit was at least ten times lower than the reported threshold for the bulk film. This could be explained by the combined effects of melting temperature depression, lower conductive heat transfer loss, strong absorption of the incident laser beam, and the relatively weak bonding between nanoparticles. The ablation physics were verified by the nanoparticle sintering characterization, ablation threshold measurement, time resolved ablation plume shadowgraphs, analysis of ablation ejecta, and the measurement and calculation of optical properties. High resolution and clean feature fabrication with small energy and selective multilayer processing are demonstrated

  15. Imaging of the ejection process of nanosecond laser-induced forward transfer of gold

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Sun, Chao; Huis in 't Veld, Bert; Lohse, Detlef

    2014-01-01

    Laser-induced forward transfer is a direct-write process suitable for high precision 3D printing of several materials. However, the driving forces related to the ejection mechanism of the donor ma-terial are still under debate. So far, most of the experimental studies of nanosecond LIFT, are based

  16. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser

    Science.gov (United States)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang

    2018-02-01

    Micro-structure surface on diamond material is widely used in a series of industrial and scientific applications, such as micro-electromechanical systems (MEMS), nanoelectromechanical systems (NEMS), microelectronics, textured or micro-structured diamond machining tools. The efficient machining of micro-structure on diamond surface is urgently demanded in engineering. In this paper, laser machining square micro-structure on diamond surface was studied with a sub-nanosecond pulsed laser. The influences of laser machining parameters, including the laser power, scanning speed, defocusing quantity and scanning pitch, were researched in view of the ablation depth, material removal rate and machined surface topography. Both the ablation depth and material removal rate increased with average laser power. A reduction of the growth rate of the two parameters was induced by the absorption of the laser plasma plume at high laser power. The ablation depth non-linearly decreased with the increasing of the scanning speed while the material removal rate showed an opposite tendency. The increasing of the defocusing quantity induced complex variation of the ablation depth and the material removal rate. The maximum ablation depth and material removal rate were achieved at a defocusing position. The ablation depth and material removal rate oppositely varied about the scanning pitch. A high overlap ratio was meaningful for achieving a smooth micro-structure surface topography. Laser machining with a large defocusing quantity, high laser power and small scanning pitch was helpful for acquiring the desired micro-structure which had a large depth and smooth micro-structure surface topography.

  17. Analysis of the plastic deformation of AISI 304 steel induced by the nanosecond laser pulse

    Science.gov (United States)

    Moćko, W.; Radziejewska, J.; Sarzyński, A.; Strzelec, M.; Marczak, J.

    2017-05-01

    The paper presents result of experimental and numerical tests of plastic deformation of austenitic steel generated by a nanosecond laser pulse. The shock wave generated by the laser pulse was used to induce local plastic deformation of the material. The study examined the possibility of using the process to develop a laser forming of materials under ultra-high strain rate. It has been shown that the laser pulse with intensity 2.5 GW/cm2 induces a repeatable plastic deformation of commercially available 304 steel without thermal effects on the surface.

  18. 100  J-level nanosecond pulsed diode pumped solid state laser.

    Science.gov (United States)

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  19. Nanosecond UV lasers stimulate transient Ca2+elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  20. Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Lavisse, L.; Lucas, M.C. Marco de [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Hebert, D. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Potin, V.; Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles spatial localization in the plume induced by a pulsed laser. Black-Right-Pointing-Pointer Plasma plume obtained by laser irradiation. Black-Right-Pointing-Pointer Particles and debris formation. Black-Right-Pointing-Pointer Powder generation. Black-Right-Pointing-Pointer Conditions of formation. - Abstract: Nanoparticles formation in a laser-induced plasma plume in the ambient air has been investigated by using numerical simulations and physical models. For high irradiances, or for ultrashort laser pulses, nanoparticles are formed by condensation, as fine powders, in the expanding plasma for very high pairs of temperature and pressure. At lower irradiances, or nanosecond laser pulses, another thermodynamic paths are possible, which cross the liquid-gas transition curve while laser is still heating the target and the induced plasma. In this work, we explore the growth of nanoparticles in the plasma plume induced by nanosecond pulsed lasers as a function of the laser irradiance. Moreover, the influence of the ambient gas has also been investigated.

  1. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    temperature gradient perpendicular to the laser track (Chan. Figure 3. FESEM images of spots lasered at intensities of (a) 40 and (b) 55 mJ/mm2. Figure 2. Effect of PLA on optical microstructure of NiTi thin film: (a) as sputtered and (b to f) irradiated with pulse laser beam of 2, 20, 30, 40 and 50 mJ/mm2 respective intensities.

  2. Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation

    KAUST Repository

    Paeng, Dongwoo

    2015-03-27

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Low-cost Cu flexible transparent conducting electrodes (FTCEs) are fabricated by facile nanosecond laser ablation. The fabricated Cu FTCEs show excellent opto-electrical properties (transmittance: 83%, sheet resistance: 17.48 Ω sq-1) with outstanding mechanical durability. Successful demonstration of a touch-screen panel confirms the potential applicability of Cu FTCEs to the flexible optoelectronic devices.

  3. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  4. Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses

    Science.gov (United States)

    Pérez-Gutiérrez, Francisco G.; Evans, Rodger; Camacho-López, Santiago; Aguilar, Guillermo

    2010-02-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light intensity and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present measurements of pressure transients originated when 6 ns laser pulses are incident on agar gels with varying linear absorption coefficient, mechanical properties and irradiation geometry using laser radiant exposures above threshold for bubble formation. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this work is to evaluate the relative contribution of each absorption mechanism to mechanical effects in agar gel. Real time pressure transients are recorded with PVDF piezoelectric sensors and time-resilved imaging from 50 μm to 10 mm away from focal point.

  5. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  6. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    Science.gov (United States)

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  7. Mono-energetic ions emission by nanosecond laser solid target irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Muoio, A., E-mail: Annamaria.Muoio@lns.infn.it [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G.A.P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Trifirò, A. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Sezione INFN, Catania (Italy)

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser–matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  8. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  9. Time-resolved optical probing of nanosecond laser-induced breakdown plasma in polymethyl methacrylate (PMMA)

    Science.gov (United States)

    Mahdieh, Mohammad Hossein; Jafarabadi, Marzieh Akbari; Katoozi, Delaram

    2018-02-01

    In this paper, laser-induced optical breakdown in a transparent dielectric was studied by pump-probe beam method. The breakdown was induced by Nd:YAG nanosecond laser beam in polymethyl methacrylate (PMMA). The main laser beam was separated by a splitter and used as probe beam. An appropriate optics used to direct the probe beam passing through the breakdown region perpendicularly to the pump laser beam. Using fast photodiodes and oscilloscope, the transmitted/ reflected signals (associated with the probe/ pump beam) were monitored. Analyzing these signals can be used to describe the breakdown process. The results show that the dynamics of transmissivity and reflectivity of the produced plasma depend on the pump laser intensity.

  10. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    Science.gov (United States)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  11. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    Science.gov (United States)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  12. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-01-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10 −6 %), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  13. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    Science.gov (United States)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  14. Nanosecond framing photography for laser-produced interstreaming plasmas

    International Nuclear Information System (INIS)

    McLean, E.A.; Ripin, B.H.; Stamper, J.A.; Manka, C.K.; Peyser, T.A.

    1988-01-01

    Using a fast-gated (120 psec-5 nsec) microchannel-plate optical camera (gated optical imager), framing photographs have been taken of the rapidly streaming laser plasma (∼ 5 x 10 7 cm/sec) passing through a vacuum or a background gas, with and without a magnetic field. Observations of Large-Larmor-Radius Interchange Instabilities are presented

  15. Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Carter, J Chance; Colston, Bill W; Angel, S Michael

    2004-09-20

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

  16. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, T., E-mail: trivas@uvigo.es [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Lopez, A.J.; Ramil, A. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.T.S. Ingeniería de Minas, Universidad de Vigo, 36200 Vigo Spain (Spain); Fiorucci, M.P. [Centro de Investigaciones Tecnológicas. Campus de Esteiro. Universidad de A Coruña 15403 Ferrol Spain (Spain); Silanes, M.E. López de [Dpto. Ingeniería de los Recursos Naturales y Medioambiente. E.I. Forestales. Universidad de Vigo, Campus Pontevedra. 36005 Pontevedra Spain (Spain); García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P. [Grupo de Investigación en Microprocesado de Materiales con Laser. Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca Spain (Spain)

    2013-08-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO{sub 4} laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  17. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    International Nuclear Information System (INIS)

    Rivas, T.; Lopez, A.J.; Ramil, A.; Pozo, S.; Fiorucci, M.P.; Silanes, M.E. López de; García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P.

    2013-01-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO 4 laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection – Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  18. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses

    Science.gov (United States)

    Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman

    2017-09-01

    In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.

  19. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Science.gov (United States)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  20. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water

    Science.gov (United States)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-03-01

    Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.

  1. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  2. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  3. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  4. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    Science.gov (United States)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  5. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S.; Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Bulgarian Academy of Sciences, Institute of Electronics, Sofia (Bulgaria); Alexandrov, M.T. [Bulgarian Academy of Sciences, Institute of Experimental Pathology and Parasitology, Sofia (Bulgaria); Karashanova, D.B. [Bulgarian Academy of Sciences, Institute of Optical Materials and Technologies, Sofia (Bulgaria)

    2012-11-15

    A study is presented of the properties of Ag nanoparticles produced by nanosecond pulsed laser ablation in twice-distilled water. An Ag target was immersed in the liquid and irradiated by the fundamental, second, third and fourth harmonics of a Nd:YAG laser system to create different colloids. Two specific boundary values of the laser fluence were applied for each wavelength. The properties of the nanoparticles at different wavelengths of the laser radiation were examined. The characterization of the colloids was performed immediately after their fabrication. Spherical and spherical-like shapes of the nanoparticles created were established. The formation of nanowires was observed when the second and the third harmonics of the laser were used. It is connected with self-absorption of the incident laser light from the already-created nanoparticles and depends also on the laser fluence. The size distribution of the nanoparticles is estimated by transmission electron microscopy. Generally, their mean size and standard deviation decreased as the wavelength of the incident laser light was increased and increased with the increase of the laser fluence. The substantial discrepancy between the results already commented on for both characteristics considered and others, obtained by dynamic light scattering, is discussed. The structure of the nanoparticles was established to be single and polycrystalline, and the phase composition in both cases is identified as consisting of cubic silver. The nanoparticles are slightly oxidized. (orig.)

  6. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    Science.gov (United States)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  7. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    Science.gov (United States)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  8. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

    Science.gov (United States)

    Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.

    2018-03-01

    An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

  9. The image of a nanosecond laser plasma in its own optical radiation

    Science.gov (United States)

    Fronya, A. A.; Borisenko, N. G.; Puzyrev, V. N.; Sahakyan, A. T.; Starodub, A. N.; Yakushev, O. F.

    2017-12-01

    The results of experiments on the interaction of nanosecond laser radiation (wavelength of 1.06 μm and a radiation power density of 1012–1013 W/cm2) with targets from various materials (Cu, (C2H4)n, TAC) are presented in the paper. In the experiments images of the plasma in own optical radiation in the wavelength range 0.4–1.1 μm were obtained. In one shot of laser images at wavelengths corresponding to the radiation of the harmonics 2ω 0, 3/2ω 0, 5/2ω 0, and at the frequency of laser radiation ω 0 were recorded. Using the obtained images the spatial characteristics of the radiating regions of the plasma, as well as the radiated energy for each of the harmonics, were estimated.

  10. Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles

    International Nuclear Information System (INIS)

    Siems, A; Weber, S A L; Boneberg, J; Plech, A

    2011-01-01

    The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle-liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

  11. Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage.

    Science.gov (United States)

    Jobling, A I; Guymer, R H; Vessey, K A; Greferath, U; Mills, S A; Brassington, K H; Luu, C D; Aung, K Z; Trogrlic, L; Plunkett, M; Fletcher, E L

    2015-02-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by drusen deposits and thickened Bruch's membrane (BM). This study details the capacity of nanosecond laser treatment to reduce drusen and thin BM while maintaining retinal structure. Fifty patients with AMD had a single nanosecond laser treatment session and after 2 yr, change in drusen area was compared with an untreated cohort of patients. The retinal effect of the laser was determined in human and mouse eyes using immunohistochemistry and compared with untreated eyes. In a mouse with thickened BM (ApoEnull), the effect of laser treatment was quantified using electron microscopy and quantitative PCR. In patients with AMD, nanosecond laser treatment reduced drusen load at 2 yr. Retinal structure was not compromised in human and mouse retina after laser treatment, with only a discrete retinal pigment epithelium (RPE) injury, and limited mononuclear cell response observed. BM was thinned in the ApoEnull mouse 3 mo after treatment (ApoEnull treated 683 ± 38 nm, ApoEnull untreated 890 ± 60 nm, C57Bl6J 606 ± 43 nm), with the expression of matrix metalloproteinase-2 and -3 increased (>260%). Nanosecond laser resolved drusen independent of retinal damage and improved BM structure, suggesting this treatment has the potential to reduce AMD progression. © FASEB.

  12. Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses

    International Nuclear Information System (INIS)

    Kumar, Brijesh; Soni, R K

    2008-01-01

    We report fabrication of submicrometre size laser-induced periodic surface structures (ripples) on single crystalline InP by nanosecond (ns) pulsed Nd : YAG laser beam irradiation of fourth harmonic wavelength (266 nm) in HF electrolyte. The ripples are orientated parallel to the laser polarization direction and power spectral density analysis reveals reduction in the spatial period of the ripples with increasing number of laser shots. The formation of periodic structures in the presence of electrolyte is empirically explained on the basis of photoelectrochemical etching and variation of periodicity with refractive index change on laser energy and number of laser pulses. From the analysis of energy dispersive x-ray, photoluminescence (PL) and micro-Raman spectroscopy measurements on the rippled surface we conclude that the ripple structures are capped with a thin layer of In 2 O 3 . Further, a blue shift of 0.328 eV compared with the band-edge luminescence of InP is estimated from the PL spectrum of the structure fabricated with 200 laser shots. The blue shift of the PL peak is attributed to the quantum confinement effect in the nanometre size structures in the rippled surface. Micro-Raman spectra show good crystalline quality of the surface at lower number of laser shots and its degradation caused by oxidation at the higher number of shots

  13. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Y Al-Hadeethi

    Full Text Available Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM. Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX. The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  14. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Science.gov (United States)

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  15. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.

    Science.gov (United States)

    Poitrasson, Franck; Mao, Xianglei; Mao, Samuel S; Freydier, Rémi; Russo, Richard E

    2003-11-15

    We compared the analytical performance of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The benefit of ultrafast lasers was evaluated regarding thermal-induced chemical fractionation, that is otherwise well known to limit LA-ICPMS. Both lasers had a Gaussian beam energy profile and were tested using the same ablation system and ICPMS analyzer. Resulting crater morphologies and analytical signals showed more straightforward femtosecond laser ablation processes, with minimal thermal effects. Despite a less stable energy output, the ultrafast laser yielded elemental (Pb/U, Pb/Th) and Pb isotopic ratios that were more precise, repeatable, and accurate, even when compared to the best analytical conditions for the nanosecond laser. Measurements on NIST glasses, monazites, and zircon also showed that femtosecond LA-ICPMS calibration was less matrix-matched dependent and therefore more versatile.

  16. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  17. Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation.

    Science.gov (United States)

    Yuan, Jiandong; Liang, Liang; Jiang, Lelun; Liu, Xin

    2018-04-01

    The degree of laser pulse overlapping in a laser scanning path has a significant impact on the ablation regime in the laser machining of a micro-texture. In this Letter, a nanosecond pulsed laser is used to prepare the micro-scaled groove on WC-8Co cermet under different scanning speeds. It is observed that as the scanning speed increases, the ablated trace morphology in the first scanning pass transits from a succession of intermittent deep dimples to the consecutive overlapped shallow pits. The test result also indicates that ablated trace morphology with respect to the low scanning speed stems from a plume shielding effect. Moreover, the ablation regime considering the shielding effect in micro-groove formation process is clarified. The critical scanning speed that can circumvent the shielding effect is also summarized with respect to different laser powers.

  18. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  19. Surface modification of Ti6Al4V by nanosecond laser ablation for biomedical applications

    Science.gov (United States)

    Fiorucci, M. P.; López, A. J.; Ramil, A.

    2015-04-01

    This paper presents the surface textured process of biometal Ti6Al4V by means of 355 nm Nd:YVO4 nanosecond laser. Our target is to create structures with sizes which favour osseointegration. In this work a pattern of parallel grooves was generated after a deep analysis of the irradiation parameters involved. Ablation modifies not only the topography but also physico-chemical properties of the metal surface. Changes in the morphology and the physico-chemical state of the laser induced groove pattern were studied by a scanning electron microscopy, X-ray diffraction and X- ray photoelectron spectroscopy, which revealed, among others, an increase of micro roughness and a oxide layer entirely formed by TiO2, which can improve biocompatibility properties of the textured surface.

  20. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  1. Investigations into localized re-treatment of the retina with a 3-nanosecond laser.

    Science.gov (United States)

    Chidlow, Glyn; Plunkett, Malcolm; Casson, Robert J; Wood, John P M

    2016-08-01

    Subvisual retinal lasers necessarily cause clinically invisible lesions, hence, they could intentionally or inadvertently be targeted at precisely the same or an overlapping location during repeat laser treatment. Herein, we investigated the structural integrity and cellular responses of localized re-treatment using a nanosecond laser (2RT) currently in trials for early age-related macular degeneration. Rats were randomly assigned to one of five groups: sham, subvisual 2RT, subvisual 2RT re-treatment, visual effect 2RT, visual effect 2RT re-treatment. Re-treatment groups were lasered on days 0 and 21; single laser groups were only lasered on day 21. All rats were euthanized at day 28 and eyes were then dissected and processed for immunohistochemistry. For re-treatment, the laser was targeted at precisely the same locations on both delivery occasions. Analytical endpoints included monitoring of retinal vascular integrity overlying lesions, investigation into any potential choroidal neovascularization, assessment of the RPE, quantification of collateral injury to photoreceptors or other neuronal classes, and delineation of glial reactivity. Repeat laser administration to rats caused ostensibly identical retinal-RPE-choroid responses to those obtained in age-matched rats that received only a single application. Specifically, 7 days after treatment, RPE cells were re-populating lesion sites. No obvious consistent differences were evident between the single and repeat laser groups. Moreover, repeat laser caused no (measurable) additive injury to photoreceptors or other retinal neuronal classes from single laser treatment. In re-lasered animals, there was no increase in microglial activity overlying and adjacent to lesion sites relative to single lasered rats. Finally, there was no evidence of choroidal neovascularization after repeat laser treatment. The overall results provide a measure of confidence that re-treatment of patients with 2RT should not provide any

  2. Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser.

    Science.gov (United States)

    Zong, Yan P; Liu, Xian H; Du, Xi W; Lu, Yi R; Wang, Mei Y; Wang, Guang Y

    2013-01-01

    Using 532 nm parallel nanosecond pulsed laser, the decolorization of methylene blue (MB) in aqueous suspensions of gold nanoparticles (GNPs) was studied. The effects of various experimental parameters, such as irradiation time, laser energy, and initial MB concentration on the decolorization rate were investigated. Experiments using real samples of textile dyeing wastewater were also carried out to examine the effectiveness of the method in more complex samples. From the results, the following conclusions may be drawn: (i) Under the optimum conditions (pH 7.19, 135 mJ laser energy, 4 mg/L MB concentration, and 11.6 mg/L GNP concentration), the rate of MB decolorization could reach 94% in 15 min. The decolorization follows pseudo-first-order kinetics; (ii) The amount of MB decreased rapidly during the decolorization. No intermediates of the decolorization could be detected by high-performance liquid chromatography. These observations indicate that MB was decolorized through a very rapid degradation mechanism; (iii) The rate of MB decolorization increased with the increase in laser energy (at laser energies of 0 to 135 mJ); and, (iv) The efficient decolorization of MB in real samples of textile dyeing wastewater was achieved at a decolorization rate of about 85% in 15 min.

  3. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Science.gov (United States)

    Sánchez-Aké, C.; Canales-Ramos, A.; García-Fernández, T.; Villagrán-Muniz, M.

    2017-05-01

    Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10-5 Torr). We studied the effect of the laser fluence (200-400 mJ/cm2), thickness of the starting film (∼40-80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  4. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  5. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-01-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm −2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm −2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm −2 . The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  6. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    Science.gov (United States)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  7. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    Science.gov (United States)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  8. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.

    Science.gov (United States)

    Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-04-04

    The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.

  9. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ming; Liu, Jianguo, E-mail: liujg@mail.hust.edu.cn; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-30

    Highlights: • High-adhesion copper patterns on alumina ceramic were obtained conveniently. • Effects of processing parameters on adhesion were investigated. • The adhesion of copper–ceramic was higher than the tensile strength of tin-lead solder. • Failure mechanism was studied by the analysis of fracture surfaces. - Abstract: Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  10. Experimental validation of a phase screen propagation model for nanosecond laser pulses travelling through turbulent atmospheres

    Science.gov (United States)

    Burgess, Christopher; Westgate, Christopher

    2017-10-01

    Applications involving the outdoor use of pulsed lasers systems can be affected by atmospheric turbulence and scintillation. In particular, deterministic prediction of the risk of injury or damage due to pulsed laser radiation can be difficult due to uncertainty over the focal plane fluence of radiation that has traversed through a turbulent medium. In this study, focussed beam profiles of nanosecond laser pulses are recorded for visible laser pulses that have traversed 1400m paths through turbulent atmospheres. Beam profiles are also taken under laboratory conditions. These pulses are characterised in terms of their peak focal plane fluence, total collected energy and Strehl ratio. Measured pulses are then compared statistically to pulse profiles generated by a two-dimensional phase screen propagation model based on the Von Karman power spectrum distribution. The model takes into account the refractive index structure constant (𝐶𝑛2), the wavelength, the path geometry and macroscopic beam steering. Analysis shows good correlation between the measured and simulated data, inferring that the Von Karman phase screen model can be used to predict focal plane fluence distributions for outdoor applications.

  11. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  12. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy

    International Nuclear Information System (INIS)

    Wei, Wenfu; Wu, Jian; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-01-01

    We investigate the evolution of the species from both the target and the air, and the plasma parameter distribution of the nanosecond laser-produced plasmas in atmospheric air. The technique used is spatially resolved optical emission spectroscopy. It is argued that the N II from the air, which is distributed over a wider region than the target species in the early stages of the discharge, is primarily formed by the shock wave. The ionized species have a larger expansion velocity than the excited atoms in the first ∼100 ns, providing direct evidence for space-charge effects. The electron density decreases with the distance from the target surface in the early stages of the discharge, and both the electron density and the excited temperature variation in the axial direction are found to become insignificant at later stages

  13. Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing

    Science.gov (United States)

    Lien, Yu-Chung; Shieh, Jia-Min; Huang, Wen-Hsien; Tu, Cheng-Hui; Wang, Chieh; Shen, Chang-Hong; Dai, Bau-Tong; Pan, Ci-Ling; Hu, Chenming; Yang, Fu-Liang

    2012-04-01

    The ultrafast metal-gate silicon quantum-dot (Si-QD) nonvolatile memory (NVM) with program/erase speed of 1 μs under low operating voltages of ± 7 V is achieved by thin tunneling oxide, in situ Si-QD-embedded dielectrics, and metal gate. Selective source/drain activation by green nanosecond laser spike annealing, due to metal-gate as light-blocking layer, responds to low thermal damage on gate structures and, therefore, suppresses re-crystallization/deformation/diffusion of embedded Si-QDs. Accordingly, it greatly sustains efficient charge trapping/de-trapping in numerous deep charge-trapping sites in discrete Si-QDs. Such a gate nanostructure also ensures excellent endurance and retention in the microsecond-operation Si-QD NVM.

  14. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Science.gov (United States)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio; Chater, Richard J.; Cañamares, Maria Vega; Marco, José F.; Castillejo, Marta

    2015-02-01

    Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  15. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    Science.gov (United States)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  16. Dynamics of liquid nanodroplet formation in nanosecond laser ablation of metals

    Science.gov (United States)

    Mazzi, A.; Gorrini, F.; Miotello, A.

    2017-10-01

    The laser ablation mechanisms of metallic targets leading to liquid nanodroplet ejection are of wide interest both from a fundamental point of view and for applications in various fields, especially when nanoparticle synthesis is required. The phase explosion process was recognized as the driving mechanism of the expulsion of a mixture of vapor and liquid nanodroplets in the short pulse laser ablation of metals. A model based on thermodynamics that links the theory of homogeneous vapor bubble nucleation to the size distribution of the generated liquid nanoclusters has been recently proposed. The present work aims to take a step ahead to remove some assumptions made in previous work. Here an improved computational approach allows us to describe time-dependent nucleation in a homogeneous system with no temperature spatial gradients under nanosecond laser irradiation. Numerical results regarding the size distribution of formed liquid clusters and the time evolution of the process are shown for aluminum, iron, cobalt, nickel, copper, silver and gold. Connections with experimental data and molecular dynamics simulations, when available from literature, are reported and discussed.

  17. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments.

    Science.gov (United States)

    García-Aráez, Nuria; Climent, Víctor; Feliu, Juan M

    2008-03-26

    The behavior of water at the interface formed between a quasi-perfect Pt(111) single-crystal electrode and an aqueous electrolyte solution is studied by means of the laser-induced temperature jump method. This method is based on the use of nanosecond laser pulses to suddenly increase the temperature at the interface. The measurement of the response of the interface toward the laser heating under coulostatic conditions provides evidence on the net orientation of water at the interface. Especially interesting is the study of the effect on the interfacial water caused by the selective deposition of foreign metal adatoms, because these bimetallic systems usually exhibit appealing electrocatalytic properties. The T-jump methodology shows that the surface composition strongly affects the interaction of water with the surface. The most representative parameter to characterize this interaction is the potential where water reorientation occurs; this potential shifts in different directions, depending on the relative values of the electronegativity of the adatom and the substrate. These results are discussed in the light of available information about the effect of adatom deposition on the work function and the surface potential of the modified surface. Finally, some implications on the enhancement of the electrocatalytic activity are briefly discussed.

  18. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses

    Science.gov (United States)

    Nováková, Eva; Davídková, Marie; Vyšín, Ludék; Burian, Tomáš; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.; Juha, Libor

    2011-06-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugar and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. The complexity of lesions produced in DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. We have studied the nature of DNA damage induced directly by the pulsed 46.9 nm radiation provided by a capillary-discharge Ne-like Ar laser (CDL). Different surface doses were delivered with a repetition rate of a few Hz and an average pulse energy ~ 1 μJ. A simple model DNA molecule, i.e., dried closed-circular plasmid DNA (pBR322), was irradiated. The agarose gel electrophoresis method was used for determination of both SSB and DSB yields. Results are compared with a previous study of plasmid DNA irradiated with a single sub-nanosecond 1-keV X-ray pulse produced by a large-scale, double-stream gas puff target, illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System).

  19. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties.

    Science.gov (United States)

    Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M

    2017-10-24

    Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.

  20. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); Canales-Ramos, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790 (Mexico); Villagrán-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico)

    2017-05-01

    Highlights: • Background pressure plays an important role in NPs formation and its characteristics. • The NPs diameter and their size dispersion are smaller when irradiating in vacuum. • The plasmon resonance shifts ∼15 nm to higher frequencies when irradiating in vacuum. • Film partial ablation cannot be neglected for thickness in the range 40–80 nm. • In situ optical techniques monitor the timescale of the process and ablation dynamics. - Abstract: Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10{sup −5} Torr). We studied the effect of the laser fluence (200–400 mJ/cm{sup 2}), thickness of the starting film (∼40–80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  1. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air

    International Nuclear Information System (INIS)

    Wu, B.; Shin, Y. C.; Pakhal, H.; Laurendeau, N. M.; Lucht, R. P.

    2007-01-01

    It has been generally believed in literature that in nanosecond laser ablation, the condensed substrate phase contributes mass to the plasma plume through surface evaporation across the sharp interface between the condensed phase and the vapor or plasma phase. However, this will not be true when laser intensity is sufficiently high. In this case, the target temperature can be greater than the critical temperature, so that the sharp interface between the condensed and gaseous phases disappears and is smeared into a macroscopic transition layer. The substrate should contribute mass to the plasma region mainly through hydrodynamic expansion instead of surface evaporation. Based on this physical mechanism, a numerical model has been developed by solving the one-dimensional hydrodynamic equations over the entire physical domain supplemented by wide-range equations of state. It has been found that model predictions have good agreements with experimental measurement for plasma front location, temperature, and electron number density. This has provided further evidence (at least in the indirect sense), besides the above theoretical analysis, that for nanosecond laser metal ablation in air at sufficiently high intensity, the dominant physical mechanism for mass transfer from the condensed phase to the plasma plume is hydrodynamic expansion instead of surface evaporation. The developed and verified numerical model provides useful means for the investigation of nanosecond laser-induced plasma at high intensities

  2. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air.

    Science.gov (United States)

    Wu, B; Shin, Y C; Pakhal, H; Laurendeau, N M; Lucht, R P

    2007-08-01

    It has been generally believed in literature that in nanosecond laser ablation, the condensed substrate phase contributes mass to the plasma plume through surface evaporation across the sharp interface between the condensed phase and the vapor or plasma phase. However, this will not be true when laser intensity is sufficiently high. In this case, the target temperature can be greater than the critical temperature, so that the sharp interface between the condensed and gaseous phases disappears and is smeared into a macroscopic transition layer. The substrate should contribute mass to the plasma region mainly through hydrodynamic expansion instead of surface evaporation. Based on this physical mechanism, a numerical model has been developed by solving the one-dimensional hydrodynamic equations over the entire physical domain supplemented by wide-range equations of state. It has been found that model predictions have good agreements with experimental measurement for plasma front location, temperature, and electron number density. This has provided further evidence (at least in the indirect sense), besides the above theoretical analysis, that for nanosecond laser metal ablation in air at sufficiently high intensity, the dominant physical mechanism for mass transfer from the condensed phase to the plasma plume is hydrodynamic expansion instead of surface evaporation. The developed and verified numerical model provides useful means for the investigation of nanosecond laser-induced plasma at high intensities.

  3. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    mechanism for high irradiance laser ablation. Laser processing parameters were also investigated for nanosecond laser ablation of silicon. Longer incident wavelengths and larger laser beam sizes were associated with higher values of a threshold irradiance.

  4. Micrometric rods grown by nanosecond pulsed laser deposition of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, Ignacio; Oujja, Mohamed; Sanz, Mikel; Benitez-Cañete, Antonio [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Chater, Richard J. [Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cañamares, Maria Vega [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); Marco, José F. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Castillejo, Marta, E-mail: marta.castllejo@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-02-15

    Highlights: • Micrometric rods obtained by ns pulsed laser deposition of boron carbide at 1064 and 266 nm. • At 1064 nm microrods display crystalline polyhedral shape with sharp edges and flat sides. • Microrods consist of a mixture of boron, boron oxide, boron carbide and aliphatic hydrocarbons. - Abstract: Micrometric size rods have been fabricated via pulsed laser deposition in vacuum from boron carbide targets using nanosecond pulses of 1064 and 266 nm and room temperature Si (1 0 0) substrates. Morphological, structural and chemical characterization of the microrods was made by applying scanning electron microscopy, focussed ion beam microscopy coupled to secondary ion mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Ablation at 1064 nm favours the formation of microrods with high aspect ratio, sharp edges and pyramidal tips, typically 10 μm long with a cross section of around 2 μm × 2 μm. Differently, at 266 nm the microrods are of smaller size and present a more globular aspect. The analyses of the microrods provide information about their crystalline nature and composition, based on a mixture which includes boron, boron oxide and boron carbide, and allows discussion of the wavelength dependent growth mechanisms involved.

  5. Comparison of treatment with an Alexandrite picosecond laser and Nd:YAG nanosecond laser for removing blue-black Chinese eyeliner tattoos.

    Science.gov (United States)

    Zhang, Mengli; Huang, Yuqing; Lin, Tong; Wu, Qiuju

    2018-02-28

    To retrospectively evaluate the efficacy of an Alexandrite picosecond laser versus Nd:YAG nanosecond laser for removing blue-black eyeliner tattoos which have existed more than 10 years. A total of 40 patients were treated with an Alexandrite picosecond laser in our department from August 2015 to July 2017, with a fluence of 1.96-6.37J/cm 2 , spot size of 2.0-3.6 mm, and pulse width of 750 ps. Another 32 patients were treated with an Nd:YAG nanosecond laser, with a fluence of 2.80-7.00 J/cm 2 , spot size of 3 mm, and pulse width of 5-20 ns. All analysed patients completed at least one treatment and follow-up. The median number of treatment for all the patients was 1 (range, 1-4). After a single session, no difference was found between the two lasers for the eyeliner removal (p > 0.05). For the people who achieved an excellent response of tattoo clearance, there was still no difference between the two groups (p > 0.05). Transient side effects were observed in two groups, but neither group had significant adverse reactions. To treat blue-black Chinese eyeliner tattoos over 10 years, Alexandrite picosecond laser does not provide better clearance than the Nd:YAG nanosecond laser.

  6. Experimental study of mechanical response of artificial tissue models irradiated with Nd:YAG nanosecond laser pulses

    Science.gov (United States)

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Aguilar, Guillermo

    2011-07-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light irradiance and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present three experimental approaches to study pressure transients originated when 6 ns laser pulses are incident on agar gels and water with varying linear absorption coefficient, using laser radiant exposures above and below threshold for bubble formation: (a) PVDF sensors, (b) Time-resolved shadowgraphy and (c) Time-resolved interferometry. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this study is to carry out a comprehensive experimental analysis of the mechanical effects that result when tissue models are irradiated with nanosecond laser pulses to elucidate the relative contribution of linear and nonlinear absorption to bubble formation. Furthermore, we investigate cavitation bubble formation with temperature increments as low as 3 °C.

  7. Multiply ionization of diethyl ether clusters by 532 nm nanosecond laser: The influence of laser intensity and the electron energy distribution

    International Nuclear Information System (INIS)

    Zhang Nazhen; Wang Weiguo; Zhao Wuduo; Han Fenglei; Li Haiyang

    2010-01-01

    Graphical abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated experimentally and theoretically using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. - Abstract: The formation mechanism for multiply charged ions (C q+ and O q+ (q = 2-4)) were investigated using a dual polarity time-of-flight mass spectrometer when diethyl ether clusters interacted with nanosecond laser pulse. The signal intensity of multiply charged ions and electron energy was measured experimentally. It was shown that the intensity of multiply charged ions increased about 50 times when laser intensity increased from 7.6 x 10 9 to 7.0 x 10 10 W/cm 2 , then saturated as laser intensity increased further. It is interesting that the evolution of the mean value of electron energy was same to that of multiply charged ions. The theoretical calculation showed the ionization potential of atomic ions could be significantly decreased due to the effect of Coulomb screening especially at low laser intensity. It indicated that the electron ionization combined with Coulomb screening effect could explain the production of multiply charged ions in nanosecond laser field.

  8. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McIntosh, Kathryn Gallagher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Judge, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Campbell, Keri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis J. [Applied Spectra Inc., Fremont, CA (United States)

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers the potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.

  9. On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, A. I.; Baidullaeva, A.; Veleschuk, V. P., E-mail: vvvit@ukr.net; Mozol, P. E.; Boiko, N. I.; Litvin, O. S. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductors Physics (Ukraine)

    2015-02-15

    The formation of nanoscale structures in the unirradiated part of a p-CdTe crystal surface irradiated by a nanosecond ruby laser is revealed and investigated. It is shown that their formation is caused by the effect of the long-range action of a laser pulse with an intensity of I = 20 MW/cm{sup 2}. Nanoscale-structure formation is explained by the influence of the pressure gradient of the surface acoustic wave, in particular, within the “vacancy-pump” mechanism on the surface.

  10. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  11. Kinetic processes in the laser corona heated by a nanosecond iodine pulse

    Czech Academy of Sciences Publication Activity Database

    Mašek, Martin; Rohlena, Karel

    2006-01-01

    Roč. 56, - (2006), B557-B563 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] R&D Projects: GA ČR GA202/05/2475 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma * Vlasov simulation * Raman scattering Subject RIV: BH - Optics, Masers, Laser s Impact factor: 0.568, year: 2006

  12. Studies of the confinement at laser-induced backside dry etching using infrared nanosecond laser pulses

    Science.gov (United States)

    Ehrhardt, M.; Lorenz, P.; Bayer, L.; Han, B.; Zimmer, K.

    2018-01-01

    In the present study, laser-induced backside etching of SiO2 at an interface to an organic material using laser pulses with a wavelength of λ = 1064 nm and a pulse length of τ = 7 ns have been performed in order to investigate selected processes involved in etching of the SiO2 at confined ablation conditions with wavelengths well below the band gap of SiO2. Therefore, in between the utilized metallic absorber layer and the SiO2 surface, a polymer interlayer with a thickness between 20 nm to 150 nm was placed with the aim, to separate the laser absorption process in the metallic absorber layer from the etching process of the SiO2 surface due to the provided organic interlayer. The influence of the confinement of the backside etching process was analyzed by the deposition of different thick polymer layers on top of the metallic absorber layer. In particular, it was found that the SiO2 etching depth decreases with higher polymer interlayer thickness. However, the etching depth increases with increasing the confinement layer thickness. SEM images of the laser processed areas show that the absorber and confinement layers are ruptured from the sample surface without showing melting, and suggesting a lift off process of these films. The driving force for the layers lift off and the etching of the SiO2 is probably the generated laser-induce plasma from the confined ablation that provides the pressure for lift off, the high temperatures and reactive organic species that can chemically attack the SiO2 surface at these conditions.

  13. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    Science.gov (United States)

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  14. Comparative investigation of damage performance on K9 and SiO2 under 1064-nm nanosecond laser irradiation

    Science.gov (United States)

    Liu, Hongjie; Wang, Fengrui; Zhang, Zhen; Huang, Jin; Zhou, Xinda; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2012-01-01

    Laser damage performance of K9 glass and fused silica glass were tested respectively at same experimental condition with 1064 nm nanosecond laser. The initial damage threshold (IDT), the damage growth threshold (DGT) and the damage growth laws of the two optics glass were investigated comparatively. The results show that the damage growth behavior of the two glasses are quite different, for example, the lower damage growth threshold and the higher damage growth coefficient for K9 glass, which can attribute to the difference of the material's damage morphology, optical absorption, residual stress near damage site between the two optics glass. The research is very important to choose transparent optical material applied in high power laser.

  15. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  16. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  17. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    Science.gov (United States)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  18. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  19. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  20. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    Science.gov (United States)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  1. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis

    1983-01-01

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  2. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  3. Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Jungwirth, Karel; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Pfeifer, Miroslav; Ullschmied, Jiří

    2009-01-01

    Roč. 27, č. 1 (2009), 171-178 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-produced plasma * outbursts of fast ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.420, year: 2008

  4. Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Frolov, Oleksandr; Prukner, Václav; Melich, Radek; Psota, Pavel

    2016-01-01

    Roč. 34, č. 1 (2016), s. 11-22 ISSN 0263-0346 Institutional support: RVO:61389021 Keywords : Extreme ultraviolet (XUV) interferometer * Aspheric interferometer mirrors * Multilayer reflection coating for 46.9 nm * Ar8+ laser application * XUV direct nanostructuring Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2016 http://dx. doi . org /10.1017/S0263034615000786

  5. 100 J-level nanosecond pulsed diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Banerjee, S.; Mason, P.D.; Ertel, K.; Phillips, P.J.; De Vido, M.; Chekhlov, O.; Divoký, Martin; Pilař, Jan; Smith, J.; Butcher, T.; Lintern, A.; Tomlinson, S.; Shaikh, W.; Hooker, Ch.; Lucianetti, Antonio; Hernandez-Gomez, C.; Mocek, Tomáš; Edwards, Ch.; Collier, J.L.

    2016-01-01

    Roč. 41, č. 9 (2016), s. 2089-2092 ISSN 0146-9592 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : high average power * efficiency * amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  6. Selective removal of carious dentin using a nanosecond pulsed laser with a wavelength of 6.02 μm

    Science.gov (United States)

    Ishii, Katsunori; Saiki, Masayuki; Yasuo, Kenzo; Yamamoto, Kazuyo; Yoshikawa, Kazushi; Awazu, Kunio

    2010-04-01

    Conventional laser light sources for the treatment of a hard tissue in dental (Er:YAG laser, Er,Cr:YSGG laser and CO2 laser etc.) are good for removal of caries. However these lasers cannot achieve to give a selective treatment effect for caries without a side effect for normal tissue. The objective of this study is to develop the less-invasive treatment technique of carious dentin by selective absorption effect using the laser with a wavelength of 6.02 μm which corresponds to an absorption peak of organic matters called amide 1 band. Mid-infrared nanosecond pulsed laser by difference-frequency generation was used for the experiment of selective treatment. A tunable wavelength range, pulse width and repetition rate is from 5.5 to 10 μm, 5 ns and Hz, respectively. The laser with a wavelength of 6.02 μm and predetermined energy parameters was irradiated to the plate of carious dentin model which is made by soaking in lactic acid solution. After laser irradiation, the surface and cross-sectional surface of samples were observed by a scanning electron microscope (SEM). Average power density about 15 W/cm2 realized to excavate a demineralized region (carious dentin model) selectively in a SEM observation. In the same energy condition, serious side effect was not observed on the surface of normal dentin. A wavelength of 6.02 μm realizes a selective excavation of carious dentin. Using 6.02 μm is a novel and promising technique toward to next-generation dental treatment procedure for realizing MI.

  7. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); Barreiro, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Rivas, T. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); González, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Fiorucci, M.P. [Centro de Investigacións Tecnolóxicas (CIT), University of A Coruña, 15403, Ferrol (Spain)

    2014-05-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  8. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    International Nuclear Information System (INIS)

    Pozo, S.; Barreiro, P.; Rivas, T.; González, P.; Fiorucci, M.P.

    2014-01-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  9. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  10. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    Czech Academy of Sciences Publication Activity Database

    Klír, Daniel; Krása, Josef; Cikhardt, Jakub; Dudžák, Roman; Krouský, Eduard; Pfeifer, Miroslav; Řezáč, Karel; Sila, O.; Skála, Jiří; Ullschmied, Jiří; Velyhan, Andriy

    2015-01-01

    Roč. 22, č. 9 (2015), s. 093117-093117 ISSN 1070-664X R&D Projects: GA ČR GAP205/12/0454; GA MŠk(CZ) LG13029; GA MŠk LM2010014; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : plasma * femtosecond laser * nuclear-fusion * ion-beams * hot-electrons Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.207, year: 2015 http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4931460

  11. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    Science.gov (United States)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  12. Solvent effect on dynamical TPA and optical limiting of BDMAS molecular media for nanosecond and femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yong; Miao Quan; Sun Yuping; Wang Chuankui [College of Physics and Electronics, Shandong Normal University, 250014 Jinan (China); Gel' mukhanov, Faris, E-mail: ckwang@sdnu.edu.cn [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm (Sweden)

    2011-01-14

    The dynamical two-photon absorption (TPA) cross section as well as optical limiting of a 4,4'-bis(dimethylamino) stilbene (BDMAS) molecular medium for the nanosecond and femtosecond laser pulses is studied. This molecular medium can be described by a cascade three-level model in the visible light regime. Our numerical results show that the BDMAS molecular medium exhibits a strong optical limiting behaviour. The saturation TPA in the femtosecond time domain can be observed, and materials with larger nonlinear absorption cross sections would be much easier to saturate. Due to the contribution of the two-step TPA, the dynamical TPA cross section of BDMAS for nanosecond pulses is about three orders of magnitude larger than that for ultrashort femtosecond pulses. Special attention has been paid to the solvent effects on the optimal limiting performance. With an enhancement of the polarity of solvents, the dynamical optical limiting window becomes broader. In the origin of optical limiting, the dynamical TPA cross section of BDMAS decreases when the polarity of solvents increases, which is in good agreement with the experiment.

  13. Solvent effect on dynamical TPA and optical limiting of BDMAS molecular media for nanosecond and femtosecond laser pulses

    International Nuclear Information System (INIS)

    Zhou Yong; Miao Quan; Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2011-01-01

    The dynamical two-photon absorption (TPA) cross section as well as optical limiting of a 4,4'-bis(dimethylamino) stilbene (BDMAS) molecular medium for the nanosecond and femtosecond laser pulses is studied. This molecular medium can be described by a cascade three-level model in the visible light regime. Our numerical results show that the BDMAS molecular medium exhibits a strong optical limiting behaviour. The saturation TPA in the femtosecond time domain can be observed, and materials with larger nonlinear absorption cross sections would be much easier to saturate. Due to the contribution of the two-step TPA, the dynamical TPA cross section of BDMAS for nanosecond pulses is about three orders of magnitude larger than that for ultrashort femtosecond pulses. Special attention has been paid to the solvent effects on the optimal limiting performance. With an enhancement of the polarity of solvents, the dynamical optical limiting window becomes broader. In the origin of optical limiting, the dynamical TPA cross section of BDMAS decreases when the polarity of solvents increases, which is in good agreement with the experiment.

  14. Generation of 500-mJ nanosecond pulses from a diode-pumped Yb:YAG TRAM laser amplifier

    Czech Academy of Sciences Publication Activity Database

    Tokita, S.; Divoký, Martin; Furuse, H.; Matsumoto, K.; Nakamura, Y.; Yoshida, M.; Kawashima, T.; Kawanaka, J.

    2014-01-01

    Roč. 4, č. 10 (2014), s. 2122-2126 ISSN 2159-3930 Institutional support: RVO:68378271 Keywords : active-mirror laser * ceramics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.844, year: 2014

  15. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; De Marco, Massimo; Cikhardt, Jakub; Pfeifer, Miroslav; Velyhan, Andriy; Klír, Daniel; Řezáč, Karel; Limpouch, J.; Krouský, Eduard; Dostál, Jan; Ullschmied, Jiří; Dudžák, Roman

    2017-01-01

    Roč. 59, č. 6 (2017), 1-8, č. článku 065007. ISSN 0741-3335 R&D Projects: GA MŠk EF15_008/0000162; GA ČR GA16-07036S EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * target current * electromagnetic pulse Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  16. Real-time diagnostics of fast light ion beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Prokůpek, Jan

    2011-01-01

    Roč. 56, č. 2 (2011), s. 137-141 ISSN 0029-5922 R&D Projects: GA ČR(CZ) GAP205/11/1165 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * ion beams * real-time diagnostics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.389, year: 2011 http://www.nukleonika.pl/www/back/full/vol56_2011/v56n2p137f.pdf

  17. Laser Cutting of CFRP with a Fibre Guided High Power Nanosecond Laser Source - Influence of the Optical Fibre Diameter on Quality and Efficiency

    Science.gov (United States)

    Bluemel, S.; Bastick, S.; Staehr, R.; Jaeschke, P.; Suttmann, O.; Overmeyer, L.

    For the development of a robot based laser cutting process of automotive 3D parts consisting of carbon fibre reinforced plastics (CFRP), investigations with a newly developed fibre guided nanosecond pulsed laser with an average power of PL = 1.5 kW were conducted. In order to investigate the best combination of quality and process time 2 different optical fibres were used, with diameters of df = 400 μm and df = 600 μm. The main differences between the two setups are the resulting focal diameter and the maximum available pulse energy up to EP = 80 mJ. In a first instance, a comparable investigation was performed with both fibres for a constant pulse overlap. For each fibre the minimum required line energy was investigated and cuts were performed, distributed over the complete parameter range of the laser source. The influences of the fibre diameter on the quality and efficiency of the cutting process are summarized and discussed.

  18. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.

    Science.gov (United States)

    Fornarini, Lucilla; Fantoni, Roberta; Colao, Francesco; Santagata, Antonio; Teghil, Roberto; Elhassan, Asmaa; Harith, Mohamed A

    2009-12-31

    A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The

  19. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  20. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing

    Science.gov (United States)

    He, An; Liu, Wenwen; Xue, Wei; Yang, Huan; Cao, Yu

    2018-03-01

    Recently, metallic superhydrophobic surfaces with ultrahigh adhesion have got plentiful attention on account of their significance in scientific researches and industrial applications like droplet transport, drug delivery and novel microfluidic devices. However, the long lead time and transience hindered its in-depth development and industrial application. In this work, nanosecond laser ablation was carried out to construct grid of micro-grooves on copper surface, whereafter, by applying fast ethanol assisted low-temperature annealing, we obtained surface with superhydrophobicity and ultrahigh adhesion within hours. And the ultrahigh adhesion force was found tunable by varying the groove spacing. Using ultrasonic cleaning as the simulation of natural wear and tear in service, the renewability of superhydrophobicity was also investigated, and the result shows that the contact angle can rehabilitate promptly by the processing of ethanol assisted low-temperature annealing, which gives a promising fast and cheap circuitous strategy to realize the long wish durable metallic superhydrophobic surfaces in practical applications.

  1. Characterization of Aerosols Generated by nano-second Laser Ablation of an Acrylic Paint

    International Nuclear Information System (INIS)

    Dewalle, P.; Vendel, J.; Dewalle, P.; Weulersse, J.M.; Dewalle, P.; Herve, Ph.; Dewalle, P.; Decobert, G.

    2010-01-01

    This study focuses on particles produced during laser ablation of a green colored acrylic wall paint, which is frequently used in industrial buildings and in particular in nuclear installations. Ablation is carried out with a Nd:YAG laser at a wavelength of 532 nm and a pulse duration of 5 ns, in a cell at ambient pressure and temperature, which is ventilated by filtered air. The number of particles emitted was measured with a Condensation Particle Counter (CPC) and their size with an Engine Exhaust Particle Sizer (or EEPS) for the nano-metric range, and an AEROSIZER (for the micrometric range). The mass and shape of particles were determined by sampling on filters as well as on the different impaction plates of a Low-Pressure Impactor (LPI). Two particle populations were detected: a population of aggregates of primary nano-particles with an electrical mobility diameter ranging from 30 to 150 nm, and a population of spherical submicron particles with an aerodynamic diameter ranging from 400 to 1000 nm. The spherical particles are mainly composed of titanium dioxide, and the aggregates most likely of carbon. The presence of two types of particles with different size distributions, shapes, and chemical compositions, implies that particles originating from the ablation of paint are formed by two different mechanisms: agglomeration in the case of the nano-metric aggregates, which is preceded by steps of nucleation, condensation, and coagulation of the primary particles, while the submicron spheres result from a direct ejection mechanism. (authors)

  2. Pulse laser machining and particulate separation from high impact polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Saira; Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1–2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  3. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Dimitrov, I.G. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. Black-Right-Pointing-Pointer The alteration of the produced colloids during one month was investigated. Black-Right-Pointing-Pointer Optical transmission spectra of the samples were measured from 350 to 800 nm. Black-Right-Pointing-Pointer TEM measurements were made of as-prepared colloids and on the 30-th day. Black-Right-Pointing-Pointer Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  4. Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser

    Science.gov (United States)

    Jing, QI; Siqi, ZHANG; Tian, LIANG; Ke, XIAO; Weichong, TANG; Zhiyuan, ZHENG

    2018-03-01

    The ablation characteristics of carbon-doped glycerol were investigated in laser plasma propulsion using a pulse laser with 10 ns pulse width and 1064 nm wavelength. The results showed that with the incident laser intensity increasing, the target momentum decreased. Results still indicated that the strong plasma shielded the consumption loss and resulted in a low coupling coefficient. Furthermore, the carbon-doping gave rise to variations in the laser focal position and laser intensity, which in turn reduced the glycerol splashing. Based on the glycerol viscosity and the carbon doping, a high specific impulse is anticipated.

  5. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  6. Selective excavation of human carious dentin using the nanosecond pulsed laser in 5.8-μm wavelength range

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, 5.8 μm wavelength range was found to be effective for selective excavation of human carious dentin.

  7. Optical evidence for a self-propagating molten buried layer in germanium films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Vega, F.; Chaoui, N.; Solis, J.; Armengol, J.; Afonso, C.N.

    2005-01-01

    This work describes the phase transitions occurring at the film-substrate interface of amorphous germanium films upon nanosecond laser-pulse-induced melting of the surface. Films with thickness ranging from 50 to 130 nm deposited on glass substrates were studied. Real-time reflectivity measurements with subnanosecond time resolution performed both at the air-film and film-substrate interfaces were used to obtain both surface and in-depth information of the process. In the thicker films (≥80 nm), the enthalpy released upon solidification of a shallow molten surface layer induces a thin buried liquid layer that self-propagates in-depth towards the film-substrate interface. This buried liquid layer propagates with a threshold velocity of 16±1 m/s and causes, eventually, melting at the film-substrate interface. In the thinnest film (50 nm) there is no evidence of the formation of the buried layer. The presence of the self-propagating buried layer for films thicker than 80 nm at low and intermediate laser fluences is discussed in terms of the thermal gradient in the primary melt front and the heat released upon solidification

  8. Anti-bacterial selenium nanoparticles produced by UV/VIS/NIR pulsed nanosecond laser ablation in liquids

    International Nuclear Information System (INIS)

    Guisbiers, G; Khachatryan, E; Arellano-Jimenez, M J; Nash, K L; Wang, Q; Webster, T J; Larese-Casanova, P

    2015-01-01

    The ability to produce nanoparticles free of any surface contamination is very challenging especially for bio-medical applications. Using a pulsed nanosecond Nd-YAG laser, pure selenium nanoparticles have been synthesized by irradiating selenium powder (99.999%) immerged in de-ionized water and ethanol. The wavelength of the laser beam has been varied from the UV to NIR (355, 532 and 1064 nm) and its effect on the particle size distribution has been studied by dynamic light scattering (DLS) and transmission electronic microscopy (TEM), revealing then the production of selenium quantum dots (size < 4 nm) by photo-fragmentation. It has been found that the crystallinity of the nanoparticles depends on their size. The zeta-potential measurement reveals that the colloidal solutions produced in de-ionized water were stable while the ones synthesized in ethanol agglomerate. The concentration of selenium has been measured using inductively coupled plasma mass spectrometry (ICP-MS). The anti-bacterial effect of selenium nanostructures has been analyzed on E. Coli bacteria. Finally, selenium quantum dots produced by this method can also be useful for quantum dot solar cells. (letter)

  9. Micro- and nanosecond laser TiN coating/steel modification: Morphology studies

    Science.gov (United States)

    Trtica, M.; Tarasenko, V. F.; Gaković, B.; Panchenko, A. N.; Radak, B.; Stasić, J.

    2009-09-01

    Morphology effects induced during interaction of μs- (Transversely Excited Atmospheric (TEA) CO2 laser) or ns- (HF laser) pulses with titanium nitride (TiN) coating, deposited on austenitic stainless steel AISI 316, were studied. Experiments were carried out in regime of focused laser beam in air at atmospheric pressure. The used laser fluences were found to be sufficient for inducing intensive surface modifications of the target. The energy absorbed from the CO2 as well as HF laser beam is mainly converted into thermal energy, causing different effects like ablation, appearance of hydrodynamic features, etc. Morphology characteristics obtained during ns-pulses irradiation (HF laser) were different to those initiated by μs-pulses (TEA CO2 laser). The changes on the target surface in form of massive resolidifed droplets and crown-like structures were observed only for ns- (HF laser) pulses. It was found that these effects are a consequence of higher temperature and better coupling of the HF laser radiation with the target. Recent investigations of ps-Nd:YAG laser interaction with the same TiN coating showed that morphology picture is quite different including the reduction of thermal effect.

  10. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.

    Science.gov (United States)

    Stacey, M; Fox, P; Buescher, S; Kolb, J

    2011-10-01

    We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  12. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    Science.gov (United States)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  13. Characterization of Ag and Au nanoparticles created by nanosecond pulsed laser ablation in double distilled water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S., E-mail: anastas_nikolov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2011-04-01

    Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths-the fundamental and the second harmonic (SHG) ({lambda} = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used-it varied from several J/cm{sup 2} to tens of J/cm{sup 2}. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.

  14. Nanosecond laser-induced nanostructuring of thin metal layers and dielectric surfaces

    Science.gov (United States)

    Lorenz, P.; Klöppel, M.; Ehrhardt, M.; Zimmer, K.; Schwaller, P.

    2015-03-01

    Nanostructuring of dielectric surfaces has a widespread field of applications. In this work the recently introduced laser method validates this novel concept for complex nanostructuring of dielectric surfaces. This concept combines the mechanism of self-assembly of metal films due to laser irradiation with the concept of laser-assisted transfer of these patterns into the underlying material. The present work focuses on pattern formation in fused silica near the border of the laser spot, where distorted nested ring-like patterns were found in contrast to concentric ring patterns at homogeneous laser irradiation. For the experiments a lateral homogeneous spot of a KrF excimer laser (λ = 248 nm) and a Gaussian beam Yb fiber laser (λ = 1064 nm) was used for irradiation of a thin chromium layer onto fused silica resulting in the formation of different ring structures into the fused silica surface. The obtained structures were analysed by AFM and SEM. It is found that the mechanism comprises laser-induced metal film melting, contraction of the molten metal, and successive transfer of the metal hole geometry to the fused silica. Simulations taking into account the heat and the Navier-Stokes equations were compared with the experimental results. A good agreement of simulation results with experimental data was found. These first results demonstrate that the variation of the laser beam profile allows the local control of the melt dynamics which causes changes of the shape and the size of the ring patterns. Hence, a light-controlled self-assembly is feasible.

  15. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    Science.gov (United States)

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  16. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    OpenAIRE

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea; Cazzaniga, Andrea Carlo; Constantinescu, Catalin; Amoruso, S.; Wang, X.; Bruzzese, R.; Dinescu, M.

    2013-01-01

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yi...

  17. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)

    Science.gov (United States)

    Morshedian, Nader

    2017-09-01

    The ablation parameters such as threshold fluence, etch depth, ablation rate and the effect of material targets were investigated under the interaction of laser pulse with low intensity. The parameters of the laser system are: laser pulse energy in the range of 110-140 mJ, wavelength 1064 nm and pulse duration 20 ns. By macroscopic estimation of the outward images of the ablation and data obtained, we can conclude that the photothermal and photoionization processes have more influence for aluminum ablation. In contrast, for polymer samples, from the macroscopic observation of the border pattern at the irradiated spot, and also the data obtained from the experiment results, we deduce that both chemical change due to heating and photochemical dissociation were effective mechanisms of ablation. However, concerning the two polymer samples, apart from considering the same theoretical ablation model, it is conceived that the photomehanical specifications of PMMA are involved in the ablation parameters. The threshold fluence for an ablation rate of 30 laser shots were obtained as 12.4, 24.64, and 11.71 J cm-2, for aluminum, silicon rubber and polymethylmethacrylate (PMMA) respectively. The ablation rate is exponentially decreased by the laser-shot number, especially for aluminum. Furthermore, the etch depth after 30 laser shots was measured as 180, 630 and 870 μm, for aluminum, silicon rubber and PMMA, respectively.

  18. Permeabilisation de membranes cellulaires a l'aide d'un laser nanoseconde amplifie par nanoparticules plasmoniques

    Science.gov (United States)

    St-Louis Lalonde, Bastien

    The plasmic membrane of eukaryot cells provides a selective permeability between the cytoplasm and the external environment. It regulates the passage of ions (O2, N 2, K, etc...) and molecules (H2 O, C2H6 O, etc...) by mechanisms like passive diffusion and active transport. In various fields like molecular biology or drug development, it is sometimes needed to bypass this selective permeability to introduce external molecules that are normally impermeable to cell membrane. Examples of external molecules may be DNA plasmid, RNA segment or drugs. We propose a method based on laser amplification by plasmonic nanoparticles to overcome this biological barrier. This non invasive method increases the membrane permeability of a large number of cells in a short time. Optoporation by laser amplified with plasmonic nanoparticles consists of pulsed laser irradiation on cells that have been previously incubated with gold nanoparticles (AuNPs). The laser-AuNPs interactions will create a cavitation bubble which in turn will decrease the membrane permeability by disrupting the bilipid layer arrangement. Molecules in the external medium may then penetrate inside the cells and under the right experimental conditions, the cells will rapidly reseal their membrane and continue living without nefast effects. The feasibility of high throughput optical perforation amplified by plasmonic nanoparticles have been tested with a nanosecond pulsed laser working at 532 nm and 1064 nm. The plasma membrane of cancerous human fibroblast (melanoma wm278) have been successfully perforated while keeping an excellent viability rate. Up to 30% of cells are perforated in which the Lucifer Yellow fluorophore have been incorporated. The viability 2 h after the treatment was evaluated by PI exclusion and the long term vitality was tested by MTT essay. Under optimal conditions at 532 nm, the 2 h viability is 84% and the vitality start at 64% for 2h and reaches 88% after 72 h. With 1064 nm pusles, the 2 h

  19. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications

    International Nuclear Information System (INIS)

    Sassaroli, E; Li, K C P; O'Neill, B E

    2009-01-01

    We have modeled, by finite element analysis, the process of heating of a spherical gold nanoparticle by nanosecond laser pulses and of heat transfer between the particle and the surrounding medium, with no mass transfer. In our analysis, we have included thermal conductivity changes, vapor formation, and changes of the dielectric properties as a function of temperature. We have shown that such changes significantly affect the temperature reached by the particle and surrounding microenvironment and therefore the thermal and dielectric properties of the medium need to be known for a correct determination of the temperature elevation. We have shown that for sufficiently low intensity and long pulses, it is possible to establish a quasi-steady temperature profile in the medium with no vapor formation. As the intensity is increased, a phase-change with vapor formation takes place around the gold nanoparticle. As phase-transition starts, an additional increase in the intensity does not significantly increase the temperature of the gold nanoparticle and surrounding environment. The temperature starts to rise again above a given intensity threshold which is particle and environment dependent. The aim of this study is to provide useful insights for the development of molecular targeting of gold nanoparticles for applications such as remote drug release of therapeutics and photothermal cancer therapy.

  20. Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze

    2018-04-01

    Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.

  1. Broadband supercontinuum generation in a telecommunication fibre pumped by a nanosecond Tm, Ho:YVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li [Department of control engineering, Naval Aeronautical and Astronautical University, Yantai 264001 (China); Ju You-Lun; Wang Yue-Zhu [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-31

    Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensity variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)

  2. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  3. Biodegradability of poly(lactic-co-glycolic acid) and poly( l-lactic acid) after deep-ultraviolet femtosecond and nanosecond laser irradiation

    Science.gov (United States)

    Shibata, Akimichi; Machida, Manan; Kondo, Naonari; Terakawa, Mitsuhiro

    2017-06-01

    In this study, we investigated the change in biodegradability of biodegradable polymer films by deep-ultraviolet laser irradiation with different pulse durations. Measurements of water absorption and mass change as well as microscopic observation revealed that the femtosecond laser irradiation significantly accelerated the degradation rate of the biodegradable polymer films, whereas the nanosecond laser irradiation did not induce a comparable degree of change. Analyses with X-ray photoelectron spectroscopy and X-ray diffraction indicate that the difference in the biodegradability following laser irradiation with different pulse durations is attributable to the difference in chemical structure for amorphous polymers including PLGA, while the difference in chemical structure as well as crystallinity affects the biodegradability for crystalline polymer including PLLA. The obtained results suggest that deep-ultraviolet laser processing enables the fabrication of a tissue scaffold with a desirable degradation rate.

  4. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions

    International Nuclear Information System (INIS)

    Freeman, J.R.; Harilal, S.S.; Diwakar, P.K.; Verhoff, B.; Hassanein, A.

    2013-01-01

    In this study we examine the emission from brass plasma produced by ns and fs laser ablation under both vacuum and atmosphere environments using identical laser fluences in order to better understand the differences in emission features and plasma dynamics. Optical emission spectra show increased continuum and emission from lower-charged ions for ns laser-produced plasma (LPP), while fs plasma emission spectra show emission primarily from excited neutral species with negligible continuum. Plasma excitation temperature and electron density as a function of time show similar trends for both lasers, though fs LPP expansion appears to be approximately two times faster than ns LPP expansion for the conditions studied. Confinement by the ambient gas is shown to significantly enhance and maintain plasma temperature and density and hence, emission, at later times. ICCD images of plasma expansion showed a broader angular distribution for ns LPP, but narrower angular distribution for fs LPP. Images also confirm the significant effect that the ambient environment has in confining plume expansion. - Highlights: • Emission from ns and fs LIBS plumes are compared under different pressure environments. • Ablation mechanisms for each laser are used to explain different emission features. • Ambient pressure plays a critical role in plume temperature and density evolution. • Visible emission from fs LIBS plume is almost entirely from neutral species. • Spectra collection time delay is shown to be very important in improving S/N and S/B

  5. Nanosecond pulsed laser ablation of brass in a dry and liquid-confined environment

    Science.gov (United States)

    Bashir, Shazia; Vaheed, Hamza; Mahmood, Khaliq

    2013-02-01

    The effect of ambient environment (dry or wet) and overlapping laser pulses on the laser ablation performance of brass has been investigated. For this purpose, a Q-switched, frequency doubled Nd:YAG laser with a wavelength of 532 nm, pulse energy of 150 mJ, pulse width of 6 ns and repetition rate of 10 Hz is employed. In order to explore the effect of ambient environments, brass targets have been exposed in deionized water, methanol and air. The targets are exposed for 1000, 2000, 3000 and 4000 succeeding pulses in each atmosphere. The surface morphology and chemical composition of ablated targets have been characterized by using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Attenuated Total Reflection (ATR) techniques. In case of liquid environment, various features like nano- and micro-scale laser-induced periodic surface structures with periodicity 500 nm-1 μm, cavities of size few micrometers with multiple ablative layers and phenomenon of thermal stress cracking are observed. These features are originated by various chemical and thermal phenomena induced by laser heating at the liquid-solid interfaces. The convective bubble motion, explosive boiling, pressure gradients, cluster and colloid formation due to confinement effects of liquids are possible cause for such kind of features. The metal oxides and alcohol formed on irradiated surface are also playing the significant role for the formation of these kinds of structure. In case of air one huge crater is formed along with the redeposition of sputtered material and is ascribed to laser-induced evaporation and oxide formation.

  6. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.

    Science.gov (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B

    2004-02-23

    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  7. Effect of advanced nanowire-based targets in nanosecond laser-matter interaction (invited).

    Science.gov (United States)

    Lanzalone, G; Altana, C; Mascali, D; Muoio, A; Malferrari, L; Odorici, F; Malandrino, G; Tudisco, S

    2016-02-01

    An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ag nanowires on laser energy absorption in the ns time domain has been carried out at the Laser Energy for Nuclear Science laboratory of INFN-LNS in Catania. The tested targets were realized at INFN-Bologna by anodizing aluminium sheets in order to obtain layers of porous Al2O3 of different thicknesses, on which nanowires of various metals are grown by electro-deposition with different heights. Targets were then irradiated by using a Nd:YAG laser at different pumping energies. Advanced diagnostic tools were used for characterizing the plasma plume and ion production. As compared with targets of pure Al, a huge enhancement (of almost two order of magnitude) of the X-ray flux emitted by the plasma has been observed when using the nanostructured targets, with a corresponding decrease of the "optical range" signal, pointing out that the energetic content of the laser produced plasma was remarkably increased. This analysis was furthermore confirmed from time-of-flight spectra.

  8. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    Directory of Open Access Journals (Sweden)

    Yao CP

    2017-08-01

    Full Text Available Cuiping Yao,1,2,* Florian Rudnitzki,2,* Gereon Hüttmann,2,3 Zhenxi Zhang,1 Ramtin Rahmanzadeh2 1Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China; 2Institute of Biomedical Optics, University of Lübeck, Lübeck, 3Airway Research Center North (ARCN, Member of the German Center for Lung Research (DZL, Kiel, Germany *These authors contributed equally to this work Purpose: Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods: AuNPs (30 nm were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results: Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion: Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium

  9. Laser ablation of lysozyme with UV, visible and infrared femto- and nanosecond pulses

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea

    Lysozyme is an interesting molecule for laser ablation of organic materials, because the ablation has been comprehensively studied, it is a medium heavy molecule with a mass of 14305 Da, which can be detected by standard techniques, and because it is used as a bactericidal protein in the food...... industry. Lysozyme molecules do not absorb energy for wavelengths above 310 nm, but nevertheless there is a strong mass loss by ablation for laser irradiation in the visible regime. The total ablation yield of lysozyme at 355 nm and at 2 J/cm2 is about 155 µg/pulse, possibly one of the highest ablation...... yields ever measured. The mass loss is mainly caused by fragmentation of the lysozyme into simple gases, such as H2S, H2O and CO2 , which are rapidly pumped away in the vacuum chamber. We have investigated the mass loss by ablation of lysozyme in all regimes to see whether a similar mechanism governs...

  10. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  11. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  12. Observation of repetitive bursts in emission of fast ions and neutrons in sub-nanosecond laser-solid experiments

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Klír, D.; Velyhan, Andriy; Margarone, Daniele; Krouský, Eduard; Jungwirth, Karel; Skála, Jiří; Pfeifer, Miroslav; Kravárik, J.; Kubeš, P.; Řezáč, K.; Ullschmied, Jiří

    2013-01-01

    Roč. 31, č. 3 (2013), s. 395-401 ISSN 0263-0346 R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454; GA MŠk LM2010014 Grant - others:OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279 Program:EE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-plasma interactions * neutron yield scaling * bursts in ion emission Subject RIV: BH - Optics, Masers, Lasers; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 1.701, year: 2013

  13. Study of laser-induced damage on the exit surface of silica components in the nanosecond regime in a multiple wavelengths configuration

    International Nuclear Information System (INIS)

    Chambonneau, Maxime

    2014-01-01

    In this thesis, laser-induced damage phenomenon on the surface of fused silica components is investigated in the nanosecond regime. This phenomenon consists in an irreversible modification of the material. In the nanosecond regime, laser damage is tightly correlated to the presence of non-detectable precursor defects which are a consequence of the synthesis and the polishing of the components. In this thesis, we investigate laser damage in a multiple wavelengths configuration. In order to better understand this phenomenon in these conditions of irradiation, three studies are conducted. The first one focuses on damage initiation. The results obtained in the single wavelength configurations highlight a coupling in the multiple wavelengths one. A comparison between the experiments and a model developed during this thesis enables us to improve the knowledge of the fundamental processes involved during this damage phase. Then, we show that post mortem characterizations of damage morphology coupled to an accurate metrology allow us to understand both the nature and also the chronology of the physical mechanisms involved during damage formation. The proposed theoretical scenario is confirmed through various experiments. Finally, we study damage growth in both the single and the multiple wavelengths cases. Once again, this last configuration highlights a coupling between the wavelengths. We show the necessity to account for the spatial characteristics of the laser beams during a growth session. (author) [fr

  14. Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses.

    Science.gov (United States)

    Song, Zhi; Cheng, Xinbin; Ma, Hongping; Zhang, Jinlong; Ma, Bin; Jiao, Hongfei; Wang, Zhanshan

    2017-02-01

    The influence of coating thickness on laser-induced damage (LID) characteristics of anti-reflection (AR) coatings irradiated by 1064 nm nanosecond laser pulses was investigated. Two HfO2/SiO2 AR coatings with different physical thicknesses, 0.7 and 2.7 μm, were prepared and tested. To study the effect of coating thickness on a laser-induced damage threshold (LIDT) in isolation, electric field intensities (EFIs) at the substrate-coating interface were kept the same by using proper AR designs. Moreover, 2 nm artificial gold particles with a density of 10  mm-2 were implanted into the substrate-coating interface to achieve reliable experimental results. An optical microscope (OM) and a scanning electron microscope (SEM) were used for an online LIDT test and offline LID morphology observation, respectively. The typical LID morphology of thicker AR coatings was flat bottom craters with diameters of 20-50 μm, which can be easily observed by an online OM. For thinner AR coatings, hemispherical craters with diameters down to 1 μm were found as typical LID morphology by a SEM. However, these tiny craters could not be observed by an online OM. Moreover, such tiny craters did not grow with subsequent pulses, so they did not degrade the functional laser damage resistance of the thin AR coatings. When identified with an online OM, the LIDT of thinner AR coatings is found to be about two times higher than the thicker ones, and large delamination was mainly found as the LID morphology of AR coatings with high fluence. When observed with a SEM, the LIDT of thin AR coatings with tiny craters was over 60% lower than the LIDT of thick AR coatings, which agrees with the model that less energy is required to form smaller LID craters of thinner coatings.

  15. Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses

    Science.gov (United States)

    Mahmoud, M. A.; Gamal, Y. E. E.

    2012-07-01

    We have studied theoretically formation of molecular ion Na2 + and the atomic ion Na+ which are created in laser excited sodium vapor at the first resonance transition, 3S1/2-3P1/2. A set of rate equations, which describe the temporal variation of the electron energy distribution function (EEDF), the electron density, the population density of the excited states as well as the atomic Na+ and molecular ion Na2 +, are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities. The numerical calculations of the EEDF show that a deviation from the Maxwellian distribution due to the superelastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Hornbeck ionization processes for producing Na2 +, the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.

  16. Sub-nanosecond plastic scintillator time response studies using laser produced x-ray pulsed excitation

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Tripp, G.R.; Lent, E.M.; Lerche, R.A.; Cheng, J.C.; Hocker, L.; Lyons, P.B.

    1976-01-01

    The light emission time response of quenched NElll plastic scintillators has been measured using a streak camera (20 ps resolution) and 100 to 180 ps, 1.06 μm, laser-produced, pulsed, low energy x-ray excitation. Each light output pulse was obtained by deconvolution from the film data using the x-ray temporal response measured with an x-ray sensitive streak camera (10 ps resolution). Time response parameters are presented for benzophenone and acetophenone, quenching agents which most effectively reduce the decay time of the singlet component. Full width-half-maximums less than or equal to 260 ps were observed for NElll samples quenched with greater than or equal to 2 percent benzophenone. Results are given for unquenched samples consisting of different concentrations of butyl-PBD in PVT and for the phosphor ZnO doped with Ga

  17. Sub-nanosecond plastic scintillator time response studies using laser produced x-ray pulsed excitation

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Tripp, G.R.; Lent, E.M.; Lerche, R.A.; Cheng, J.C.; Hocker, L.; Lyons, P.B.

    1977-01-01

    The light emission time response of quenched NE111 plastic scintillators has been measured using a streak camera (20 ps resolution) and 100 to 180 ps, 1.06 μm, laser-produced, pulsed, low energy x-ray excitation. Each light output pulse was obtained by deconvolution from the film data using the x-ray temporal response measured with an x-ray sensitive streak camera (10 ps resolution). Time response parameters are presented for benzophenone and acetophenone, quenching agents which most effectively reduce the decay time of the singlet component. Full width-half-maximums less than or equal to 260 ps were observed for NE111 samples quenched with greater than or equal to 2 percent benzophenone. Results are given for unquenched samples consisting of different concentrations of butyl-PBD in PVT and for the phosphor ZnO doped with Ga

  18. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  19. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  20. A 100J-level nanosecond pulsed DPSSL for pumping high-efficiency, high-repetition rate PW-class lasers

    Science.gov (United States)

    De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2017-02-01

    In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.

  1. Nanosecond pulse generation in a passively Q-switched Nd:GGG laser at 1331 nm by CVD graphene saturable absorber

    Science.gov (United States)

    Xu, Bin; Wang, Yi; Cheng, Yongjie; Yang, Han; Xu, Huiying; Cai, Zhiping

    2015-10-01

    We report on a nanosecond pulse generation in a diode end-pumped passively Q-switched Nd:GGG laser at the low-gain transition line of 1331 nm. A three-layer CVD graphene thin film was transferred from Cu foil to a BK7 glass substrate for the use of saturable absorber. A stable Q-switching laser operation was obtained with maximum average output power of 0.69 W and slope efficiency of about 11.0% with respect to the absorbed pump power. The shortest pulse duration and the maximum repetition rate of the pulse trains were registered to be 556 ns and 166.7 kHz with corresponding maximum pulse energy 4.14 μJ and pulse peak power 7.45 W. This is the first demonstration of CVD-graphene-based Q-switched laser operation at 1.3 μm, to the best of our knowledge.

  2. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    Science.gov (United States)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (pcaries treatment.

  3. Deuterium separation at high pressure by nanosecond CO2 laser multiple-photon dissociation

    Science.gov (United States)

    Marling, Jack B.; Herman, Irving P.; Thomas, Scott J.

    1980-05-01

    Photochemical deuterium separation is evaluated at pressures up to 1 atm using 2 ns duration CO2 laser pulses to achieve multiple-photon dissociation (MPD) as the isotopic separation step. Photochemical performance is compared for Freon 123 (2,2-dichloro-1,1,1-trifluoroethane), difluoromethane, and trifluoromethane based on deuterium optical selectivity in absorption, photoproduct yield, and single-step deuterium enrichment factor. The absorption coefficient versus energy fluence is measured from 0.01 to 3 J/cm2 fluence for CF3CDCl2, CDF3, and CHDF2; added buffer gas results in an order-of-magnitude increase in the CDF3 absorption coefficient. The deuterium optical selectivity in absorption at 0.5 J/cm2 fluence with added buffer is 80 for CF3CDCl2 at 10.65 μ, 800 for CHDF2 at 10.48 μ, and 2500 for CDF3 at 10.21 μ. The absorption coefficients and hence optical isotopic selectivities are dependent on fluence, and the optical selectivity attains a maximum value of 8000 for CDF3 below 0.01 J/cm2 fluence. The deuterium-bearing MPD photoproducts at high pressure are trifluoroethylene for Freon 123, hydrogen fluoride for trifluoromethane, and both hydrogen fluoride and monofluoroacetylene for difluoromethane. Yield data determined by gas chromatography are analyzed using a model describing MPD due to a focused Gaussian beam in an absorbing medium to remove compositional and geometrical effects; this analysis results in a saturation fluence (at which the dissociation probability approaches 100%) of 12±2 J/cm2 for CF3CDCl2, 20±2 J/cm2 for CDF3 buffered by 1 atm argon, 30±2 J/cm2 for CDF3 buffered by 60-400 Torr CHF3, and 22±3 J/cm2 for CHDF2 buffered by 100-400 Torr CH2F2. Near unity dissociation probabilities are obtained for samples unbuffered by argon with operating pressures up to 40 Torr for Freon 123, and up to 400 Torr for both difluoromethane and trifluoromethane; the methane derivatives are much more resistant to high pressure collisional quenching than

  4. Proton acceleration driven by a nanosecond laser from a cryogenic thin solid-hydrogen ribbon

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Velyhan, Andriy; Dostál, Jan; Ullschmied, Jiří; Perin, J.P.; Chatain, D.; Garcia, S.; Bonnay, P.; Pisarczyk, T.; Dudžák, Roman; Rosinski, M.; Krása, Josef; Giuffrida, Lorenzo; Prokůpek, Jan; Scuderi, Valentina; Pšikal, Jan; Kucharik, M.; De Marco, Massimo; Cikhardt, Jakub; Krouský, Eduard; Kalinowska, Z.; Chodukowski, T.; Cirrone, G.A.P.; Korn, Georg

    2016-01-01

    Roč. 6, č. 4 (2016), 1-11, č. článku 041030. ISSN 2160-3308 R&D Projects: GA MŠk LQ1606; GA MŠk LM2010014; GA MŠk(CZ) LM2015083; GA MŠk(CZ) LD14089; GA ČR(CZ) GA15-02964S; GA ČR GPP205/11/P712; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : plasma interaction * beams * energy * ions * system * target Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 12.789, year: 2016

  5. Research on the impacts of air temperature on the evolution of nanosecond pulse discharge products

    International Nuclear Information System (INIS)

    Yu, Jin-lu; He, Li-ming; Ding, Wei; Zhao, Zi-chen; Zhang, Hua-lei

    2016-01-01

    Highlights: • Most of the O 2 particles become O 2 (V1) in high temperature. • The O 3 molecules are produced mainly by decayed O atoms. • NO molecules are obtained by decayed N 2 (A3), N(2D) and N(2P) at the first stage, NO molecules are obtained by decayed N atoms at last. - Abstract: Based on nonequilibrium plasma dynamics of air discharge, the kinetic model simulating plasma discharge products induced by nanosecond pulse discharge in air is presented in this work. Then the paper compares the calculation of model with experimental results of references, and verifies the accuracy of the model. The evolution characteristics of nanosecond pulse discharge plasma under different air temperatures are obtained. Because the O, O 3 and NO have close relationship with the combustion, their formation mechanisms are discussed especially. With increasing temperature, there is no significant addition in O atoms and O 3 molecules. It is found that most of the O 2 molecules become O 2 (V1) in higher temperature. The decreasing time of the O atoms is in accordance with the increasing time of O 3 molecules. Thus, the O 3 molecules are produced mainly by decayed O atoms. Increased air temperature will not produce more active particles which could assist the combustion. With the increasing temperature, the particle number density of NO increases fast. At last, they have reached an equilibrium value of the same.

  6. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling.

    Science.gov (United States)

    Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F

    2012-09-24

    We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

  7. Selective removal of CuIn1−xGaxSe2 absorber layer with no edge melting using a nanosecond Nd : YAG laser

    International Nuclear Information System (INIS)

    Lee, S H; Kim, C K; In, J H; Jeong, S H; Shim, H S

    2013-01-01

    This paper reports that selective removal of a CuIn 1−x Ga x Se 2 (CIGS) thin film on a Mo-coated glass substrate can be achieved with no edge melting or damage of the Mo layer using a nanosecond Nd : YAG laser with a wavelength of 1064 nm. It is shown that the two crucial parameters that determine the possibility of clean removal of only the CIGS layer are Ga concentration of the CIGS film and laser fluence. For CIGS films with Ga/(Ga+In) ratio greater than about 0.2 for which the band gap energy is close to or over the photon energy (1.17 eV), laser-induced thermal expansion proved to be the mechanism of film removal that drives an initial bulging of the film and then fracture into tens of micrometre sized fragments as observed in in situ shadowgraph images. The fracture-type removal of CIGS films was further verified by scanning electron micrographs of the craters showing that the original shapes of the CIGS polycrystals remain intact along the crater rim. A numerical simulation of film temperature under the irradiation conditions of selective removal was carried out to show that the magnitude of induced thermal stress within the film closely agreed to the yield strength of the CIGS thin film. The results confirmed that a nanosecond laser could be a better choice for P2 and P3 scribing of CIGS thin films if process conditions are properly determined. (paper)

  8. In vitro study on selective removal of bovine demineralized dentin using nanosecond pulsed laser at wavelengths around 5.8 μm for realizing less invasive treatment of dental caries.

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-04-01

    In the treatment of dental caries, less invasive methods are strongly required. However, conventional dental lasers cannot always achieve selective removal of caries or good bonding with a composite resin. Based on the optical absorption characteristics of dentin, wavelengths around 6 μm are promising in this regard. Our previous study indicated the possibility of selective removal of demineralized dentin using a nanosecond pulsed laser at wavelengths around 6 μm. In the present study, the optimal laser irradiation conditions were investigated for achieving selective removal of demineralized dentin. Bovine dentin was used, and its laser ablation characteristics were evaluated. The results indicated that demineralized dentin could be selectively removed, without causing cracking or damage to sound dentin, at laser wavelengths of 5.75 and 5.80 μm and average power densities of 30-40 W/cm(2). These optimal laser irradiation conditions also realized higher bonding strength with a composite resin than was possible using an Er:YAG laser. The use of nanosecond pulses allowed the thermal confinement condition to be satisfied, leading to a reduction in tissue damage, including degradation of dental pulp vitality. Thus, a nanosecond pulsed laser at 5.8 μm was found to be effective for less invasive caries treatment.

  9. A rapid and easy procedure of conductive 3D nanofibrous structure induced by nanosecond laser processing of Si wafer coated by Au thin-film

    Directory of Open Access Journals (Sweden)

    Sarah Hamza

    2017-11-01

    Full Text Available Many biomedical sensing applications require high electrical sensitivity as well as a method to control and implement them into biological applications. This requires a material to have both conductive and biocompatible properties. Many conductive materials fail in these applications due to their lack of biocompatibility, and many biocompatible materials have very low conductivity. A method to control the conductivity of fibrous silicon through the laser processing of silicon covered with a thin film of gold (1μm is detailed in this article. An Nd:YAG pulsed nanosecond laser was utilized to process the thin film at a line spacing of 0.025mm at different overlaps (number of laser beams scanning through the same path, for increasing the surface to volume ratio and biocompatibility of the single crystalline silicon. The biocompatibility assessment has shown positive results with traces of the elements necessary for the formation of hydroxyapatite. Samples processed at a lower power showed higher concentrations of these trace elements, suggesting an increase in biocompatibility. Overall, this research offers preliminary findings as to the direction and future work that can be done with porous silicon to offer a cost effective and efficient method of enhancing the conductivity and biocompatibility for biomedical sensing and conductive tissue engineering applications. Keywords: Laser materials processing, Biosensor, Nanofibrous structures, Nanofabrication, Silicon-based sensor

  10. A comparative study of pressure-dependent emission characteristics in different gas plasmas induced by nanosecond and picosecond neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers.

    Science.gov (United States)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Marpaung, Alion Mangasi; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Suliyanti, Maria Margaretha; Ramli, Muliadi; Suyanto, Heri; Kagawa, Kiichiro; Tjia, May On; Lie, Zener Sukra; Lie, Tjung Jie; Kurniawan, Hendrik Koo

    2013-11-01

    An experimental study has been performed on the pressure-dependent plasma emission intensities in Ar, He, and N2 surrounding gases with the plasma induced by either nanosecond (ns) or picosecond (ps) yttrium aluminum garnet laser. The study focused on emission lines of light elements such as H, C, O, and a moderately heavy element of Ca from an agate target. The result shows widely different pressure effects among the different emission lines, which further vary with the surrounding gases used and also with the different ablation laser employed. It was found that most of the maximum emission intensities can be achieved in Ar gas plasma generated by ps laser at low gas pressure of around 5 Torr. This experimental condition is particularly useful for spectrochemical analysis of light elements such as H, C, and O, which are known to suffer from intensity diminution at higher gas pressures. Further measurements of the spatial distribution and time profiles of the emission intensities of H I 656.2 nm and Ca II 396.8 nm reveal the similar role of shock wave excitation for the emission in both ns and ps laser-induced plasmas, while an additional early spike is observed in the plasma generated by the ps laser. The suggested preference of Ar surrounding gas and ps laser was further demonstrated by outperforming the ns laser in their applications to depth profiling of the H emission intensity and offering the prospect for the development of three-dimensional analysis of a light element such as H and C.

  11. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: A retrospective photographic review.

    Science.gov (United States)

    Levin, Melissa Kanchanapoomi; Ng, Elise; Bae, Yoon-Soo Cindy; Brauer, Jeremy A; Geronemus, Roy G

    2016-02-01

    Laser procedures in skin of color (SOC) patients are challenging due to the increased risk of dyspigmentation and scarring. A novel 755 nm alexandrite picosecond laser has demonstrated effectiveness for tattoo removal and treatment of acne scars. No studies to date have evaluated its applications in pigmentary disorders. The purpose of this retrospective study was to evaluate the safety profile and efficacy of the picosecond alexandrite laser compared to the current standard treatment, Q-switched ruby and neodynium (Nd):YAG nanosecond lasers, for pigmentary disorders in SOC patients. A retrospective photographic and chart evaluation of seventy 755 nm alexandrite picosecond, ninety-two Q-switched frequency doubled 532 nm and 1,064 nm Nd:YAG nanosecond, and forty-seven Q-switched 694 nm ruby nanosecond laser treatments, in forty-two subjects of Fitzpatrick skin types III-VI was conducted in a single laser specialty center. The picosecond laser was a research prototype device. Treatment efficacy was assessed by two blinded physician evaluators, using a visual analog scale for percentage of pigmentary clearance in standard photographs. Subject assessment of efficacy, satisfaction, and adverse events was performed using a questionnaire survey. The most common pigmentary disorder treated was Nevus of Ota (38.1%), followed by solar lentigines (23.8%). Other pigmentary disorders included post-inflammatory hyperpigmentation, congenital nevus, café au lait macule, dermal melanocytosis, Nevus of Ito, and Becker's nevus. Clinical efficacy of the Q-switched nanosecond lasers and picosecond laser treatments were comparable for lesions treated on the face with a mean visual analog score of 2.57 and 2.44, respectively, corresponding to approximately 50% pigmentary clearance. Subject questionnaires were completed in 58.8% of the picosecond subjects and 52.0% of the Q-switched subjects. Eighty four percent of subjects receiving Q-switched nanosecond laser treatments and 50% of the

  12. Strong soft X-ray emission from a double-stream gas puff target irradiated with a nanosecond Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Rakowski, R.; Szczurek, M. [Military Univ. of Technology, Warsaw (Poland). Inst. of Optoelectronics; Daido, H.; Suzuki, M.; Yamagami, S.; Choi, I.W.; Tang, H.J. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    2001-07-01

    Soft X-ray emission from a new double-stream gas puff target irradiated with a nanosecond, high-power Nd:YAG laser pulse has been studied. The target was formed by pulsed injection of gas into a hollow gas stream made from helium by using a double-nozzle setup. Strong X-ray emissions near 10 nm from the double-stream krypton/helium, near 11 nm from the xenon/helium, and at 13 nm from the oxygen/helium targets were observed. The emission from the double-stream gas puff target was several times higher as compared to the ordinary gas puff targets, and comparable to the emission from the solid targets irradiated in the same conditions. (orig.)

  13. Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity.

    Science.gov (United States)

    Gianulis, Elena C; Casciola, Maura; Xiao, Shu; Pakhomova, Olga N; Pakhomov, Andrei G

    2018-02-01

    Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (<1μs), interpulse intervals. Finally, bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Selective excavation of human carious dentin using a nanosecond pulsed laser with a wavelength of 5.85 μm

    Science.gov (United States)

    Kita, Tetsuya; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2013-06-01

    Less-invasive treatment of caries has been needed in laser dentistry. Based on the absorption property of dentin substrates, 6 μm wavelength range shows specific absorptions and promising characteristics for the excavation. In our previous study, 5.8 μm wavelength range was found to be effective for selective excavation of carious dentin and restoration treatment using composite resin from the irradiation experiment with bovine sound and demineralized dentin. In this study, the availability of 5.8 μm wavelength range for selective excavation of human carious dentin was investigated for clinical application. A mid-infrared tunable nanosecond pulsed laser by difference-frequency generation was used for revealing the ablation property of human carious dentin. Irradiation experiments indicated that the wavelength of 5.85 μm and the average power density of 30 W/cm2 realized the selective excavation of human carious dentin, but ablation property was different with respect to each sample because of the different caries progression. In conclusion, the wavelength of 5.85 μm could realize the selective excavation of human carious dentin, but it was necessary to evaluate the stage of caries progression in order to control the ablation property.

  15. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  16. The influence of surface contamination on the ion emission from nanosecond-pulsed laser ablation of Al and Cu

    Science.gov (United States)

    Ullah, S.; Dogar, A. H.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.

    2018-04-01

    Ions emitted from planar Al and Cu targets irradiated with a 1064 nm pulsed laser were investigated with the help of a time-resolving Langmuir probe. It was found that the intensity of the ions emitted from a target area rapidly decreases with the increasing number of laser shots, and seems to reach saturation after about 10 laser shots. The saturated intensity of Al and Cu ions was approximately 0.1 and 0.3 times the intensity of the respective ions measured at the first laser shot, respectively. The higher target ion intensity for the first few shots is thought to be due to the enhanced ionization of target atoms by vacuum-ultraviolet radiations emitted from the thermally excited/ionized surface contaminants. The reduction of target ion intensity with an increasing number of laser shots thus indicates the removal of contaminants from the irradiated surface area. Laser-cleaned Al and Cu surfaces were then allowed to be recontaminated with residual vacuum gases and the ion intensity was measured at various time delays. The prolonged exposure of the cleaned target to vacuum residual gases completely restores the ion intensity. Regarding surface contaminants removal, laser shots of higher intensities were found to be more effective than a higher number of laser shots having lower intensities.

  17. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia)

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  18. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.

    Science.gov (United States)

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-03-03

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  19. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    Directory of Open Access Journals (Sweden)

    Jiangmin Xu

    2017-03-01

    Full Text Available Based on PVDF (piezoelectric sensing techniques, this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  20. Generation of low repetition rate sub-nanosecond pulses in doubly QML Nd:Lu0.5Y0.5VO4 and Nd:YVO4 lasers with EO and transmission SSA

    Science.gov (United States)

    Zhang, Haijuan; Zhao, Shengzhi; Zhao, Jia; Yang, Kejian; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao; Wang, Yonggang

    2015-06-01

    By employing the mixed crystal Nd:Lu0.5Y0.5VO4 and the single crystal Nd:YVO4 as the laser media, the characteristics of the QML laser doubly modulated by electro-optic (EO) modulator and transmission semiconductor saturable absorber (T-SSA) are studied. Under the same cavity parameters, the properties of the low repetition rate sub-nanosecond pulses generated from Nd:Lu0.5Y0.5VO4 and Nd:YVO4 laser are compared. The experimental results show that Nd:Lu0.5Y0.5VO4 laser can generate shorter pulse width than Nd:YVO4 laser, and meanwhile, needs lower pump power to generate low repetition rate sub-nanosecond pulses. The shortest pulse durations obtained from the doubly QML Nd:Lu0.5Y0.5VO4 and Nd:YVO4 lasers are estimated to be 204 and 294 ps, with the corresponding peak power of 3.4 and 3.04 MW, respectively.

  1. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    OpenAIRE

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-01-01

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the ...

  2. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  3. Bulk measurement of copper and sodium content in CuIn(0.7)Ga(0.3)Se(2) (CIGS) solar cells with nanosecond pulse length laser induced breakdown spectroscopy (LIBS)

    OpenAIRE

    Kowalczyk, Jeremy M. D.; Perkins, Jeffrey J.; DeAngelis, Alexander; Kaneshiro, Jess; Mallory, Stewart A.; Chang, Yuancheng; Gaillard, Nicolas

    2013-01-01

    In this work, we show that laser induced breakdown spectroscopy (LIBS) with a nanosecond pulse laser can be used to measure the copper and sodium content of CuIn(0.7)Ga(0.3)Se(2) (CIGS) thin film solar cells on molybdenum. This method has four significant advantages over methods currently being employed: the method is inexpensive, measurements can be taken in times on the order of one second, without high vacuum, and at distances up to 5 meters or more. The final two points allow for in-line ...

  4. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses

    Science.gov (United States)

    Silve, Aude; Leray, Isabelle; Poignard, Clair; Mir, Lluis M.

    2016-01-01

    The impact of external medium conductivity on the efficiency of the reversible permeabilisation caused by pulsed electric fields was investigated. Pulses of 12 ns, 102 ns or 100 μs were investigated. Whenever permeabilisation could be detected after the delivery of one single pulse, media of lower conductivity induced more efficient reversible permeabilisation and thus independently of the medium composition. Effect of medium conductivity can however be hidden by some saturation effects, for example when pulses are cumulated (use of trains of 8 pulses) or when the detection method is not sensitive enough. This explains the contradicting results that can be found in the literature. The new data are complementary to those of one of our previous study in which an opposite effect of the conductivity was highlighted. It stresses that the conductivity of the medium influences the reversible permeabilization by several ways. Moreover, these results clearly indicate that electropermeabilisation does not linearly depend on the energy delivered to the cells. PMID:26829153

  5. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses.

    Science.gov (United States)

    Silve, Aude; Leray, Isabelle; Poignard, Clair; Mir, Lluis M

    2016-02-01

    The impact of external medium conductivity on the efficiency of the reversible permeabilisation caused by pulsed electric fields was investigated. Pulses of 12 ns, 102 ns or 100 μs were investigated. Whenever permeabilisation could be detected after the delivery of one single pulse, media of lower conductivity induced more efficient reversible permeabilisation and thus independently of the medium composition. Effect of medium conductivity can however be hidden by some saturation effects, for example when pulses are cumulated (use of trains of 8 pulses) or when the detection method is not sensitive enough. This explains the contradicting results that can be found in the literature. The new data are complementary to those of one of our previous study in which an opposite effect of the conductivity was highlighted. It stresses that the conductivity of the medium influences the reversible permeabilization by several ways. Moreover, these results clearly indicate that electropermeabilisation does not linearly depend on the energy delivered to the cells.

  6. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  7. Simultaneous measurement of sulfur and lead isotopes in sulfides using nanosecond laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers

    Science.gov (United States)

    Yuan, Honglin; Liu, Xu; Chen, Lu; Bao, Zhian; Chen, Kaiyun; Zong, Chunlei; Li, Xiao-Chun; Qiu, Johnson Wenhong

    2018-04-01

    We herein report the coupling of a nanosecond laser ablation system with a large-scale multi-collector inductively coupled plasma mass spectrometer (Nu1700 MC-ICPMS, NP-1700) and a conventional Nu Plasma II MC-ICPMS (NP-II) for the simultaneous laser ablation and determination of in situ S and Pb isotopic compositions of sulfide minerals. We found that the required aerosol distribution between the two spectrometers depended on the Pb content of the sample. For example, for a sulfide containing 100-3000 ppm Pb, the aerosol was distributed between the NP-1700 and the NP-II spectrometers in a 1:1 ratio, while for lead contents >3000 and effect, so a matrix-matched external standard was used for standard-sample bracketing correction. The NIST NBS 977 (NBS, National Bureau of Standards; NIST, National Institute of Standards & Technology) Tl (thallium) dry aerosol internal standard and the NIST SRM 610 (SRM, standard reference material) external standard were employed to obtain accurate results for the analysis of Pb isotopes. In tandem experiments where airflow conditions were similar to those employed during stand-alone analyses, small changes in the aerosol carrier gas flow did not significantly influence the accurate determination of S and Pb isotope ratios. In addition, careful optimization of the flow ratio of the aerosol carrier (He) and makeup (Ar) gases to match stand-alone analytical conditions allowed comparable S and Pb isotope ratios to be obtained within an error of 2 s analytical uncertainties. Furthermore, the results of tandem analyses obtained using our method were consistent with those of previously reported stand-alone techniques for the S and Pb isotopes of chalcopyrite, pyrite, galena, and sphalerite, thus indicating that this method is suitable for the simultaneous analysis of S and Pb isotopes of natural sulfide minerals, and provides an effective tool to determine S and Pb isotope compositions of sulfides formed through multi-stage deposition

  8. Tungsten ditelluride for a nanosecond Ho,Pr:LiLuF4 laser at 2.95 µm

    Science.gov (United States)

    Yan, Zhengyu; Li, Tao; Zhao, Jia; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhang, Shuaiyi; Li, Jian

    2018-04-01

    The linear and nonlinear absorption characteristics of a home-built multilayer tungsten ditelluride (WTe2) saturable absorber at ~3 µm were demonstrated for the first time. A passively Q-switched Ho,Pr:LiLuF4 laser was realized by inserting the WTe2-saturable absorber into a plane-concave laser cavity. A maximum average output power of 128 mW, with a pulse duration of 366 ns at a repetition rate of 92 kHz was obtained under an absorbed pump power of 3.67 W, corresponding to a pulse energy of 1.4 µJ.

  9. Nanosecond Tm:Y2O3 ceramic laser passively Q-switched by a Ho:LuAG ceramic

    Science.gov (United States)

    Wang, Hui; Huang, Haitao; Wang, Shiqiang; Shen, Deyuan

    2018-02-01

    A passively Q-switched 2.05-μm Tm:Y2O3 ceramic laser, employing Ho:LuAG ceramic as a saturable absorber, was demonstrated for the first time. Under the absorbed pump power of 20.5 W, a maximum output power of 497 mW was obtained. Pulses with a minimum pulse width of 642 ns under the repetition rate of 33 kHz were achieved. Our works validate that Ho-doped materials have good potential for passive Q-switching of Tm-doped lasers at 2-μm wavelength region.

  10. Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain

    International Nuclear Information System (INIS)

    Somoskoi, T; Vass, Cs; Mero, M; Bozoki, Z; Osvay, K; Mingesz, R

    2015-01-01

    We carried out single-shot laser-induced damage threshold measurements on dielectric high reflectors guided by the corresponding ISO standard. Four simultaneous on-line detection techniques were tested and compared using 532 nm, 9 ns and 266 nm, 6 ns laser pulses. Two methods, microscope aided visual inspection and detection of scattered light off the damaged surface, were based on optical signals. The other two techniques exploited the acoustic waves accompanying a damage event in ambient air and in the substrate by a microphone and a piezoelectric sensor, respectively. A unified criterion based on the statistical analysis of the detector signals was applied to assign an objective and unambiguous damage threshold value for all of our diverse detection methods. Microscope aided visual inspection showed the lowest damage thresholds for both wavelengths. However, the sensitivity of the other three techniques proved to be only slightly lower. (paper)

  11. COMPARISON OF FEMTOSECOND AND NANOSECOND TWO PHOTON ABSORPTION LASER INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS

    Science.gov (United States)

    2016-08-01

    the dye laser and the third harmonic, the frequency-tripling process was slightly de -tuned. When done correctly, this affected neither the mode... Division (AFRL/RQQE) Combustion Branch, Turbine Engine Division (AFRL/RQTC) Jacob B. Schmidt and Sukesh Roy Spectral Energies LLC Brian Sands...Program Manager Electrical Systems Branch Electrical Systems Branch Power and Control Division Power and Control Division Aerospace

  12. Analysis of temperature and thermal stress fields of K9 glass damaged by 1064nm nanosecond pulse laser

    Science.gov (United States)

    Pan, Yunxiang; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2013-02-01

    There are residual scratches, inclusions and other forms of defects at surfaces of optical materials after the processes of grinding and polishing, which could either enhance the local electric field or increase the absorption rate of the material. As a result, the laser-induced damage threshold at the surface of the material is reduced greatly. In order to study underlying mechanisms and process of short pulsed laser-induced damage to K9 glass, a spatial axisymmetric model where the K9 glass was irradiated by a laser whose wavelength and pulse width are respectively 1064nm and 10ns was established. Taking into account the fact that the surface of the K9 glass is more likely to be damaged, 2μm-thick layers whose absorption coefficients are larger than bulk were set at both the input and output surfaces in the model. In addition, the model assumed that once the calculated tensile/compressive stress was greater than the tensile/compressive strength of K9 glass, the local absorption coefficient increased. The finite element method(FEM) was applied to calculate the temperature and thermal stress fields in the K9 glass. Results show that only the temperature of a small part of interacted region exceeds the melting point, while most of the damage pit is generated by thermal stress. The simulated damage morphology and the size of the damage region are consistent with those reported in literatures, which indicates that the model built in our work is reasonable.

  13. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    Science.gov (United States)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-05-01

    In this paper, an indium-tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass-ITO-gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  14. Studies of ablated plasma and shocks produced in a planar target by a sub-nanosecond laser pulse of intensity relevant to shock ignition

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Antonelli, L.; Baffigi, F.; Batani, D.; Chodukowski, T.; Cristoforetti, G.; Dudžák, Roman; Gizzi, L.A.; Folpini, G.; Hall, F.; Kalinowska, Z.; Koester, P.; Krouský, Eduard; Kucharik, M.; Labate, L.; Liska, R.; Malka, G.; Maheut, Y.; Parys, P.; Pfeifer, Miroslav; Pisarczyk, T.; Renner, Oldřich; Rosinski, M.; Ryć, L.; Skála, Jiří; Šmíd, Jiří; Spindloe, C.; Ullschmied, Jiří; Zaras-Szydlowska, A.

    2015-01-01

    Roč. 33, č. 3 (2015), s. 561-575 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser fusion * laser-produced plasma * plasma ablation * shock ignition Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  15. Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa, E-mail: mhola@sci.muni.c [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Konecna, Veronika [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Mikuska, Pavel [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2010-01-15

    The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10-250 nm and 0.25-17 mum) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM. The results of particle concentration measurements showed a significant dominance of particles smaller than 250 nm in comparison with larger particles, irrespective of the kind of material. Even if the number of particles larger than 0.25 mum is negligible (up to 0.1%), the volume of large particles that left the ablation cell can reach 50% of the whole particle volume depending on the material. Study of the ablation craters and the laser-generated particles showed a various number of particles produced by different ablation mechanisms (particle splashing or condensation), but the similar character of released particles for all materials was observed by SEM after particle collection on the membrane filter. The created aerosol always consisted of two main structures - spherical particles with diameters from tenths to units of micrometers originally ejected from the molten surface layer and mum-sized 'fibres' composed of primary agglomerates with diameters in the range between tens and hundreds of nanometers. The shape and structure of ablation craters were in good agreement with particle concentration

  16. Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air

    Science.gov (United States)

    Rehan, Imran; Rehan, Kamran; Sultana, S.; Haq, M. Oun ul; Niazi, Muhammad Zubair Khan; Muhammad, Riaz

    2016-01-01

    We presents spectroscopic study of the plasma generated by a Q-switched Nd:YAG (1064 nm) laser irradiation of the flesh of red and white skin potatoes. From the spectra recorded with spectrometer (LIBS2500+, Ocean Optics, USA) 11 elements were identified in red skin potato, whereas, the white skin potato was found to have nine elements. Their relative concentrations were estimated using CF-LIBS method for the plasma in local thermodynamic equilibrium. The target was placed in ambient air at atmospheric pressure. The electron temperature and number density were calculated from Boltzmann plot and stark broadened line profile methods, respectively using Fe I spectral lines. The spatial distribution of plasma parameters were also studied which show a decreasing trend of 6770 K-4266 K and (3-2.0) × 1016 cm-3. Concentrations of the detected elements were monitored as a function of depth of the potatoes. Our study reveals a decreasing tendency in concentration of iron from top to the centre of potato's flesh, whereas, the concentrations of other elements vary randomly.

  17. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    Science.gov (United States)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  18. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Czech Academy of Sciences Publication Activity Database

    Krivyakin, G.K.; Volodin, V.; Kochubei, S.A.; Kamaev, G.N.; Purkrt, Adam; Remeš, Zdeněk; Fajgar, Radek; Stuchlíková, The-Ha; Stuchlík, Jiří

    2016-01-01

    Roč. 50, č. 7 (2016), s. 935-940 ISSN 1063-7826 R&D Projects: GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : hydrogenated amorphous silicon * nanocrystals * laser annealing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2016

  19. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials

    Czech Academy of Sciences Publication Activity Database

    Holá, M.; Mikuška, Pavel; Hanzlíková, Renáta; Kaiser, J.; Kanický, V.

    2010-01-01

    Roč. 80, č. 5 (2010), s. 1862-1867 ISSN 0039-9140 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z20650511 Keywords : laser ablation * inductively coupled plasma mass * ICP-MS spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.722, year: 2010

  20. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    Science.gov (United States)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  1. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    International Nuclear Information System (INIS)

    Uddi, M; Jiang, N; Adamovich, I V; Lempert, W R

    2009-01-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ∼8 x 10 12 cm -3 (∼4.14 ppm) occurring at ∼250 μs after the pulse, with decay time of ∼16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of ψ = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of ψ = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N 2 (C 3 Π) and NO(A 2 Σ) in air at P = 60 Torr decay within ∼20 ns and ∼1 μs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (∼100 μs) metastable states, such as N 2 (X 1 Σ,v) and O 2 (b 1 Σ), formed by quenching of the metastable N 2 (A 3 Σ) state by ground electronic state O 2 , may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O 2 , as well as by conversion into NO 2 in a reaction

  2. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  3. Fiber Coupled Pulse Shaper for Sub-Nanosecond Pulse Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II effort will develop an all-diode laser and fiber optic based, single frequency, sub-nanosecond pulsed laser source...

  4. Nanosecond neutron generator

    International Nuclear Information System (INIS)

    Lobov, S.I.; Pavlovskaya, N.G.; Pukhov, S.P.

    1991-01-01

    High-voltage nanosecond neutron generator for obtaining neutrons in D-T reaction is described. Yield of 6x10 6 neutron/pulse was generated in a sealed gas-filled diode with a target on the cathode by accelerating pulse voltage of approximately 0.5 MV and length at half-height of 0.5 ns and deuterium pressure of 6x10 -2 Torr. Ways of increasing neutron yield and possibilities of creating generators of nanosecond neutron pulses with great service life are considered

  5. A High-Power Laser-Driven Source of Sub-nanosecond Soft X-Ray Pulses for Single-Shot Radiobiology Experiments

    Czech Academy of Sciences Publication Activity Database

    Davídková, Marie; Juha, Libor; Bittner, Michal; Koptyaev, Sergey; Hájková, Věra; Krása, Josef; Pfeifer, Miroslav; Štísová, Viktorie; Bartnik, A.; Fiedorowicz, H.; Mikolajczyk, J.; Ryc, L.; Pína, L.; Horváth, M.; Babánková, Dagmar; Cihelka, Jaroslav; Civiš, Svatopluk

    2007-01-01

    Roč. 168, č. 3 (2007), s. 382-387 ISSN 0033-7587 R&D Projects: GA ČR GA202/05/2316; GA MŠk(CZ) LC528; GA MŠk 1P04LA235; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523; CEZ:AV0Z20430508; CEZ:AV0Z40400503 Keywords : soft X-rays * radiation damage to DNA * laser-driven source Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.599, year: 2007

  6. Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging

    Science.gov (United States)

    Bayer, Carolyn L.; Kelvekar, Juili; Emelianov, Stanislav Y.

    2013-11-01

    Photoacoustic imaging, a promising new diagnostic medical imaging modality, can provide high contrast images of molecular features by introducing highly-absorbing plasmonic nanoparticles. Currently, it is uncertain whether the absorption of low fluence pulsed light by plasmonic nanoparticles could lead to cellular damage. In our studies we have shown that low fluence pulsed laser excitation of accumulated nanoparticles at low concentration does not impact cell growth and viability, while we identify thresholds at which higher nanoparticle concentrations and fluences produce clear evidence of cell death. The results provide insights for improved design of photoacoustic contrast agents and for applications in combined imaging and therapy.

  7. Acquisition of a Nanosecond Laser Flash Photolysis Spectrometer to Enhance Understanding of Photochemistry and Reaction Kinetics in Undergraduate Research/Curriculum

    Science.gov (United States)

    2016-03-31

    Most often these reactions are reported from the perspective of the electron donors; there is a gap in understanding of these reactions from the...hundred nanoseconds at 400 nm and a slow decay absorption partly attributed to •NBS (Scheme 1). Scheme 1 10 The radical anion of 1,4-DNB...showed peaks in the near IR region at 870 and 910 nm attributed to the radical anion of 1,4-DNB (1,4-DNB -• ) . The first order rate constants obtained

  8. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Le Garrec, J.-L.; Mitchell, J.B.A. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Carvou, E. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Menneveux, J.; Yu, J. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ouf, F.-X. [Institut de Radioprotection et de Sureté Nucléaire IRSN/PSN-RES/SCA/LPMA BP 68, 91192 Gif-Sur-Yvette (France); Carles, S. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Potin, V.; Pillon, G.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Perez, J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Marco de Lucas, M.C., E-mail: delucas@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); and others

    2016-06-30

    Highlights: • NPs formed in a plasma-plume during laser irradiation of metals (Al, Ti, Ag) were studied. • In situ SAXS and ex situ TEM, XRD and Raman spectra were measured. • NPs size decreased when increasing the O{sub 2} fraction in a controlled O{sub 2}+N{sub 2} atmosphere. • The oxidation of metal NPs in the plasma restricts the increase of the size of the NPs. - Abstract: The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O{sub 2}–N{sub 2} gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2–5 nm range. A decrease of the NPs size with increasing the O{sub 2} percentage in the O{sub 2}–N{sub 2} gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  9. Combined impact features for laser plasma generation

    International Nuclear Information System (INIS)

    Loktionov, E; Protasov, Yu; Telekh, V

    2017-01-01

    Laser-induced plasma has been considered for multiple applications by the moment, and its characteristics strongly depend on laser radiation parameters. Reaching demanded values for the latter might be rather costly, but, in certain cases, similar or even better results could be reached in case of additional impact (optical, electric, magnetic, corpuscular, mechanical etc.). Combined impact effects are mainly based on target properties or interaction mechanism change, and found to decrease plasma generation thresholds by orders of magnitude, improve energy efficiency significantly, and also broaden the range of plasma parameters. Application area, efficiency and optimal regimes for laser plasma generation at such combined impact have been considered. Analysis based on published data and own experiments was performed for both target material and induced plasma flows. Criterial parameters have been suggested to characterize both combined impact and response to it. The data on plasma generation thresholds, controlled parameters, working media supply systems and recovery rate of droplets are very important for technology setups, including those for material modification. (paper)

  10. Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target

    Science.gov (United States)

    Klein, Alexander L.; Lohse, Detlef; Versluis, Michel; Gelderblom, Hanneke

    2017-09-01

    We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at time scales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.

  11. Sub-nanosecond laser-induced structural changes in the phase change material Ge2Sb2Te5 measured by an optical pump/x-ray probe technique: Structural snapshots with a 500 ps shutter

    International Nuclear Information System (INIS)

    Fons, P.; Brewe, D.; Stern, E.; Kolobov, A.V.; Fukaya, T.; Suzuki, M.; Uruga, T.; Kawamura, N.; Takagaki, M.; Ohsawa, H.; Tanida, H.; Tominaga, J.

    2007-01-01

    Phase-change alloys are characterized by reversible switching between amorphous and crystalline phases either by laser irradiation or by an electric programming current; the resulting changes in material properties can be used for non-volatile data storage. Switching typically occurs on nanosecond or less time scales. Considering the conflicting requirements for high-speed switching, yet long term data storage integrity, a deeper understanding of the switching processes in these materials is essential for insightful application development. Although, high-speed optical pump/probe observations have been made of reflectivity changes during the Ge 2 Sb 2 Te 5 switching process, due to the nanosecond order time scales involved little is known about the corresponding changes in structure. In addition as the amorphous phase does not diffract, its structural analysis is not amenable to analysis by high-speed diffraction techniques. We have used synchrotron-based time-resolved x-ray absorption fine structure spectroscopy (XAFS), a technique equally suitable for amorphous and crystalline phases to elaborate details in structural changes in the phase-change process. We report on two experiments using high-speed pulsed lasers that serve as optical pumps to induced material changes followed by synchrotron produced x-ray burst that serve as a time resolved structural probe. The first experiment carried out at the Advanced Photon source focuses on changes due to heating in the amorphous phase. Our experimental results indicate that the maximum temperature reached during the re-amorphization process are less than the melting point indicated in the bulk phase diagram of Ge 2 Sb 2 Te 5 reaching a maximum temperature of 620 C and in addition, do not share the same bond length distribution of a true melt. These findings strongly suggest the possibility of non-thermal melting. In the second experiment, we have obtained near-edge x-ray absorption data for a Ge 2 Sb 2 Te 5 film in the

  12. Numerical Simulation of Nanosecond-Pulse Electrical Discharges

    Science.gov (United States)

    2012-01-01

    permittivity of free space. B. Gas Properties and Boundary Conditions The 15-species, 42-process formulation described previously was employed...Jiang, N., Adamovich, I. V., and Lempert, W. R., \\Nitric Oxide Density Measurements in Air and Air/ Fuel Nanosecond Pulse Discharges by Laser Induced

  13. Electron guns at the Budker Institute of Nuclear Physics SB RAS: prospects for the use of photocathodes with nanosecond and subpicosecond laser drivers

    Science.gov (United States)

    Vinokurov, N. A.; Barnyakov, A. M.; Volkov, V. N.; Kolobanov, E. I.; Kuznetsov, G. I.; Kurkin, G. Ya; Levichev, A. E.; Logachev, P. V.; Nikiforov, D. A.; Petrov, V. M.; Starostenko, D. A.; Tribendis, A. G.

    2017-10-01

    The problem of producing high-current electron beams with relatively small lateral sizes and small velocity spread is more than a hundred years old. The continuous improvement of near-ultraviolet electromagnetic radiation sources (lasers with harmonics generators) allows significantly improving the parameters of existing electron guns. This paper discusses some problems in the development of electron guns with photocathodes and considers possible ways of using laser photocathodes in the electron guns designed at the Budker INP SB RAS.

  14. Structure dynamics of the hemoglobin mutants Hb Hôtel Dieu, HbG Philadelphia, HbJ Mexico, Hb St. Mandé and Hb San Diego, studied by nanosecond-laser-flash photolysis.

    Science.gov (United States)

    Fontaine, M P; Lindqvist, L; Blouquit, Y; Rosa, J

    1989-12-22

    The kinetics of the change from the carboxy to the deoxy conformation of the mutated hemoglobins mentioned in the title and of normal human adult hemoglobin were determined from measurements of light absorption changes occurring up to 50 microseconds after nanosecond-laser photodissociation of the corresponding CO complexes. The spectral evolution of the mutated hemoglobins was found to be similar in its main features to that of normal hemoglobin. The kinetics could be decomposed into two phases with rates 1.1-1.8 x 10(6) s-1 and 0.17-0.34 x 10(6) s-1 (except Hb St. Mandé which displayed only the faster phase). Study of the mutated subunits of HbJ Mexico (alpha subunit) and Hb Hôtel Dieu (beta subunit) showed that they convert exponentially to the stable deoxy state after photodeligation at the same rates as the corresponding subunits of normal Hb: 1.1 x 10(6) s-1 (alpha) and 0.3 x 10(6) s-1 (beta). The results indicate that there is no direct correlation between the kinetics of spectral relaxation in the time range studied and the oxygenation properties for these hemoglobins. However, there is some indication that the kinetics are dependent upon the region of mutation.

  15. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  16. Selective excavation of decalcified dentin using a mid-infrared tunable nanosecond pulsed laser: wavelength dependency in the 6 μm wavelength range

    Science.gov (United States)

    Ishii, Katsunori; Saiki, Masayuki; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-07-01

    Selective caries treatment has been anticipated as an essential application of dentistry. In clinic, some lasers have already realized the optical drilling of dental hard tissue. However, conventional lasers lack the selectivity, and still depend on the dentist's ability. Based on the absorption property of carious dentin, 6 μm wavelength range shows specific absorptions and promising characteristics for excavation. The objective of this study is to develop a selective excavation of carious dentin by using the laser ablation with 6 μm wavelength range. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned around the absorption bands called amide 1 and amide 2. In the wavelength range from 5.75 to 6.60 μm, the difference of ablation depth between demineralized and normal dentin was observed. The wavelength at 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on normal dentin. The wavelength at 6.42 μm required the increase of average power density, but also showed the possibility of selective ablation. This study provided a valuable insight into a wavelength choice for a novel dental laser device under development for minimal intervention dentistry.

  17. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  18. Fabrication of SiOx Ultra-Fine Nanoparticles by IR nanosecond laser ablation as anode materials for lithium ion battery

    Science.gov (United States)

    Qiang, Wei; Huanhuan, Huang; Jian, Wang; Zhurui, Shen

    2017-11-01

    Silicon based materials have been suggested as promising alternative anode materials for their high higher theoretical capacity and lower working potential. As a novel method of preparing ultrafine oxide nanoparticles, laser ablation method provides an important way for the preparation of anode materials for lithium ion batteries. When a silicon chip was irradiated by a flat-top high energy infrared laser, large yellow ultrafine SiOx nanoparticles with high oxygen content were produced at the edge of the ablation area due to the strong heat interaction. The resulting sample had a Si: O atom ratio of 1: 1.3. The results suggested that the ultrafine nanoparticles were composed of two phases: SiO1.35 and SiO0.93. When the synthesized SiOx ultrafine nanoparticles were utilized as anode material for lithium batteries (LIBs), the specific capacity of the electrode gradually increased at a current density of 0.2 A g-1, and delivered a maximum of 438 mA h g-1 at the 451th cycle before it stabilized. In the following cycles, there was only sight degradation for specific capacity, and the specific capacity of the electrode was maintained at 344 mA h g-1 after 800 cycles.

  19. Impact of industrial needs on advances in laser technology

    Science.gov (United States)

    Denney, Paul E.

    2005-03-01

    Lasers have become accepted "tools" by a number of industries. Everything from cars to heart pacemakers to greeting cards are now using lasers to cut, drill, clad, heat treat, and weld/join. The market for industrial laser systems is expanding. For the first quarter of 2004 the sales in lasers systems increased 40% to over $120 million1. Some of this increase in sales may be due to the fact that lasers are now considered reliable and have proven to be economical. The primary industrial laser systems today are the CO2 and Nd:YAG (lamp pumped) lasers especially at the higher powers. Both laser designs have evolved in power, beam quality, and reliability. At the same time laser manufacturers have developed methods to decrease the fabrication cost for the lasers. While these improvements have had a major impact on the operating cost of lasers, significant additional improvements do not seem possible in the near future for these lasers. As a result other advances in laser technologies (diode, diode pumped Nd:YAG, disc, and Yb fiber) are being examined.

  20. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra – violet nano-second laser

    Czech Academy of Sciences Publication Activity Database

    Knotek, P.; Návesník, J.; Černohorský, T.; Kincl, Miloslav; Vlček, Milan; Tichý, Ladislav

    2015-01-01

    Roč. 64, April (2015), s. 42-50 ISSN 0025-5408 Institutional support: RVO:61389013 Keywords : chalcogenides * glass * atomic force microscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015 http://www.sciencedirect.com/science/article/pii/S0025540814007843

  1. Phasing of independent laser channels under impact SBS excitation

    Science.gov (United States)

    Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2015-10-01

    It is shown experimentally that phasing of independent laser channels under impact SBS excitation calls for a stable difference in arm lengths, as in a classical Michelson interferometer. A scheme with automatic compensation for fluctuations of interferometer arm lengths has been proposed and experimentally implemented. This scheme makes it possible to perform stable phasing of two laser channels under standard laboratory conditions.

  2. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  3. Laser Prevention of Earth Impact Disasters

    Science.gov (United States)

    Campbell, Jonathan W.; Howell, Joe (Technical Monitor)

    2002-01-01

    Today we are seeing the geological data base constantly expanding as new evidence from past impacts with the Earth are discovered and investigated. It is now commonly believed that a hypervelocity impact occurring approximately 65 million years ago in the Yucatan Peninsula area was the disaster responsible for the extinction of almost 70% of the species of life on Earth including of course the dinosaurs. What is sobering is that we believe now that this was just one of several such disasters and that some of the others caused extinctions to even a greater extent. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important problem facing human civilization. While there are many global problems facing our planet including overpopulation, pollution, disease, and deforestation; none of these offer the potential of rapid, total extinction. Rapid is the operative word here in that many of the global problems we face may indeed, if not sufficiently addressed, pose a similar long-term threat. However, with the impact threat, a single, almost unpredictable event could lead to a chain reaction of disasters that would end everything mankind has worked to achieve over the centuries. Our chances of being hit are greater than our chance of winning the lottery. We now believe that while there are only about 2000-earth orbit crossing rocks great than 1 kilometer in diameter, there may be as many as 100,000 rocks in the 100 m size range. The 1 kilometer rocks are difficult to detect and even harder to track. The 100 m class ones are almost impossible to find with today's technology. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes. By using an intelligent combination of Earth and space based sensors coupled with high-energy laser stations in orbit, we can deflect rocks from striking the Earth. This is accomplished by irradiating the surface of the rock with sufficiently intense

  4. Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule

    International Nuclear Information System (INIS)

    Bien-Aime, K.

    2009-11-01

    Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm 2 , a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism. (author)

  5. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  6. Parametric investigations on the influence of nano-second Nd3+:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    International Nuclear Information System (INIS)

    Patra, Nandini; Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R.; Palani, I.A.; Singh, Vipul

    2016-01-01

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm 2 , 30 J/cm 2 and 20 J/cm 2 ) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni 4 Ti 3 and Ni 3 Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm 2 fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm 2 . Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  7. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  8. Comment on "Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications" by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl. Surf. Sci. 357 (2015) 248-254)

    Science.gov (United States)

    Boinovich, L. B.; Emelyanenko, A. M.; Emelyanenko, K. A.; Domantovsky, A. G.; Shiryaev, A. A.

    2016-08-01

    Nowadays the problem of design of durable ecologically friendly superhydrophobic surfaces is of great importance for science and technology. A recent paper in Applied Surface Science reports the method of fabricating the superhydrophobic metallic surfaces by infrared nanosecond laser surface texturing without using hydrophobic agents. Since this method of surface texturing can be considered as one of the most suitable for various industrial applications, the nature of superhydrophobic state of surfaces produced by laser texturing in the abovementioned paper deserves to be analyzed in detail. Authors of the commented paper attributed the change in wettability to the partial deoxidation of CuO into Cu2O on the surface during storage in atmosphere. However, such interpretation of the results contradicts to the basic notions in the theory of wetting and to more accurate and detailed data. In our Comment we discuss these contradictions point by point.

  9. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  10. Laser dazzling impacts on car driver performance

    Science.gov (United States)

    Steinvall, Ove; Sandberg, Stig; Hörberg, Ulf; Persson, Rolf; Berglund, Folke; Karslsson, Kjell; Öhgren, Johan; Yu, Zhaohua; Söderberg, Per

    2013-10-01

    A growing problem for the Police and Security Forces has been to prevent potentially hostile individuals to pass a checkpoint, without using lethatl violence. Therefore the question has been if there is a laser or any other strong light source that could be used as a warning and dazzling device, without lethal or long term effects. To investigate the possibilities a field trial has been performed at a motor-racing track. A green CW laser with an irradiance on the eye of maximum 0.5 MPE, as defined by ICNIRP [1] and the ANZI standard [2], was used as a dazzle source. Ten drivers have been driving with dipped headlights through a course of three lines with orange cones. In every line there has been only one gate wide enough to pass without hitting the cones. The time through the course, the choice of gates and the number of cones hit have been measured. For every second trial drive through the track, the driver was exposed to the laser dazzler. The background illuminances ranged from a thousand lux in daylight to about ten millilux in darkness. The protective effect of the sun-visor of the car was investigated. The drives visual system was carefully examined before and after experimental driving and a few weeks after the experimental driving to verify that no pathological effects, that could potentially be induced by the laser exposure, pre-existed or occurred after the laser exposure. An analysis of variance for a within subjects design has been used for evaluation. It was found that green laser light can have an obvious warning effect in daylight. Dazzling does reduce the drivers ability to make judgments and manouver the car in twilight and darkness. A sun-visor can reduce the glare and give the driver an improved control, but that perception can be unjustified. No damage to the visual system was observed.

  11. Phasing of independent laser channels under impact SBS excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A A; Efimkov, V F; Zubarev, I G; Mikhailov, S I [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-10-31

    It is shown experimentally that phasing of independent laser channels under impact SBS excitation calls for a stable difference in arm lengths, as in a classical Michelson interferometer. A scheme with automatic compensation for fluctuations of interferometer arm lengths has been proposed and experimentally implemented. This scheme makes it possible to perform stable phasing of two laser channels under standard laboratory conditions. (control of radiation parameters)

  12. Laser-driven flier impact experiments at the SG-III prototype laser facility

    International Nuclear Information System (INIS)

    Shui Min; Chu Gen-Bai; Xin Jian-Ting; Wu Yu-Chi; Zhu Bin; He Wei-Hua; Xi Tao; Gu Yu-Qiu

    2015-01-01

    Laser-driven flier impact experiments have been designed and performed at the SG-III prototype laser facility. The continuum phase plate (CPP) technique is used for the 3 ns quadrate laser pulse to produce a relatively uniform irradiated spot of 2 mm. The peak laser intensity is 2.7×10 13  W/cm 2 and it accelerates the aluminum flier with a density gradient configuration to a high average speed of 21.3 km/s, as determined by the flight-of-time method with line VISAR. The flier decelerates on impact with a transparent silica window, providing a measure of the flatness of the flier after one hundred microns of flight. The subsequent shock wave acceleration, pursuing, and decay in the silica window are interpreted by hydrodynamic simulation. This method provides a promising method to create unique conditions for the study of a material’s properties. (paper)

  13. Impact of target altitude restrictions on laser performance

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1989-01-01

    This report estimates the impact of Raman restrictions and shielding penalties separately and together. Its goal is an overall assessment of likely impact rather than a review of the details of missile trajectories, Raman physics, and shielding techniques, whose individual treatments matter less than their overall integration. Raman scattering could produce a factor of 2-3 reduction on the performance of repetitive pulse lasers with large fluences in each small pulse. Radio-frequency free-electron lasers (RF FELs), which have more frequent pulses with less energy in each, are impacted less. Shielding gives an independent penalty of about a factor of 2, but the combined effect of altitude and shielding penalizes lasers with large pulses by factors of 3-10. Those factors are significantly larger than any other factors differentiating between the two types of FELs. 8 refs., 2 figs.

  14. Ion Production by Laser Impact on a Silver Surface

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. Even at this low fluence the particles ejected from a surface interact with each other in a so-called laser ablation plume. The ablated particles...... are largely neutrals at low fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes...... range considered is also a typical range for pulsed laser deposition (PLD), by which the material is collected on a suitable substrate for thin film growth. PLD has the advantage compared with other film deposition methods, that even a complicated stoichiometry, e.g. metal oxides or alloys, can...

  15. Traveling wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  16. Travelling-wave nanosecond optical parametric oscillator close to the Fourier-transform limit

    NARCIS (Netherlands)

    Mes, J.; Hogervorst, W.; Tugbaev, V.

    2001-01-01

    We report on a novel design for a nanosecond optical parametric oscillator (OPO) based on beta-barium-borate. It involves a travelling-wave ring cavity in a configuration with a grazing incidence grating. This OPO is pumped by the third harmonic of multi-mode as well as a single-mode Nd:YAG lasers.

  17. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    Science.gov (United States)

    2013-01-01

    employed to compute the electric potential: ∇2φ = −ζ/0 (10) where 0 is the permittivity of free space. The electric field was found from E = −∇φ. C...Density Measurements in Air and Air/ Fuel Nanosecond Pulse Discharges by Laser Induced Fluorescence,” Journal of Physics D: Applied Physics, Vol. 42

  18. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  19. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  20. Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule; Impact de l'environnement sur l'endommagement laser des optiques de silice du Laser MegaJoule

    Energy Technology Data Exchange (ETDEWEB)

    Bien-Aime, K.

    2009-11-15

    Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm{sup 2}, a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism. (author)

  1. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    wave fibre laser; Q-switched fibre laser; nonlinearity; thermal effects; selfpulsing; Yb-doped fibre; nanosecond pulse ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  2. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  3. One nanosecond pulsed electron gun systems

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1979-02-01

    At SLAC there has been a continuous need for the injection of very short bunches of electrons into the accelerator. Several time-of-flight experiments have used bursts of short pulses during a normal 1.6 micro-second rf acceleration period. Single bunch beam loading experiments made use of a short pulse injection system which included high power transverse beam chopping equipment. Until the equipment described in this paper came on line, the basic grid-controlled gun pulse was limited to a rise time of 7 nanoseconds and a pulse width of 10 nanoseconds. The system described here has a grid-controlled rise time of less than 500 pico-seconds, and a minimum pulse width of less than 1 nanosecond. Pulse burst repetition rate has been demonstrated above 20 MHz during a 1.6 microsecond rf accelerating period. The order-of-magnitude increase in gun grid switching speed comes from a new gun design which minimizes lead inductance and stray capacitance, and also increases gun grid transconductance. These gun improvements coupled with a newly designed fast pulser mounted directly within the gun envelope make possible subnanosecond pulsing of the gun

  4. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  5. Gas Discharge Produced by Strong Microwaves of Nanosecond Duration

    International Nuclear Information System (INIS)

    Vikharev, A.L.

    2000-01-01

    The results of the investigation of nanosecond microwave discharge are reviewed. Nanosecond microwave discharge is a new branch of gas discharge physics. The paper lists base types of microwave generators used to produce nanosecond discharge and classifies the discharges relative to their base parameters: the way the discharge gets localized in a limited space, amplitude and frequency of microwave field, gas pressure, duration of microwave pulses. The laboratory experiments performed and the new effects which appear in nanosecond microwave discharge are briefly summarized. Different applications of such a discharge are analyzed on the basis of the experimental modelling. (author)

  6. Nanosecond KTN varifocal lens without electric field induced phase transition

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Yin, Stuart (Shizhuo); Hoffman, Robert C.

    2017-08-01

    This paper presents a nanosecond speed KTN varifocal lens. The tuning principle of varifocal lens is based on the high-speed refractive index modulation from the nanosecond speed tunable electric field. A response time on the order of nanoseconds was experimentally demonstrated, which is the fastest varifocal lens reported so far. The results confirmed that the tuning speed of the KTN varifocal lens could be significantly increased by avoiding the electric field induced phase transition. Such a nanosecond speed varifocal lens can be greatly beneficial for a variety of applications that demand high speed axial scanning, such as high-resolution 3D imaging and high-speed 3D printing.

  7. OSETI with STACEE: a search for nanosecond optical transients from nearby stars.

    Science.gov (United States)

    Hanna, D S; Ball, J; Covault, C E; Carson, J E; Driscoll, D D; Fortin, P; Gingrich, D M; Jarvis, A; Kildea, J; Lindner, T; Mueller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2009-05-01

    We have used the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons/m(2) at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets, and they are relatively close to Earth. Each star was observed for 10 minutes, and we found no evidence for laser pulses in any of the data sets. Key Words: Search for extraterrestrial intelligence-Optical search for extraterrestrial intelligence-Interstellar communication-Laser.

  8. Impacts of ambient and ablation plasmas on short- and ultrashort-pulse laser processing of surfaces

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Panchenko, A.N.; Zhukov, V.P.; Kudryashov, S.I.; Pereira, A.; Marine, W.; Mocek, Tomáš; Bulgakov, A.V.

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1344-1372 ISSN 2072-666X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : pulsed laser ablation * laser material processing * laser plasma * ambient gas breakdown * material redeposition * plasma pipe formation * microstructures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.269, year: 2014

  9. PNG-300 a nanosecond pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.C.; Devkin, B.V.

    1985-01-01

    The design and operation of a nanosecond-pulse neutron generator is reported. It was constructed for the measurement of prompt neutron and gamma radiation in experimental studies of fast neutron reactions by time of flight techniques. The acceleration voltage is 300 kV and the total resolution of the generator-neutron spectrometer system is 2 ns. The ion-optical system, the vacuum system and the control of the neutron generator is described in detail. The equipment was used for prompt neutron and gamma radiation induced in construction materials. (R.P.)

  10. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  11. New and Advanced Picosecond Lasers for Tattoo Removal.

    Science.gov (United States)

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  12. Nanomaterials synthesis at atmospheric pressure using nanosecond discharges

    International Nuclear Information System (INIS)

    Pai, David Z

    2011-01-01

    The application of nanosecond discharges towards nanomaterials synthesis at atmospheric pressure is explored in this perspective article. First, various plasma sources are evaluated in terms of the energy used to include one atom into the nanomaterial, which is shown to depend strongly on the electron temperature. Because of their high average electron temperature, nanosecond discharges could be used to achieve nanofabrication at a lower energy cost, and therefore with better efficiency, than with other plasma sources at atmospheric pressure. Transient spark discharges and nanosecond repetitively pulsed (NRP) discharges are suggested as particularly useful examples of nanosecond discharges generated at high repetition frequency. Nanosecond discharges also generate fast heating and cooling rates that could be exploited to produce metastable nanomaterials.

  13. Luminous phase of nanosecond discharge in deionized water: morphology, propagation velocity and optical emission.

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pongrác, Branislav; Babický, Václav; Člupek, Martin; Lukeš, Petr

    2017-01-01

    Roč. 26, č. 7 (2017), č. článku 07LT01. ISSN 0963-0252 R&D Projects: GA ČR(CZ) GA15-12987S Institutional support: RVO:61389021 Keywords : water * nanosecond discharge * emission spectra * breakdown Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.302, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6595/aa758d

  14. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  15. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  16. The Excimer Laser: Its Impact on Science and Industry

    Science.gov (United States)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  17. TIR-1 carbon dioxide laser system for fusion

    Science.gov (United States)

    Adamovich, V. A.; Anisimov, V. N.; Afonin, E. A.; Baranov, V. Iu.; Borzenko, V. L.; Kozochkin, S. M.; Maliuta, D. D.; Satov, Iu. A.; Sebrant, A. Iu.; Smakovski, Iu. B.

    1980-03-01

    The paper examines the TIR-1 carbon dioxide laser system for fusion. The current efforts are concentrated on (1) the microsecond laser pulse plasma heating in solenoids and theta pinches, and (2) nanosecond CO2 laser utilization for inertial confinement fusion. The TIR-1 system was designed to develop nanosecond CO2 laser technology and to study laser-target interaction at 10 microns. This system consists of an oscillator-preamplifier that produces about 1-nsec laser pulse with an energy contrast ratio of 1 million, a large triple-pass amplifier, and a target chamber with diagnostic equipment.

  18. The impact imperative: Laser ablation for deflecting asteroids, meteoroids, and comets from impacting the earth

    International Nuclear Information System (INIS)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona

    2003-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula area. This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infra-structure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span

  19. High-voltage nanosecond pulse shaper

    International Nuclear Information System (INIS)

    Kapishnikov, N.K.; Muratov, V.M.; Shatanov, A.A.

    1987-01-01

    A high-voltage pulse shaper with an output of up to 250 kV, a base duration of ∼ 10 nsec, and a repetition frequency of 50 pulses/sec is described. The described high-voltage nanosecond pulse shaper is designed for one-orbit extraction of an electron beam from a betatron. A diagram of the pulse shaper, which employs a single-stage generator is shown. The shaping element is a low-inductance capacitor bank of series-parallel KVI-3 (2200 pF at 10 kV) or K15-10 (4700 pF at 31.5 kV) disk ceramic capacitors. Four capacitors are connected in parallel and up to 25 are connected in series

  20. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  1. Imaging and electron energy-loss spectroscopy using single nanosecond electron pulses.

    Science.gov (United States)

    Picher, Matthieu; Bücker, Kerstin; LaGrange, Thomas; Banhart, Florian

    2018-03-13

    We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Experimental techniques for subnanosecond resolution of laser-launched plates and impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, D.L.; Warnes, R.H.; Stahl, D.B. [Los Alamos National Lab., NM (United States). Dynamic Experimentation Div.

    1994-09-01

    Miniature laser-launched plates have applications in shock wave physics, studying dynamic properties of materials and can be used to generate experimental data in a manner similar to a laboratory gas gun for one-dimensional impact experiments. Laser-launched plates have the advantage of small size, low kinetic energy, and can be launched with ubiquitous laboratory lasers. Because of the small size and high accelerations (10{sup 7}--10{sup 10} g`s), improved temporal resolution and optical non-contact methods to collect data are required. Traditional mechanical in-situ gauges would significantly impair the data quality and do not have the required time response.

  3. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    Science.gov (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  4. Laser soldering of piezoelectric actuator with minimal thermal impact

    OpenAIRE

    Seigneur, Frank; Fournier, Yannick; Maeder, Thomas; Jacot, Jacques

    2007-01-01

    Mechanical and electrical connecting of piezoelectric actuator is often done using conductive glue. Its advantage is not to heat the piezoelectric actuator during connection. But there are many disadvantages to gluing; the main one is curing time. Welding is another alternative, but when done in an oven, the temperature needed for this operation might destroy the heat sensitive actuator. The method described in this paper is laser soldering of piezoelectric actuator. The piezo actuator is mec...

  5. Investigation on the impact of pulse duration for laser induced lithotripsy

    Science.gov (United States)

    Sroka, Ronald; Kiris, Tugba; Fiedler, Sebastian; Scheib, Gabriel; Kuznetsova, Julia; Pongratz, Thomas

    2014-03-01

    Objective: In-vitro investigation of Ho:YAG-laser induced stone fragmentation was performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. Materials and Methods: An innovative Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short pulse mode was tested with regard to its fragmentation properties. The pulse duration depends on the specific laser parameter used. Fragmentation tests (hand held, hands free, single pulse induced crater) on artificial BEGO-Stones and fiber burn back tests were performed under reproducible experimental conditions. Additionally, the repulsion of long versus short laser pulses was compared using the pendulum set-up. Results: Differences in fragmentation rates between the two pulse duration regimes were seen. The difference was, however, not statistically significant. Using long pulse mode, the fiber burn back is nearly negligible while in short pulse mode an increased burn back was seen. The results of the pendulum test showed that the deviation induced by the momentum of shorter pulses is increased compared to longer pulses. Conclusion: Long pulse-mode showed reduced side effects like repulsion and fiber burn back in comparison to short pulse-mode while fragmentation rates remained at a comparable level. Lower push back and reduced burn back of longer laser pulses may results in better clinical outcome of laser lithotripsy and more convenient handling during clinical use.

  6. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces

    Directory of Open Access Journals (Sweden)

    Nadezhda M. Bulgakova

    2014-12-01

    Full Text Available In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a “plasma pipe”; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.

  7. Impact of mismatched and misaligned laser light sheet profiles on PIV performance

    Science.gov (United States)

    Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.

    2018-01-01

    The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.

  8. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Directory of Open Access Journals (Sweden)

    S. Gayathri

    2013-12-01

    Full Text Available Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC films. In this paper, pulsed laser deposition (PLD technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C and tetrahedral amorphous carbon (ta-C made by sp3 domain in the DLC film. The I(D/I(G ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  9. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  10. Lasers

    OpenAIRE

    Passeron, Thierry

    2012-01-01

    International audience; Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be succesfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-aulait macules should not b...

  11. Laser

    OpenAIRE

    Du, K.; Loosen, P.; Herziger, G.

    1991-01-01

    Laser, consisting of a beam path multiple-folded by means of two cavity end mirrors and having at least one reflector folding the laser beam retroreflectively, the axis of which is arranged offset in parallel to the axis of a further reflector. So that the laser exhibits an improved beam quality while retaining its comparatively low adjustment sensitivity, the beam path is folded at least twice by means of the retoreflective reflector.

  12. Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser

    Science.gov (United States)

    Lei, Chen; Pan, Zhang; Jianxiong, Chen; Tu, Yiliu

    2018-04-01

    The plasma brightness cannot be used as a direct indicator of ablation depth detection by femtosecond laser was experimentally demonstrated, which led to the difficulty of depth measurement in the maching process. The tests of microchannel milling on the silicon wafer were carried out in the micromachining center in order to obtain the influences of parameters on the ablation depth. The test results showed that the defocusing distance had no significant impact on ablation depth in LAV effective range. Meanwhile, the reason of this was explained in this paper based on the theoretical analysis and simulation calculation. Then it was proven that the ablation depth mainly depends on laser fluence, step distance and scanning velocity. Finally, a research was further carried out to study the laser parameters which relate with the microchannel ablation depth inside the quartz glass for more efficiency and less cost in processing by femtosecond laser.

  13. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    Science.gov (United States)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  14. Gene electrotransfer enhanced by nanosecond pulsed electric fields

    Directory of Open Access Journals (Sweden)

    Siqi Guo

    2014-01-01

    Full Text Available The impact of nanosecond pulsed electric fields (nsPEFs on gene electrotransfer has not been clearly demonstrated in previous studies. This study was conducted to evaluate the influence of nsPEFs on the delivery of plasmids encoding luciferase or green fluorescent protein and subsequent expression in HACAT keratinocyte cells. Delivery was performed using millisecond electric pulses (msEPs with or without nsPEFs. In contrast to reports in the literature, we discovered that gene expression was significantly increased up to 40-fold by applying nsPEFs to cells first followed by one msEP but not in the opposite order. We demonstrated that the effect of nsPEFs on gene transfection was time restricted. The enhancement of gene expression occurred by applying one msEP immediately after nsPEFs and reached the maximum at posttreatment 5 minutes, slightly decreased at 15 minutes and had a residual effect at 1 hour. It appears that nsPEFs play a role as an amplifier without changing the trend of gene expression kinetics due to msEPs. The effect of nsPEFs on cell viability is also dependent on the specific pulse parameters. We also determined that both calcium independent and dependent mechanisms are involved in nsPEF effects on gene electrotransfer.

  15. High power atomic iodine photodissociation lasers

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.; Jones, E.D.

    1976-01-01

    The atomic iodine photodissociation laser has developed into a system capable of producing nanosecond or shorter pulses of near infrared radiation with energies well in excess of a hundred J. Discussed are the operating characteristics, advantages, and potential problem areas associated with this laser

  16. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  17. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  18. Thermal dynamics-based mechanism for intense laser-induced ...

    Indian Academy of Sciences (India)

    Thermal dynamics-based mechanism for intense laser-induced material surface vaporization ... http://www.ias.ac.in/article/fulltext/pram/071/03/0529-0543 ... Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase.

  19. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  20. High-Voltage, Multiphasic, Nanosecond Pulses to Modulate Cellular Responses.

    Science.gov (United States)

    Ryan, Hollie A; Hirakawa, Shinji; Yang, Enbo; Zhou, Chunrong; Xiao, Shu

    2018-04-01

    Nanosecond electric pulses are an effective power source in plasma medicine and biological stimulation, in which biophysical responses are governed by peak power and not energy. While uniphasic nanosecond pulse generators are widely available, the recent discovery that biological effects can be uniquely modulated by reversing the polarity of nanosecond duration pulses calls for the development of a multimodal pulse generator. This paper describes a method to generate nanosecond multiphasic pulses for biomedical use, and specifically demonstrates its ability to cancel or enhance cell swelling and blebbing. The generator consists of a series of the fundamental module, which includes a capacitor and a MOSFET switch. A positive or a negative phase pulse module can be produced based on how the switch is connected. Stacking the modules in series can increase the voltage up to 5 kV. Multiple stacks in parallel can create multiphase outputs. As each stack is independently controlled and charged, multiphasic pulses can be created to produce flexible and versatile pulse waveforms. The circuit topology can be used for high-frequency uniphasic or biphasic nanosecond burst pulse production, creating numerous opportunities for the generator in electroporation applications, tissue ablation, wound healing, and nonthermal plasma generation.

  1. Lasers.

    Science.gov (United States)

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. [Lasers].

    Science.gov (United States)

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    International Nuclear Information System (INIS)

    Gribkov, V.; Karpinski, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; Strzyzewski, P.; Tomaszewski, K.; Dubrovsky, A.

    2006-01-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ∼760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of congruent with 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a ''single-shot detection system'' for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system

  4. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    Science.gov (United States)

    Gribkov, V.; Dubrovsky, A.; Karpiński, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; StrzyŻewski, P.; Tomaszewski, K.

    2006-12-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ˜760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of ≅ 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a "single-shot detection system" for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system.

  5. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    Science.gov (United States)

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  6. Comparative study of two-photon fluorescent bio-markers at nanosecond and femtosecond pulsed excitation

    Science.gov (United States)

    Peterson, Burl H.; Sarkisov, Sergey S.; Nesterov, V. N.; Curley, Michael J.; Urbas, Augustine; Patel, Darayas N.; Wang, J.-C.

    2007-02-01

    In this study we investigate visible fluorescence of cytotoxic bio-markers (molecular probes) based on the derivatives of piperidone at femtosecond infrared pulsed laser excitation. The subject of this investigation is the origin of the fluorescence. Does it originate from the excited state absorption, which occurs only at slow, nanosecond excitation, or is it due to intrinsic multi-photon absorption? In the past, it has been shown indirectly, through the laser photolysis study, that the contribution of the excited state absorption is minimal for several compounds of such type. The results of direct experiments with an infrared femtosecond fiber laser as an excitation source described here support this hypothesis. The observed dependence of the fluorescence on the pump power indicated the contribution of not only two-photon, but multi-photon routes of excitation. Additionally, it was shown that the spectral features of the fluorescence correlate with the presence of glycine, an amino acid that is one of the building blocks of proteins in a cell. The implication of this result is, in addition to their anticancer action, the compounds can possibly be used for fluorescent diagnostics of cancer and multi-photon fluorescent microscopy of malignant cell cultures using portable infrared fiber lasers as excitation sources.

  7. Application of Advanced Laser Diagnostics to High Impact Technologies. Delivery Order 0001: Laser Diagnostics Applications

    Science.gov (United States)

    2011-02-01

    in a spacecraft or in an extraterrestrial base can lead to mission termination and/or loss of life . The advent of longer duration missions to the...significantly impact the affordability, maintainability, and reliability of the propulsion system by extending the useful life of engine components or by...experimental configura- tions; and (3) to measure the n 2 population life - time using time-resolved TC-LIF and the n 2 coherence lifetime using time

  8. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  9. Direct measurement of chemical composition of SOx in impact vapor using a laser gun

    Science.gov (United States)

    Ohno, Sohsuke; Kadono, Toshihiko; Kurosawa, Kosuke; Hamura, Taiga; Sakaiya, Tatsuhiro; Sugita, Seiji; Shigemori, Keisuke; Hironaka, Yoichiro; Watari, Takeshi; Matsui, Takafumi

    2011-06-01

    The SO3/SO2 ratio of the impact vapor cloud is a key parameter for understanding the environmental perturbation caused by the impact-induced SOx and the killing mechanism of. the mass extinction at the K-Pg boundary. We conducted hypervelocity impact experiments using a high-speed laser gun (GEKKO XII-HIPER, ILE, Osaka University) and measured the chemical compositions of the SOx released from CaSO4. The experimental result indicates that SOx are dominated by SO3. It implies that the SOx generated by the K-Pg impact would have been also dominated by SO3, because the SO3/SO2 ratio of natural planetary scale impact vapor clouds would have been larger than that of the experimental result of this study.

  10. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  11. Residual Stress Distribution and Microstructure at a Laser Spot of AISI 304 Stainless Steel Subjected to Different Laser Shock Peening Impacts

    Directory of Open Access Journals (Sweden)

    Wenquan Zhang

    2015-12-01

    Full Text Available The effects of different laser shock peening (LSP impacts on the three-dimensional displayed distributions of surface and in-depth residual stress at a laser spot of AISI 304 stainless steel were investigated by X-ray diffraction technology with the sin2φ method and MATLAB 2010a software. Microstructural evolution in the top surface subjected to multiple LSP impacts was presented by means of cross-sectional optical microscopy (OM and transmission electron microscopy (TEM observations. Experimental results and analysis indicated that residual stress distribution and microstructure at a laser spot depended strongly on the number of multiple LSP impacts, and refined grain and ultra-high strain rate play an important role in the improvement of compressive residual stress of AISI 304 stainless steel. The analysis of treatment of the extended surface was presented to obtain uniform surface properties on the top surface of AISI 304 stainless steel.

  12. Long-period comet impact risk mitigation with Earth-based laser arrays

    Science.gov (United States)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  13. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    Science.gov (United States)

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  14. Effects of Laser Quenching on Impact Toughness and Fracture Morphologies of 40CrNiMo High Strength Steel

    Science.gov (United States)

    Dejun, Kong; Lei, Zhang

    2014-10-01

    The surface of 40CrNiMo steel was quenched with a CO2 laser, Charpy impact test was conducted at temperatures of 20, 0, and -20 °C, and the impact absorption energies were measured. The fracture morphologies were observed with SEM, and the influence of microhardness, residual stress, and retained austenite on mechanical behavior of impact fracture after laser quenching was discussed. The results show that the hardened layer depth is more than 1 mm after laser quenching, and hardness is about 480-500 HV. The fracture morphology of the sample is dimple rupture at a temperature of 20 °C; with the lower temperature the fracture dimples become smaller. At a temperature of -20 °C, the fracture morphologies change from ductile to brittle, which is mainly cleavage fracture. The increase in surface hardness, production of compressive residual stress, and existence of retained austenite after laser quenching are the main mechanisms of increasing impact toughness.

  15. Combined Impact of Gamma and Laser Radiation on Peripheral Blood of Rats in vivo

    Science.gov (United States)

    Zalesskaya, G. A.; Batay, L. E.; Koshlan, I. V.; Nasek, V. M.; Zilberman, R. D.; Milevich, T. I.; Govorun, R. D.; Koshlan, N. A.; Blaga, P.

    2017-11-01

    The impact of γ radiation of 137Cs (doses of 1 and 3 Gy), low-intensity laser radiation (λ = 670 nm, 5.3 or 10.6 J/cm2) as well as the influence of consecutive laser and γ radiation on peripheral blood and blood cells (erythrocytes, leukocytes, lymphocytes, granulocytes) were studied by analyzing the number of blood cells, blood absorption spectra, and activity of antioxidant defense enzymes. Two series of experiments were performed on four groups of rats. The rats of the control group (group 1) were not exposed to γ or laser radiation. In the experimental groups, single irradiation of the whole body of rats with γ radiation (group 2), three- or four-day over-vein irradiation of blood in the tail vein by low-intensity laser radiation (group 3), and successive three- or four-day irradiation of blood by laser and then a single irradiation of the whole body with γ radiation (group 4) were performed. It was shown that changes of the blood cell content in the experimental groups are accompanied by changes in the spectral characteristics of the blood and the activity of antioxidant defense enzymes. The radioprotective effect of low-intensity laser radiation is manifested as an increase in the average number of leukocytes and lymphocytes in the group as compared with the postradiation, as well as an increase in the activity of antioxidant protection enzymes. The possibility of using low-intensity optical radiation for correction of hematological disorders caused by ionizing radiation is discussed.

  16. Performance of the Fitch generator in a nanosecond electron accelerator

    International Nuclear Information System (INIS)

    Chernyj, V.V.

    1976-01-01

    The operation of the Fitch generator in the nanosecond electron accelerator is discussed. The operating principle of the generator is based on the inversion of the voltage at the storage capacitances. Only one discharger is employed in the discharge circuit of the generator which provides for decreasing the generator impedance to 24 Ohms. The maximum accelerating voltage equals 0.6 MV

  17. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    Science.gov (United States)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  18. [Impact of laser-assisted hatching (quarter technique) in poor prognosis patients].

    Science.gov (United States)

    González-Ortega, Claudia; Cancino-Villarreall, Patricia; Anaya-Torres, Francisco Javier; Pérez-Peña, Efrain; Gutiérrez-Gutiérrez, Antonio M

    2015-11-01

    Poor implantation rates continue to be the determinant factor for results in assisted reproductive techniques; many factors are thought to be involved including embryo quality, endometrial receptivity and embryo transfer. Assisted hatching has been proposed as a technique to improve implantation rates in selected groups of patients, especially with poor prognosis. To evaluate the impact of the laser assisted hatching performed with quarter technique in patients with poor prognosis. Prospective, controlled and randomized clinical study. The study group included patients with poor prognosis: maternal age ≥ 38 years, basal FSH ≥ 12.0 mUl/mL, two or more previous FIV/ ICSI failures. The control group don't received neither assisted reproductive techniques. We registered 303 cycles: n=1 54 in study group (laser assisted hatching) and n = 149 in control group. Clinical pregnancy (40.1 vs 19.7%) and implantation (17.5 vs 8.3%) rates were significant higher in laser assisted hatching group, there were not significant differences between multiple pregnancy (13.11 vs 10%) and miscarriage (14.7 vs 17.2) rates. Laser assisted hatching with quarter technique improves pregnancy and implantation rates in poor prognosis patients.

  19. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    Science.gov (United States)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2–O2–Ar, CH4–O2–Ar, C3H8–O2–Ar, and C2H4–O2–Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2–Ar and O2–Ar mixtures, the atoms decay by three-body recombination. In H2–O2–Ar, CH4–O2–Ar, and C3H8–O2–Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2–Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the

  20. Influence of pulse width in laser assisted texturing on moly-chrome films

    Science.gov (United States)

    Ezhilmaran, V.; Vijayaraghavan, L.; Vasa, N. J.; Krishnan, Sivarama

    2018-02-01

    Continuous micro-channels were formed on the surface of the automotive piston rings using two different lasers, namely nanosecond and femtosecond pulsed laser. Tribology measurements were conducted to compare the friction properties of the samples fabricated with the laser pulse width of nanosecond and femtosecond order. The femtosecond laser ablation comparatively minimized the re-deposition layer, heat affected zone around the micro-channel compared to the nanosecond laser ablation. Owing to the localized material ablation, the compressive residual stress was not altered with femtosecond laser processing. The friction test was conducted using reciprocating type friction measurement setup for the loads ranging from 10 to 130 N. The friction coefficients of all the textured samples were reduced compared to the non-textured samples. Furthermore, it is observed that the average friction coefficient was low with the femtosecond laser textured samples compared to that of the nanosecond laser textured samples of the same dimensions. The results show that the thermally induced defects while using the nanosecond laser ablation might have influenced the tribological properties.

  1. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime.

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal; Purnima

    2012-07-01

    The present work focuses on the nonlinear optical behavior of chalcogenide As(2)S(3) film as well as on bulk material. The thin film of As(2)S(3) grown by thermal evaporation and bulk glass developed by melt-quenched technique has been characterized using nanosecond pulses of Nd:YAG (532 nm) and Nd:YVO(4) (1,064 nm) laser. Using Z-scan technique, the laser induced nonlinear optical parameters viz. nonlinear refractive index (n(2)), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) have been estimated. At 1,064 nm excitation, the materials exhibit stronger nonlinearity as compared to that of 532 nm laser. In case of As(2)S(3) thin film, observed nonlinearity attributes to two-photon absorption. The optical limiting response of chalcogenide film as well as bulk sample has also been reported. The study predicts that the As(2)S(3) thin film is a better optical limiting material than bulk glass due to relatively higher nonlinearity and lower limiting threshold. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  3. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  4. Coulomb explosion of methyl iodide clusters using giga watt laser ...

    Indian Academy of Sciences (India)

    Administrator

    were carried out using second harmonic of a pulsed. Nd : YAG nanosecond laser (Quantel, Model YG. 980 E) as well as with the dye laser output at. 563 nm. The distance between skimmer and ioniza- tion region was 17 cm. The ions so formed were ac- celerated and guided into a 100 cm field-free region using double ...

  5. Coulomb explosion of methyl iodide clusters using giga watt laser ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Nanosecond laser-induced Coulomb explosion studies have been carried out for methyl iodide clusters at 532 and 563 nm under similar laser intensity (~5 × 10. 9. W/cm. 2. ) conditions. Multiply charged atomic ions of carbon and iodine having large kinetic energy (~ 100 s of eV) were observed in both the cases.

  6. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    Science.gov (United States)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  7. 'Moving source': test realization at VEPP-3 of a diffraction experiment with nanosecond time resolution

    CERN Document Server

    Mishnev, S I; Fedotov, M G; Tolochko, B P

    2000-01-01

    The purpose of this work is a demonstration of the basic possibility of the practical realization of the 'moving source' idea for X-ray diffraction with nanosecond time resolution. The idea of 'moving source' was published earlier. The principle of this idea is: a quick change of electron trajectory by the kicker is responsible for a quick change of direction of synchrotron radiation (SR). In such a way a 'moving source' can be created. Using the 'moving source' it is possible to scan a sample with the SR beam. As a result, diffraction with nanoseconds time resolution can be achieved . The experiment at the VEPP-3 storage ring has confirmed such a possibility. The following answers to the main questions were received: (1) SR intensities are enough for obtaining satisfactory statistics from one bunch (2) it is possible to realize synchronization of an impact with the motion of electrons in the storage ring and with the systems of image registration ; (3) it is possible to compensate the betatron oscillation wh...

  8. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NARCIS (Netherlands)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse

  9. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-06

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  10. Laser induced magnetization switching in a TbFeCo ferrimagnetic thin film: discerning the impact of dipolar fields, laser heating and laser helicity by XPEEM.

    Science.gov (United States)

    Gierster, L; Ünal, A A; Pape, L; Radu, F; Kronast, F

    2015-12-01

    We investigate laser induced magnetic switching in a ferrimagnetic thin film of Tb22Fe69Co9 by PEEM. Using a small laser beam with a spot size of 3-5 µm in diameter in combination with high resolution magnetic soft X-ray microscopy we are able to discriminate between different effects that govern the microscopic switching process, namely the influence of the laser heating, of the helicity dependent momentum transfer, and of the dipolar coupling. Applying a sequence of femtosecond laser pulses to a previously saturated TbFeCo film leads to the formation of ring shaped magnetic structures in which all three effects can be observed. Laser helicity assisted switching is only observed in a narrow region within the Gaussian profile of the laser spot. Whereas in the center of the laser spot we find clear evidence for thermal demagnetization and in the outermost areas magnetic switching is determined by dipolar coupling with the surrounding film. Our findings demonstrate that by reducing the laser spot size the influence of dipolar coupling on laser induced switching is becoming increasingly important. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    Science.gov (United States)

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  12. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    Directory of Open Access Journals (Sweden)

    Abdullahi K. Gujba

    2014-12-01

    Full Text Available The laser shock peening (LSP process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP/ultrasonic shot peening (USP was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed.

  13. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    Science.gov (United States)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  14. Impact of presowing laser irradiation of seeds on sugar beet properties

    Science.gov (United States)

    Sacała, E.; Demczuk, A.; Grzyś, E.; Prośba-Białczyk, U.; Szajsner, H.

    2012-07-01

    The aim of the experiment was to establish the influence of biostimulation on the sugar beet seeds. The seeds came from the specialized breeding program energ'hill or were irradiated by the laser in two doses. The impact of the biostimulation was analyzed by determining the nitrate reductase activity and the nitrate, chlorophyll and carotenoids contents in leaves, as well as, the dry matter and sugar concentration in mature roots. The field experiment was established for two sugar beet cultivars. Biostimulation by irradiation and a special seed breeding program energ'hill had a positive influence on some examined parameters (particularly on nitrate reductase activity in Ruveta and in numerous cases on photosynthetic pigments in both cultivars). Regarding the dry matter accumulation and sugar concentration this impact was more favourable for Tiziana than for Ruveta cultivar.

  15. Ar-40/Ar-39 ages of six Apollo 15 impact melt rocks by laser step heating

    Science.gov (United States)

    Dalrymple, G. B.; Ryder, Graham

    1991-01-01

    Fifteen high resolution (21-51 step) Ar-40/Ar-39 age spectra are obtained for six Apollo 15 impact melt rocks of different compositions, using a continuous laser system on submilligram subsamples and on single crystal plagioclase clasts. Four of the six samples gave reproducible age spectra with well-defined intermediate temperature plateaus over 48 percent or more of the Ar-39 released; the plateaus are interpreted as crystallization ages. Samples 15304,7,69, 15294,6,21 and 15314,26,156 gave virtually identical plateau ages whose weighted mean is 3870 + or - 6 Ma. These three melt rocks differ in composition and likely formed in three separate impact events.

  16. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  17. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  18. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies

    International Nuclear Information System (INIS)

    Lu, J.Z.; Qi, H.; Luo, K.Y.; Luo, M.; Cheng, X.N.

    2014-01-01

    Highlights: •Laser shock peening caused an obvious increase of corrosion resistance of 304 steel. •Corrosion resistance of stainless steel increased with increasing pulse energy. •Mechanism of laser shock peening on corrosion behaviour was also entirely determined. -- Abstract: Effects of massive laser shock peening (LSP) impacts with different pulse energies on ultimate tensile strength (UTS), stress corrosion cracking (SCC) susceptibility, fracture appearance and electrochemical corrosion resistance of AISI 304 stainless steel were investigated by slow strain rate test, potentiodynamic polarisation test and scanning electron microscope observation. The influence mechanism of massive LSP impacts with different pulse energies on corrosion behaviour was also determined. Results showed that massive LSP impacts effectively caused a significant improvement on UTS, SCC resistance, and electrochemical corrosion resistance of AISI 304 stainless steel. Increased pulse energy can also gradually improve its corrosion resistance

  19. Application of Advanced Laser Diagnostics to High-Impact Technologies: Science and Applications of Ultrafast, Ultraintense Lasers

    Science.gov (United States)

    2013-11-01

    only bremsstrahlung emissions in the hard X-ray range, thus allowing different K and L line emissions to be obtained by dissolving salts , etc., into...ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” Applied Physics Letters 93(6...pulses. These high power lasers can eject a molten spray of material resulting in recast on the surface so steps may have to be taken to minimize the

  20. All-Polymer Lasers

    Science.gov (United States)

    Wu, Yeheng; Lott, Joseph; Kazmierczak, Tomasz; Song, Hyunmin; Baer, Eric; Singer, Kenneth; Weder, Christoph

    2008-03-01

    We have fabricated all-polymer lasers both as distributed feedback lasers (DFB) and distributed Bragg reflector (DBR) lasers. For the DBR lasers, a layer of polymer doped with the laser dye is laminated between two multilayer polymer mirrors. The mirrors were made using the co-extrusion process combining PMMA alternated with polystyrene with 128 layers for each mirror. Two dyes were employed, Rhodamine 6G (R6G), and 1,4-bis-(α-cyano-4-methoxystyryl)-2,5-dimethoxybenzene (C1RG). They were pumped with a nanosecond laser and emitted at about 570 and 510 nm respectively. For DFB lasers, the low refractive index layers were doped with C1RG or R6G. PMMA and PMMA-PVDF were the hosts for the C1RG and R6G respectively. A total of eight co-extruded 32-layer films were stacked together to make a DFB laser. For the DBR lasers, we were able to observe thresholds as low as 100nJ. The highest conversion efficiency obtained about 14% in the forward direction. We also observed trends of lasing threshold, even spaced lasing modes and penetration of the film. Matrix method simulations taking into account layer thickness variations were consistent with experimental results. For the DFB lasers, the lowest lasing threshold observed was 52 μW.

  1. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane.

  2. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  3. Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Gottlieb, C.; Günther, T.; Wilsch, G.

    2018-04-01

    In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).

  4. Impact of the cavitation bubble on a plasma emission following laser ablation in liquid

    Science.gov (United States)

    Gavrilović, Marijana R.

    2017-12-01

    In this work, the impact of the cavitation bubble on a plasma emission produced after the interaction of the strong focused laser radiation with the target in the liquid was studied. Several experimental techniques were applied to assess different aspects of the complex phenomena of the laser induced breakdown in the liquid media. The results of the fast photography, Schlieren and shadowgraphy techniques were compared with the results of simpler probe beam techniques, transmission and scattering. In addition, emission from the plasma was analysed using optical emission spectroscopy, with aim to relate the quality of the recorded spectral lines to the bubble properties. Bubble had proved to be more convenient surrounding than the liquid for the long lasting plasma emission, due to the high temperature and pressure state inside of it and significantly lower density, which causes less confined plasma. Changes in refractive index of the bubble were also monitored, although in the limited time interval, when the bubble was sufficiently expanded and the refractive index difference between the bubble and the water was large enough to produce glory rings and the bright spot in the bubble's centre. Reshaping of the plasma emission due to the optical properties of the bubble was detected and the need for careful optimization of the optical system was stressed. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  5. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  6. Dynamic of ozone formation in nanosecond microwave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M. [Inst. of Applied Physics, Novgorod (Russian Federation)] [and others

    1995-12-31

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local {open_quotes}ozone holes{close_quotes}. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength {Lambda} = 0.8 and 3cm, pulse duration {tau} = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10{sup 3} Hz. The working gases were air and oxygen under pressure p = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions in a closed volume and in case of their diffusion spreading.

  7. Dynamic of ozone formation in nanosecond microwave discharges

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local {open_quotes}ozone holes{close_quotes}. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength {lambda} = 0.8 and 3cm, pulse duration {tau} = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10{sup 3} Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading.

  8. Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level.

    Science.gov (United States)

    Sroka, Ronald; Pongratz, Thomas; Scheib, Gabriel; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Bader, Markus J

    2015-04-01

    Holmium-YAG (Ho:YAG) laser lithotripsy is a multi-pulse treatment modality with stochastic effects on the fragmentation. In vitro investigation on the single-pulse-induced effects on fiber, repulsion as well as fragmentation was performed to identify potential impacts of different Ho:YAG laser pulse durations. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short-pulse mode was tested with regard to fiber burn back, the repulsion capacity using an underwater pendulum setup and single-pulse-induced fragmentation capacity using artificial (BEGO) stones. The laser parameters were chosen in accordance with clinical application modes (laser fiber: 365 and 200 µm; output power: 4, 6 and 10 W in different combinations of energy per pulse and repetition rate). Evaluation parameters were reduction in fiber length, pendulum deviation and topology of the crater. Using the long-pulse mode, the fiber burn back was nearly negligible, while in short-pulse mode, an increased burn back could be observed. The results of the pendulum test showed that the deviation induced by the momentum of short pulses was by factor 1.5-2 higher compared to longer pulses at identical energy per pulse settings. The ablation volumes induced by single pulses either in short-pulse or long-pulse mode did not differ significantly although different crater shapes appeared. Reduced stone repulsion and reduced laser fiber burn back with longer laser pulses may result in a more convenient handling during clinical application and thus in an improved clinical outcome of laser lithotripsy.

  9. Mechanically driven millimeter source of nanosecond X-ray pulses

    Science.gov (United States)

    Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J.

    2010-06-01

    The emission of nanosecond pulses of ≈20 keV photons having a total energy of GeVs which are generated by peeling millimeter wide strips of pressure sensitive adhesive (PSA) tape in a partial pressure of air (≈10-3 Torr) is demonstrated. The X-ray spectrum is similar to that obtained by peeling much wider bands of PSA, implying that the characteristic length for the sequence of processes that govern this phenomenon is less than 1 mm. These experiments demonstrate that MEMS-type X-ray generators are technologically feasible.

  10. Effect of Nanosecond RF Pulses on Mitochondrial Membranes

    Science.gov (United States)

    Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.

    2017-12-01

    Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.

  11. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    Science.gov (United States)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  12. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    Science.gov (United States)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  13. Dynamic-Stark-effect-induced coherent mixture of virtual paths in laser-dressed helium: energetic electron impact excitation

    Science.gov (United States)

    Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain

    2017-06-01

    We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.

  14. A note on supersonic flow control with nanosecond plasma actuator

    Science.gov (United States)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  15. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    Science.gov (United States)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  16. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    Science.gov (United States)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  17. Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Papadopoulou, E.; Anglos, D.

    2011-01-01

    Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosec......Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited...... and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar...

  18. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  19. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  20. Fundamentals of laser pulse irradiation of silicon

    International Nuclear Information System (INIS)

    Rimini, E.; Baeri, P.; Russo, G.

    1985-01-01

    A computer model has been developed to describe the space and time evolution of carrier concentration, carrier energy and lattice temperature during nanosecond and picosecond laser pulse irradiation of Si single crystals. In particular the dynamic response has been evaluated for energy density of the ps laser pulse below and above the density threshold for surface melting. The obtained data allow a comparison with time-resolved reflectivity measurements reported in the literature. The available data are fitted by the computer model assuming a relaxation time for the energy transfer from the carriers to the lattice of 1 ps. The validity of the thermal model used to describe laser annealing in the nanosecond regime is assessed. (author)

  1. Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers

    NARCIS (Netherlands)

    Agazzi, L.; Bernhardi, Edward; Worhoff, Kerstin; Pollnau, Markus

    Measurement of the laser relaxation-oscillation frequency as a function of pump rate allows one to determine parameters of the laser medium or cavity. We show that luminescence quenching of a fraction of the rare-earth ions in a solid-state laser affects the relaxation oscillations, resulting in

  2. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)

    International Nuclear Information System (INIS)

    LaGrange, Thomas; Campbell, Geoffrey H.; Reed, B.W.; Taheri, Mitra; Pesavento, J. Bradley; Kim, Judy S.; Browning, Nigel D.

    2008-01-01

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10 nm for single-shot imaging using 15 ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions

  3. Nanosecond electrical explosion of thin aluminum wire in vacuum: experimental and computational investigations

    International Nuclear Information System (INIS)

    Cochrane, Kyle Robert; Struve, Kenneth William; Rosenthal, Stephen Edgar; McDaniel, Dillon Heirman; Sarkisov, Gennady Sergeevich; Deeney, Christopher

    2004-01-01

    The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a ∼100 (micro)m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of ∼100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed.

  4. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stainless steel 304L with europium (Eu as contaminant. This technique consists in spraying an Eu-solution on stainless steel samples. The specimens are firstly treated with a pulsed nanosecond laser after which the steel samples are placed in a 873 K furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer were analyzed by scanning electron microscopy coupled to an energy-dispersive X-ray microanalyzer, as well as by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm–4.5 μm depending on the laser treatment parameters and the heating duration. These contaminated oxides had a ‘duplex structure’ with a mean concentration of the order of 6 × 1016 atoms/cm2 (15 μg/cm2 of europium in the volume of the oxide layer. It appears that europium implementation prevented the oxide growth in the furnace. Nevertheless, the presence of the contamination had no impact on the thickness of the oxide layers obtained by preliminary laser treatment. These oxide layers were used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  5. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Science.gov (United States)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  6. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a ‘duplex structure’ with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  7. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin

    2008-01-01

    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  8. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass

    Science.gov (United States)

    Nordin, I. H. W.; Okamoto, Y.; Okada, A.; Jiang, H.; Sakagawa, T.

    2016-04-01

    Micro-welding characteristics of silicon and glass by pulsed lasers are described. In this study, four types of laser beam, which are nanosecond pulsed laser and picosecond pulsed laser of 532 and 1064 nm in wavelength, were used for joining monocrystalline silicon and glass. Influence of wavelength and pulse duration on micro-welding of monocrystalline silicon and glass was experimentally investigated under the same spot diameter, and the molten area of monocrystalline silicon and glass was characterized. Finally, the breaking strength was evaluated for the overlap weld joint with different pulse duration and wavelength. A splash area of molten silicon around the weld bead line was obvious in the nanosecond pulsed laser. On the other hand, there was no remarkable molten splash around the weld bead line in the picosecond pulsed laser. Breaking strength of specimens with 1064 nm wavelength was higher than with 532 nm wavelength in nanosecond laser, whereas breaking strength of laser-irradiated specimen by picosecond pulse duration was higher than that by nanosecond pulse duration. It is concluded that the combination of picosecond pulse duration and infrared wavelength leads to the stable molten area appearance of the weld bead and higher breaking strength in micro-welding of glass and monocrystalline silicon.

  9. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... Continuous-wave fibre laser; Q-switched fibre laser; nonlinearity; thermal effects; selfpulsing; Yb-doped fibre; nanosecond pulse ... intracore fibre Bragg gratings, low thermal problems due to large surface to volume ratio, diffraction-limited beam quality, compactness, reliability and fibre-optic beam delivery.

  10. Effectiveness of Single Session of Low-Level Laser Therapy with a 940 nm Wavelength Diode Laser on Pain, Swelling, and Trismus After Impacted Third Molar Surgery.

    Science.gov (United States)

    Eroglu, Cennet Neslihan; Keskin Tunc, Serap

    2016-09-01

    In low-level laser therapy (LLLT), applications are generally performed in repetitive sessions using wavelengths of around 800 nm, at which the depth of penetration of laser is greater. The present study aimed to investigate the effects of LLLT with a 940 nm diode laser, which was performed extraorally on all the primarily and secondarily affected areas immediately after surgery in a single session, on pain, swelling, and trismus that occurred after impacted tooth extraction. Thirty-five outpatients with similarly impacted lower third molars on both sides were selected. The teeth of patients were removed in two separate operations. Postoperatively, the patients received laser therapy with energy of 4 J/cm(2) on one side and no laser energy was applied to the other side (placebo side). Swelling, trismus, and subjective assessment of pain on a visual analog scale were evaluated and compared between the laser-treated and placebo sides. There was no statistically significant difference in pain, swelling, or trismus between the sides (Mann-Whitney U test p > 0.05). However, according to the clinical outcomes, swelling and trismus were less in the laser-treated side than in the placebo side. A single-session LLLT that would be applied with a diode laser immediately after impacted tooth extraction might help patients to be less affected by postoperative trismus and swelling.

  11. A review of laser electrode processing for development and manufacturing of lithium-ion batteries

    Science.gov (United States)

    Pfleging, Wilhelm

    2018-02-01

    Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.

  12. Numerical simulation of nanosecond-pulse electrical discharges

    Science.gov (United States)

    Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M.

    2013-02-01

    Recent experiments with a nanosecond-pulse, dielectric barrier discharge at the stagnation point of a Mach 5 cylinder flow have demonstrated the formation of weak shock waves near the electrode edge, which propagate upstream and perturb the bow shock. This is a promising means of flow control, and understanding the detailed physics of the conversion of electrical energy into gas motion will aid in the design of efficient actuators based on the concept. In this work, a simplified configuration with planar symmetry was chosen as a vehicle to develop a physics-based model of nanosecond-pulse discharges, including realistic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced plasma kinetic model (23 species and 50 processes) was developed to capture the dominant species and reactions for energy storage and thermalization in the discharge. The kinetic model included electronically and vibrationally excited species, and several species of ions and ground state neutrals. The governing equations included the Poisson equation for the electric potential, diffusion equations for each neutral species, conservation equations for each charged species, and mass-averaged conservation equations for the bulk gas flow. The results of calculations with this model highlighted the path of energy transfer in the discharge. At breakdown, the input electrical energy was transformed over a time scale on the order of 1 ns into chemical energy of ions, dissociation products, and vibrationally and electronically excited particles. About 30% of this energy was subsequently thermalized over a time scale of 10 µs. Since the thermalization time scale was faster than the acoustic time scale, the heat release led to the formation of weak shock waves originating near the sheath edge, consistent with experimental observations. The computed translational temperature rise (40 K) and nitrogen vibrational temperature rise (370 K) were of the same order of magnitude as

  13. Measurement of yields for electron emission from surfaces upon impact of laser-excited Ar*(4p) and Kr*(5p) atoms

    NARCIS (Netherlands)

    Schohl, S.; Meijer, H.A.J.; Ruf, M.-W.; Hotop, H.

    1992-01-01

    A laser method for the determination of the electron emission coeflicient γ for the impact of slow laser-excited rare gas atoms Rg*[mp5(m+1)p3D3] on surfaces is described. It is based on controlled partial depletion of metastable Rg*[mp5(m+1)s3P2] atoms in a collimated beam by two-step laser

  14. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    Science.gov (United States)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  15. Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas

    Science.gov (United States)

    Manish, Jugroot

    2016-10-01

    Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters—and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics—namely gas heating and electric field reversals. supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) — Discovery Grant (No. 342369)

  16. Method for integrating a train of fast, nanosecond wide pulses

    International Nuclear Information System (INIS)

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  17. Tesla coil discharges guided by femtosecond laser filaments in air

    OpenAIRE

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-01-01

    International audience; A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  18. Ultra-fast detectors for laser fusion diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Tan, T.H.; Williams, A.H.; Hocker, L.P.; Zagarino, P.A.; Simmons, D.

    1980-01-01

    An ultra-high speed detector with sub-nanosecond time resolution was developed to diagnose many short-time-interval phenomena, particularly those occurring in laser-matter interaction. The detector consists of a quenched plastic scintillator that is coupled to a microchannel plate photomultiplier. Full characterization of the detector components and sample data from measurements are described. (orig.)

  19. Ultra-fast detectors for laser fusion diagnostics

    Science.gov (United States)

    Lyons, P. B.; Tan, T. H.; Williams, A. H.; Hocker, L. P.; Zagarino, P. A.; Simmons, D.

    1980-05-01

    An ultra-high speed detector with sub-nanosecond time resolution was developed to diagnose many short-time-interval phenomena, particularly those occuring in laser-matter interaction. The detector consists of a quenched plastic scintillator that is coupled to a microchannel plate photomultiplier. Full characterization of the detector components and sample data from measurements are described.

  20. Low-Level Laser Light Therapy Improves Cognitive Deficits and Inhibits Microglial Activation after Controlled Cortical Impact in Mice

    OpenAIRE

    Khuman, Jugta; Zhang, Jimmy; Park, Juyeon; Carroll, James D.; Donahue, Chad; Whalen, Michael J.

    2012-01-01

    Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level...

  1. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior

    Science.gov (United States)

    Lou, Xiaoyuan; Andresen, Peter L.; Rebak, Raul B.

    2018-02-01

    Intergranular and intragranular Si and Mn rich oxide inclusions are present in laser additive manufactured austenitic stainless steel. The uniform oxide dispersions in additive manufactured material promoted early initiation of microvoids and reduced its impact toughness relative to powder metallurgy (hot isostatic pressing) and wrought materials. For stress corrosion cracking in high temperature water, the silica inclusions along the grain boundaries preferentially dissolved and appeared to accelerate oxidation and caused extensive crack branching.

  2. THE INFLUENCE OF NANOSECOND ELECTROMAGNETIC PULSES TO OBTAIN TIN AND THE PROPERTIES OF ITS ALLOYS

    Directory of Open Access Journals (Sweden)

    V. G. Komkov

    2012-01-01

    Full Text Available Experimentally found that the effect of nanosecond electromagnetic pulses to melt the charge, while the carbon thermal recovery of the tin ore, accelerates the formation of the metallic phase.

  3. Comparison of the influence of ozone and laser therapies on pain, swelling, and trismus following impacted third-molar surgery.

    Science.gov (United States)

    Kazancioglu, Hakki Oguz; Ezirganli, Seref; Demirtas, Nihat

    2014-07-01

    This study aims to evaluate the efficacy of the ozone and laser application in the management of pain, swelling, and trismus after third-molar surgery. Sixty consecutive patients with asymptomatic impacted mandibular third molars were recruited into the study. Patients were randomized into three treatment groups of 20 patients each: two study groups (group 1 = low-level laser therapy (LLLT), group 2 = ozone therapy) and a control group (no-LLLT or ozone therapy). Twenty teeth extractions were performed in each group. Evaluations of postoperative pain, the number of analgesics tablets taken, trismus, swelling, and quality of life (Oral Health Impact Profile-14 questionnaire) were made. The sample consisted of 28 female and 32 male patients, whose total mean age was 23.5 ± 3.4 (range, 18-25) years. The pain level and the number of analgesics tablets taken were lower in the ozonated and LLLT applied groups than in the control group. This study showed that ozone and low power laser therapies had a positive effect on the patients' quality of life. Trismus in the LLLT group was significantly less than in the ozonated and control groups (p = 0.033). Ozone application showed no superiority in regards of postoperative swelling; however, LLLT group had significantly lower postoperative swelling. This study demonstrates that ozone and laser therapies are useful for the reduction of postoperative pain and they increase quality of life after third-molar surgery. Although the ozone therapy had no effect on postoperative swelling and trismus after surgical removal of impacted lower third molars, LLLT had a positive effect.

  4. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  5. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  6. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  7. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm.

    Science.gov (United States)

    Bien-Aimé, K; Belin, C; Gallais, L; Grua, P; Fargin, E; Néauport, J; Tovena-Pecault, I

    2009-10-12

    The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.

  8. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    Science.gov (United States)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  9. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  10. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  11. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  12. Liquid-assisted pulsed laser cleaning with near-infrared and ultraviolet pulsed lasers

    Science.gov (United States)

    Grigoropoulos, Constantine P.; Kim, Dongsik

    2002-02-01

    Liquid-assisted steam nanosecond pulsed laser irradiation is shown to be effective for cleaning contaminant particles as small as 0.3 micrometers in diameter from metallic substrates. The cleaning threshold and efficiency are investigated for the fundamental and frequency-tripled Nd:YAG laser harmonics (wavelengths (lambda) equals1064 and 355 nm). The rapid phase- change and thin liquid film ablation processes are examined in order to elucidate the cleaning mechanism. The pressure enhancement accompanying the explosive-vaporization process and the momentum supplied by the ablation plume are the main sources of the augmented cleaning efficiency at moderate laser energy densities.

  13. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  14. Relaxation in polymer electrolytes on the nanosecond timescale

    International Nuclear Information System (INIS)

    Mao, G.; Fernandez-Perea, R.; Price, D.L.; Saboungi, M.-L.; Howells, W.S.

    2000-01-01

    The relation between mechanical and electrical relaxation in polymer/lithium-salt complexes is a fascinating and still unresolved problem in condensed-matter physics, yet has an important bearing on the viability of such materials for use as electrolytes in lithium batteries. At room temperature, these materials are biphasic: they consist of both fluid amorphous regions and salt-enriched crystalline regions. Ionic conduction is known to occur predominantly in the amorphous fluid regions. Although the conduction mechanisms are not yet fully understood, it is widely accepted that lithium ions, coordinated with groups of ether oxygen atoms on single or perhaps double polymer chains, move through re-coordination with other oxygen-bearing groups. The formation and disruption of these coordination bonds must be accompanied by strong relaxation of the local chain structure. Here we probe the relaxation on a nanosecond timescale using quasielastic neutron scattering, and we show that at least two processes are involved: a slow process with a translational character and one or two fast processes with a rotational character. Whereas the former reflects the slowing-down of the translational relaxation commonly observed in polyethylene oxide and other polymer melts, the latter appears to be unique to the polymer electrolytes and has not (to our knowledge) been observed before. A clear picture emerges of the lithium cations forming crosslinks between chain segments and thereby profoundly altering the dynamics of the polymer network.

  15. Nanostructures and nanosecond dynamics at the polymer/filler interface

    Science.gov (United States)

    Koga, Tad; Barkley, Deborah; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Taniguchi, Takashi

    We report in-situ nanostructures and nanosecond dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in polymer solutions (from dilute to concentrated solutions). The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene (a good solvent) to label the BPL for ``contrast-matching'' small-angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the NSE results show that the dynamics of the swollen bound chains in the polymer solutions can be explained by the collective dynamics, the so-called ``breathing mode''. Intriguingly, it was also indicative that the collective dynamics is independent of the polymer concentrations and is much faster than that predicted from the solution viscosity. We will discuss the mechanism at the bound polymer-free polymer interface at the nanometer scale. T.K. acknowledges the financial support from NSF Grant (CMMI-1332499).

  16. Generation of sub-nanosecond pulses using peaking capacitor

    Directory of Open Access Journals (Sweden)

    Madhu Palati

    2017-05-01

    Full Text Available This paper discusses the analysis, simulation and design of a peaking circuit comprising of a peaking capacitor, spark gap and load circuit. The peaking circuit is used along with a 200 kV, 20 J Marx generator for generation of sub-nanosecond pulses. A high pressure chamber to accommodate the peaking circuit was designed and fabricated and tested upto a pressure of 70 kg/cm2. Total estimated values of the capacitance and inductance of the peaking circuit are 10 pF and 72 nH respectively. At full charging voltage, the peaking capacitor gets charged to a peak voltage of 394.6 kV in 15 ns. The output switch is closed at this instant. From Analysis & Simulation, the output current & rise time (with a matched load of 85 Ω are 2.53 kA and 0.62 ns.

  17. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    Science.gov (United States)

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  18. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  19. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    Science.gov (United States)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  20. Characterization of laser-induced plasmas of nucleobases: Uracil and thymine

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quintas, I., E-mail: ilopez@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Oujja, M.; Sanz, M.; Benitez-Cañete, A. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Hutchison, C. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Nalda, R. de; Martin, M. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, R.A. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Voronezh State University, Voronezh 394006 (Russian Federation); Marangos, J.P. [Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Castillejo, M. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2014-05-01

    In this work, nanosecond laser ablation plasmas generated at 266 and 1064 nm of the two pyrimidine nucleobases uracil and thymine were characterized using time-of-flight mass spectrometry, optical emission spectroscopy and temporally resolved third harmonic generation of a probe laser. This multiple technique approach provides insight into the role played by the irradiation wavelength on the composition and dynamics of plasma species and on the differences between the laser plasmas of the two nucleobases.

  1. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  2. Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes

    Science.gov (United States)

    Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.

    2017-09-01

    Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.

  3. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  4. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    López, G., E-mail: gema.lopez@upc.edu; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    Highlights: • We use laser doping technique to create highly-doped regions. • Dielectric layers are used as both passivating layer and dopant source. • The high quality of the junctions makes laser doping technique using dielectric layers as dopant source suitable for solar cells applications. - Abstract: In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiC{sub x}/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al{sub 2}O{sub 3}) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J–V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  5. Laser-shocked energetic materials for laboratory-scale characterization and model validation

    Science.gov (United States)

    Gottfried, Jennifer

    The development of laboratory-scale methods for characterizing the properties of energetic materials, i.e., using only milligram quantities of material, is essential for the development of new types of explosives and propellants for use in military applications. Laser-based excitation methods for initiating or exciting the energetic material offer several advantages for investigating the response of energetic materials to various stimuli: 1) very small quantities of material can be studied prior to scale-up synthesis, 2) no detonation of bulk energetic material is required, eliminating the need for expensive safety precautions, and 3) extensive diagnostics can be incorporated into the experimental setup to provide as much information as possible per shot. In this presentation, progress in our laboratory developing three laser-based methods for characterizing energetic materials will be discussed. Direct excitation of a sample residue using a focused nanosecond laser pulse enables estimation of the performance of the energetic material based on the measured shock wave velocity with a technique called laser-induced air shock from energetic materials (LASEM); recent LASEM results on novel energetic materials will be presented. Impact ignition of energetic materials has also been investigated using laser-driven flyer plates. High-speed schlieren imaging of the flyer plate launch has demonstrated that late-time emission from the impacted energetic material is caused by the reaction of particles ejected off the sample surface with the flyer plate launch products. Finally, the role of a rapid temperature jump (1014 K/s) in the initiation of the explosive cyclotrimethylenetrinitramine (RDX) has been investigated by indirect ultrafast laser heating. Although the temperature jump was insufficient to decompose the RDX, it did induce a temporary electronic excitation of the heated explosive molecules. These results are being used to validate multiscale models in order to

  6. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    Science.gov (United States)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  7. Impact of CO2 laser and stannous fluoride on primary tooth erosion.

    Science.gov (United States)

    Rocha, Cristiane Tomaz; Turssi, Cecilia Pedroso; Rodrigues-Júnior, Antonio Luiz; Corona, Silmara Aparecida Milori

    2016-04-01

    This study evaluated in vitro the effect of input power of CO2 laser, either associated or not to stannous fluoride (SnF2) gel, for the control of intrinsic erosion in primary teeth. One hundred four enamel slabs (3 × 3 × 2 mm) from human primary molars were flattened and polished. Adhesive tapes were placed on their surface leaving a window of 3 × 1 mm. Slabs were then cycled four times in 0.01 M hydrochloric acid (pH 2, 2 min) and in artificial saliva (2 h) for creation of erosive lesions. Specimens were randomly assigned into eight groups (n = 13) according to fluoride application [absent (control) or 0.4% stannous fluoride gel (SnF2)] and input power of CO2 laser [unlased (control), 0.5, 1.0 or 1.5 W]. The CO2 laser irradiation was performed in an ultra-pulse mode (100 μs of pulse duration), 4-mm working distance, for 10 s. Specimens were then submitted to further erosive episodes for 5 days and evaluated for enamel relative permeability. Fluoride did not show any protective effect for any of the laser-treated groups or control (p = 0.185). However, a significant effect was detected for input power of CO2 laser (p = 0.037). Tukey's test showed that there was a significant statistically difference between specimens irradiated with 0.5 and 1.5 W (p = 0.028). The input power of 0.5 W showed lower permeability. Variation of input power CO2 laser can influence enamel permeability, at the power of 1.5 W which promoted greater permeability.

  8. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  9. Evolution of metastable state molecules N2(A3Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    International Nuclear Information System (INIS)

    Gao Liang; Sun Jizhong; Feng Chunlei; Bai Jing; Ding Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N 2 (A 3 Σ u + ) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N 2 (A 3 Σ u + ) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N 2 (A 3 Σ u + ) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N 2 (A 3 Σ u + ) density can achieve a value in the order of 10 9 cm -3 . The N 2 (A 3 Σ u + ) density at such a value could be easily detected by laser-based experimental methods.

  10. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    Science.gov (United States)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  11. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    Science.gov (United States)

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  12. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    Science.gov (United States)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  13. Impact of the spectroscopic properties of rare-earth ions on solid-state laser systems

    NARCIS (Netherlands)

    Pollnau, Markus

    The electronic energy level schemes within the 4f subshells of rare-earth ions give rise to a number of fluorescence transitions ranging from the near-UV to the mid-IR spectral region. A large variety of laser lines have been demonstrated based on these fluorescence transitions. Depending on the

  14. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  15. Numerical Study of Control of Flow Separation Over a Ramp with Nanosecond Plasma Actuator

    Science.gov (United States)

    Zheng, J. G.; Khoo, B. C.; Cui, Y. D.; Zhao, Z. J.; Li, J.

    2016-06-01

    The nanosecond plasma discharge actuator driven by high voltage pulse with typical rise and decay time of several to tens of nanoseconds is emerging as a promising active flow control means in recent years and is being studied intensively. The characterization study reveals that the discharge induced shock wave propagates through ambient air and introduces highly transient perturbation to the flow. On the other hand, the residual heat remaining in the discharge volume may trigger the instability of external flow. In this study, this type of actuator is used to suppress flow separation over a ramp model. Numerical simulation is carried out to investigate the interaction of the discharge induced disturbance with the external flow. It is found that the flow separation region over the ramp can be reduced significantly. Our work may provide some insights into the understanding of the control mechanism of nanosecond pulse actuator.

  16. Paper un-printing: using lasers to remove toner-print in order to reuse office paper

    Science.gov (United States)

    Leal-Ayala, D. R.; Allwood, J. M.; Counsell, T. A. M.

    2011-12-01

    In this article, lasers in the ultraviolet, visible and infrared light spectra working with pulse widths in the nanosecond range are applied to a range of toner-paper combinations to determine their ability to remove toner. If the laser energy fluence can be chosen to stay below the ablation threshold of paper at the same time that it surpasses that of toner, paper could be cleaned and re-used instead of being recycled or disposed into a landfill. This could significantly reduce the environmental impact of paper production and use. Although there are a variety of paper conservation studies which have investigated the effects of laser radiation on blank and soiled paper, none has previously explored toner-print removal from paper by laser ablation. Colour analysis under the L ∗ a ∗ b ∗ colour space and SEM examination of the outcome indicate that it is possible to remove toner from paper without damaging and discolouring the substrate. Best results are obtained when employing visible radiation at a wavelength of 532 nm working with a pulse width of 4 ns and energy fluences under 1.6 J/cm2. This means that it is technically feasible to remove toner-print for paper re-use.

  17. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    Directory of Open Access Journals (Sweden)

    Stelzle Florian

    2012-06-01

    Full Text Available Abstract Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA, followed by linear discriminant analysis (LDA. To assess the potential of tissue differentiation, area under the curve (AUC, sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%. However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85. Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the

  18. Energy coupling in short pulse laser solid interactions and its impact for space debris removal.

    Science.gov (United States)

    Neely, David; Allott, Ric; Bingham, Bob; Collier, John; Greenhalgh, Justin; Michaelis, Max; Phillips, Jonathan; Phipps, Claude R; McKenna, Paul

    2014-11-01

    Significant advances have been made over the last decade to improve the performance, efficiency, and contrast of high peak and average power laser systems, driven by their use in a wide variety of fields, from the industrial to the scientific. As the contrast of the lasers has improved, interactions with contrasts of 1012 are now routinely undertaken. At such high contrasts, there is negligible preplasma formation and the ionized surface layer created by subpicosecond-duration pulses typically forms a highly reflective "plasma mirror" capable of reflecting between 70% and 90% of the incident energy. Although such interactions are of significant interest for applications such as harmonic source production and to enable the underlying physics to be studied, their low absorption can limit their usefulness for applications such as space debris removal.

  19. Impact of Error in Atmospheric State on Column CO2 Retrievals from a Laser CO2 Sounder

    Science.gov (United States)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.

    2016-12-01

    NASA Goddard is developing an integrated-path, differential absorption (IPDA) lidar approach to measure global atmospheric column CO2 concentrations from space as a candidate for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. This pulsed laser approach uses a step-locked laser diode source and a high-efficiency detector to measure atmospheric column CO2 absorption at multiple wavelengths across a CO2 line centered at 1572.335 nm with minimum temperature sensitivity. Atmospheric states from a global numerical forecast and data assimilation model are used as ancillary data to produce the best retrievals of column-averaged CO2 mixing ratio with regards to dry air. Retrieval error, both bias and random error, depends on uncertainties of atmospheric states for atmospheric radiative transfer calculations that are then used to fit measured CO2 absorption line shape for retrievals. Temperature data uncertainty, for example, can modify air density as well as absorption line intensity and line shape, which could cause significant error in radiative transfer calculations and then in column CO2mixing ratio retrievals. Uncertainty in atmospheric pressure and water vapor could also further increase retrieval error. We use atmospheric temperature profiles from Atmospheric InfraRed Sounder retrievals and the European Center for Medium range Weather Forecasting Model to assess temperature impact on spaceborne measurement of ASCENDS using our Goddard IPDA approach. We find the temperature differences produce a small impact on optical depth measurements on our CO2 line. Uncertainty in the atmospheric surface pressure could cause greater impact, implying a requirement for accurate dry air column density information in addition to laser ranging capability. We use data from the 2014 and 2016 ASCENDS airborne science campaigns to evaluate the atmospheric impact on our column CO2 concentration retrievals using the Goddard GEOS-5 meteorological

  20. Surface oxidation and phase transformation of the stainless steel by hybrid laser-waterjet impact

    International Nuclear Information System (INIS)

    Weiss, L; Tidu, A; Aillerie, M; Tazibt, A

    2014-01-01

    Hybrid jets (laser guided by water jet) are commonly used in the area of microelectronics for cutting thin wafer plates and for the design of special pieces. In this context, the hybrid jet works with a low power and low pressure. Efforts are made to apply and to improve this hybrid technology for cutting thicker metallic materials. In order to facilitate this development, we have studied the effects induced by a water jet–laser system coupled to the same point on a metallic material. The pressure of the water jet is about 1 MPa and the power of the laser source is about 400 W, which is much higher than the actual hybrid jet power. As a result, in the case of 301 L steel plates, we have noticed the formation of a magnetite layer around the cut in accordance with the high temperature reactions between water and iron, but, surprisingly, in this case, the reaction is practically instantaneous. A small percentage of hematite also appears, from a secondary reaction of reduction of magnetite. By using different techniques (Raman spectroscopy, optical microscopy, SEM, XRD…) we have observed, firstly, that the width of the oxidized zone is proportional to the cutting speed and on the other hand, that there exists a phase transformation in a small heat-affected zone, consistent with the hybrid jets literature. (paper)

  1. Surface oxidation and phase transformation of the stainless steel by hybrid laser-waterjet impact

    Science.gov (United States)

    Weiss, L.; Aillerie, M.; Tazibt, A.; Tidu, A.

    2014-09-01

    Hybrid jets (laser guided by water jet) are commonly used in the area of microelectronics for cutting thin wafer plates and for the design of special pieces. In this context, the hybrid jet works with a low power and low pressure. Efforts are made to apply and to improve this hybrid technology for cutting thicker metallic materials. In order to facilitate this development, we have studied the effects induced by a water jet-laser system coupled to the same point on a metallic material. The pressure of the water jet is about 1 MPa and the power of the laser source is about 400 W, which is much higher than the actual hybrid jet power. As a result, in the case of 301 L steel plates, we have noticed the formation of a magnetite layer around the cut in accordance with the high temperature reactions between water and iron, but, surprisingly, in this case, the reaction is practically instantaneous. A small percentage of hematite also appears, from a secondary reaction of reduction of magnetite. By using different techniques (Raman spectroscopy, optical microscopy, SEM, XRD…) we have observed, firstly, that the width of the oxidized zone is proportional to the cutting speed and on the other hand, that there exists a phase transformation in a small heat-affected zone, consistent with the hybrid jets literature.

  2. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film

    Science.gov (United States)

    Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V.

    2018-01-01

    We have experimentally shown that nanosecond near-IR pulsed laser ablation of a thin amorphous carbon film produces carbon quantum dots with a graphite structure and nanodiamonds with a characteristic size of 20 - 500 nm on the substrate surface. The formation of these nanostructures is confirmed by electron microscopic images, luminescence spectra and Raman spectra. The mechanisms explaining the observed effects are proposed.

  3. Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water

    NARCIS (Netherlands)

    Yasukuni, R.; Asahi, T.; Sugiyama, T.; Masuhara, H.; Sliwa, M.; Hofkens, J.; De Schryver, F. C.; Van der Auweraer, M.; Herrmann, A.; Mueller, K.; Müllen, K.

    2008-01-01

    Highly fluorescent organic nanoparticles with size of about 300 nm were prepared by nanosecond laser ablation of micrometer-sized powder of dendronized perylenediimide dispersed in water. The nanoparticle colloidal solution provided a fluorescence quantum yield of 0.58. The absorption and emission

  4. Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    García-Merino, J.A.; Martínez-González, C.L.; Miguel, C.R. Torres-San [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Martínez-Gutiérrez, H. [Centro de Nanociencia y MicroNanotecnología del Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico); Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738 México Distrito Federal (Mexico)

    2015-04-15

    Highlights: • Carbon nanotubes were prepared by an aerosol pyrolysis method. • Thermal phenomena were induced by nanosecond irradiation. • Photoconductive and nonlinear optical properties were evaluated. • A monostable multivibrator function in carbon nanotubes was analyzed. - Abstract: The influence of the optical absorption exhibited by multi-wall carbon nanotubes on their photothermal, photoconductive and nonlinear optical properties was evaluated. The experiments were performed by using a Nd:YAG laser system at 532 nm wavelength and 1 ns pulse duration. The observations were carried out in thin film samples conformed by carbon nanotubes prepared by an aerosol pyrolysis method; Raman spectroscopy studies confirmed their multi-wall nature. Theoretical and numerical calculations based on the heat equation allow us to predict the temporal response of the induced effects associated to the optical energy transference. A two-wave mixing method was employed to explore the third order nonlinear optical response exhibited by the sample. A dominant thermal process was identified as the main physical mechanism responsible for the optical Kerr effect. Potential applications for developing a monostable multivibrator exhibiting different time-resolved characteristics were analyzed.

  5. Laser-induced nucleation of carbon dioxide bubbles

    Science.gov (United States)

    Ward, Martin R.; Jamieson, William J.; Leckey, Claire A.; Alexander, Andrew J.

    2015-04-01

    A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm-2) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm-2) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm-2). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.

  6. Pulsed Laser Annealing of Carbon

    Science.gov (United States)

    Abrahamson, Joseph P.

    This dissertation investigates laser heating of carbon materials. The carbon industry has been annealing carbon via traditional furnace heating since at least 1800, when Sir Humphry Davy produced an electric arc with carbon electrodes made from carbonized wood. Much knowledge has been accumulated about carbon since then and carbon materials have become instrumental both scientifically and technologically. However, to this day the kinetics of annealing are not known due to the slow heating and cooling rates of furnaces. Additionally, consensus has yet to be reached on the cause of nongraphitizability. Annealing trajectories with respect to time at temperature are observed from a commercial carbon black (R250), model graphitizable carbon (anthracene coke) and a model nongraphitizable carbon (sucrose char) via rapid laser heating. Materials were heated with 1064 nm and 10.6 im laser radiation from a Q-switched Nd:YAG laser and a continuous wave CO2 laser, respectively. A pulse generator was used reduce the CO2 laser pulse width and provide high temporal control. Time-temperature-histories with nanosecond temporal resolution and temperature reproducibility within tens of degrees Celsius were determined by spectrally resolving the laser induced incandescence signal and applying multiwavelength pyrometry. The Nd:YAG laser fluences include: 25, 50, 100, 200, 300, and 550 mJ/cm2. The maximum observed temperature ranged from 2,400 °C to the C2 sublimation temperature of 4,180 °C. The CO2 laser was used to collect a series of isothermal (1,200 and 2,600 °C) heat treatments versus time (100 milliseconds to 30 seconds). Laser heated samples are compared to furnace annealing at 1,200 and 2,600 °C for 1 hour. The material transformation trajectory of Nd:YAG laser heated carbon is different than traditional furnace heating. The traditional furnace annealing pathway is followed for CO2 laser heating as based upon equivalent end structures. The nanostructure of sucrose char

  7. Three dimensional alignment of molecules using elliptically polarized laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Hald, K.

    2000-01-01

    We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...... is illustrated through time dependent quantum mechanical calculations. Experimentally, 3, 4-dibromothiophene molecules are aligned with a nanosecond laser pulse. The alignment is probed by 2D ion imaging of the fragments from a 20 fs laser pulse induced Coulomb explosion....

  8. Interaction of CO2 laser radiation with dense plasma

    OpenAIRE

    Abdel-Raoof, Wasfi Sharkawy

    1980-01-01

    The instabilities which occur in the interaction of CO2 laser radiation with a dense plasma have been studied. A TEA CO2 laser provided pulses of up to 30 joules of energy with a duration of 50 nanoseconds. By focussing the radiation on to a plane target a focal spot of about 180 micrometers diameter was formed with a irradiance of 10 to 10 W cm. The scattered radiation was collected by a laser focussing lens and analysed with a grating spectrometer. Linear relationships have been found betwe...

  9. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. II. Theory

    International Nuclear Information System (INIS)

    Feit, M.D.; Rubenchik, A.M.; Shore, B.W.

    1994-12-01

    The authors have reported extensive measurements of damage thresholds for fused silica and several fluorides (LiF, CaF, MgF, and BaF) at 1053 and 526 nm for pulse durations, τ, ranging from 275 fs to 1 ns. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional (avalanche) ionization is in good agreement with experimental results

  10. Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities

    Science.gov (United States)

    Brown, C. G., Jr.; Bond, E.; Clancy, T.; Dangi, S.; Eder, D. C.; Ferguson, W.; Kimbrough, J.; Throop, A.

    2010-08-01

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  11. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    Science.gov (United States)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  12. Pulsed Laser Ablation and Deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser

    Science.gov (United States)

    Reilly, Anne; Allmond, Chris; Shinn, Michelle

    2002-05-01

    We have been conducting some of the first experiments in pulsed laser ablation and deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser (TJNAF-FEL). The wavelength tunability, high average power (up to 1.72 kW), very high repetition rate (cw rate up to 74 MHz) and ultrafast pulses ( 650 fs) of the TJNAF-FEL present a combination of parameters unmatched by any laser, which has marked benefits for ablation and deposition. We will be presenting results on ablation of metals (Co,NiFe,Ti,Nb). Comparison with thin films deposited with a standard nanosecond laser source and an ultrafast low-repetition rate laser system show the advantage of using the FEL to produce high quality films at high deposition rates. Preliminary optical spectroscopy studies of the ablation plume and electron/ion emission studies during ablation will also be presented.

  13. Lasers in tattoo and pigmentation control: role of the PicoSure(®) laser system.

    Science.gov (United States)

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure(®) laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure(®) laser system for tattoo removal. A PubMed search was conducted using the term "picosecond" combined with "laser", "dermatology", and "laser tattoo removal". A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure(®) laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments.

  14. Nano-Second Isomers in Neutron-Rich Ni Region Produced by Deep-Inelastic Collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2001-01-01

    Nuclear structure of the doubly magic 68 Ni and its neighbors has been studied by spectroscopic techniques. Developing a new instrument isomer-scope, we have measured γ rays from nano-second isomers produced in heavy-ion deep-inelastic collisions with great sensitivity. (author)

  15. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  16. Low-dielectric layer increases nanosecond electric discharges in distilled water

    OpenAIRE

    Ahmad Hamdan; Min Suk Cha

    2016-01-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today’s research. Here we present an experimental study of nanosecond discharge i...

  17. A nanosecond high voltage pulse device for accelerator time analytical system

    International Nuclear Information System (INIS)

    Lou Binqiao; Ding Furong; Xue Zhihua; Wang Xuemei; Shen Dingyu

    2002-01-01

    A nanosecond high voltage pulse device has been designed. The pulse rise time is 10 ns. The pulse voltage reached 16000 V. This device has been used to accelerator time analytical system, its resolution time is less than 0.8%

  18. Laser impact: from two-temperature warm dense matter to crystallized surface structures

    Science.gov (United States)

    Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor

    We consider laser ablation dynamics of thin films mounted on substrate or freestanding. Optical or X-ray lasers are used. Focusing systems are based on a high aperture lens or on a phase plate. Thus or diffraction limited focal spot with maximum in the center and approximately Gaussian fluence distribution around, or ring type distribution with zero of fluence in a center are formed. Topologically different cupola like or torus like structures made from a deformed film are created under these two focusing conditions. We develop a wide set of techniques to describe thermodynamic, transport, and kinetic properties of isothermal (Te =Ti) and non-isothermal (Te <

  19. Study of laser - material interaction applied to the elemental analysis of solids

    International Nuclear Information System (INIS)

    Salle, Beatrice

    1999-01-01

    The principle of Optical Emission Spectroscopy on Laser Produced Plasma, used for materials elemental analysis, is to focus a high power laser on a target in order to vaporise it. The analytical performances should be improved by a better control of the laser target interaction with a better understanding of physical mechanisms involved in laser ablation process. The aim of this work was to study the influence of pulse duration (femtosecond to nanosecond) on the laser micro-ablation process (interaction diameters around 10 μm) at atmospheric pressure in order to define the interaction regimes where the plasma influences the ablation and which are de-favorable for a proper control of process in microanalysis conditions. The study was directed toward the evolution changes of ablation efficiency with laser irradiance growth. lt was realised by the observation of craters formed on metals surface and by time resolved plasma analysis during and after one laser pulse. The different results show two interaction regimes with the limit between 800 fs and 2 ps. In the femtosecond regime, the interaction is direct between the laser and the metal sample. The ablation efficiency is independent on the laser wavelength and better compared with the picosecond-nanosecond regime. In this last regime, the material is vaporised during the laser pulse and the plasma created onto the target can absorb, reflect and diffuse the incident laser beam. This reduces the ablation efficiency in comparison with the femtosecond regime which depends on experimental conditions (laser wavelength, interaction diameter). With a multimode nanosecond laser focused with a large numerical aperture objective, it is possible to reduce the plasma screening and to obtain a crater volume equal to the volume obtained in the ideal femtosecond interaction regime. (author) [fr

  20. Assessing the quantum physics impacts on future x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now considered a resource in the international FEL community for assessing quantum effects in XFELs.

  1. Impact of organic contamination on laser-induced damage threshold of high reflectance coatings in vacuum

    International Nuclear Information System (INIS)

    Cui Yun; Zhao Yuanan; Yu Hua; He Hongbo; Shao Jianda

    2008-01-01

    The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO 2 /SiO 2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N 2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings

  2. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  3. Lasers in ophthalmology.

    Science.gov (United States)

    Gilmour, Margi A

    2002-05-01

    Laser technology continues to progress with the addition of new lasers, new delivery systems, and new applications. The introduction of lasers to veterinary ophthalmology has radically changed the level of care that we can provide to our patients. The development of the diode laser has particularly had an impact on veterinary ophthalmology. The diode's affordability, portability, and broad applications for veterinary patients have allowed laser surgery to become a routine part of veterinary ophthalmology practice. Educating the public and veterinary community in available laser techniques will generate improved ophthalmic care and provide more data on which to build future applications.

  4. Impact of Electron Collision Mixing on the delay times of an electron beam excited Atomic Xe laser

    NARCIS (Netherlands)

    Peters, P.J.M.; Lan, Y.F.; Lan, Yun Fu; Ohwa, Mieko; Kushner, Mark J.

    1990-01-01

    The atomic xenon (5d¿6p) infrared laser has been experimentally and theoretically investigated using a short-pulse (30-ns), high-power (1-10-MW/cm3) coaxial electron beam excitation source. In most cases, laser oscillation is not observed during the e-beam current pulse. Laser pulses of hundreds of

  5. In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer

    Science.gov (United States)

    Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.

    2012-01-01

    A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.

  6. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Science.gov (United States)

    López, G.; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiCx/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J-V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  7. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  8. Breakdown plasma and vortex flow control for laser ignition using a combination of nano- and femto-second lasers.

    Science.gov (United States)

    Kojima, Hirokazu; Takahashi, Eiichi; Furutani, Hirohide

    2014-01-13

    The breakdown plasma and successive flow leading to combustion are controlled by the combination of a nano-second Nd:YAG laser and a femto-second Ti:Sapphire (TiS) laser. The behaviors are captured by an intensified charged coupled device (ICCD) camera and a high-speed schlieren optical system. The TiS laser determines the initial position of the breakdown by supplying the initial electrons in the optical axis of focusing YAG laser pulses. We show that the initial position of the breakdown can be controlled by the incident position of the TiS laser. In addition, the ignition lean limit of the flammable mixture changes depending on the TiS laser incident position, which is influenced by hot gas distribution and the flow in the flame kernel.

  9. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice.

    Science.gov (United States)

    Khuman, Jugta; Zhang, Jimmy; Park, Juyeon; Carroll, James D; Donahue, Chad; Whalen, Michael J

    2012-01-20

    Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level laser light (800 nm) was applied directly to the contused parenchyma or transcranially in mice beginning 60-80 min after CCI. Injured mice treated with 60 J/cm² (500 mW/cm²×2 min) either transcranially or via an open craniotomy had modestly improved latency to the hidden platform (pcraniotomy mice were associated with reduced microgliosis at 48 h (21.8±2.3 versus 39.2±4.2 IbA-1+ cells/200×field, pcognitive function was observed using the other doses, a 4-h administration time point and 7-day administration of 60 J/cm². No effect of LLLT (60 J/cm² open craniotomy) was observed on post-injury motor function (days 1-7), brain edema (24 h), nitrosative stress (24 h), or lesion volume (14 days). Although further dose optimization and mechanism studies are needed, the data suggest that LLLT might be a therapeutic option to improve cognitive recovery and limit inflammation after TBI.

  10. Measurement of nonlinear fracture parameter T integral under impact loading using laser caustic method

    International Nuclear Information System (INIS)

    Nishioka, T.; Sakai, K.; Murakami, T.; Matsuo, S.; Sakakura, K.

    1991-01-01

    In order to establish a sound design methodology assuring the integrity of nuclear structures against nonlinear static and dynamic fractures, a unified crack tip parameter is essential due to the existence of various aspects of material behavior in such structures. However, so-called J integral loses its theoretical validity when a crack grows dynamically or elastoplastically, or when a material is subjected to dynamic loading or elastic-plastic unloading. Dynamic J integral has been derived, which has the same features as those of static J integral. Later, a more general path-independent integral which is valid for any material-constitutive model under quasi-static and dynamic conditions was derived. This integral has the great potential as a unified crack tip parameter. Nonlinear dynamic fracture parameter T integral, the hybrid numerical-experimental method for T measurement, and the measurement of the T integral in dynamic tear test are described. The high speed photographs of the caustic pattern in dynamic tear test specimens were taken by a laser caustic method. (K.I.)

  11. Drop weight impact strength measurement method for porous concrete using laser doppler velocimetry

    NARCIS (Netherlands)

    Agar-Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2012-01-01

    In this study, an experimental configuration that reveals the dynamic response of porous concretes in a drop weight impact test was introduced. Through the measurement of particle velocity at the interface, between the impactor and the concrete target, the dynamic response was obtained in an easily

  12. Picosecond lasers: the next generation of short-pulsed lasers.

    Science.gov (United States)

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B

    2014-12-01

    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  13. Experimental and theoretical studies of picosecond laser interactions with electronic materials-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Samuel S. [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Lasers having picosecond and shorter pulse duration are receiving much attention due to their capabilities for direct-write micromachining on many materials with minimal substrate damage. Substantial progress has been made in the understanding of laser ablation processes, particularly the creation of plasmas that often shield the target and reduce the material processing efficiency at nanosecond time scales. However, a considerable challenge that still remains is the understanding of the underlying mechanisms during picosecond laser interactions with electronic solids. In this work we first study picosecond laser-induced electron emission from semiconductor surfaces. A theoretical model was set up based on carrier transport inside the semiconductor material during picosecond laser-semiconductor interactions. We demonstrate that nonequilibrium carrier dynamics plays a significant role for picosecond, as well as short nanosecond, laser induced electron emission from semiconductors. Photoelectric effect is found to be responsible for electron emission at low incident laser fluences, whereas thermionic emission is dominant at higher fluences. We have also performed experimental and theoretical studies on the formation and subsequent evolution of plasmas during laser-metal interactions at the picosecond time scale. Using picosecond time-resolved shadowgrams ahd interferograms, a novel type of plasma is observed, which has an electron density on the order of 1020cm-3.The origin of this picosecond plasma is attributed to gas breakdown, which is caused by laser-induced electron emission fi-om the target surface. After the laser pulse is completed, the longitudinal expansion of the plasma is suppressed. This suppression is found to result from an electric field above the target that prevents, after laser irradiation, fbrther movement of the electrons inside the plasma. Measurements of lateral plasma expansion indicate that the picosecond plasma may absorb

  14. In-situ and ex-situ ripples formation on copper thin films induced by nano and picosecond pulsed lasers

    Science.gov (United States)

    Huynh, Thi Trang Dai; Petit, Agnes; Pichard, Cecile; Amin-Chalhoub, Eliane; Semmar, Nadjib

    2012-07-01

    Laser induced periodic surface structure (LIPSS) process on copper thin films by nanoand picosecond pulsed lasers was analyzed by scanning electron microscope (SEM) and timeresolved reflectivity (TRR) methods. The 500nm and 1000nm thickness of copper thin filmswere deposited on silicon and glass substrates by magnetron sputtering technique. Differentperiodic surface micro and nanostructures of copper thin films (thickness of 1000nm) on siliconsubstrate were observed post-mortem by SEM. Namely, a wrinkling microstructure and classicalripple with period spatial near wavelength of laser (approximately 266nm) were induced bynanosecond pulse laser at fluence 100 mJ/cm2. The conical nanostructure and ripple microstructure were induced by picosecond pulse laser. TRR method permits the real timemonitoring of melting and/or surface morphology changes. The reflectivity signals have shownthe increase of the removal copper thin film as increasing the laser fluence and of the number oflaser shots. Under the same laser conditions (fluence and number of shots), copper thin films onglass were removed easier than on silicon case due to the intrinsic thermal conductivity ofsubstrate. An obtained TRR signal of wrinkling formation was induced by nanosecond pulselaser. TRR method is suitable for monitoring LIPPS in the nanosecond but not in the picosecond. However, SEM analyses give more information and details of the structure changes in the nanoand picosecond. We can assume that mainly thermal 'drift' forces are responsible for wrinkling microstructure formation in the nanosecond regime, and photonic forces for periodic surface nanostructure formation in the picoseconds one.

  15. Dynamics in protein powders on the nanosecond-picosecond time scale are dominated by localized motions.

    Science.gov (United States)

    Nickels, Jonathan D; García Sakai, Victoria; Sokolov, Alexei P

    2013-10-03

    We present analysis of nanosecond-picosecond dynamics of Green Fluorescence Protein (GFP) using neutron scattering data obtained on three spectrometers. GFP has a β-barrel structure that differs significantly from the structure of other globular proteins and is thought to result in a more rigid local environment. Despite this difference, our analysis reveals that the dynamics of GFP are similar to dynamics of other globular proteins such as lysozyme and myoglobin. We suggest that the same general concept of protein dynamics may be applicable to all these proteins. The dynamics of dry protein are dominated by methyl group rotations, while hydration facilitates localized diffusion-like motions in the protein. The latter has an extremely broad relaxation spectrum. The nanosecond-picosecond dynamics of both dry and hydrated GFP are localized to distances of ∼1-3.5 Å, in contrast to the longer range diffusion of hydration water.

  16. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Tarasenko, V F; Baksht, E H; Kostyrya, I D; Lomaev, M I; Rybka, D V

    2008-01-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF 6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  17. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  18. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    International Nuclear Information System (INIS)

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-01-01

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated

  19. Radial Distribution of the Nanosecond Dielectric Barrier Discharge Current in Atmospheric-Pressure Air

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.

  20. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Science.gov (United States)

    Huege, Tim

    2017-03-01

    Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this "beacon correction" using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  1. Nanosecond-level time synchronization of AERA using a beacon reference transmitter and commercial airplanes

    Directory of Open Access Journals (Sweden)

    Huege Tim

    2017-01-01

    Full Text Available Radio detection of cosmic-ray air showers requires time synchronization of detectors on a nanosecond level, especially for advanced reconstruction algorithms based on the wavefront curvature and for interferometric analysis approaches. At the Auger Engineering Radio Array, the distributed, autonomous detector stations are time-synchronized via the Global Positioning System which, however, does not provide sufficient timing accuracy. We thus employ a dedicated beacon reference transmitter to correct for eventby-event clock drifts in our offline data analysis. In an independent cross-check of this “beacon correction” using radio pulses emitted by commercial airplanes, we have shown that the combined timing accuracy of the two methods is better than 2 nanoseconds.

  2. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  3. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

    OpenAIRE

    Muratori, Claudia; Pakhomov, Andrei G.; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O. N.

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-d...

  4. Fundamental Physics and Engineering of Nanosecond-Pulsed Nonequilibrium Microplasma in Liquid Phase without Bubbles

    Science.gov (United States)

    2013-01-04

    support avalanche formation is on the order of microseconds for a 40kV pulse of rise time 20ns [6, 11]. Discharges which form in to therefore...generated by nanosecond pulse power supply Synchronization of the discharge with the camera shutter was controlled using the camera’s internal...Transmission line analysis was used to determine the voltage and current behaviour of the discharge based on line delays and pulse reflections. 4

  5. Piezoresistive method for a laser induced shock wave detection on solids

    Science.gov (United States)

    Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.

    2017-08-01

    A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.

  6. Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields.

    Science.gov (United States)

    Merla, C; Apollonio, F; Paffi, A; Marino, C; Vernier, P T; Liberti, M

    2017-07-01

    To explore the promising therapeutic applications of short nanosecond electric pulses, in vitro and in vivo experiments are highly required. In this paper, an exposure system based on monopole patch antenna is reported to perform in vivo experiments on newborn mice with both monopolar and bipolar nanosecond signals. Analytical design and numerical simulations of the antenna in air were carried out as well as experimental characterizations in term of scattering parameter (S 11 ) and spatial electric field distribution. Numerical dosimetry of the setup with four newborn mice properly placed in proximity of the antenna patch was carried out, exploiting a matching technique to decrease the reflections due to dielectric discontinuities (i.e., from air to mouse tissues). Such technique consists in the use of a matching dielectric box with dielectric permittivity similar to those of the mice. The average computed electric field inside single mice was homogeneous (better than 68 %) with an efficiency higher than 20 V m -1  V -1 for the four exposed mice. These results demonstrate the possibility of a multiple (four) exposure of small animals to short nanosecond pulses (both monopolar and bipolar) in a controlled and efficient way.

  7. Numerical Simulation of a Nanosecond-Pulse Discharge for High-Speed Flow Control

    Science.gov (United States)

    Poggie, Jonathan; Adamovich, Igor

    2012-10-01

    Numerical calculations were carried out to examine the physics of the operation of a nanosecond-pulse, single dielectric barrier discharge in a configuration with planar symmetry. This simplified configuration was chosen as a vehicle to develop a physics based nanosecond discharge model, including realistic air plasma chemistry and compressible bulk gas flow. First, a reduced plasma kinetic model was developed by carrying out a sensitivity analysis of zero-dimensional plasma computations with an extended chemical kinetic model. Transient, one- dimensional discharge computations were then carried out using the reduced kinetic model, incorporating a drift-diffusion formulation for each species, a self-consistent computation of the electric potential using the Poisson equation, and a mass-averaged gas dynamic formulation for the bulk gas motion. Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on bow shock control with a nanosecond discharge in a Mach 5 cylinder flow. The computational results qualitatively reproduce many of the features observed in the experiments, including the rapid thermalization of the input electrical energy and the consequent formation of a weak shock wave. At breakdown, input electrical energy is rapidly transformed (over roughly 1 ns) into ionization products, dissociation products, and electronically excited particles, with subsequent thermalization over a relatively longer time-scale (roughly 10 μs).

  8. Operation of a load current multiplier on a nanosecond mega-ampere pulse forming line generator

    Directory of Open Access Journals (Sweden)

    A. S. Chuvatin

    2010-01-01

    Full Text Available We investigate the operation of a load current multiplier (LCM on a pulse-forming-line nanosecond pulse-power generator. Potential benefits of using the LCM technique on such generators are studied analytically for a simplified case. A concrete LCM design on the Zebra accelerator (1.9 Ohm, ∼1  MA, 100 ns is described. This design is demonstrated experimentally with high-voltage power pulses having a rise time of dozens of nanoseconds. Higher currents and magnetic energies were observed in constant-inductance solid-state loads when a better generator-to-load energy coupling was achieved. The load current on Zebra was increased from the nominal 0.8–0.9 MA up to about 1.6 MA. This result was obtained without modifying the generator energetics or architecture and it is in good agreement with the presented numerical simulations. Validation of the LCM technique at a nanosecond time scale is of importance for the high-energy-density physics research.

  9. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  10. Overview of the application of nanosecond electron beams for radiochemical sterilization

    International Nuclear Information System (INIS)

    Kotov, Y.A.; Sokovnin, S.Y.

    2000-01-01

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys), and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS

  11. Overview of the application of nanosecond electron beams for radiochemical sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, Y.A.; Sokovnin, S.Y.

    2000-02-01

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys), and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS.

  12. Experimental and numerical research on shock initiation of pentaerythritol tetranitrate by laser driven flyer plates

    International Nuclear Information System (INIS)

    Gu Zhuowei; Sun Chengwei; Zhao Jianheng; Zhang Ning

    2004-01-01

    The unconfined fine grain pentaerythritol tetranitrate explosive columns whose size of φ5x5 mm 2 and density of 1.2 g/cm3 were impacted and initiated by laser driven flyers launched from substrate backed aluminum films. The flyers were driven by single pulse from a Q-switched Nd:YAG (yttrium aluminum garnet) laser. The aluminum flyer plates were 5.5 and 10 μm in thickness, and had diameters of ∼1 mm. The induced stress in samples was intense but of only nanosecond duration. The initiation threshold of the explosive under such short pressure pulse (3.8 ns) was obtained in experiments as 7.1±0.2 GPa. The whole process of initiation had been simulated successfully using one-dimensional Lagrange hydrodynamic code SSS and a forest fire burn technique had been used in the simulation. The pressure and reaction fraction of explosive during the initiation process have been obtained and the theoretical results may be 20% higher than that of experiments

  13. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  14. The picosecond laser for tattoo removal.

    Science.gov (United States)

    Hsu, Vincent M; Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Nouri, Keyvan

    2016-11-01

    The prevalence of tattoos continues to grow as modern society's stigma towards this form of body art shifts towards greater acceptance. Approximately one third of Americans aged 18-25 and 40 % of Americans aged 26-40 are tattooed. As tattoos continue to rise in popularity, so has the demand for an effective method of tattoo removal such as lasers. The various colors of tattoo inks render them ideal targets for specific lasers using the principle of selective photothermolysis. Traditional laser modalities employed for tattoo removal operate on pulse durations in the nanosecond domain. However, this pulse duration range is still too long to effectively break ink into small enough particles. Picosecond (10 -12 ) lasers have emerged at the forefront of laser tattoo removal due to their shorter pulse lengths, leading to quicker heating of the target chromophores, and consequently, more effective tattoo clearance. Recent studies have cited more effective treatment outcomes using picosecond lasers. Future comparative studies between picosecond lasers of various settings are necessary to determine optimal laser parameters for tattoo clearance.

  15. Effect of Heat Treatment on Microstructure and Impact Toughness of Ti-6Al-4V Manufactured by Selective Laser Melting Process

    Directory of Open Access Journals (Sweden)

    Lee K.-A.

    2017-06-01

    Full Text Available This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

  16. [Impact of selective fetoscopic laser photocoagulation for twin-twin transfusion syndrome on myocardial deformation].

    Science.gov (United States)

    Zeng, Shi; Zhou, Qi-chang; Tian, Zhiyun; Rychik, Jack

    2011-11-01

    To investigate the changes in myocardial deformation in donor and recipient hearts in response to selective fetoscopic laser photocoagulation (SFLP) for twin-twin transfusion syndrome (TTTS). Totally 25 twin pairs before 24-hour and 1 week after SFLP had fetal echocardiography and digital dynamic two-dimensional four chamber views which were interrogated off-line using velocity vector imaging (VVI) software. Global longitudinal strain (S), systolic strain rate (SRs) and diastolic strain rate (SRd) were measured off-line in the left (LV) and right (RV) ventricles. In the donor, SFLP resulted in increase in cardiothoracic ratio (CTR, 0.29 ± 0.03 versus 0.34 ± 0.05, P < 0.01), with development of new onset tricupid regurgitation (n = 7) and pericardial effusion (n = 5) and worsening of all measures of myocardial deformation in both systole and diastole for LV and RV [LV-S: (-19.24 ± 3.68)% versus (-13.78 ± 3.64)%, P < 0.01; LV-SRs: (-2.28 ± 0.53) versus (-1.43 ± 0.41) s(-1), P < 0.01; LV-SRd: (1.67 ± 0.43) versus (1.15 ± 0.70) s(-1), P < 0.01; RV-S: (-20.20 ± 3.19)% versus (-16.10 ± 3.07)%, P < 0.01; RV-SRs: (-2.03 ± 0.65) versus (-1.72 ± 0.38) s(-1), P < 0.05; RV-SRd: (1.71 ± 0.30) versus (1.50 ± 0.36) s(-1), P < 0.05]. In the recipient, CTR decreased (0.42 ± 0.04 versus 0.37 ± 0.04, P < 0.01) and all parameters for both LV and RV improved substantially [LV-S: (-10.62 ± 2.72)% versus (-16.46 ± 3.23)%, LV-SRs: (-1.09 ± 0.30) versus (-1.60 ± 0.31) s(-1), LV-SRd: (0.99 ± 0.34) versus (1.53 ± 0.32) s(-1), RV-S: (-11.66 ± 4.56)% versus (-17.96 ± 3.97)%, RV-SRs: (-1.26 ± 0.39) versus (-1.74 ± 0.45) s(-1), RV-SRd: (1.15 ± 0.49) versus (1.63 ± 0.44) s(-1); all P < 0.01]. Myocardial deformational mechanics improve in the recipient but worsen in the donor following SFLP for TTTS.

  17. Special Features of Lasing on N2, N2 +, Ar, Ne, and CO2 Transitions Pumped by a Nanosecond Transverse Discharge

    Science.gov (United States)

    Ivanov, N. G.; Losev, V. F.; Prokop'ev, V. E.

    2016-10-01

    Special features of lasing in the most widespread molecular and atomic gases excited by a nanosecond transverse discharge are investigated. It is shown that the maximum of the lasing band on the C3Пu - B3Пg transition of the 0-0 vibrational molecular nitrogen band depends on the composition and pressure of the employed gas mixture and can be tuned from 0.2 to 0.3 nm. Simultaneous lasing on nitrogen molecules and ions at the wavelengths λ = 337.1 and 427.8 nm, respectively, is possible at a certain nitrogen content in the He/N2 mixture. Wherein, regions of lasing at different wavelengths are spatially separated in the output beam cross section. To obtain maximal energy of laser radiation in argon at λ = 912.3 nm, high He pressures (4 atm) and maximal charge voltages (25 kV) are required. The most probable reason for the limited lifetime of a CO2 laser is the accumulation of CN molecules in the mixture.

  18. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    Science.gov (United States)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  19. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  20. Studies of nanosecond pulsed power for modifications of biomaterials and nanomaterials (SWCNT)

    Science.gov (United States)

    Chen, Meng-Tse

    This work investigates the modification of biological materials through the applications of modern nanosecond pulsed power, along with other forms of nanotechnologies. The work was initially envisaged as a study of the effect of intense nanosecond pulsed electric fields on cancer cells. As the work progressed, the studies suggested incorporation of additional technologies, in particular, cold plasmas, and carbon nanotubes. The reasons for these are discussed below, however, they were largely suggested by the systems that we were studying, and resulted in new and potentially important medical therapies. Using nanosecond cold plasmas powered with nanosecond pulses, collaboration with endodontists and biofilm experts demonstrated a killing effect on biofilms deep within root canals, suggesting a fundamentally new approach to an ongoing problem of root canal sterilization. This work derived from the application of nanosecond pulsed power, resulting in effective biofilm disinfection, without excessive heating, and is being investigated for additional dental and other medical applications. In the second area, collaboration with medical and nanotube experts, studies of gliomamultiforme (GBM) led to the incorporation of functionalized carbon nanotubes. Single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates demonstrated that the entry mechanism of the single-walled carbon nanotubes (SWCNTs) was through an energy-dependent endocytotic pathway. Finally, a monotonic pH sensitivity of the intracellular fluorescence emission of SWCNT-FC conjugates in human ovarian cancer cells suggests these conjugates may serve as intracellular pH sensors. Light-stimulated intracellular hydrolysis of the amide linkage and localized intracellular pH changes are proposed as mechanisms. The use of SWCNTs for cancer therapy of gliomas, resulting in hyperthermia effect after 808 nm infrared radiations, absorbed specifically by SWCNTs but not by biological tissue. Heat was only

  1. Spectral Characterization of Laser Induced Plasma from Titanium Dioxide

    International Nuclear Information System (INIS)

    Dann, V J; Mathew, M V; Nampoori, V P N; Vallabhan, C P G; Nandakumaran, V M; Radhakrishnan, P

    2007-01-01

    Optical emission from TiO 2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity

  2. Characterization of plasmas produced by laser-gas jet interaction

    International Nuclear Information System (INIS)

    Malka, V.; Faure, J.; Amiranoff, F.

    2001-01-01

    An experiment has been performed with one of the six nanosecond beams of the Laboratoire pour l'Utilisation des Lasers Intenses laser facility in order to create long scale uniform plasmas over a wide range of electron density (1x10 19 -1.6x10 20 cm -3 ) and electron temperature (0.5-1.3 keV). Electron density and temperature evolution have been measured using Thomson scattering. Numerical simulations obtained by using a simple model are presented. Scaling law related electron density and electron temperature have been established in agreement with experimental data

  3. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    Science.gov (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  4. The effect of optical system design for laser micro-hole drilling process

    Science.gov (United States)

    Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu

    2017-08-01

    Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.

  5. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  6. Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA.

    Science.gov (United States)

    Wang, Xu; Chan, Kam

    2004-07-26

    Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work.

  7. Evaluation of the effects of the low-level laser therapy on swelling, pain, and trismus after removal of impacted lower third molar.

    Science.gov (United States)

    Alan, Hilal; Yolcu, Ümit; Koparal, Mahmut; Özgür, Cem; Öztürk, Seyit Ahmet; Malkoç, Sıddık

    2016-07-26

    In current study we aimed to examine the effect of a low-level laser therapy on the pain, mouth opening and swelling of patients whose impacted 3rd molar tooth was extracted in addition measurement volumetrically to the edema with 3dMD face system. It was surveyed 15 patients who had bilateral symmetric lower 3rd molars. Surgical sides of patients were randomly separated into two groups: the study group and the control group. It was applied extra oral low-level laser therapy (LLLT, 0.3 W, 40 s, 4 J/cm(2)) to the study group (n = 15) after the surgical operation and on the 2nd day. Only routine postoperative recommendation (ice application) was made in the control (n = 15) group. The maximum mouth opening, pain level and facial swelling evaluated. 3dMD Face® (3dMD, Atlanta, GA) Photogrammetric System was used to evaluate volumetric changes of the swelling. There was no statistically significant difference in the edema and interincisal opening between the groups and the pain level in the laser group was significantly lower than in the control group on the 7(th) postoperative day. Although there were decreasing trismus, swelling, and pain level, with this LLLT, there was significant difference only in the 7th day pain level in the laser group compared with the control group.

  8. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  9. LaserFest Celebration

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  10. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  11. Laser probe argon40 / argon-39 dating of coesite- and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event

    Science.gov (United States)

    Spray, J. G.; Kelly, S. P.; Reimold, W. U.

    1995-05-01

    Age determinations have been made on pseudotachylytic rocks from the controversial Vredefort structure of South Africa using the laser microprobe 40Ar/39M dating technique. Coesite- and stishovite-bearing veins in a quartzite from the Central Rand Group of the collar rocks were dated using a 1O-μm diameter focused ultra-violet laser beam. These yielded a weighted mean age of 2027±18 Ma (2σ). Six pseudotachylytes, sampled from four different locations within the Outer Granite Gneiss of the core, were dated using an 50-100-μm diameter focused infrared laser beam. These pseudotachylytes exhibit altered vein margins with apparent ages considerably younger than ages obtained from the fresher centres of veins. The best weighted mean pseudotachylyte matrix age obtained was 2018±14 Ma (2σ). Most of the clasts within the pseudotachylyte matrices retain significantly older (e.g., Archean) ages, indicative of their parent rock history. Our results show that five of the seven dated samples possess matrix ages of 2000 Ma, similar to the age of the Granophyre (Walraven et al., 1990), a supposed impact melt rock (French and Nielsen, 1990). The dating of coesite- and stishovite-bearing veins equates the shock event with pseudotachylyte formation, generation of the Granophyre and creation of the Vredefort structure. The results affirm that the Vredefort Dome is a meteorite impact structure and show that it formed at 2018±14 Ma(2σ).

  12. Consistency analysis on laser signal in laser guided weapon simulation

    Science.gov (United States)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  13. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment

    Science.gov (United States)

    Oh, Harim; Lee, Jeeyoung; Lee, Myeongkyu

    2018-01-01

    We comparatively study the morphological evolutions of silver nanowires under nanosecond-pulsed laser irradiation and thermal treatment in ambient air. While single-crystalline, pure Ag nanospheres could be produced by laser-driven Rayleigh instability, the particles produced by heat treatment were subject to oxidation and exhibited polyhedron shapes. The different results are attributed to the significantly different time scales of the two processes. In this article, we also show that bimetallic Ag-Au nanospheres can be synthesized by irradiating Ag nanowires coated with a thin Au film using a pulsed laser beam. This may provide a facile route to tune the plasmonic behavior of metal nanoparticles.

  14. Pulsed power systems for the LASL High Energy Gas Laser Facility

    International Nuclear Information System (INIS)

    Riepe, K.; Jansen, H.

    1976-01-01

    The laser division at Los Alamos Scientific Laboratory is designing a CO 2 laser fusion experiment with the goal of delivering 100 kJ to the target in a one nanosecond pulse. The laser will be pumped by an electron beam-controlled discharge. The pumping power supply will be a number of parallel Marx generators, with an output voltage of 500 kV, and a total energy storage of about 5 MJ. The electron gun is a ''cold cathode'' triode, also operating at about 500 kV. Preliminary design considerations for the pulsed power systems are presented. Some pulse forming network designs are discussed with calculated waveforms shown

  15. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  16. Studies of laser textured Ti-6Al-4V wettability for implants

    Science.gov (United States)

    Kumar, N.; Prakash, S.; Kumar, S.

    2016-09-01

    Wettability plays a notable role in success of any bio-implant. It influences tissue amalgamation, protein adsorption and cell attachment at the surface of an implant. Hence, wettability enhancement of the implant is a field of today's dynamic research. In this work, laser based direct melting approach was employed to generate four separate surface patterns on Ti-6Al-4V by means of nanosecond pulse fibre laser. The modification of surface morphology was assessed by means of SEM. Wettability was measured by the help of goniometer. The obtained results revealed that pulsed laser irradiation can substantially improve the biocompatibility of Ti-6AL-4V by making its surface super hydrophilic.

  17. Ablation and transmission of thin solid targets irradiated by intense extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    V. Aslanyan

    2016-09-01

    Full Text Available The interaction of an extreme ultraviolet (EUV laser beam with a parylene foil was studied by experiments and simulation. A single EUV laser pulse of nanosecond duration focused to an intensity of 3 × 1010 W cm−2 perforated micrometer thick targets. The same laser pulse was simultaneously used to diagnose the interaction by a transmission measurement. A combination of 2-dimensional radiation-hydrodynamic and diffraction calculations was used to model the ablation, leading to good agreement with experiment. This theoretical approach allows predictive modelling of the interaction with matter of intense EUV beams over a broad range of parameters.

  18. A combined experimental and theoretical study on realizing and using laser controlled torsion of molecules

    DEFF Research Database (Denmark)

    Madsen, Christian Bruun; Madsen, Lars Bojer; Viftrup, Simon

    2009-01-01

    to initiate torsional motion accompanied by a rotation about the fixed axis. We monitor the induced motion by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis corroborates the experimental findings and on the basis of these results we discuss future applications of laser......It is demonstrated that strong laser pulses can introduce torsional motion in the axially chiral molecule 3,5-difluoro-3',5'-dibromobiphenyl. A nanosecond laser pulse spatially aligns the stereogenic carbon-carbon (C–C) bond axis allowing a perpendicularly polarized, intense femtosecond pulse...

  19. Advanced dry and steam laser cleaning of opaque and transparent critical substrates

    Science.gov (United States)

    Kudryashov, Sergey; Shukla, Shishir; Lyon, Kevin; Allen, Susan D.

    2006-05-01

    Dry and steam laser cleaning, DLC and SLC, of nano-and micro-contaminant particles from UV/vis opaque and transparent critical substrates has been studied in front-side laser illumination geometry with the help of time-resolved optical techniques and broadband photoacoustic spectroscopy using a nanosecond 10.6-μm TEA CO II-laser and different absorbing energy transfer media (ETM) fluids. Corresponding basic DLC and SLC mechanisms for removal of nano- and micro-particles from opaque and transparent critical substrates as well as parameters of explosive removal of ETM fluids have been determined and discussed.

  20. Multiple Order Diffractions by laser-Injured Transient Grating in Nematic MBBA Film

    International Nuclear Information System (INIS)

    Kim, Seong Kyu; Kim, Hack Jin

    1999-01-01

    The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals