WorldWideScience

Sample records for nanoscale three-dimensional shapes

  1. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    International Nuclear Information System (INIS)

    Gontard, Lionel C.; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E.

    2016-01-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  2. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, Lionel C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); Faico PCT Cartuja. Edif. TI Marie Curie, C/ Leonardo da Vinci 18, 4a Planta, 41092 Sevilla (Spain); Schierholz, Roland; Yu, Shicheng [Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Cintas, Jesús [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-10-15

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  3. Optical Forging of Graphene into Three-Dimensional Shapes.

    Science.gov (United States)

    Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika

    2017-10-11

    Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

  4. Shape synchronization control for three-dimensional chaotic systems

    International Nuclear Information System (INIS)

    Huang, Yuanyuan; Wang, Yinhe; Chen, Haoguang; Zhang, Siying

    2016-01-01

    This paper aims to the three-dimensional continuous chaotic system and shape of the chaotic attractor by utilizing the basic theory of plane curves in classical differential geometry, the continuous controller is synthesized for the master–slave synchronization in shape. This means that the slave system can possess the same shape of state trajectory with the master system via the continuous controller. The continuous controller is composed of three sub-controllers, which respectively correspond to the master–slave synchronization in shape for the three projective curves of the chaotic attractor onto the three coordinate planes. Moreover, the proposed shape synchronization technique as well as application of control scheme to secure communication is also demonstrated in this paper, where numerical simulation results show the proposed control method works well.

  5. Fast three-dimensional nanoscale metrology in dual-beam FIB-SEM instrumentation

    International Nuclear Information System (INIS)

    Repetto, Luca; Buzio, Renato; Denurchis, Carlo; Firpo, Giuseppe; Piano, Emanuele; Valbusa, Ugo

    2009-01-01

    A quantitative surface reconstruction technique has been developed for the geometric characterization of three-dimensional structures by using a combined focused ion beam-scanning electron microscopy (FIB-SEM) instrument. A regular pattern of lines is milled at normal incidence on the sample to be characterized and an image is acquired at a large tilt angle. By analyzing the pattern under the tilted view, a quantitative estimation of surface heights is obtained. The technique has been applied to a test sample and nanoscale resolution has been achieved. The reported results are validated by a comparison with atomic force microscopy measurements.

  6. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    Science.gov (United States)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  7. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    Science.gov (United States)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  8. Reconstruction of pseudo three-dimensional dental image from dental panoramic radiograph and tooth surface shape

    International Nuclear Information System (INIS)

    Imura, Masataka; Kuroda, Yoshihiro; Oshiro, Osamu; Kuroda, Tomohiro; Kagiyama, Yoshiyuki; Yagi, Masakazu; Takada, Kenji; Azuma, Hiroko

    2010-01-01

    Three-dimensional volume data set is useful for diagnosis in dental treatments. However, to obtain three-dimensional images of a dental arch in general dental clinics is difficult. In this paper, we propose a method to reconstruct pseudo three-dimensional dental images from a dental panoramic radiograph and a tooth surface shape which can be obtained from three dimensional shape measurement of a dental impression. The proposed method finds an appropriate curved surface on which the dental panoramic radiograph is mapped by comparing a virtual panoramic image made from a tooth surface shape to a real panoramic radiograph. The developed pseudo three-dimensional dental images give clear impression of patient's dental condition. (author)

  9. Three-Dimensional X-Ray Photoelectron Tomography on the Nanoscale: Limits of Data Processing by Principal Component Analysis

    DEFF Research Database (Denmark)

    Hajati, S.; Walton, J.; Tougaard, S.

    2013-01-01

    In a previous article, we studied the influence of spectral noise on a new method for three-dimensional X-ray photoelectron spectroscopy (3D XPS) imaging, which is based on analysis of the XPS peak shape [Hajati, S., Tougaard, S., Walton, J. & Fairley, N. (2008). Surf Sci 602, 3064-3070]. Here, we...... study in more detail the influence of noise reduction by principal component analysis (PCA) on 3D XPS images of carbon contamination of a patterned oxidized silicon sample and on 3D XPS images of Ag covered by a nanoscale patterned octadiene layer. PCA is very efficient for noise reduction, and using...... acquisition time. A small additional amount of information is obtained by using up to five PCA factors, but due to the increased noise level, this information can only be extracted if the intensity of the start and end points for each spectrum are obtained as averages over several energy points....

  10. A three-dimensional constitutive model for shape memory alloy

    International Nuclear Information System (INIS)

    Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song

    2009-01-01

    Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model

  11. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    Science.gov (United States)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  12. Shape Recognition Inputs to Figure-Ground Organization in Three-Dimensional Displays.

    Science.gov (United States)

    Peterson, Mary A.; Gibson, Bradley S.

    1993-01-01

    Three experiments with 29 college students and 8 members of a university community demonstrate that shape recognition processes influence perceived figure-ground relationships in 3-dimensional displays when the edge between 2 potential figural regions is both a luminance contrast edge and a disparity edge. Implications for shape recognition and…

  13. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Hu, Xiaotang; Xu, Zongwei; Li, Kang; Fang, Fengzhou; Wang, Liyang

    2015-01-01

    Graphical abstract: Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au–PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10 to 20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au–PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au–PS spheres nanofeature configuration development. The fabricated Au–PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107. - Highlights: • Au film coating over PS nanospheres was studied to develop 3D SERS substrate. • The Au–PS sphere can be hexagonal close packing with 10–20 nm nanoscale gaps. • PS glass transition property results in Au–PS sphere nano configuration evolution. • The nanoscale Au clusters with clear outline were

  14. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaotang; Xu, Zongwei, E-mail: zongweixu@163.com; Li, Kang; Fang, Fengzhou, E-mail: fzfang@tju.edu.cn; Wang, Liyang

    2015-11-15

    Graphical abstract: Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au–PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10 to 20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au–PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au–PS spheres nanofeature configuration development. The fabricated Au–PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107. - Highlights: • Au film coating over PS nanospheres was studied to develop 3D SERS substrate. • The Au–PS sphere can be hexagonal close packing with 10–20 nm nanoscale gaps. • PS glass transition property results in Au–PS sphere nano configuration evolution. • The nanoscale Au clusters with clear outline

  15. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  16. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.

    Science.gov (United States)

    Sato, Tomohiro; Yuki, Hitomi; Takaya, Daisuke; Sasaki, Shunta; Tanaka, Akiko; Honma, Teruki

    2012-04-23

    In this study, machine learning using support vector machine was combined with three-dimensional (3D) molecular shape overlay, to improve the screening efficiency. Since the 3D molecular shape overlay does not use fingerprints or descriptors to compare two compounds, unlike 2D similarity methods, the application of machine learning to a 3D shape-based method has not been extensively investigated. The 3D similarity profile of a compound is defined as the array of 3D shape similarities with multiple known active compounds of the target protein and is used as the explanatory variable of support vector machine. As the measures of 3D shape similarity for our new prediction models, the prediction performances of the 3D shape similarity metrics implemented in ROCS, such as ShapeTanimoto and ScaledColor, were validated, using the known inhibitors of 15 target proteins derived from the ChEMBL database. The learning models based on the 3D similarity profiles stably outperformed the original ROCS when more than 10 known inhibitors were available as the queries. The results demonstrated the advantages of combining machine learning with the 3D similarity profile to process the 3D shape information of plural active compounds.

  17. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.

    Science.gov (United States)

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-10-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.

  18. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    Science.gov (United States)

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  19. Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-06-01

    Full Text Available methods towards a more accurate and automated techniques to quantify aggregate shape properties. This paper validates a new flakiness index equation using three-dimensional (3-D) laser scanning data of aggregate and ballast materials obtained from...

  20. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  1. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon; Kang, Chen-Fang; Yang, Po-Kang; Lee, Chuan-Pei; Lien, Der-Hsien; Ho, Chih-Hsiang; He, Jr-Hau

    2014-01-01

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  2. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-11-03

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  3. Computer-aided-design-model-assisted absolute three-dimensional shape measurement.

    Science.gov (United States)

    Li, Beiwen; Bell, Tyler; Zhang, Song

    2017-08-20

    Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.

  4. The Nanoscale Observation of the Three-Dimensional Structures of Neurosynapses, Membranous Conjunctions Between Cultured Hippocampal Neurons and Their Significance in the Development of Epilepsy.

    Science.gov (United States)

    Sun, Lan; Jiang, Shuang; Tang, Xianhua; Zhang, Yingge; Qin, Luye; Jiang, Xia; Yu, Albert Cheung Hoi

    2016-12-01

    The nanoscale three-dimensional structures of neurosynapses are unknown, and the neuroanatomical basis of epilepsy remains to be elucidated. Here, we studied the nanoscale three-dimensional synapses between hippocampal neurons, and membranous conjunctions between neurons were found with atomic force microscopy (AFM) and confirmed by transmission electron microscope (TEM), and their pathophysiological significance was primarily investigated. The neurons and dendrites were marked by MAP-2, axons by neurofilament 200, and synapses by synapsin I immunological staining. In the synapsin I-positive neurite ends of the neurons positively stained with MAP-2 and neurofilament 200, neurosynapses with various nanoscale morphology and structure could be found by AFM. The neurosynapses had typical three-dimensional structures of synaptic triplet including the presynaptic neurite end, synaptic cleft of 30 ∼ 40 in chemical synapses and 2 ∼ 6 nm in electrical ones, the postsynaptic neurite or dendrite spine, the typical neurite end button, the distinct pre- and postsynaptic membranes, and the obvious thickening of the postsynaptic membranes or neurites. Some membranous connections including membrane-like junctions (MLJ) and fiber-tube links (FTL) without triplet structures and cleft were found between neurons. The development frequencies of the two membranous conjunctions increased while those of the synaptic conjunctions decreased between the neurons from Otx1 knock-out mice in comparison with those between the neurons from normal mice. These results suggested that the neuroanatomical basis of Otx1 knock-out epilepsy is the combination of the decreased synaptic conjunctions and the increased membranous conjunctions.

  5. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  6. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  7. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    Science.gov (United States)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  8. Broadband three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks

    International Nuclear Information System (INIS)

    Wang Xinhua; Qu Shaobo; Wu Xiang; Wang Jiafu; Ma Hua; Xu Zhuo

    2010-01-01

    By means of embedded optical transformation, three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks have been designed in this paper. The constitutive parameters of the invisible cloaks can be obtained based on the form invariance of Maxwell's equations in coordinate transformation. Numerical methods using the finite element method verified the diamond-shaped cloaks. The invisible properties of the designed cloaks are nearly perfect when the original line section is sufficiently short compared with its counterpart in the after-transformed space. The designed cloaks can operate in a wide bandwidth due to the line transformation in the coordinate transformation process.

  9. Nanofluidic structures with complex three-dimensional surfaces

    International Nuclear Information System (INIS)

    Stavis, Samuel M; Gaitan, Michael; Strychalski, Elizabeth A

    2009-01-01

    Nanofluidic devices have typically explored a design space of patterns limited by a single nanoscale structure depth. A method is presented here for fabricating nanofluidic structures with complex three-dimensional (3D) surfaces, utilizing a single layer of grayscale photolithography and standard integrated circuit manufacturing tools. This method is applied to construct nanofluidic devices with numerous (30) structure depths controlled from ∼10 to ∼620 nm with an average standard deviation of 1 cm. A prototype 3D nanofluidic device is demonstrated that implements size exclusion of rigid nanoparticles and variable nanoscale confinement and deformation of biomolecules.

  10. Three-dimensional cinematography with control object of unknown shape.

    Science.gov (United States)

    Dapena, J; Harman, E A; Miller, J A

    1982-01-01

    A technique for reconstruction of three-dimensional (3D) motion which involves a simple filming procedure but allows the deduction of coordinates in large object volumes was developed. Internal camera parameters are calculated from measurements of the film images of two calibrated crosses while external camera parameters are calculated from the film images of points in a control object of unknown shape but at least one known length. The control object, which includes the volume in which the activity is to take place, is formed by a series of poles placed at unknown locations, each carrying two targets. From the internal and external camera parameters, and from locations of the images of point in the films of the two cameras, 3D coordinates of the point can be calculated. Root mean square errors of the three coordinates of points in a large object volume (5m x 5m x 1.5m) were 15 mm, 13 mm, 13 mm and 6 mm, and relative errors in lengths averaged 0.5%, 0.7% and 0.5%, respectively.

  11. Faithful representation of similarities among three-dimensional shapes in human vision.

    Science.gov (United States)

    Cutzu, F; Edelman, S

    1996-01-01

    Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented. Images Fig. 3 PMID:8876260

  12. Upper Primary Students Constructing and Exploring Three Dimensional Shapes: A Comparison of Virtual Reality with Card Nets.

    Science.gov (United States)

    Ainge, David J.

    1996-01-01

    A grade 6/7 class which constructed and explored three-dimensional shapes with the VREAM virtual reality (VR) development system program was compared with a grade 5/6/7 control group using card nets (diagrams which can be cut out/folded). Results indicated that VR had little impact on shape visualization and name writing, but it strongly enhanced…

  13. Ring-shaped quasi-soliton solutions to the two-and three-dimensional Sine-Gordon equation

    International Nuclear Information System (INIS)

    Christiansen, P.L.; Olsen, O.H.

    1979-01-01

    Ring-shaped solitary wave solutions to the Sine-Gordon equation in two and three spatial dimensions are investigated by numerical computation. Each expanding wave exhibits a return effect. The reflection of the shrinking wave at the singularity at the center of the wave is investigated in a particular case. Collision experiments in numero for expanding and shrinking concentric ring waves show that the solutions possess quasisoliton properties. A Baecklund transformation for the non-symmetric three-dimensional case is given. (Auth.)

  14. A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells

    Directory of Open Access Journals (Sweden)

    QIN Yang

    2014-04-01

    Full Text Available We report the synthesis of a novel three-dimensional tetrahedral-shaped small molecule,SO,containing a tetraphenylsilane core and cyanoester functionalized terthiophene arms.A deep lying HOMO energy level of -5.3 eV and a narrow bandgap of 1.9 eV were obtained from cyclic voltammetry measurements.Absorption,X-ray scattering and differential scanning calorimetry experiments all indicate high crystallinity of this compound.Solar cells employing SO were fabricated and evaluated.The relatively low performance was mainly ascribed to lack of appreciable phase separation,which is confirmed by optical microscopy.

  15. Three-dimensional imaging of a complex concaved cuboctahedron copper sulfide crystal by x-ray nanotomography

    International Nuclear Information System (INIS)

    Chen Jie; Tian Jinping; Li Wenjie; Tian Yangchao; Wu Chunyan; Yu Shuhong

    2008-01-01

    By combining Fresnel zone-plate based transmission x-ray microscopy with computed tomography, the nanoscale features in materials with complex shapes can be imaged using synchrotron radiation. The tomographic data sets of a complex copper sulfide crystal were acquired in the angle range ±70 deg. at photon energy of 8.0 keV and then were reconstructed by a standard filtered-back-projection algorithm. This experiment shows the quantifiable three-dimensional information of the copper sulfide crystal, which offers a complete understanding of the concaved cuboctahedron structure with 14 faces comprising of six squares and eight triangles

  16. Three-dimensional face shape in Fabry disease

    NARCIS (Netherlands)

    Cox-Brinkman, Josanne; Vedder, Anouk; Hollak, Carla; Richfield, Linda; Mehta, Atul; Orteu, Kate; Wijburg, Frits; Hammond, Peter

    2007-01-01

    Facial dysmorphology is an important feature in several lysosomal storage disorders. Although in Fabry disease facial dysmorphism is not a prominent sign, minor facial abnormalities have been previously reported. By analysing three-dimensional images of faces, we quantified facial dysmorphology in a

  17. Two- and three-dimensional topographic analysis of pathologically myopic eyes with dome-shaped macula and inferior staphyloma by spectral domain optical coherence tomography.

    Science.gov (United States)

    García-Ben, Antonio; Kamal-Salah, Radua; García-Basterra, Ignacio; Gonzalez Gómez, Ana; Morillo Sanchez, María José; García-Campos, Jose Manuel

    2017-05-01

    To investigate the posterior anatomical structure of pathologically myopic eyes with dome-shaped macula and inferior staphyloma using spectral domain optical coherence tomography (SD-OCT). Our database of 260 pathologically myopic eyes was analyzed retrospectively to identify patients with dome-shaped macula and inferior staphyloma. All patients underwent vertical and horizontal SD-OCT scans across the central fovea, with three-dimensional macular map reconstruction. Best-corrected visual acuity, axial length, and choroidal thickness measurements were recorded. The macular bulge height was also analyzed in eyes with dome-shaped macula. In the three-dimensional images, the symmetry and orientation of the main plane of the inward incurvation of the macula were examined. Twenty-eight (10.7%) of the 260 pathologically myopic eyes had dome-shaped macula of one of three different types: a round radially symmetrical dome (eight eyes, 28.5%), a horizontal axially symmetrical oval-shaped dome (15 eyes, 53.5%), or a vertical axially symmetrical oval-shaped dome (five eyes, 17.8%). The macular bulge height was significantly greater in horizontal oval-shaped dome eyes (p = 0.01, for each comparison). Inferior posterior staphylomas were observed in ten (3.8%) of the 260 pathologically myopic eyes with asymmetrical macular bends. Vertical and horizontal OCT sectional scanning in combination with three-dimensional macular map reconstruction provides important information for understanding the posterior anatomical structure of dome-shaped macula and inferior staphyloma in pathologically myopic eyes.

  18. Injectable Shape-Memorizing Three-Dimensional Hyaluronic Acid Cryogels for Skin Sculpting and Soft Tissue Reconstruction

    Science.gov (United States)

    Cheng, Liying; Ji, Kai; Shih, Ting-Yu; Haddad, Anthony; Giatsidis, Giorgio; Mooney, David J.; Orgill, Dennis P.

    2017-01-01

    Introduction: Hyaluronic acid (HA)-based fillers are used for various cosmetic procedures. However, due to filler migration and degradation, reinjections of the fillers are often required. Methacrylated HA (MA-HA) can be made into injectable shape-memorizing fillers (three-dimensional [3D] MA-HA) aimed to address these issues. In this study, shape retention, firmness, and biocompatibility of 3D MA-HA injected subcutaneously in mice were evaluated. Materials and Methods: Fifteen mice, each receiving two subcutaneous injections in their back, were divided into four groups receiving HA, MA-HA, 3D MA-HA, or saline, respectively. Digital imaging, scanning electron microscope (SEM) and in vivo imaging system (IVIS), durometry, and histology were utilized to evaluate in vitro/vivo degradation and migration, material firmness, and the angiogenic (CD31) and immunogenic (CD45) response of the host tissue toward the injected materials. Results: Digital imaging, SEM, and IVIS revealed that 3D MA-HA fillers maintained their predetermined shape for at least 30 days in vitro and in vivo. Little volume effects were noted in the saline and other control groups. There were no differences in skin firmness between the groups or over time. Histology showed intact skin architecture in all groups. Three-dimensional MA-HA maintained its macroporous structure with significant angiogenesis at the 3D MA-HA/skin interfaces and throughout the 3D MA-HA. There was no significant inflammatory response to any of the injected materials. Conclusion: 3D MA-HA showed remarkable tissue compatibility, compliance, and shape predictability, as well as retention, and thus might be suitable for various skin sculpting and soft tissue reconstruction purposes. PMID:27875939

  19. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

    Directory of Open Access Journals (Sweden)

    Zonghua Zhang

    2017-12-01

    Full Text Available The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  20. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.

    Science.gov (United States)

    Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-12-07

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  1. Three-dimensional microscopic deformation measurements on cellular solids.

    Science.gov (United States)

    Genovese, K

    2016-07-01

    The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators

    International Nuclear Information System (INIS)

    Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S

    2008-01-01

    In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported

  3. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  4. Three-dimensional visualization and characterization of polymeric self-assemblies by Transmission Electron Microtomography

    NARCIS (Netherlands)

    H. Jinnai (Hiroshi); T. Higuchi (Takeshi); X. Zhuge (Jason); A. Kumamoto (Akihito); K.J. Batenburg (Joost); Y. Ikuhara (Yuichi)

    2017-01-01

    textabstractSelf-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep

  5. Application of three-dimensional CT reconstruction cranioplasty

    International Nuclear Information System (INIS)

    Yan Shuli; Yun Yongxing; Wan Kunming; Qiu Jian

    2011-01-01

    Objective: To study the application of three-dimensional CT reconstruction in cranioplasty. Methods: 46 patients with skull defect were divided into two group. One group underwent CT examination and three-dimensional reconstruction, and then the Titanium nets production company manufactured corresponding titanium meshes were shaped those data before the operation. The other group received traditional operation in which titanium meshes were shaped during operation. The average time of operation were compared. Results: The average time of operation of the first group is 86.6±13.6 mins, and that of the second group is 115±15.0 mins. The difference of average operation time between the two groups was statistically significant. Conclusion: Three-dimensional CT reconstruction techniques contribute to shorten the average operation time, reduce the intensity of neurosurgeon's work and the patien's risk. (authors)

  6. Laser chemical vapor deposition of millimeter scale three-dimensional shapes

    Science.gov (United States)

    Shaarawi, Mohammed Saad

    2001-07-01

    Laser chemical vapor deposition (LCVD) has been successfully developed as a technique to synthesize millimeter-scale components directly from the gas phase. Material deposition occurs when heat generated by the interaction of a laser beam with a substrate thermally decomposes the gas precursor. Selective illumination or scanning the laser beam over portions of a substrate forms the single thin layer of material that is the building block of this process. Sequential scanning of the laser in a pre-defined pattern on the substrate and subsequent deposit causes the layers to accumulate forming the three-dimensional shape. The primary challenge encountered in LCVD shape forming is the synthesis of uniform layers. Three deposition techniques are studied to address this problem. The most successful technique, Active Surface Deposition, is based on the premise that the most uniform deposits are created by measuring the deposition surface topology and actively varying the deposition rate in response to features at the deposition surface. Defects observed in the other techniques were significantly reduced or completely eliminated using Active Surface Deposition. The second technique, Constant Temperature Deposition, maintains deposit uniformity through the use of closed-loop modulation of the laser power to sustain a constant surface temperature during deposition. The technique was successful in depositing high quality graphite tubes >2 mm tall from an acetylene precursor and partially successful in depositing SiC + C composite tubes from tetramethylsilane (TMS). The final technique, Constant Power Deposition, is based on the premise that maintaining a uniform power output throughout deposition would result in the formation of uniform layers. Constant Power Deposition failed to form coherent shapes. Additionally, LCVD is studied using a combination of analytic and numerical models to gain insight into the deposition process. Thermodynamic modeling is used to predict the

  7. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  8. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  9. Traceable nanoscale measurement at NML-SIRIM

    International Nuclear Information System (INIS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-01-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  10. Traceable nanoscale measurement at NML-SIRIM

    Science.gov (United States)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  11. Traceable nanoscale measurement at NML-SIRIM

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Ahmad M.; Abdul Hapip, A. I. [National Metrology Laboratory SIRIM Berhad (NML-SIRIM), Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang (Malaysia)

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  12. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  13. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  14. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes

    Science.gov (United States)

    Ahmadzadeh, Ezat; Jaferzadeh, Keyvan; Lee, Jieun; Moon, Inkyu

    2017-07-01

    We present unsupervised clustering methods for automatic grouping of human red blood cells (RBCs) extracted from RBC quantitative phase images obtained by digital holographic microscopy into three RBC clusters with regular shapes, including biconcave, stomatocyte, and sphero-echinocyte. We select some good features related to the RBC profile and morphology, such as RBC average thickness, sphericity coefficient, and mean corpuscular volume, and clustering methods, including density-based spatial clustering applications with noise, k-medoids, and k-means, are applied to the set of morphological features. The clustering results of RBCs using a set of three-dimensional features are compared against a set of two-dimensional features. Our experimental results indicate that by utilizing the introduced set of features, two groups of biconcave RBCs and old RBCs (suffering from the sphero-echinocyte process) can be perfectly clustered. In addition, by increasing the number of clusters, the three RBC types can be effectively clustered in an automated unsupervised manner with high accuracy. The performance evaluation of the clustering techniques reveals that they can assist hematologists in further diagnosis.

  15. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  16. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  17. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  18. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  19. An automatic extraction algorithm of three dimensional shape of brain parenchyma from MR images

    International Nuclear Information System (INIS)

    Matozaki, Takeshi

    2000-01-01

    For the simulation of surgical operations, the extraction of the selected region using MR images is useful. However, this segmentation requires a high level of skill and experience from the technicians. We have developed an unique automatic extraction algorithm for extracting three dimensional brain parenchyma using MR head images. It is named the ''three dimensional gray scale clumsy painter method''. In this method, a template having the shape of a pseudo-circle, a so called clumsy painter (CP), moves along the contour of the selected region and extracts the region surrounded by the contour. This method has advantages compared with the morphological filtering and the region growing method. Previously, this method was applied to binary images, but there were some problems in that the results of the extractions were varied by the value of the threshold level. We introduced gray level information of images to decide the threshold, and depend upon the change of image density between the brain parenchyma and CSF. We decided the threshold level by the vector of a map of templates, and changed the map according to the change of image density. As a result, the over extracted ratio was improved by 36%, and the under extracted ratio was improved by 20%. (author)

  20. Three-dimensional reacting shock–bubble interaction

    NARCIS (Netherlands)

    Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.

    2017-01-01

    We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric

  1. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  2. Methods and devices for fabricating three-dimensional nanoscale structures

    Science.gov (United States)

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  3. Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

    International Nuclear Information System (INIS)

    Yuan Cai; Xu Shi-Lin; Yao Jian-Quan; Zhao Xiao-Lei; Cao Xiao-Long; Wu Liang

    2014-01-01

    A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials. (interdisciplinary physics and related areas of science and technology)

  4. Reproducibility of three-dimensional ultrasound for the measurement of a niche in a caesarean scar and assessment of its shape

    NARCIS (Netherlands)

    Bij de Vaate, A.J.M.; Linskens, I.H.; van der Voet, L.F.; Twisk, J.W.R.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Abstract Objective To evaluate the inter- and intraobserver agreement for measurement of the size and volume of a niche and assessment of the shape, with the use of three-dimensional (3D) ultrasound. Study design In this reproducibility study, 20 3D ultrasound volumes of uteri with a niche were

  5. Three-dimensional shape optimization of a cemented hip stem and experimental validations.

    Science.gov (United States)

    Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi

    2015-03-01

    This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.

  6. Nanoscale indent formation in shape memory polymers using a heated probe tip

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States); Wornyo, E [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gall, K [Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); King, W P [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-07-18

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a heated atomic force microscope (AFM) cantilever at various temperatures near or above the glass transition (between 84 and 215 deg. C) and a range of heating durations from 100 {mu}s to 8 ms. The images of the indents were obtained with the same probe tip at room temperature. The contact pressure, a measure of transient hardness, was derived from the indentation height data as a function of time and temperature for different polymers. With increasing crosslinker molecular weight and decreasing crosslinker concentration, the contact pressures decreased at a fixed maximum load due to increased crosslink spacing in the polymer system. The results provide insight into the nanoscale response of these novel materials.

  7. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo

    1995-01-01

    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  8. Three-dimensional shape profiling by out-of-focus projection of colored pulse width modulation fringe patterns.

    Science.gov (United States)

    Silva, Adriana; Flores, Jorge L; Muñoz, Antonio; Ayubi, Gastón A; Ferrari, José A

    2017-06-20

    Three-dimensional (3D) shape profiling by sinusoidal phase-shifting methods is affected by the non-linearity of the projector. To overcome this problem, the defocusing technique has become an important alternative to generate sinusoidal fringe patterns. The precision of this method depends on the binary pattern used and on the defocusing applied. To improve the defocusing technique, we propose the implementation of a color-based binary fringe patterns. The proposed technique involves the generation of colored pulse width modulation (PWM) fringe patterns, which are generated with different frequencies at the carrier signal. From an adequate selection of these frequencies, the colored PWM fringe patterns will lead to amplitude harmonics lower than the conventional PWM fringe patterns. Hence, the defocusing can decrease, and the 3D shape profiling can be more accurate. Numerical simulations and experimental results are presented as validation.

  9. Studies on three-dimensional reproduction of maxillofacial cranium shape, 2

    International Nuclear Information System (INIS)

    Mihara, Manabu

    1984-01-01

    The purpose of the serial studies were to develop a three-dimensional reproduction for diagnosis and surgical therapy planning. In the present study, the author devised the methd of making models reproduced through applying high resolutional computed tomography (GE CT/T). Preliminary examinations were carried out on the CT numbers and on the measurement of CT film images for three-dimensional reproduction. The results are summarized below: 1) There were few hourly changes of CT numbers. 2) At the interspace of the phantom teflon rod and water, CT numbers changed gradually because of the partial volume effect and the edge response. Although the true boundaries of the materials could be indentified with the median CT number of the two substances. 3) Setting up to 1,000 on the window level and 1,200 on the window width, the measurement value of the views of the phantom teflon rod which had been magnified 1.8 power coincided with the true size. 4) Supplementary examinations were carried out on the same methods using a pig mandible, and the results were affirmed. The models were made of acrilic boards which the images of CT films were traced. Those boards were waxed up and trimmed in the boxies for three-dimensional reproduction by using cephalograms. The reproducible accuracy of the completed models was satisfactory for use in the field of the maxillofacial surgery. (author)

  10. Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device

    Directory of Open Access Journals (Sweden)

    Feng Liang

    2017-02-01

    Full Text Available The fabrication of three-dimensional scaffolds has attracted more attention in tissue engineering. The purpose of this study is to explore a new method for the fabrication of three-dimensional micro-nanofiber structures by combining solution blow spinning and rotating collector. In this study, we successfully fabricated fibers with a minimum diameter of 200 nm and a three-dimensional structure with a maximum porosity of 89.9%. At the same time, the influence of various parameters such as the solvent volatility, the shape of the collector, the feed rate of the solution and the applied gas pressure were studied. It is found that solvent volatility has large effect on the formation of the three-dimensional shape of the structure. The shape of the collector affects the porosity and fiber distribution of the three-dimensional structure. The fiber diameter and fiber uniformity can be controlled by adjusting the solution feed rate and the applied gas pressure. It is feasible to fabricate high-quality three-dimensional micro-nanofiber structure by this new method, which has great potential in tissue engineering.

  11. Interface fracture in laminates at three-dimensional corners

    Energy Technology Data Exchange (ETDEWEB)

    Myhre Jensen, H.; Veluri, B. [Aarhus Univ.. Aarhus School of Engineering, Aarhus (Denmark)

    2012-07-01

    Interface failure close to corners has been observed in laminated layered structures. A fracture mechanics based approach focused on modelling the shape of such interface cracks and calculating the critical stress for steady-state propagation has been developed. The crack propagation is investigated by estimating the fracture mechanics parameters including the energy release rate and the three-dimensional mode-mixity along the crack front allowing determining the shape of the crack front profiles. A numerical approach is applied for coupling the far field solutions utilizing the capability of the Finite Element Method to the near field solutions at the crack front based on the J-integral. The developed two-dimensional numerical approach for the calculation of fracture mechanical properties has been validated with three-dimensional models for varying crack front shapes. In this study, a quantitative approach was formulated based on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stress as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses. (Author)

  12. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2016-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  13. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape

    NARCIS (Netherlands)

    Beaumont, C.A.A. (Caroline A.A.); Knoops, P.G.M. (Paul G.M.); Borghi, A. (Alessandro); Jeelani, N.U.O. (N.U. Owase); M.J. Koudstaal (Maarten); S. Schievano (Silvia); D.J. Dunaway (David); Rodriguez-Florez, N. (Naiara)

    2017-01-01

    textabstractThree-dimensional (3D) surface imaging devices designed to capture and quantify craniofacial surface morphology are becoming more common in clinical environments. Such scanners overcome the limitations of two-dimensional photographs while avoiding the ionizing radiation of computed

  14. The three-dimensional shapes of underground coal miners' feet do not match the internal dimensions of their work boots.

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-04-01

    Mining work boots provide an interface between the foot and the ground, protecting and supporting miners' feet during lengthy coal mining shifts. Although underground coal miners report the fit of their work boots as reasonable to good, they frequently rate their boots as uncomfortable, suggesting that there is a mismatch between the shape of their feet and their boots. This study aimed to identify whether dimensions derived from the three-dimensional scans of 208 underground coal miners' feet (age 38.3 ± 9.8 years) differed from the internal dimensions of their work boots. The results revealed underground coal miners wore boots that were substantially longer than their feet, possibly because boots available in their correct length were too narrow. It is recommended boot manufacturers reassess the algorithms used to create boot lasts, focusing on adjusting boot circumference at the instep and heel relative to increases in foot length. Practitioner Summary: Fit and comfort ratings suggest a mismatch between the shape of underground coal miners' feet and their boots exists. This study examined whether three-dimensional scans of 208 miners' feet differed from their boot internal dimensions. Miners wore boots substantially longer than their feet, possibly due to inadequate width.

  15. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    Science.gov (United States)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  16. A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Cheng-Yao Lo

    2012-03-01

    Full Text Available A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 ´ 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 ´ 20 mm2 dimensions. A complete finite element method (FEM model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors.

  17. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  18. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  19. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.

    Science.gov (United States)

    Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M

    2017-08-01

    Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

  20. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    Science.gov (United States)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  1. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using Solid-by-Solid model: Application to via and trench filling

    International Nuclear Information System (INIS)

    Kaneko, Yutaka; Hiwatari, Yasuaki; Ohara, Katsuhiko; Asa, Fujio

    2013-01-01

    In this paper we present the Kinetic Monte Carlo simulation system for the simulation of three-dimensional shape evolution with void formation as a model for electrodeposition. The basic system is the Solid-by-Solid model which is an extension of the conventional Solid-on-Solid model for crystal growth to include void formation. The advantage of the Solid-by-Solid model is that complex three-dimensional shape evolution accompanying void formation (from point defects to macro voids) can be simulated without the difficulty of treating moving boundaries. This model has been extended to include the solution part in which the migration of ions is simulated by the coarse-grained random walk. A multi-scale method is employed to generate the concentration gradient in the diffusion layer. The extended model is applied to the simulation of via and trench fillings by copper electrodeposition. Three kinds of additives are included: suppressors, accelerators and chloride ions. The mechanism of void formation, effects of additives and their influence on the bottom-up filling are discussed within the framework of this model

  2. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    International Nuclear Information System (INIS)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-01-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone

  3. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  4. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    Science.gov (United States)

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  5. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  6. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  7. Shape control in wafer-based aperiodic 3D nanostructures

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Ho; Mark, Andrew G; Gibbs, John G; Fischer, Peer; Reindl, Thomas; Waizmann, Ulrike; Weis, Jürgen

    2014-01-01

    Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate. (papers)

  8. Enabling complex nanoscale pattern customization using directed self-assembly.

    Science.gov (United States)

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  9. OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J.; Longcope, D. W., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-05-20

    We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.

  10. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate

    Science.gov (United States)

    Yu, Hao; Young, Marcus L.

    2018-01-01

    A three-dimensional model for phase transformation of shape memory alloys (SMAs) during high strain rate deformation is developed and is then calibrated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this paper presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.

  11. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography

    NARCIS (Netherlands)

    A.M. Anwar (Ashraf); M.L. Geleijnse (Marcel); F.J. ten Cate (Folkert); F.J. Meijboom (Folkert)

    2006-01-01

    textabstractTricuspid annulus (TA) evaluation continues to be a major problem in the surgical decision-making process. Obviously, 2-dimensional transthoracic echocardiography (2D TTE) is limited in TA visualization due to its complex 3D shape. The study aimed to determine TA morphology, size and

  12. Three-Dimensional Structure of CeO2 Nanocrystals

    DEFF Research Database (Denmark)

    Tan, Joyce Pei Ying; Tan, Hui Ru; Boothroyd, Chris

    2011-01-01

    Visualization of three-dimensional (3D) structures of materials at the nanometer scale can shed important information on the performance of their applications and provide insight into the growth mechanism of shape-controlled nanomaterials. In this paper, the 3D structures and growth pathway of Ce...

  13. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  14. Superlattices assembled through shape-induced directional binding

    Science.gov (United States)

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks--cubes and octahedrons--when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  15. Three-dimensional shape perception from chromatic orientation flows

    Science.gov (United States)

    Zaidi, Qasim; Li, Andrea

    2010-01-01

    The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963

  16. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    Science.gov (United States)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  17. Crystal size and shape analysis of Pt nanoparticles in two and three dimensions

    International Nuclear Information System (INIS)

    Gontard, L Cervera; Dunin-Borkowski, R E; Ozkaya, D; Hyde, T; Midgley, P A; Ash, P

    2006-01-01

    The majority of industrial catalysts are high-surface-area solids, onto which an active component is dispersed in the form of nanoparticles that have sizes of between 1 and 20 nm. In an industrial environment, the crystal size distributions of such particles are conventionally measured by using either bright-field transmission electron microscope (TEM) images or X-ray diffraction. However, the analysis of particle sizes and shapes from two-dimensional bright-field TEM images is affected by variations in image contrast between adjacent particles, by the difficulty of distinguishing the particles from their matrix, and by overlap between particles when they are imaged in projection. High-angle annular dark-field (HAADF) electron tomography provides a convenient technique for overcoming many of these problems, by allowing the three-dimensional shapes and sizes of high atomic number nanoparticles that are supported on a low atomic number support to be recorded. Here, we discuss the three-dimensional analysis of particle sizes and shapes from such tomographic data, and we assess whether such measurements provide different information from that obtained using two-dimensional TEM images and X-ray diffraction measurements

  18. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  19. Three-dimensional effects of curved plasma actuators in quiescent air

    International Nuclear Information System (INIS)

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-01-01

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength (λ) and amplitude (Λ) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  20. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.

    Science.gov (United States)

    Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M

    2009-12-15

    Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.

  1. Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect

    Science.gov (United States)

    Bormann, Therese; de Wild, Michael; Beckmann, Felix; Müller, Bert

    2013-04-01

    NiTi is promising for the use as bone scaffold, because the pseudoelasticity or the one- and two-way shape memory effect in the physiological window can mechanically stimulate the adherent cells. Such stimuli can enhance osseointegration and might reduce stress shielding associated with load bearing implants. The present study is based on the additive manufacturing technique of selective laser melting (SLM) to fabricate three-dimensional NiTi scaffolds. We demonstrate that the morphology of the scaffolds can be quantified using synchrotron radiation-based micro computed tomography (SRμCT) and sophisticated registration software. Comparing the CAD file with the SLM scaffolds, quality factors are derived. With respect to the CAD file, the overlap corresponds to (92.5 +/- 0.6) %. (7.4 +/- 0.42) % of material was missing and (48.9 +/- 2.3) % of excess material found. This means that the actual scaffold is less porous than expected, a fact that has to be considered for the scaffold design. In order to quantify the shape memory effect during the shape recovery process, we acquired radiographs rotating an initially deformed scaffold in angular steps of 0.2 degree during controlled heating. The continuously acquired radiographs were combined to tomography data, showing that the quality factors evolved with temperature as the scaffold height, measured by conventional thermo-mechanical analysis. Furthermore, the data comprise the presence of compressive and tensile local strains in the three-dimensional scaffolds to be compared with the physiological situation.

  2. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  3. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  4. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    International Nuclear Information System (INIS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life

  5. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  6. Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices

    Science.gov (United States)

    Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2017-07-01

    The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.

  7. Mathematical modeling of three-dimensional images in emission tomography

    International Nuclear Information System (INIS)

    Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out

  8. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  9. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  10. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  11. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    Science.gov (United States)

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  12. Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals

    KAUST Repository

    Zhang, Yang

    2013-01-01

    Semiconductor nanocrystals, especially their ordered assemblies, are promising materials for various applications. In this paper, we investigate the photoconductive behavior of sub-micron size, ordered three-dimensional (3D) assemblies of octapod-shaped CdSe/CdS nanocrystals that are contacted by overlay electron-beam lithography. The regular structure of the assemblies leads to photocurrent-voltage curves that can be described by the cold field electron emission model. Mapping of the photoconductivity versus excitation wavelength and bias voltage allows the extraction of the band gap and identification of the photoactive region in the voltage and spectral domain. These results have important implications for the understanding of photoconductive transport in similar systems. © 2013 The Royal Society of Chemistry.

  13. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Science.gov (United States)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  14. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines.

    Science.gov (United States)

    Piantadosi, Steven

    2017-01-01

    This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.

  15. Growth and Development of Three-Dimensional Plant Form.

    Science.gov (United States)

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse" Nacre-like Architecture.

    Science.gov (United States)

    Biswas, Subir K; Sano, Hironari; Shams, Md Iftekhar; Yano, Hiroyuki

    2017-09-06

    Achieving a structural hierarchy and a uniform nanofiller dispersion simultaneously remains highly challenging for obtaining a robust polymer nanocomposite of immiscible components. In this study, a remarkably facile Pickering emulsification approach is developed to fabricate hierarchical composites of immiscible acrylic polymer and native cellulose nanofibers by taking advantage of the dual role of the nanofibers as both emulsion stabilizer and polymer reinforcement. The composites feature a unique "reverse" nacre-like microstructure reinforced with a well-dispersed two-tier hierarchical nanofiber network, leading to a synergistic high strength, modulus, and toughness (20, 50, and 53 times that of neat polymer, respectively), high optical transparency (89%), high flexibility, and a drastically low thermal expansion (13 ppm K -1 , 1/15th of the neat polymer). The nanocomposites have a three-dimensional-shape moldability, also their surface can be patterned with micro/nanoscale features with high fidelity by in situ compression molding, making them attractive as the substrate for flexible displays, smart contact lens devices, and photovoltaics. The Pickering emulsification approach should be broadly applicable for the fabrication of novel functional materials of various immiscible components.

  17. The blind student’s interpretation of two-dimensional shapes in geometry

    Science.gov (United States)

    Andriyani; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.

  18. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

    International Nuclear Information System (INIS)

    Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

    2016-01-01

    The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

  19. Nanoscale mapping of the three-dimensional deformation field within commercial nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Muhammad Salman; Hoxley, David; Phillips, Nicholas W.; Coughlan, Hannah D.; Darmanin, Connie; Johnson, Brett C.; Harder, Ross; Clark, Jesse N.; Balaur, Eugeniu; Abbey, Brian

    2017-01-01

    The unique properties of nanodiamonds make them suitable for use in a wide range of applications, including as biomarkers for cellular tracking in vivo at the molecular level. The sustained fluorescence of nanodiamonds containing nitrogen-vacancy (N-V) centres is related to their internal structure and strain state. Theoretical studies predict that the location of the N-V centre and the nanodiamonds' residual elastic strain state have a major influence on their photoluminescence properties. However, to date there have been no direct measurements made of their spatially resolved deformation fields owing to the challenges that such measurements present. Here we apply the recently developed technique of Bragg coherent diffractive imaging (BCDI) to map the three-dimensional deformation field within a single nanodiamond of approximately 0.5 µm diameter. The results indicate that there are high levels of residual elastic strain present in the nanodiamond which could have a critical influence on its optical and electronic properties.

  20. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    Science.gov (United States)

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  1. Creation of three-dimensional craniofacial standards from CBCT images

    Science.gov (United States)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  2. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined....... The nanoelectrodes withstand considerable contact force before breaking. The probe offers a unique possibility to position the voltage sensors, as well as the source and drain electrodes in areas of nanoscale dimensions. ©2000 American Institute of Physics....

  3. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli

    Directory of Open Access Journals (Sweden)

    Feroze Mahmood

    2014-01-01

    Full Text Available Aims and Objectives: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. Materials and Methods: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Results: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Conclusions: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  4. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  5. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  6. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  7. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  8. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  9. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  10. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  11. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  12. Three dimensional images of the sternum in children with using MDCT

    International Nuclear Information System (INIS)

    Kim, Young Tong; Kim, Hyun Cheol; Bae, Won Kyung; Kim, Il Young

    2006-01-01

    We wanted to analyze the three dimensional images with using multidetector CT scanning of the sternum in children, and we wanted to compare the CT findings with the children's age. We studied the three dimensional images of the sternum of 67 children (62 were boys and 5 were girls). The age of the children was 3-15 years old (mean age:7.5). We evaluated the number of sternal bodies, the presence of the xiphoid process and the bifid shape of each sternal body. The number of sternal bodies was from three to five; 30 patients had 3 bodies, 25 patients had 4 bodies and 5 patients had 2. The number of sternal bodies was 3.4 in Group I, 3.5 in Group II and 3.9 in Group III. As the children's age increased, the number of sternal body was statistically increased. When the number of sternal bodies was three, the mean age of children was 5.4 year; when it was four or five, the mean age of children was 8.1 year. The children's age was increased as the number of sternal bodies increased. The mean age of the children with a xiphoid process was 7.0 years, and the mean age of children without a xiphoid process was 8.1. There was no statistical difference between the two groups with or without xiphoid process. Among the 67 children, 9 had the bifid shape in the 3rd portion of the sternal body, 5 had the bifid shape in 4th portion, 2 had the bifid shape in 2nd portion and 1 had the bifid shape in 5th portion. The number of sternal bodies was mostly three or four. The number of sternal bodies was related to the children's age. Three is no relationship between children's age and the presence of the xiphoid process. The bifid shapes are mostly shown in the 3rd and 4th portion of the sternal body

  13. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  14. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer

    Science.gov (United States)

    Hajati, Arman; Latev, Dimitre; Gardner, Deane; Hajati, Azadeh; Imai, Darren; Torrey, Marc; Schoeppler, Martin

    2012-12-01

    Here we present the design and experimental acoustic test data for an ultrasound transducer technology based on a combination of micromachined dome-shaped piezoelectric resonators arranged in a flexible architecture. Our high performance niobium-doped lead zirconate titanate film is implemented in three-dimensional dome-shaped structures, which form the basic resonating cells. Adjustable frequency response is realized by mixing these basic cells and modifying their dimensions by lithography. Improved characteristics such as high sensitivity, adjustable wide-bandwidth frequency response, low transmit voltage compatible with ordinary integrated circuitry, low electrical impedance well matched to coaxial cabling, and intrinsic acoustic impedance match to water are demonstrated.

  15. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  16. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection

    Science.gov (United States)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen

    2013-08-01

    This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.

  17. Three-dimensional simulations of Nova capsule implosion experiments

    International Nuclear Information System (INIS)

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-01-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values

  18. Clinical significance of three-dimensional sonohysterography

    International Nuclear Information System (INIS)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel

    1999-01-01

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  19. Clinical significance of three-dimensional sonohysterography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)

    1999-12-15

    To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.

  20. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    Science.gov (United States)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  1. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    Science.gov (United States)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  2. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    Science.gov (United States)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  3. Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.

    Science.gov (United States)

    Landefeld, Andreas; Rösler, Joachim

    2014-01-01

    This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.

  4. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Science.gov (United States)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    2017-11-01

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.

  5. Parking simulation of three-dimensional multi-sized star-shaped particles

    International Nuclear Information System (INIS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-01-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape. (paper)

  6. Three-dimensional, three-component wall-PIV

    Science.gov (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich

    2010-06-01

    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  7. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    Science.gov (United States)

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  8. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    Science.gov (United States)

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  9. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    Science.gov (United States)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  10. Three-dimensional groundwater velocity field in an unconfined aquifer under irrigation

    International Nuclear Information System (INIS)

    Zlotnik, V.

    1990-01-01

    A method for three-dimensional flow velocity calculation has been developed to evaluate unconfined aquifer sensitivity to areal agricultural contamination of groundwater. The methodology of Polubarinova-Kochina is applied to an unconfined homogeneous compressible or incompressible anisotropic aquifer. It is based on a three-dimensional groundwater flow model with a boundary condition on the moving surface. Analytical solutions are obtained for a hydraulic head under the influence of areal sources of circular and rectangular shape using integral transforms. Two-dimensional Hantush formulas result from the vertical averaging of the three-dimensional solutions, and the asymptotic behavior of solutions is analyzed. Analytical expressions for flow velocity components are obtained from the gradient of the hydraulic head field. Areal and temporal variability of specific yield in groundwater recharge areas is also taken into account. As a consequence of linearization of the boundary condition, the operation of any irrigation system with respect to groundwater is represented by superposition of the operating wells and circular and rectangular source influences. Combining the obtained solutions with Dagan or Neuman well functions, one can develop computer codes for the analytical computation of the three-dimensional groundwater hydraulic head and velocity component distributions. Methods for practical implementation are discussed. (Author) (20 refs., 4 figs.)

  11. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  12. Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mori, Koichi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute and MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5 T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI. (author)

  13. [Effects of the volume and shape of voxels on the measurement of phantom volume using three-dimensional magnetic resonance imaging].

    Science.gov (United States)

    Mori, Koichi; Hagino, Hirofumi; Saitou, Osamu; Yotsutsuji, Takashi; Tonami, Syuichi; Nakamura, Mamoru; Kuranishi, Makoto

    2002-01-01

    Recently, an increasing number of volumetric studies of the human brain have been reported, using three-dimensional magnetic resonance imaging (3D-MRI). To our knowledge, however, there are few investigations on the relation of the volume and shape of voxels which constitute an MR image to the accuracy in volume measurement of an imaged object. The purpose of this study was to evaluate the effect of a different shape of voxel, that is, isotropic or anisotropic, as well as the volume of a voxel on the volume measurement based on the original image data and multiplanar reconstruction (MPR) data, respectively. In the experiment, we repeatedly acquired contiguous sagittal images of a single globe phantom with a known volume under the condition in which the volume and shape of voxels varied, on a 1.5T MR scanner. We used a gradient echo sequence (3D FLASH). The volume of the globe phantom from both original images and MPR ones was measured on workstations employing a semi-automated local thresholding technique. As a result, the smaller volume of voxels tended to give us the more correct measurement, and an isotropic voxel reduced measurement errors as compared to an anisotropic one. Therefore, it is concluded that the setting of voxel with both an isotropic shape and small volume, e.g., a voxel of 1 mm x 1 mm x 1 mm at present, is recommended in order to get a precise volume measurement using 3D-MRI.

  14. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    Science.gov (United States)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  15. Effect of measurement conditions on three-dimensional roughness values, and development of measurement standard

    International Nuclear Information System (INIS)

    Fabre, A; Brenier, B; Raynaud, S

    2011-01-01

    Friction or corrosion behaviour, fatigue lifetime for mechanical components are influenced by their boundary and subsurface properties. The surface integrity is studied on mechanical component in order to improve the service behaviour of them. Roughness is one of the main geometrical properties, which is to be qualified and quantified. Components can be obtained using a complex process: forming, machining and treatment can be combined to realize parts with complex shape. Then, three-dimensional roughness is needed to characterize these parts with complex shape and textured surface. With contact or non-contact measurements (contact stylus, confocal microprobe, interferometer), three-dimensional roughness is quantified using the calculation of pertinent parameters defined by the international standard PR EN ISO 25178-2:2008. An analysis will identify the influence of measurement conditions on three-dimensional parameters. The purpose of this study is to analyse the variation of roughness results using contact stylus or optical apparatus. The second aim of this work is to develop a measurement standard well adapted to qualify the contact and non-contact apparatus.

  16. Apparatus and method of optical marker projection for the three-dimensional shape measurement

    Science.gov (United States)

    Chen, Zhe; Qu, Xinghua; Geng, Xin; Zhang, Fumin

    2015-08-01

    Optical photography measurement and three-dimensional (3-D) scanning measurement have been widely used in the field of the fast dimensional and surface metrology. In the measurement process, however, retro-reflective markers are often pasted on the surface in advance for image registration and positioning the 3-D measuring instruments. For the large-scale workpiece with freeform surface, the process of pasting markers is time consuming, which reduces the measurement efficiency. Meanwhile, the measurement precision is impaired owing to the thickness of the marker. In this paper, we propose a system that projects two-dimensional (2-D) array optical markers with uniform energy on the surface of the workpiece instead of pasting retro-reflective markers, which achieves large-range and automated optical projection of the mark points. In order to conjunction with the 3-D handheld scanner belonging to our team, we develop an apparatus of optical marker projection, which is mainly composed of the high-power laser, the optical beam expander system, adjustable aperture stop and Dammann grating of dibasic spectrophotometric device. The projection apparatus can achieve the function of beams of 15 * 15 uniformly light of the two-dimensional lattice. And it's much cheaper than the existing systems.

  17. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  18. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  19. Conformal three dimensional radiotherapy treatment planning in Lund

    International Nuclear Information System (INIS)

    Knoos, T.; Nilsson, P.; Anders, A.

    1995-01-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam's eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam's eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment

  20. Three-dimensional structure of a pre-catalytic human spliceosomal complex B.

    Science.gov (United States)

    Boehringer, Daniel; Makarov, Evgeny M; Sander, Bjoern; Makarova, Olga V; Kastner, Berthold; Lührmann, Reinhard; Stark, Holger

    2004-05-01

    Major structural changes occur in the spliceosome during its transition from the fully assembled complex B to the catalytically activated spliceosome. To understand the rearrangement, it is necessary to know the detailed three-dimensional structures of these complexes. Here, we have immunoaffinity-purified human spliceosomes (designated B Delta U1) at a stage after U4/U6.U5 tri-snRNP integration but before activation, and have determined the three-dimensional structure of B Delta U1 by single-particle electron cryomicroscopy at a resolution of approximately 40 A. The overall size of the complex is about 370 x 270 x 170 A. The three-dimensional structure features a roughly triangular body linked to a head domain in variable orientations. The body is very similar in size and shape to the isolated U4/U6.U5 tri-snRNP. This provides initial insight into the structural organization of complex B.

  1. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  2. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    2010-03-01

    Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.

  3. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.

    Science.gov (United States)

    Xia, Shuman; Pan, Zhipeng; Zhang, Jingwen

    2014-07-15

    We report a novel optical microscope for full-field, noncontact measurements of three-dimensional (3D) surface deformation and topography at the microscale. The microscope system is based on a seamless integration of the diffraction-assisted image correlation (DAIC) method with fluorescent microscopy. We experimentally demonstrate the microscope's capability for 3D measurements with submicrometer spatial resolution and subpixel measurement accuracy.

  4. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  5. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  6. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  7. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    Wolff, L.B.; Angelopoulou, E.

    1994-01-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  8. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  9. Three dimensional analysis of coelacanth body structure by computer graphics and X-ray CT images

    International Nuclear Information System (INIS)

    Suzuki, Naoki; Hamada, Takashi.

    1990-01-01

    Three dimensional imaging processes were applied for the structural and functional analyses of the modern coelacanth (Latimeria chalumnae). Visualization of the obtained images is performed with computer graphics on the basis of serial images by an X-ray CT scanning method. Reconstruction of three dimensional images of the body structure of coelacanth using the volume rendering and surface rendering methods provides us various information about external and internal shapes of this exquisite fish. (author)

  10. A three-dimensional geometric morphometrics view of the cranial shape variation and population history in the New World.

    Science.gov (United States)

    Galland, Manon; Friess, Martin

    2016-09-10

    Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Three-Dimensional Numerical Simulation of Plate Forming by Line Heating

    DEFF Research Database (Denmark)

    Clausen, Henrik Bisgaard

    1999-01-01

    addressed the problem of simulating the process, and although very few have been successful in gaining accurate results valuable information about the mechanics have been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three......Line Heating is the process of forming (steel) plates into shape by means of localised heating often along a line. Though any focussed heat source will do, the inexpensive and widely available oxyacettylene gas torch is commonly applied in ship production.Over the years, many researchers have......-dimensional thermo-mechanical model. Although very few have been successful in gaining accurate results valuable information about the mechanics has been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three-dimensional thermo-mechanical model....

  12. Three-dimensional quantitative analysis of healthy foot shape: a proof of concept study.

    Science.gov (United States)

    Stanković, Kristina; Booth, Brian G; Danckaers, Femke; Burg, Fien; Vermaelen, Philippe; Duerinck, Saartje; Sijbers, Jan; Huysmans, Toon

    2018-01-01

    Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape. The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was investigated. Correlation between these factors and foot shape was examined using multivariate linear regression. The complex nature of a foot's 3D shape leads to high variability in healthy populations. After normalizing for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian, Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis. Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with Achilles tendon width and toe height. A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot variations in three dimensions that can not be

  13. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete (Greece); Tosca, Androniki, E-mail: ranthi@iesl.forth.gr [Department of Medicine, University of Crete, 710 03 Heraklion, Crete (Greece)

    2011-08-15

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  14. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures

    Science.gov (United States)

    Ertin, Emre; Austin, Christian D.; Sharma, Samir; Moses, Randolph L.; Potter, Lee C.

    2007-04-01

    We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.

  15. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  16. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T; Nilsson, P [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  17. Selective three-dimensional hydrophilization of microstructured polymer surfaces through confined photocatalytic oxidation

    International Nuclear Information System (INIS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2015-01-01

    Graphical abstract: - Highlights: • Microstructured polymer surfaces with selective 3-D anisotropy were created. • Selective UV treatment was performed to alter surface wettability. • Removable meshes resembling a photomask were applied during UV treatment. • Micropatterning by viscous polymer on solid surface was performed. - Abstract: While the conventional photomask technique gives only two-dimensional anisotropies, in this study we fabricated microstructured polymer surfaces with a selective three-dimensional anisotropy. With the applied removable mesh, we were able to confine the contacting area between the surface and photoinitiator and provide three-dimensional wettability anisotropies. Different types of meshes were used depending on the desired micropatterns shape, size and substrate material. The results revealed the three-dimensional anisotropic micropits pattern with depth profiles, which would be applicable for the confinement and patterning of cells and biomolecules. In addition, the proposed method is applicable for creating selectively activated polymer surface as a substrate for further atomic layer deposition. Moreover, we demonstrate a low cost and fast mass productive method for patterning a viscous polymer liquid in a micro-sized scale

  18. Three-dimensional thin film for lithium-ion batteries and supercapacitors.

    Science.gov (United States)

    Yang, Yang; Peng, Zhiwei; Wang, Gunuk; Ruan, Gedeng; Fan, Xiujun; Li, Lei; Fei, Huilong; Hauge, Robert H; Tour, James M

    2014-07-22

    Three-dimensional heterogeneously nanostructured thin-film electrodes were fabricated by using Ta2O5 nanotubes as a framework to support carbon-onion-coated Fe2O3 nanoparticles along the surface of the nanotubes. Carbon onion layers function as microelectrodes to separate the two different metal oxides and form a nanoscale 3-D sandwich structure. In this way, space-charge layers were formed at the phase boundaries, and it provides additional energy storage by charge separation. These 3-D nanostructured thin films deliver both excellent Li-ion battery properties (stabilized at 800 mAh cm(–3)) and supercapacitor (up to 18.2 mF cm(–2)) performance owing to the synergistic effects of the heterogeneous structure. Thus, Li-ion batteries and supercapacitors are successfully assembled into the same electrode, which is promising for next generation hybrid energy storage and delivery devices.

  19. Correction: One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-02-01

    Correction for 'One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor' by Jayakumar Kumarasamy, et al., Nanoscale, 2018, DOI: 10.1039/c7nr06952a.

  20. Analysis of the three dimensional flow in a turbine scroll

    Science.gov (United States)

    Hamed, A.; Baskharone, E.

    1979-01-01

    The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

  1. Subsonic flow past three-dimensional localised heating elements in boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Aljohani, A F [Department of Mathematics, Faculty of Science, University of Tabuk (Saudi Arabia); Gajjar, J S B, E-mail: j.gajjar@manchester.ac.uk [School of Mathematics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-12-15

    The problem of subsonic flow past three-dimensional micro-electro-mechanical-type (MEMS-type) heating elements placed on a flat surface, where the MEMS devices have hump-shaped surfaces, is investigated using the triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are considered in the limit when the Reynolds number is large. The dimensions of the MEMS devices considered are such that the flow perturbations are governed by the three-dimensional subsonic triple-deck equations formulated with the aid of method of matched expansions. The linear analysis of these equations is presented and our results provide an insight into how the MEMS heating elements may be used to positively control the local flow properties. (paper)

  2. Full three-dimensional isotropic transformation media

    International Nuclear Information System (INIS)

    García-Meca, C; Martí, J; Martínez, A; Ortuño, R

    2014-01-01

    We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization process. For sufficiently smooth transformations, the resulting anisotropy can be neglected, paving the way for practically realizable 3D devices. The method is independent of the considered wave phenomenon and can thus be applied to any field for which a transformational technique exists, such as acoustics or thermodynamics. Full 3D isotropy has an additional important implication for optical transformation media, as it eliminates the need for magnetic materials in many situations. To illustrate the potential of the method, we design 3D counterparts of transformation-based electromagnetic squeezers and bends. (paper)

  3. The dimension split element-free Galerkin method for three-dimensional potential problems

    Science.gov (United States)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-02-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  4. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  5. Three-dimensional structure of laser-modified Ti6Al4V and bone interface revealed with STEM tomography

    International Nuclear Information System (INIS)

    Grandfield, Kathryn; Palmquist, Anders; Engqvist, Håkan

    2013-01-01

    The early interaction between an implant's surface and bone is a leading factor for implant success, where multiple surface properties contribute to improved bone anchorage. An important parameter is surface topography, both on the micron and nanoscale. Laser-modification has been performed in the thread valleys of Ti6Al4V screws to alter their surface chemistry and topography to form a nanostructured surface titanium-dioxide. Implants were placed in the rabbit tibia, removed with surrounding bone after 8 weeks, fixated, dried and resin embedded. Focused ion beam milling (FIB) was used to prepare specimens from the resin blocks for transmission electron microscopy (TEM). Z-contrast electron tomography offered the possibility to explore the interfacial structure with high-resolution in three-dimensions. With this technique, collagen fibers of the surrounding bone appear to have been laid down parallel to the implant surface. Accordingly, visualization of the laser-modified interface with nanoscale three-dimensional resolution, as offered by Z-contrast electron tomography, gives new insights into bone bonding mechanisms between roughened titanium-dioxide surfaces and bone

  6. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  7. Three-dimensional microbubble streaming flows

    Science.gov (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  8. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes

    NARCIS (Netherlands)

    Butscher, A.; Bohner, M.; Doebelin, N.; Hofmann, S.; Müller, R.

    2013-01-01

    Powder-based three-dimensional printing (3DP) is a versatile method that allows creating synthetic cal- cium phosphate (CaP) scaffolds of complex shapes and structures. However, one major drawback is the difficulty of removing all remnants of loose powder from the printed scaffolds, the so-called

  9. A three-dimensional microstructuring technique exploiting the positive photoresist property

    International Nuclear Information System (INIS)

    Hirai, Yoshikazu; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu

    2010-01-01

    The present paper describes a three-dimensional (3D) thick-photoresist microstructuring technique that exploits the effect of exposure wavelength on dissolution rate distributions in a thick-film diazonaphthoquinone (DNQ) photoresist. In fabricating 3D microstructure with specific applications, it is important to control the spatial dissolution rate distribution in the photoresist layer, since the lithographic performance for 3D microstructuring is largely determined by the details of the dissolution property. To achieve this goal, the effect of exposure wavelength on dissolution rate distributions was applied for 3D microstructuring. The parametric experimental results demonstrated (1) the advantages of the fabrication technique for 3D microstructuring and (2) the necessity of a dedicated simulation approach based on the measured thick-photoresist property for further verification. Thus, a simple and practical photolithography simulation model that makes use of the Fresnel diffraction theory and an empirically characterized DNQ photoresist property was adopted. Simulations revealed good quantitative agreement between the photoresist development profiles of the standard photolithography and the moving-mask UV lithography process. The simulation and experimental results conclude that the g-line (λ = 436 nm) process can reduce the dimensional limitation or complexity of the photolithography process for the 3D microstructuring which leads to nanoscale microstructuring.

  10. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  11. Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

    Directory of Open Access Journals (Sweden)

    Andreas Landefeld

    2014-07-01

    Full Text Available Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process.Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock.Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.

  12. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  13. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra

    2012-09-01

    Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.

  14. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  15. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    International Nuclear Information System (INIS)

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution

  16. Three-dimensional display of the pelvic viscera using multi-sliced MR images

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Suto, Yasuzo.

    1995-01-01

    Accurate reconstruction of the pelvic structure is the most important factor to obtain desirable results after anorectal surgery. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate the preoperative evaluation, three dimensional images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon two dimensional images obtained from MR-CT. Graphic data from MR images were transferred to a graphic work station. The anorectum, bladder and sphincter musculature were displayed three-dimensionally after segmenting these organs by (1) manually regioning the area containing the specific organ and (2) thresholding the area by the T 1 intensity level. The anatomy of each type of anomaly is easily recognized by the 3-D visualization of pelvic viscera and sphincter musculature with emphasis on position and shape of the musculature although there are some difficulties to visualize soft tissue organs. The advanced programs could show the graphic images from any desirable angle quickly enough to be helpful for the simulation of the surgery. Three-dimensional display can be very useful for better understanding of each anomaly and determining the operative method prior to surgery. (author)

  17. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  18. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  19. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    International Nuclear Information System (INIS)

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  20. Comparison of two intraoral scanners based on three-dimensional surface analysis

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    2018-02-01

    Full Text Available Abstract Background This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology and TRIOS (3Shape. Methods Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. Results The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Conclusions Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.

  1. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    Science.gov (United States)

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  2. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  3. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  4. (Weakly) three-dimensional caseology

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1996-01-01

    The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)

  5. Critical states and thermomagnetic instabilities in three-dimensional nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tamegai, T., E-mail: tamegai@ap.t.u-tokyo.ac.jp [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mine, A.; Tsuchiya, Y.; Miyano, S.; Pyon, S. [Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Mawatari, Y.; Nagasawa, S.; Hidaka, M. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2017-02-15

    Highlights: • Critical state field profiles and thermomagnetic instabilities are studied in three-dimensional nanostructured superconductors. • We find that the critical state field profiles in bi-layer systems are not simple superpositions of critical states in the two layers. • We also studied flux avalanches in shifted strip arrays with layer numbers up to six. • Various forms of avalanches either perpendicular or parallel to the strip are observed when the overlap between layers is large. • We find that introduction of asymmetry to shifted strip arrays affects the shape of flux avalanches sensitively. - Abstract: Critical state field profiles and thermomagnetic instabilities are studied in two kinds of three-dimensional nanostructured superconductors. We find that the critical state field profiles in some simple bi-layer systems are not simple superpositions of critical states in the two layers. Competition between the divergence of the local field at the edges of the film and the shielding by the neighboring layer makes novel critical state field profiles. We also studied flux avalanches in shifted strip arrays (SSAs) with layer numbers up to six. Various forms of avalanches either perpendicular or parallel to the strip are observed when the overlap between strips in neighboring layers is large. We also find that introduction of asymmetry in various forms to SSA affects the shape of flux avalanches sensitively.

  6. Fast multiview three-dimensional reconstruction method using cost volume filtering

    Science.gov (United States)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  7. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA; Luican-Mayer, Adina [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2017-11-27

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.

  8. Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

    International Nuclear Information System (INIS)

    Zhang, H.Y.; Zheng, G.P.

    2014-01-01

    Highlights: • 3D phase-field modeling is developed to investigate the deformation of MG nanowires. • The surface defects significantly affect the mechanical properties of nanowires. • Multiple shear bands are initiated from the surfaces of nanowires with D < 50 nm. - Abstract: It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces

  9. New method of three-dimensional reconstruction from two-dimensional MR data sets

    International Nuclear Information System (INIS)

    Wrazidlo, W.; Schneider, S.; Brambs, H.J.; Richter, G.M.; Kauffmann, G.W.; Geiger, B.; Fischer, C.

    1989-01-01

    In medical diagnosis and therapy, cross-sectional images are obtained by means of US, CT, or MR imaging. The authors propose a new solution to the problem of constructing a shape over a set of cross-sectional contours from two-dimensional (2D) MR data sets. The authors' method reduces the problem of constructing a shape over the cross sections to one of constructing a sequence of partial shapes, each of them connecting two cross sections lying on adjacent planes. The solution makes use of the Delaunay triangulation, which is isomorphic in that specific situation. The authors compute this Delaunay triangulation. Shape reconstruction is then achieved section by pruning Delaunay triangulations

  10. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  11. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    Science.gov (United States)

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  12. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  13. Synthesis and nanoscale thermal encoding of phase-change nanowires

    International Nuclear Information System (INIS)

    Sun Xuhui; Yu Bin; Meyyappan, M.

    2007-01-01

    Low-dimensional phase-change nanostructures provide a valuable research platform for understanding the phase-transition behavior and thermal properties at nanoscale and their potential in achieving superdense data storage. Ge 2 Sb 2 Te 5 nanowires have been grown using a vapor-liquid-solid technique and shown to exhibit distinctive properties that may overcome the present data storage scaling barrier. Local heating of an individual nanowire with a focused electron beam was used to shape a nano-bar-code on a Ge 2 Sb 2 Te 5 nanowire. The data encoding on Ge 2 Sb 2 Te 5 nanowire may promote novel device concepts to implement ultrahigh density, low energy, high speed data storage using phase-change nanomaterials with diverse thermal-programing strategies

  14. Three-dimensional analytical field calculation of pyramidal-frustum shaped permanent magnets

    NARCIS (Netherlands)

    Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.

    2009-01-01

    This paper presents a novel method to obtain fully analytical expressions of the magnetic field created by a pyramidal-frustum shaped permanent magnet. Conventional analytical tools only provide expressions for cuboidal permanent magnets and this paper extends these tools to more complex shapes. A

  15. THREE DIMENSIONAL DIGITIZATION OF HUMAN HEAD BY FUSING STRUCTURED LIGHT AND CONTOURS

    Institute of Scientific and Technical Information of China (English)

    Jin Gang; Li Dehua; Hu Hanping; Hu Bing

    2002-01-01

    Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is employed to measure depth. For the special reflection areas,in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour. By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head,including hair area, can be obtained. Some good results are obtained.

  16. Three-dimensional glue detection and evaluation based on linear structured light

    Science.gov (United States)

    Xiao, Zhitao; Yang, Ruipeng; Geng, Lei; Liu, Yanbei

    2018-01-01

    During the online glue detection of body in white (BIW), the purpose of traditional glue detection based on machine vision is the localization and segmentation of glue, which is dissatisfactory for estimating the uniformity of glue with complex shape. A three-dimensional glue detection method based on the linear structured light and the movement parameters of robot is proposed. Firstly, the linear structured light and epipolar constraint algorithm are used for sign matching of binocular vision. Then, hand-eye relationship between robot and binocular camera is utilized to unified coordinate system. Finally, a structured light stripe extraction method is proposed to extract the sub-pixel coordinates of the light strip center. Experiments results demonstrate that the propose method can estimate the shape of glue accurately. For three kinds of glue with complex shape and uneven illumination, our method can detect the positions of blemishes. The absolute error of measurement is less than 1.04mm and the relative error is less than 10% respectively, which is suitable for online glue detection in BIW.

  17. Three-dimensional reconstruction of a left ventricular shape from time and viewpoint varying X-ray cineangiocardiograms. Development of a system for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Masamitsu; Yoshimoto, Fujiichi [Wakayama Univ. (Japan). Faculty of Engineering; Sato, Yoshinobu; Hanayama, Masayuki; Ueguchi, Takashi; Naito, Hiroaki; Tamura, Shinichi

    1998-05-01

    This paper describes a system for the accurate three-dimensional reconstruction of a left ventricular shape from x-ray cineangiocardiograms with different viewpoints as well as times. We perform direct B-spline fitting to a 4D closed surface model, called ``BF4D method``, using an iterative method consisting of two stages, so as to deal with fragmented contours such as extracted from x-ray cineangiocardiograms. However, it is necessary for making clinical use that we can set parameters easily to reconstruct the 3D model. Therefore we develop a system considering user interface. The system consists of three subsystems; The first subsystem is a contour detector of a left ventricle, the second one is for setting parameters for 3D reconstruction, and the third one is fitting to the model. We also show the results using real left ventricular angiographic image sequences. (author)

  18. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Minoru; Fujita, Hiroyuki [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Ishida, Tadashi, E-mail: ishida.t.ai@m.titech.ac.jp [Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); Graduate School of Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8503 (Japan); Jalabert, Laurent [LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, University of Tokyo, Meguro, Tokyo 153-8505 (Japan); CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France and University of Toulouse, LAAS, F-31400 Toulouse (France)

    2016-01-11

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale.

  19. In-situ realtime monitoring of nanoscale gold electroplating using micro-electro-mechanical systems liquid cell operating in transmission electron microscopy

    International Nuclear Information System (INIS)

    Egawa, Minoru; Fujita, Hiroyuki; Ishida, Tadashi; Jalabert, Laurent

    2016-01-01

    The dynamics of nanoscale electroplating between gold electrodes was investigated using a microfabricated liquid cell mounted on a scanning transmission electron microscope. The electroplating was recorded in-situ for 10 min with a spatial resolution higher than 6 nm. At the beginning of the electroplating, gold spike-like structures of about 50 nm in size grew from an electrode, connected gold nanoclusters around them, and form three dimensional nanoscale structures. We visualized the elementary process of the gold electroplating, and believe that the results lead to the deeper understanding of electroplating at the nanoscale

  20. Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors.

    Science.gov (United States)

    Nasiri, Noushin; Bo, Renheng; Fu, Lan; Tricoli, Antonio

    2017-02-02

    Visible-blind ultraviolet photodetectors are a promising emerging technology for the development of wide bandgap optoelectronic devices with greatly reduced power consumption and size requirements. A standing challenge is to improve the slow response time of these nanostructured devices. Here, we present a three-dimensional nanoscale heterojunction architecture for fast-responsive visible-blind UV photodetectors. The device layout consists of p-type NiO clusters densely packed on the surface of an ultraporous network of electron-depleted n-type ZnO nanoparticles. This 3D structure can detect very low UV light densities while operating with a near-zero power consumption of ca. 4 × 10 -11 watts and a low bias of 0.2 mV. Most notably, heterojunction formation decreases the device rise and decay times by 26 and 20 times, respectively. These drastic enhancements in photoresponse dynamics are attributed to the stronger surface band bending and improved electron-hole separation of the nanoscale NiO/ZnO interface. These findings demonstrate a superior structural design and a simple, low-cost CMOS-compatible process for the engineering of high-performance wearable photodetectors.

  1. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  2. Review and comparison of non-conventional imaging systems for three-dimensional digitization of transparent objects

    Science.gov (United States)

    Mériaudeau, Fabrice; Rantoson, Rindra; Fofi, David; Stolz, Christophe

    2012-04-01

    Fashion and design greatly influence the conception of manufactured products which now exhibit complex forms and shapes. Two-dimensional quality control procedures (e.g., shape, textures, colors, and 2D geometry) are progressively being replaced by 3D inspection methods (e.g., 3D geometry, colors, and texture on the 3D shape) therefore requiring a digitization of the object surface. Three dimensional surface acquisition is a topic which has been studied to a large extent, and a significant number of techniques for acquiring 3D shapes has been proposed, leading to a wide range of commercial solutions available on the market. These systems cover a wide range from micro-scale objects such as shape from focus and shape from defocus techniques, to several meter sized objects (time of flight technique). Nevertheless, the use of such systems still encounters difficulties when dealing with non-diffuse (non Lambertian) surfaces as is the case for transparent, semi-transparent, or highly reflective materials (e.g., glass, crystals, plastics, and shiny metals). We review and compare various systems and approaches which were recently developed for 3D digitization of transparent objects.

  3. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  4. Nanoscale characterization of martensite structures in copper based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adiguzel, O, E-mail: oadiguzel@firat.edu.t [Firat University Department of Physics, 23169 Elazig (Turkey)

    2010-11-01

    Martensitic transformations are first order displacive transitions and occur in the materials on cooling from high temperature. Shape memory effect is an unusual property exhibited by certain alloy systems, and leads to martensitic transition. Copper-based alloys exhibit this property in beta phase field which possess simple bcc- structures, austenite structure at high-temperatures. As temperature is lowered the austenite undergoes martensitic transition following two ordering reactions, and structural changes in nanoscale govern this transition. Atomic movements are also confined to interatomic lengths in sub-{mu}m or angstrom scale in martensitic transformation. The formation of the layered structures in copper based alloys consists of shears and shear mechanism. Martensitic transformations occur in a few steps with the cooperative movement of atoms less than interatomic distances by means of lattice invariant shears on a {l_brace}110{r_brace} - type plane of austenite matrix which is basal plane or stacking plane of martensite. The lattice invariant shears occurs, in two opposite directions, <110> -type directions on the {l_brace}110{r_brace}-type plane. These shears gives rise to the formation of layered structure.

  5. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    Science.gov (United States)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  6. Science and technology on the nanoscale with swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Reinhard, E-mail: r.neumann@gsi.de

    2013-11-01

    Swift heavy ions have stimulated developments of science and technology on the nanoscale due to the specific manner of transferring their kinetic energy in a solid successively in small portions along their trajectories. They thus create absolutely straight, almost cylindrical, and very narrow damage trails of diameter 5–10 nm. In various materials, such as polymers, a suitable etchant can transform these tracks into narrow channels of cylindrical, conical, or other desired shapes. These channels represent a starting point particularly for two major fields: they can be chemically modified to control small species and act, e.g., as sensors and transmitters of specific biomolecules. Irradiation of a sample with only one heavy ion allows the fabrication of single-nanochannel devices enabling measurements of enormous sensitivity. Filling nanochannels with a material provides nanowires. These objects of restricted dimensions exhibit finite-size and quantum behavior and give rise to a broad range of fundamental and applied research. This contribution briefly recollects microtechnological achievements with swift heavy ions that began already in the 1970s, preparing the ground for gradual size decrease down to the nanoscopic objects now under study. Various examples of material modifications on the nanoscale are presented, including recent results obtained with nanochannels and nanowires. Emerging developments are addressed, encompassing in situ recording of processes in biological cells stimulated by well-aimed ion irradiation, the fabrication of three-dimensional nanowire architectures, and plasmonic effects in nanowires.

  7. Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach

    Science.gov (United States)

    Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu

    2018-04-01

    This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.

  8. Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion

    Science.gov (United States)

    Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya

    2018-04-01

    On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.

  9. Three dimensional modelling for the target asteroid of HAYABUSA

    Science.gov (United States)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  10. Three-dimensional computer graphics for surgical procedure learning: Web three-dimensional application for cleft lip repair.

    Science.gov (United States)

    Kobayashi, Masahiro; Nakajima, Tatsuo; Mori, Ayako; Tanaka, Daigo; Fujino, Toyomi; Chiyokura, Hiroaki

    2006-05-01

    In surgical procedures for cleft lip, surgeons attempt to use various skin incisions and small flaps to achieve a better and more natural shape postoperatively. They must understand the three-dimensional (3D) structure of the lips. However, they may have difficulty learning the surgical procedures precisely from normal textbooks with two-dimensional illustrations. Recent developments in 3D computed tomography (3D-CT) and laser stereolithography have enabled surgeons to visualize the structures of cleft lips from desired viewpoints. However, this method cannot reflect the advantages offered by specific surgical procedures. To solve this problem, we used the benefits offered by 3D computer graphics (3D-CG) and 3D animation. By using scanning 3D-CT image data of patients with cleft lips, 3D-CG models of the cleft lips were created. Several animations for surgical procedures such as incision designs, rotation of small skin flaps, and sutures were made. This system can recognize the details of an operation procedure clearly from any viewpoint, which cannot be acquired from the usual textbook illustrations. This animation system can be used for developing new skin-flap design, understanding the operational procedure, and using tools in case presentations. The 3D animations can also be uploaded to the World Wide Web for use in teleconferencing.

  11. Image-Based Compression Method of Three-Dimensional Range Data with Texture

    OpenAIRE

    Chen, Xia; Bell, Tyler; Zhang, Song

    2017-01-01

    Recently, high speed and high accuracy three-dimensional (3D) scanning techniques and commercially available 3D scanning devices have made real-time 3D shape measurement and reconstruction possible. The conventional mesh representation of 3D geometry, however, results in large file sizes, causing difficulties for its storage and transmission. Methods for compressing scanned 3D data therefore become desired. This paper proposes a novel compression method which stores 3D range data within the c...

  12. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  13. Two-dimensional mapping of three-dimensional SPECT data: a preliminary step to the quantitation of thallium myocardial perfusion single photon emission tomography

    International Nuclear Information System (INIS)

    Goris, M.L.; Boudier, S.; Briandet, P.A.

    1987-01-01

    A method is presented by which tomographic myocardial perfusion data are prepared for quantitative analysis. The method is characterized by an interrogation of the original data, which results in a size and shape normalization. The method is analogous to the circumferential profile methods used in planar scintigraphy but requires a polar-to-cartesian transformation from three to two dimensions. As was the case in the planar situation, centering and reorientation are explicit. The degree of data reduction is evaluated by reconstructing idealized three-dimensional data from the two-dimensional sampling vectors. The method differs from previously described approaches by the absence in the resulting vector of a coordinate reflecting cartesian coordinate in the original data (slice number)

  14. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  15. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  16. A funnel shaped pannus formation above the mitral prosthetic valve diagnosed with real time three-dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Ezgi Polat Ocaklı

    2017-09-01

    Full Text Available Prosthetic valve obstruction due to pannus formation can be a life-threatening complication. We showed that real time three dimensional echocardiography has incremental value in diagnosing pannus localization and extent.

  17. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    Science.gov (United States)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  18. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  19. Three-dimensional technology for linear morphological studies: a re-examination of cranial variation in four southern African indigenous populations.

    Science.gov (United States)

    Franklin, D; Freedman, L; Milne, N

    2005-01-01

    In order to compare linear dimensions made by traditional anthropometric techniques, and those obtained from three-dimensional coordinates, samples of four indigenous southern African populations were analysed. Linear measurements were obtained using mathematically transformed, three-dimensional landmark data on 207 male crania of Cape Nguni, Natal Nguni, Sotho and Shangaan. Univariate comparisons for accuracy of the transformed linear data were made with those in a traditional linear study by de Villiers (The Skull of the South African Negro: A Biometrical and Morphological Study. Witwatersrand University Press, Johannesburg) on similar samples and equivalent landmarks. Comparisons were not made with her Penrose (Ann Eugenics 18 (1954) 337) analysis as an apparently anomalous 'shape'-'size' statistic was found. The univariate comparisons demonstrated that accurate linear measurements could be derived from three-dimensional data, showing that it is possible to simultaneously obtain data for three-dimensional geometric 'shape' and linear interlandmark analyses. Using Penrose and canonical variates analyses of the transformed three-dimensional interlandmark measurements, similar population distances were found for the four indigenous southern African populations. The inter-population distance relationships took the form of three separated pairs of distances, with the within-pair distances very similar in size. The cranial features of the four populations were found to be overall very similar morphometrically. However the populations were each shown by CVA to have population specific features, and using discriminant analyses 50% or more of the individual crania (with the exception of the Sotho) could be referred to their correct populations.

  20. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting

    OpenAIRE

    Roy, Sharmili; Brown, Michael S.; Shih, George L.

    2013-01-01

    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  1. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  2. Three-Dimensionally Printed Micro-electromechanical Switches.

    Science.gov (United States)

    Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin

    2018-05-09

    Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.

  3. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  4. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  5. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  6. CHANGE: A numerical model for three-dimensional modelling of channelized flow in rock: Theory and design

    International Nuclear Information System (INIS)

    Billaux, D.; Long, J.C.S.; Peterson, J.E. Jr.

    1990-03-01

    A model for channelized flow in three-dimensional, random networks of fractures has been developed. In this model, the fractures are disc-shaped discontinuities in an impermeable matrix. Within each fracture, flow occurs only in a network of random channels. The channels in each fracture can be generated independently with random distributions of length, conductivity, and orientation in the fracture plane. Boundary conditions are specified on the sides of a ''flow region,'' and at the intersections of the channels with interior ''holes'' specified by the user to simulate boreholes or drifts. This code is part of a set of programs used to generate two-dimensional or three-dimensional random fracture networks, plot them, compute flow through them and analyze the results. 8 refs., 13 figs

  7. Fabrication of complex nanoscale structures on various substrates

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon

    2007-09-01

    Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.

  8. Shape-Shifting Droplet Networks.

    Science.gov (United States)

    Zhang, T; Wan, Duanduan; Schwarz, J M; Bowick, M J

    2016-03-11

    We consider a three-dimensional network of aqueous droplets joined by single lipid bilayers to form a cohesive, tissuelike material. The droplets in these networks can be programed to have distinct osmolarities so that osmotic gradients generate internal stresses via local fluid flows to cause the network to change shape. We discover, using molecular dynamics simulations, a reversible folding-unfolding process by adding an osmotic interaction with the surrounding environment which necessarily evolves dynamically as the shape of the network changes. This discovery is the next important step towards osmotic robotics in this system. We also explore analytically and numerically how the networks become faceted via buckling and how quasi-one-dimensional networks become three dimensional.

  9. Three-Dimensional Adaptive Mesh Refinement Simulations of Point-Symmetric Nebulae

    NARCIS (Netherlands)

    Rijkhorst, E.-J.; Icke, V.; Mellema, G.; Meixner, M.; Kastner, J.H.; Balick, B.; Soker, N.

    2004-01-01

    Previous analytical and numerical work shows that the generalized interacting stellar winds model can explain the observed bipolar shapes of planetary nebulae very well. However, many circumstellar nebulae have a multipolar or point-symmetric shape. With two-dimensional calculations, Icke showed

  10. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    Science.gov (United States)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  11. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.

    2000-01-01

    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  12. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  13. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  14. Design of three-dimensional visualization based on the posterior lumbar pedicle screw fixation

    Directory of Open Access Journals (Sweden)

    Kai XU

    2011-09-01

    Full Text Available Objective To establish a three-dimensional visualization model of posterior lumbar pedicle screw fixation.Methods A patient with lumbar intervertebral disc hernia and another patient with compression fracture of lumbar vertebra were involved in the present study.Both patients underwent multi-slice spiral CT scan before and after lumbar pedicle screw fixation.The degree of preoperative vertebral compression,vertebral morphology before and after surgery,postoperative pedicle screw position,and decompression effects were observed.The original data of the multi-slice spiral CT were inputted into the computer.The three-dimensional reconstructed images of the lumbar and implanted screws were obtained using the software Amira 4.1 to show the three-dimensional shape of the lumbar vertebrae before and after surgery and the location of the implanted screws.Results The morphology and structure of the lumbar vertebrae before and after surgery and of the implanted screws were reconstructed using the digital navigation platform.The reconstructed 3D images could be displayed in multicolor,transparent,or arbitrary combinations.In the 3D surface reconstruction images,the location and structure of the implanted screws could be clearly observed,and the decompression of the spinal cord or nerve roots and the severity of the fracture and the compression of lumbar vertebrae could be fully evaluated.The reconstructed images before operation revealed the position of the vertebral pedicles and provided reference for intraoperative localization.Conclusions The three-dimensional computerized reconstructions of lumbar pedicle screw fixation may be valuable in basic research,clinical experiment,and surgical planning.The software Amira is one of the bases of three-dimensional reconstruction.

  15. Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method

    Science.gov (United States)

    Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad

    2018-03-01

    In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.

  16. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  17. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  18. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  19. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-11-01

    Full Text Available Zinc oxide (ZnO nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research.

  20. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro.

    Science.gov (United States)

    Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei

    2014-07-19

    Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was

  1. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  2. Three dimensional characterization of soil macroporosity by X-ray microtomography

    International Nuclear Information System (INIS)

    Passoni, Sabrina; Pires, Luiz Fernando; Rosa, Jadir Aparecido

    2015-01-01

    Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomography equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis. (author)

  3. Three dimensional characterization of soil macroporosity by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Passoni, Sabrina [Centro de Ensino Superior dos Campos Gerais, Ponta Grossa, PR (Brazil); Pires, Luiz Fernando, E-mail: lfpires@uepg.br [Universidade Estadual de Ponta Grossa (UFPG), Ponta Grossa, PR (Brazil). Departamento de Fisica; Heck, Richard [University of Guelph, School of Environmental Sciences, Guelph, Ontario (Canada); Rosa, Jadir Aparecido [Instituto Agronomico do Parana, Polo Regional de Pesquisa de Ponta Grossa, Ponta Grossa, PR (Brazil)

    2015-03-15

    Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomography equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis. (author)

  4. Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering

    International Nuclear Information System (INIS)

    Zhang Xiang; Sun Cheng; Fang, Nicholas

    2004-01-01

    The current nano-technology revolution is facing several major challenges: to manufacture nanodevices below 20 nm, to fabricate three-dimensional complex nano-structures, and to heterogeneously integrate multiple functionalities. To tackle these grand challenges, the Center for Scalable and Integrated NAno-Manufacturing (SINAM), a NSF Nanoscale Science and Engineering Center, set its goal to establish a new manufacturing paradigm that integrates an array of new nano-manufacturing technologies, including the plasmonic imaging lithography and ultramolding imprint lithography aiming toward critical resolution of 1-10 nm and the hybrid top-down and bottom-up technologies to achieve massively parallel integration of heterogeneous nanoscale components into higher-order structures and devices. Furthermore, SINAM will develop system engineering strategies to scale-up the nano-manufacturing technologies. SINAMs integrated research and education platform will shed light to a broad range of potential applications in computing, telecommunication, photonics, biotechnology, health care, and national security

  5. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  6. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  7. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  8. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  9. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  10. Optical conductivity of three and two dimensional topological nodal-line semimetals

    Science.gov (United States)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  11. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  12. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  13. Flat plate approximation in the three-dimensional slamming; Heiban kinji ni yoru sanjigen suimen shogeki keisanho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Y [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-12-31

    A slamming load generated by interactive motions between a ship body and water face is an important load in ensuring safety of the ship. A flat plate approximation developed by Wagner is used as a two-dimensional slamming theory, but it has a drawback in handling edges of a flat plate. Therefore, an attempt was made to expand the two-dimensional Wagner`s theory to three dimensions. This paper first shows a method to calculate water face slamming of an arbitrary axisymmetric body by using circular plate approximation. The paper then proposes a method to calculate slamming pressure distribution and slamming force for the case when shape of the water contacting surface may be approximated by an elliptic shape. Expansion to the three dimensions made clear to some extent the characteristics of the three-dimensional slamming. In the case of two dimensions or a circular column for example, the water contacting area increases rapidly in the initial stage generating large slamming force. However, in the case of three dimensions, since the water contacting area expands longitudinally and laterally, the slamming force tends to increase gradually. Maximum slamming pressure was found proportional to square of moving velocity in a water contacting boundary in the case of three dimensions, and similar to stagnation pressure on a gliding plate. 12 refs., 17 figs., 1 tab.

  14. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  15. Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage

    International Nuclear Information System (INIS)

    Yang Rong; Gu Yingan; Li Yaoqi; Zheng Jie; Li Xingguo

    2010-01-01

    Flower-shaped SnO 2 nanoplates were successfully synthesized via a simple hydrothermal treatment of a mixture of tin(II) dichloride dihydrate (SnCl 2 .2H 2 O) and sodium citrate (Na 3 C 6 H 5 O 7 .2H 2 O) in alkali solution. The obtained SnO 2 nanoplates were less than 5 nm thick and self-assembled into flower-shaped nanostructures. The introduction of citrate was essential for the preparation of the SnO 2 nanoplates. The nanoscale shape and self-assembled architecture of SnO 2 nanoparticles were mainly controlled by the alkalinity of the solution. When the self-assembled SnO 2 nanostructures were used as anode materials in Li-ion batteries, they exhibit a reversible capacity of 670 mA h g -1 after 30 cycles and an average capacity fading of 0.95% per cycle after the second cycle. The good electrochemical performance of the SnO 2 sample prepared via the hydrothermal synthesis indicates the possibility of fabricating specific self-assembled three-dimensional nanostructures for Li-ion batteries.

  16. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  17. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  18. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  19. Modeling of three-dimensional diffusible resistors with the one-dimensional tube multiplexing method

    International Nuclear Information System (INIS)

    Gillet, Jean-Numa; Degorce, Jean-Yves; Meunier, Michel

    2009-01-01

    Electronic-behavior modeling of three-dimensional (3D) p + -π-p + and n + -ν-n + semiconducting diffusible devices with highly accurate resistances for the design of analog resistors, which are compatible with the CMOS (complementary-metal-oxide-semiconductor) technologies, is performed in three dimensions with the fast tube multiplexing method (TMM). The current–voltage (I–V) curve of a silicon device is usually computed with traditional device simulators of technology computer-aided design (TCAD) based on the finite-element method (FEM). However, for the design of 3D p + -π-p + and n + -ν-n + diffusible resistors, they show a high computational cost and convergence that may fail with fully non-separable 3D dopant concentration profiles as observed in many diffusible resistors resulting from laser trimming. These problems are avoided with the proposed TMM, which divides the 3D resistor into one-dimensional (1D) thin tubes with longitudinal axes following the main orientation of the average electrical field in the tubes. The I–V curve is rapidly obtained for a device with a realistic 3D dopant profile, since a system of three first-order ordinary differential equations has to be solved for each 1D multiplexed tube with the TMM instead of three second-order partial differential equations in the traditional TCADs. Simulations with the TMM are successfully compared to experimental results from silicon-based 3D resistors fabricated by laser-induced dopant diffusion in the gaps of MOSFETs (metal-oxide-semiconductor field-effect transistors) without initial gate. Using thin tubes with other shapes than parallelepipeds as ring segments with toroidal lateral surfaces, the TMM can be generalized to electronic devices with other types of 3D diffusible microstructures

  20. Multiparallel Three-Dimensional Optical Microscopy

    Science.gov (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  1. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    Science.gov (United States)

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  2. Backlund transformations and three-dimensional lattice equations

    NARCIS (Netherlands)

    Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.

    1984-01-01

    A (nonlocal) linear integral equation is studied, which allows for Bäcklund transformations in the measure. The compatibility of three of these transformations leads to an integrable nonlinear three-dimensional lattice equation. In appropriate continuum limits the two-dimensional Toda-lattice

  3. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    International Nuclear Information System (INIS)

    Kikuchi, T.; Takahashi, H.; Maruko, T.

    2007-01-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZθ stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 μm line width were obtained successfully

  4. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan); Maruko, T. [Furuya Metal Co. Ltd., R and D Group, Shimodate Daiichi Kogyodanchi 1915, Morisoejima, Chikusei, Ibaraki (Japan)

    2007-02-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZ{theta} stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 {mu}m line width were obtained successfully.

  5. Three-dimensional CT examination of the mastication system in the giant anteater.

    Science.gov (United States)

    Endo, Hideki; Niizawa, Nobuharu; Komiya, Teruyuki; Kawada, Shinichiro; Kimura, Junpei; Itou, Takuya; Koie, Hiroshi; Sakai, Takeo

    2007-10-01

    The gross anatomy of the mastication system of the giant anteater (Myrmecophaga tridactyla) was examined by means of three-dimensional image analysis. The anteater rotates the mandibles medially and laterally to control its tongue when it is elongated and to house it when it is relaxed. Three-dimensional CT image analysis demonstrated that the shape and size of the oral cavity changes drastically when the mandibles are rotated. The oral cavity expands bilaterally when the dorsal part of the mandibles bend medially. Macroscopic observations and muscle-weight data supported the observation that the superficial temporal and medial pterygoid muscles act as the main medial and lateral rotators of the mandible, respectively. The low height of the mandibular ramus and the incomplete zygomatic arch in this species represent adaptations for the rotational movement of the mandibles, since they both contribute to the medially oriented transmission of force from the temporal muscles and to preventing collision between the mandibles and the cranium during the rotational movement.

  6. Evaluation of oral scanning in comparison to impression using three-dimensional registration

    Science.gov (United States)

    Brogle-Kim, Yur-Chung; Deyhle, Hans; Müller, Bert; Schulz, Georg; Bormann, Therese; Beckmann, Felix; Jäger, Kurt

    2012-10-01

    Crown and bridge restorations are one of the main treatment methods in fixed prosthodontics. The fabrication requires data on the patient's denture shape. This information is generally obtained as a hard copy from an impression mold. Alternatively, one can acquire the data electronically using oral optical three-dimensional (3D) imaging techniques, which determine the surface of the denture. The aim of the study was to quantitatively compare the accuracy of three dimensional scanning with that of conventional impressions and give a statement how far the scanner provides a clinical alternative with equal or better precision. Data from 10 teeth were acquired in the dental office with a polyether impression material and an oral scanner. Data from the impressions were digitalized by means of micro computed tomography. The data were then 3D registered to identify the potential differences between impression and optical scan. We could demonstrate that the oral scanner's data and the conventional impressions are comparable.

  7. A study on three dimensional layout design by the simulated annealing method

    International Nuclear Information System (INIS)

    Jang, Seung Ho

    2008-01-01

    Modern engineered products are becoming increasingly complicated and most consumers prefer compact designs. Layout design plays an important role in many engineered products. The objective of this study is to suggest a method to apply the simulated annealing method to the arbitrarily shaped three-dimensional component layout design problem. The suggested method not only optimizes the packing density but also satisfies constraint conditions among the components. The algorithm and its implementation as suggested in this paper are extendable to other research objectives

  8. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2009-06-15

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)

  10. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study.

    Science.gov (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H

    2009-06-01

    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  11. Three-Dimensional Messages for Interstellar Communication

    Science.gov (United States)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  12. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells

    OpenAIRE

    Geng, Yijie; Feng, Bradley

    2016-01-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the ...

  13. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  14. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  15. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  16. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  17. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  18. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  19. Three-dimensional printing for craniomaxillofacial regeneration.

    Science.gov (United States)

    Gaviria, Laura; Pearson, Joseph J; Montelongo, Sergio A; Guda, Teja; Ong, Joo L

    2017-10-01

    Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

  20. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  1. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  2. Large Bone Vertical Augmentation Using a Three-Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible

    OpenAIRE

    Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane

    2016-01-01

    Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology

  3. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  4. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  5. Simulation of three-phase flow and lance height effect on the cavity shape

    Science.gov (United States)

    Dong, Kai; Zhu, Rong; Gao, Wei; Liu, Fu-hai

    2014-06-01

    A three-dimensional computational fluid dynamics (CFD) model was developed to simulate a 150-t top-blown converter. The effect of different lance heights on the cavity shape was investigated using the volume of fluid (VOF) method. Numerical simulation results can reflect the actual molten bath surface waves impinged by the supersonic oxygen jets. With increasing lance height, the cavity depth decreases, and the cavity area, varying like a parabola, increases and then decreases. The cavity area maximizes at the lance height of 1.3 m. Under the three different lance heights simulated in this study, all of the largest impact velocities at the molten bath surface are between 50 m/s and 100 m/s.

  6. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  7. A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.

    Science.gov (United States)

    Charny, C K; Levin, R L

    1991-10-01

    Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.

  8. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  9. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  10. Three-dimensional MR imaging in the assessment of physeal growth arrest

    Energy Technology Data Exchange (ETDEWEB)

    Sailhan, Frederic; Chotel, Franck; Gollogly, Sohrab; Adam, Philippe; Berard, Jerome [Department of Orthopaedics, Hopital Bebrousse, 29 rue Soeur Bouvier, 69005, Lyon (France); Guibal, Anne-Laure; Guibaud, Laurent [Department of Radiology, Hopital Bebrousse, 29 rue Soeur Bouvier, 69005, Lyon (France)

    2004-09-01

    The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was

  11. Three-dimensional MR imaging in the assessment of physeal growth arrest

    International Nuclear Information System (INIS)

    Sailhan, Frederic; Chotel, Franck; Gollogly, Sohrab; Adam, Philippe; Berard, Jerome; Guibal, Anne-Laure; Guibaud, Laurent

    2004-01-01

    The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was

  12. Three-dimensional MR imaging in the assessment of physeal growth arrest.

    Science.gov (United States)

    Sailhan, Frédéric; Chotel, Franck; Guibal, Anne-Laure; Gollogly, Sohrab; Adam, Philippe; Bérard, Jérome; Guibaud, Laurent

    2004-09-01

    The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was

  13. Electron tunneling in nanoscale electrodes for battery applications

    Science.gov (United States)

    Yamada, Hidenori; Narayanan, Rajaram; Bandaru, Prabhakar R.

    2018-03-01

    It is shown that the electrical current that may be obtained from a nanoscale electrochemical system is sensitive to the dimensionality of the electrode and the density of states (DOS). Considering the DOS of lower dimensional systems, such as two-dimensional graphene, one-dimensional nanotubes, or zero-dimensional quantum dots, yields a distinct variation of the current-voltage characteristics. Such aspects go beyond conventional Arrhenius theory based kinetics which are often used in experimental interpretation. The obtained insights may be adapted to other devices, such as solid-state batteries. It is also indicated that electron transport in such devices may be considered through electron tunneling.

  14. Seismic response analysis of soil-structure interactive system using a coupled three-dimensional FE-IE method

    International Nuclear Information System (INIS)

    Ryu, Jeong-Soo; Seo, Choon-Gyo; Kim, Jae-Min; Yun, Chung-Bang

    2010-01-01

    This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.

  15. Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Haslinger, J.; Kočvara, Michal; Kučera, R.; Outrata, Jiří

    2009-01-01

    Roč. 20, č. 1 (2009), s. 416-444 ISSN 1052-6234 R&D Projects: GA AV ČR IAA100750802; GA AV ČR IAA1075402 Grant - others:European Commision(XE) FP6 - 30717; GA ČR(CZ) GA201/07/0294 Institutional research plan: CEZ:AV0Z10750506 Keywords : shape optimization * contact problems * Coulomb friction Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009

  16. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  17. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  18. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    Science.gov (United States)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  19. The new three-dimensional subsidence influence function denoted by n-k-g

    Energy Technology Data Exchange (ETDEWEB)

    Nicieza, C.G.; Fernandez, M.I.A.; Diaz, A.M.; Vigil, A.E.A. [University of Oviedo, Asturias (Spain). Mining Engineering School

    2005-04-01

    This study presents a three-dimensional development of the n-k-g influence function with the aim of predicting subsidence phenomena and characterizing the shape and dimensions of the corresponding trough. The parameters 'n' and 'k' characterize the ground and 'g' is related to the gravity. This function depends on two physical concepts: the first is gravity, which characterizes the forces acting on the ground, and the second, the convergence of the roof and floor of the mine workings due to the stress state of the ground. Caving in of the roof generates direct subsidence, and the swelling of the floor, indirect subsidence, which allow us to establish the shape of the trough. The physical concepts introduced are fundamental in the mathematical implementation of the n-k-g influence function, allowing a more intuitive interpretation of the subsidence trough and notably facilitating the work of calibration, validation and sensitivity analysis. These concepts likewise allow the scope of application of influence functions to be extended to non-horizontal seams, also taking into account the quality of the rock mass and the presence of preferential sliding directions, in both the roof and the floor of the seam. This paper considers the physical concepts, then presents the three-dimensional implementation of the n-k-g influence function. Results obtained when calibrating the proposed numerical model with real data obtained from subsidence measurements in a coalmine in the Coal Basin of Asturias, Spain are given.

  20. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  1. Intraoperative implant rod three-dimensional geometry measured by dual camera system during scoliosis surgery.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2016-05-12

    Treatment for severe scoliosis is usually attained when the scoliotic spine is deformed and fixed by implant rods. Investigation of the intraoperative changes of implant rod shape in three-dimensions is necessary to understand the biomechanics of scoliosis correction, establish consensus of the treatment, and achieve the optimal outcome. The objective of this study was to measure the intraoperative three-dimensional geometry and deformation of implant rod during scoliosis corrective surgery.A pair of images was obtained intraoperatively by the dual camera system before rotation and after rotation of rods during scoliosis surgery. The three-dimensional implant rod geometry before implantation was measured directly by the surgeon and after surgery using a CT scanner. The images of rods were reconstructed in three-dimensions using quintic polynomial functions. The implant rod deformation was evaluated using the angle between the two three-dimensional tangent vectors measured at the ends of the implant rod.The implant rods at the concave side were significantly deformed during surgery. The highest rod deformation was found after the rotation of rods. The implant curvature regained after the surgical treatment.Careful intraoperative rod maneuver is important to achieve a safe clinical outcome because the intraoperative forces could be higher than the postoperative forces. Continuous scoliosis correction was observed as indicated by the regain of the implant rod curvature after surgery.

  2. Large Bone Vertical Augmentation Using a Three-Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible.

    Science.gov (United States)

    Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane

    2016-12-01

    Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.

  3. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions

    NARCIS (Netherlands)

    Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.

    2017-01-01

    The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional

  4. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    International Nuclear Information System (INIS)

    Patterson, B.M.; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-01-01

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  5. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.M., E-mail: bpatterson@lanl.gov; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-09-15

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  6. Three-dimensional CT of the pediatric spine

    International Nuclear Information System (INIS)

    Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.

    1987-01-01

    CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children

  7. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  8. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  9. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  10. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  11. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.

    1988-08-01

    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  12. A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy

    Science.gov (United States)

    Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.

    1989-05-01

    A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.

  13. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    International Nuclear Information System (INIS)

    Chang, Minwoo; Pakzad, Shamim N

    2015-01-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes. (paper)

  14. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    Science.gov (United States)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  15. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  16. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  17. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.

    Science.gov (United States)

    Kwon, Sangku; Lee, Kyung Eun; Lee, Hyunsoo; Koh, Sang Joon; Ko, Jae-Hyeon; Kim, Yong-Hyun; Kim, Sang Ouk; Park, Jeong Young

    2018-01-18

    The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO 2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.

  18. Comparative Three-Dimensional Morphology of Baleen: Cross-Sectional Profiles and Volume Measurements Using CT Images.

    Science.gov (United States)

    Jensen, Megan M; Saladrigas, Amalia H; Goldbogen, Jeremy A

    2017-11-01

    Baleen whales are obligate filter feeders, straining prey-laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three-dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three-dimensional shape of the baleen plates using cross-sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three-dimensional structure with curvature that varies across the anterior-posterior, proximal-distal, and medial-lateral (lingual-labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross-sectional profiles resemble backwards-facing airfoils, and some specimens display S-shaped, or reflexed, camber. Within a baleen specimen, the intra-baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942-1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  19. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication

    International Nuclear Information System (INIS)

    Keum, Hohyun; Eisenhaure, Jeffrey D; Kim, Seok; Carlson, Andrew; Ning, Hailong; Mihi, Agustin; Braun, Paul V; Rogers, John A

    2012-01-01

    We present a micromanufacturing method for constructing microsystems, which we term ‘micro-masonry’ based on individual manipulation, influenced by strategies for deterministic materials assembly using advanced forms of transfer printing. Analogous to masonry in construction sites, micro-masonry consists of the preparation, manipulation, and binding of microscale units to assemble microcomponents and microsystems. In this paper, for the purpose of demonstration, we used microtipped elastomeric stamps as manipulators and built three dimensional silicon microstructures. Silicon units of varied shapes were fabricated in a suspended format on donors, retrieved, delivered, and placed on a target location on a receiver using microtipped stamps. Annealing of the assembled silicon units permanently bound them and completed the micro-masonry procedure. (paper)

  20. Experiments with three-dimensional riblets as an idealized model of shark skin

    Energy Technology Data Exchange (ETDEWEB)

    Bechert, D.W.; Bruse, M.; Hage, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Dept. of Turbulence Res.

    2000-05-01

    The skin of fast sharks exhibits a rather intriguing three-dimensional rib pattern. Therefore, the question arises whether or not such three-dimensional riblet surfaces may produce an equivalent or even higher drag reduction than straight two-dimensional riblets. Previously, the latter have been shown to reduce turbulent wall shear stress by up to 10%. Hence, the drag reduction by three-dimensional riblet surfaces is investigated experimentally. Our idealized 3D-surface consists of sharp-edged fin-shaped elements arranged in an interlocking array. The turbulent wall shear stress on this surface is measured using direct force balances. In a first attempt, wind tunnel experiments with about 365000 tiny fin elements per test surface have been carried out. Due to the complexity of the surface manufacturing process, a comprehensive parametric study was not possible. These initial wind tunnel data, however, hinted at an appreciable drag reduction. Subsequently, in order to have a better judgement on the potential of these 3D-surfaces, oil channel experiments are carried out. In our new oil channel, the geometrical dimensions of the fins can be magnified 10 times in size as compared to the initial wind tunnel experiments, i.e., from typically 0.5 mm to 5 mm. For these latter oil channel experiments, novel test plates with variable fin configuration have been manufactured, with 1920-4000 fins. This enhanced variability permits measurements with a comparatively large parameter range. As a result of our measurements, it can be concluded, that 3D-riblet surfaces do indeed produce an appreciable drag reduction. We found as much as 7.3% decreased turbulent shear stress, as compared to a smooth reference plate.

  1. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-07-18

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  2. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  3. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  4. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  5. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    Science.gov (United States)

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll

  6. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  7. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  8. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  9. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  10. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  11. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  12. Continuum modeling of three-dimensional truss-like space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  13. Dynamics and bifurcations of a three-dimensional piecewise-linear integrable map

    International Nuclear Information System (INIS)

    Tuwankotta, J M; Quispel, G R W; Tamizhmani, K M

    2004-01-01

    In this paper, we consider a four-parameter family of piecewise-linear ordinary difference equations (OΔEs) in R 3 . This system is obtained as a limit of another family of three-dimensional integrable systems of OΔEs. We prove that the limiting procedure sends integrals of the original system to integrals of the limiting system. We derive some results for the solutions such as boundedness of solutions and the existence of periodic solutions. We describe all topologically different shapes of the integral manifolds and present all possible scenarios of transitions as we vary the natural parameters in the system, i.e. the values of the integrals

  14. Face recognition from unconstrained three-dimensional face images using multitask sparse representation

    Science.gov (United States)

    Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar

    2018-01-01

    We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.

  15. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  16. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time

  17. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  18. Plasma cloud expansion in the ionosphere: Three-dimensional simulation

    International Nuclear Information System (INIS)

    Ma, T.Z.; Schunk, R.W.

    1991-01-01

    A three-dimensional time-dependent model was developed to study the characteristics of a plasma cloud expansion in the ionosphere. The electrostatic potential is solved in three dimensions taking into account the large parallel-to-perpendicular conductivity ratio. Three sample simulations are presented: a plasma expansion of a nearly spherical 1 km Ba + cloud, both with and without a background neutral wind, and a long thin Ba + cloudlet. With or without the neutral wind the effective potential, which is different from the electrostatic potential if the electron temperature is included, is constant along the magnetic field for typical cloud sizes. The expanding plasma clouds become elongated in the magnetic field direction. The released Ba + ions push the background O + ions away along the magnetic field as they expand. Consequently, a hole develops in the background O + distribution at the cloud location and on the two sides of the cloud O + bumps form. The entire three-dimensional structure, composed of the plasma cloud and the background plasma embedded in the cloud, slowly rotates about the magnetic field, with the ions and electrons rotating in opposite directions. The cloud configuration takes the shape of a rotating ellipsoid with a major axis that expands with time. Perpendicular to the magnetic field, in the absence of the neutral wind the motion is insignificant compared to the parallel motion. With a neutral wind the motion along the magnetic field and the rotational motion are qualitatively unchanged, but the cloud and the perturbed background structure move in the direction of the wind, with a speed less than the wind speed. Perpendicular to the magnetic field the deformation of the cloud indiced by the wind is characterized by steepening of the backside

  19. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  20. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  1. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  2. Evaluation of three-dimensional virtual perception of garments

    Science.gov (United States)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  3. Haptic two-dimensional shape identification in children, adolescents, and young adults

    NARCIS (Netherlands)

    Overvliet, Krista E.; Krampe, Ralf Th

    2018-01-01

    We investigated the influence of image mediation (the process that translates tactile information into a visual image) on the development of haptic two-dimensional (2D) shape identification in 78 participants from five different age groups: preschoolers (4–5 years), first graders (6–7 years), fifth

  4. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  5. TSOM Method for Nanoelectronics Dimensional Metrology

    International Nuclear Information System (INIS)

    Attota, Ravikiran

    2011-01-01

    Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.

  6. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  7. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  8. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao

    2018-01-01

    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively wi......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...... fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time....

  9. Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Loza, Jose J. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287–6106 (United States); Merkle, Arno P. [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA (United States); Chawla, Nikhilesh, E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287–6106 (United States)

    2016-08-15

    The size and distribution of precipitates in Al 7075 alloys affects both the mechanical and corrosion behavior (including stress corrosion cracking and fatigue corrosion) of the alloy. Three dimensional (3D) quantitative microstructural analysis of Al 7075 in the peak aged condition (T651) allows for a better understanding of these behaviors. In this study, Focused ion beam (FIB) tomography was used to characterize the microstructure in three dimensions. Analysis of grains and precipitates was performed in terms of volume, size, and morphology. It was found that the precipitates at the grain boundaries are larger in size, higher in aspect ratios and maximum Feret diameter compared to the precipitates inside the grains, due to earlier nucleation of the precipitates at the grain boundaries. Our data on the precipitates at the interface between grains and Mg{sub 2}Si inclusion show that the surfaces of inclusion (impurity) particles can serve as a location for heterogeneous nucleation of precipitates. - Highlights: •Focused ion beam (FIB) tomography was used to characterize the microstructure of Al 7075 in three dimensions. •Analysis of grains and precipitates was performed in terms of volume, size, and morphology. •Precipitates at the grain boundaries have larger size and aspect ratio compared to the precipitates inside the grains.

  10. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  11. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  12. Evaluation of diagnostic quality in musculoskeletal three-dimensional CT scans

    International Nuclear Information System (INIS)

    Vannier, M.W.; Hildebolt, C.F.; Gilula, L.A.; Sutherland, C.J.; Offutt, C.J.; Drebin, R.; Mantle, M.; Giordono, T.A.

    1988-01-01

    A major application of three-dimensional computed tomography (CT) is in the imaging of the skeleton. Three-dimensional CT has an important role in determining the presence and extent of congenital and acquired orthopedic abnormalities. The objective of this study was to compare the diagnostic sensitivity and specificity of three-dimensional CT, planar CT, and plain radiography in the detection and characterization of orthopedic abnormalities. Three-dimensional CT scan reconstructions were obtained by two methods, surface reconstruction and volumetric techniques. Seventy patients were imaged with CT, three-dimensional CT, and plain radiography. The consensus opinion of experts with access to all images plus clinical history, surgical findings, and follow-up findings were taken as truth. Expert radiologists read these cases in a blinded fashion. The results were compared using receiver operating characteristic (ROC) analysis. The diagnostic value of each three-dimensional reconstruction method and the parameters used to perform the reconstructions were evaluated

  13. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Takashi; Tateno, Satoko (Tokyo Univ. (Japan). Coll. of Arts and Sciences); Suzuki, Naoki

    1991-12-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author).

  14. Three dimensional reconstruction of fossils with X-ray CT and computer graphics

    International Nuclear Information System (INIS)

    Hamada, Takashi; Tateno, Satoko; Suzuki, Naoki.

    1991-01-01

    We have developed a method for three dimensional (3D) visualization of fossils such as trilobites and ammonites by non-destructive measurement and computer graphics. The imaging techniques in the medical sciences are applied for fossils by us to have quantitative data analyses on the structural and functional features of some extinct creatures. These methods are composed of a high resolutional X-ray computed tomography (X-ray CT) and computer graphics. We are able to observe not only outer shape but also inner structure of fossils as a 3D image by this method. Consequently, the shape and volume are measurable on these 3D image quantitatively. In addition to that, it is able to reconstruct an ideal figure from the deformed fossils by graphical treatments of the data. Such a 3D reconstruction method is useful to obtain a new information from the paleontological standpoint. (author)

  15. Long term three dimensional tracking of orthodontic patients using registered cone beam CT and photogrammetry.

    Science.gov (United States)

    Boulanger, Pierre; Flores-Mir, Carlos; Ramirez, Juan F; Mesa, Elizabeth; Branch, John W

    2009-01-01

    The measurements from registered images obtained from Cone Beam Computed Tomography (CBCT) and a photogrammetric sensor are used to track three-dimensional shape variations of orthodontic patients before and after their treatments. The methodology consists of five main steps: (1) the patient's bone and skin shapes are measured in 3D using the fusion of images from a CBCT and a photogrammetric sensor. (2) The bone shape is extracted from the CBCT data using a standard marching cube algorithm. (3) The bone and skin shape measurements are registered using titanium targets located on the head of the patient. (4) Using a manual segmentation technique the head and lower jaw geometry are extracted separately to deal with jaw motion at the different record visits. (5) Using natural features of the upper head the two datasets are then registered with each other and then compared to evaluate bone, teeth, and skin displacements before and after treatments. This procedure is now used at the University of Alberta orthodontic clinic.

  16. Recent developments in multi-parametric three-dimensional stress field representation in plates weakened by cracks and notches

    Directory of Open Access Journals (Sweden)

    P. Lazzarin

    2013-07-01

    Full Text Available The paper deals with the three-dimensional nature and the multi-parametric representation of the stress field ahead of cracks and notches of different shape. Finite thickness plates are considered, under different loading conditions. Under certain hypotheses, the three-dimensional governing equations of elasticity can be reduced to a system where a bi-harmonic equation and a harmonic equation have to be simultaneously satisfied. The former provides the solution of the corresponding plane notch problem, the latter provides the solution of the corresponding out-of-plane shear notch problem. The analytical frame is applied to some notched and cracked geometries and its degree of accuracy is discussed comparing theoretical results and numerical data from 3D FE models.

  17. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  18. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  19. A three-dimensional breast software phantom for mammography simulation

    International Nuclear Information System (INIS)

    Bliznakova, K; Bliznakov, Z; Bravou, V; Kolitsi, Z; Pallikarakis, N

    2003-01-01

    This paper presents a methodology for three-dimensional (3D) computer modelling of the breast, using a combination of 3D geometrical primitives and voxel matrices that can be further subjected to simulated x-ray imaging, to produce synthetic mammograms. The breast phantom is a composite model of the breast and includes the breast surface, the duct system and terminal ductal lobular units, Cooper's ligaments, the pectoral muscle, the 3D mammographic background and breast abnormalities. A second analytical x-ray matter interaction modelling module is used to generate synthetic images from monoenergetic fan beams. Mammographic images of various synthesized breast models differing in size, shape and composition were produced. A preliminary qualitative assessment performed by three radiologists and a quantitative evaluation study using fractal and grey-level histogram analysis were conducted. A comparative study of extracted features with published data has also been performed. The evaluation results indicated good correlation of characteristics between synthetic and actual radiographs. Applications foreseen are not only in the area of breast imaging experimentation but also in education and training

  20. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness.

    Science.gov (United States)

    Persson, Anna S K; Odén, Agneta; Andersson, Matts; Sandborgh-Englund, Gunilla

    2009-07-01

    To compare the exactness of simulated clinical impressions and stone replicas of crown preparations, using digitization and virtual three-dimensional analysis. Three master dies (mandibular incisor, canine and molar) were prepared for full crowns, mounted in full dental arches in a plane line articulator. Eight impressions were taken using an experimental monophase vinyl polysiloxane-based material. Stone replicas were poured in type IV stone (Vel-Mix Stone; Kerr). The master dies and the stone replicas were digitized in a touch-probe scanner (Procera) Forte; Nobel Biocare AB) and the impressions in a laser scanner (D250, 3Shape A/S), to create virtual models. The resulting point-clouds from the digitization of the master dies were used as CAD-Reference-Models (CRM). Discrepancies between the points in the pointclouds and the corresponding CRM were measured by a matching-software (CopyCAD 6.504 SP2; Delcam Plc). The distribution of the discrepancies was analyzed and depicted on color-difference maps. The discrepancies of the digitized impressions and the stone replicas compared to the CRM were of similar size with a mean+/-SD within 40microm, with the exception of two of the digitized molar impressions. The precision of the digitized impressions and stone replicas did not differ significantly (F=4.2; p=0.053). However, the shape affected the digitization (F=5.4; p=0.013) and the interaction effect of shape and digitization source (impression or stone replica) was pronounced (F=28; pimpressions varied with shape. Both impressions and stone replicas can be digitized repeatedly with a high reliability.

  1. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.

    Science.gov (United States)

    Apker, Gregory A; Darling, Timothy K; Buneo, Christopher A

    2010-11-01

    Reaching movements are subject to noise in both the planning and execution phases of movement production. The interaction of these noise sources during natural movements is not well understood, despite its importance for understanding movement variability in neurologically intact and impaired individuals. Here we examined the interaction of planning and execution related noise during the production of unconstrained reaching movements. Subjects performed sequences of two movements to targets arranged in three vertical planes separated in depth. The starting position for each sequence was also varied in depth with the target plane; thus required movement sequences were largely contained within the vertical plane of the targets. Each final target in a sequence was approached from two different directions, and these movements were made with or without visual feedback of the moving hand. These combined aspects of the design allowed us to probe the interaction of execution and planning related noise with respect to reach endpoint variability. In agreement with previous studies, we found that reach endpoint distributions were highly anisotropic. The principal axes of movement variability were largely aligned with the depth axis, i.e., the axis along which visual planning related noise would be expected to dominate, and were not generally well aligned with the direction of the movement vector. Our results suggest that visual planning-related noise plays a dominant role in determining anisotropic patterns of endpoint variability in three-dimensional space, with execution noise adding to this variability in a movement direction-dependent manner.

  2. Study of the nonlinear three-dimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Lin Chang; Zhao Jinbao; Zhang Xiulian

    2000-01-01

    The nonlinear three-dimensional Debye screening in plasmas is investigated. New analytical solutions for the three-dimensional Poisson equation have been obtained for the nonlinear Debye potential for the first time. We derive exact analytical expression for the special case of the nonlinear three-dimensional Debye screening in plasmas. (orig.)

  3. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  4. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)

    2017-03-02

    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. https://www.doi.org/10.1103/PhysRevD.92.124069 and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  5. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  6. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors

    Science.gov (United States)

    Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio

    2013-12-01

    Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work.

  7. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors

    Science.gov (United States)

    Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio

    2013-01-01

    Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work. PMID:24336225

  8. DNA-based construction at the nanoscale: emerging trends and applications

    Science.gov (United States)

    Lourdu Xavier, P.; Chandrasekaran, Arun Richard

    2018-02-01

    The field of structural DNA nanotechnology has evolved remarkably—from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes—in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.

  9. A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.

    Science.gov (United States)

    Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng

    2014-03-11

    Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  10. The three-dimensional properties and energetics of radio-jet-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi; Stockton, Alan, E-mail: hsshih@ifa.hawaii.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawai' i 2680 Woodlawn Dr, Honolulu, HI 96822 (United States)

    2014-05-01

    Extended emission-line regions (EELRs), found around radio-loud sources, are likely outflows driven by one form of powerful active galactic nucleus (AGN) feedback mechanism. We seek to constrain the three-dimensional gas properties and the outflow energetics of the EELRs in this study. We used an integral field unit to observe EELRs around two samples of radio-loud AGNs with similar radio properties, but different orientations: a sample of quasars and a sample of radio galaxies. A morphological comparison suggests a scenario where the three-dimensional EELR gas distribution follows rough biconical shapes with wide opening angles. The average extent of the EELRs is ∼18.5 kpc. The estimated average mass of the EELRs, with reasonable assumptions for gas densities, is ∼3 × 10{sup 8} M {sub ☉}, and the average mass outflow rate is ∼30 M {sub ☉} yr{sup –1}. The EELRs around quasars and radio galaxies share similar kinematic properties. Both samples have velocity structures that display a range of complexities, they do not appear to correlate with the jet orientations, and both span a similar range of velocity dispersions. Around 30% of the detected EELRs show large-scale rotational motions, which may have originated from recent mergers involving gas-rich disk galaxies.

  11. Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer.

    Science.gov (United States)

    Chen, Xueye; Zhao, Zhongyi

    2017-04-29

    This paper aims at layout optimization design of obstacles in a three-dimensional T-type micromixer. Numerical analysis shows that the direction of flow velocity change constantly due to the obstacles blocking, which produces the chaotic convection and increases species mixing effectively. The orthogonal experiment method was applied for determining the effects of some key parameters on mixing efficiency. The weights in the order are: height of obstacles > geometric shape > symmetry = number of obstacles. Based on the optimized results, a multi-units obstacle micromixer was designed. Compared with T-type micromixer, the multi-units obstacle micromixer is more efficient, and more than 90% mixing efficiency were obtained for a wide range of peclet numbers. It can be demonstrated that the presented optimal design method of obstacles layout in three-dimensional microchannels is a simple and effective technology to improve species mixing in microfluidic devices. The obstacles layout methodology has the potential for applications in chemical engineering and bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Three-Dimensional Reconstruction of Sandpile Interiors

    Science.gov (United States)

    Seidler, G. T.

    2001-03-01

    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  13. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  14. [Variation pattern and its affecting factors of three-dimensional landscape in urban residential community of Shenyang].

    Science.gov (United States)

    Zhang, Pei-Feng; Hu, Yuan-Man; Xiong, Zai-Ping; Liu, Miao

    2011-02-01

    Based on the 1:10000 aerial photo in 1997 and the three QuickBird images in 2002, 2005, and 2008, and by using Barista software and GIS and RS techniques, the three-dimensional information of the residential community in Tiexi District of Shenyang was extracted, and the variation pattern of the three-dimensional landscape in the district during its reconstruction in 1997-2008 and related affecting factors were analyzed with the indices, ie. road density, greening rate, average building height, building height standard deviation, building coverage rate, floor area rate, building shape coefficient, population density, and per capita GDP. The results showed that in 1997-2008, the building area for industry decreased, that for commerce and other public affairs increased, and the area for residents, education, and medical cares basically remained stable. The building number, building coverage rate, and building shape coefficient decreased, while the floor area rate, average building height, height standard deviation, road density, and greening rate increased. Within the limited space of residential community, the containing capacity of population and economic activity increased, and the environment quality also improved to some extent. The variation degree of average building height increased, but the building energy consumption decreased. Population growth and economic development had positive correlations with floor area rate, road density, and greening rate, but negative correlation with building coverage rate.

  15. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  16. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  17. A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

    Science.gov (United States)

    Heidmann, James D.; Rigby, David L.; Ameri, Ali A.

    1999-01-01

    A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.

  18. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  19. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  20. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  1. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  2. Shape-controlled porous nanocarbons for high performance supercapacitors

    KAUST Repository

    Chén, Wěi

    2014-01-01

    Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332-2005 m2 g-1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg-1 with a power density of 17.4 kW kg-1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices. © 2014 the Partner Organisations.

  3. Three-dimensional fracture instability of a displacement-weakening planar interface under locally peaked nonuniform loading

    Science.gov (United States)

    Uenishi, Koji

    2018-06-01

    We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.

  4. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  5. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  6. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  7. Three-dimensional attached viscous flow basic principles and theoretical foundations

    CERN Document Server

    Hirschel, Ernst Heinrich; Kordulla, Wilhelm

    2014-01-01

    Viscous flow is usually treated in the frame of boundary-layer theory and as a two-dimensional flow. At best, books on boundary layers provide the describing equations for three-dimensional boundary layers, and solutions only for certain special cases.   This book presents the basic principles and theoretical foundations of three-dimensional attached viscous flows as they apply to aircraft of all kinds. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice.   The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility con...

  8. Resistively detected NMR line shapes in a quasi-one-dimensional electron system

    Science.gov (United States)

    Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.

    2017-06-01

    We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.

  9. Sex determination by three-dimensional geometric morphometrics of the vault and midsagittal curve of the neurocranium in a modern Greek population sample.

    Science.gov (United States)

    Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K

    2016-06-01

    The aim of this study is to assess sexual dimorphism of adult crania in the vault and midsagittal curve of the vault using three-dimensional geometric morphometric methods. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived during the 20th century in Greece. The three-dimensional co-ordinates of 31 ecto-cranial landmarks and 30 semi-landmarks were digitized using a MicroScribe 3DX contact digitizer. Generalized Procrustes analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, size and form analyses were carried out by logistic regression and three discriminant function analyses. Results indicate that there are shape differences between sexes. Females in the region of the parietal bones are narrower and the axis forming the frontal and occipital bones is more elongated; the frontal bone is more vertical. Sex-specific shape differences give better classification results in the vault (79%) compared with the midsagittal curve of the neurocranium (68.8%). Size alone yielded better results for cranial vault (82%), while for the midsagittal curve of the vault the result is poorer (68.1%). As anticipated, the classification accuracy improves when both size and shape are combined (89.2% for vault, and 79.4% for midsagittal curve of the vault). These latter findings imply that, in contrast to the midsagittal curve of the neurocranium, the shape of the cranial vault can be used as an indicator of sex in the modern Greek population. Copyright © 2016. Published by Elsevier GmbH.

  10. Kirigami-based three-dimensional OLED concepts for architectural lighting

    Science.gov (United States)

    Kim, Taehwan; Price, Jared S.; Grede, Alex; Lee, Sora; Jackson, Thomas N.; Giebink, Noel C.

    2017-08-01

    Dramatic improvements in white organic light emitting diode (OLED) performance and lifetime over the past decade are driving commercialization of this technology for solid-state lighting applications. As white OLEDs attempt to gain a foothold in the market, however, the biggest challenge outside of lowering their manufacturing cost arguably now lies in creating an architecturally adaptable form factor that will drive public adoption and differentiate OLED lighting from established LED products. Here, we present concepts based on kirigami (the Japanese art of paper cutting and folding) that enable intricate three-dimensional (3D) OLED lighting structures from two dimensional layouts. Using an ultraflexible, encapsulated OLED device architecture on 25 60 μm thick clear polyimide film substrate with simple cut and fold patterns, we demonstrate a series of different lighting concepts ranging from a simple `pop up' structure to more complex designs such as stretchable window blind-like panel, candle flame, and multi-element globe lamp. We only find slight degradation in OLED electrical performance when these designs are shaped into 3D. Our results point to an alternate paradigm for OLED lighting that moves beyond traditional 2D panels toward 3D designs that deliver unique and creative new opportunities for lighting.

  11. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid

    International Nuclear Information System (INIS)

    Duarte Campos, Daniela F; Blaeser, Andreas; Weber, Michael; Fischer, Horst; Jäkel, Jörg; Neuss, Sabine; Jahnen-Dechent, Wilhelm

    2013-01-01

    Over the last decade, bioprinting technologies have begun providing important tissue engineering strategies for regenerative medicine and organ transplantation. The major drawback of past approaches has been poor or inadequate material-printing device and substrate combinations, as well as the relatively small size of the printed construct. Here, we hypothesise that cell-laden hydrogels can be printed when submerged in perfluorotributylamine (C 12 F 27 N), a hydrophobic high-density fluid, and that these cells placed within three-dimensional constructs remain viable allowing for cell proliferation and production of extracellular matrix. Human mesenchymal stem cells and MG-63 cells were encapsulated into agarose hydrogels, and subsequently printed in high aspect ratio in three dimensional structures that were supported in high density fluorocarbon. Three-dimensional structures with various shapes and sizes were manufactured and remained stable for more than six months. Live/dead and DAPI stainings showed viable cells 24 h after the printing process, as well as after 21 days in culture. Histological and immunohistochemical analyses after 14 and 21 days revealed viable cells with marked matrix production and signs of proliferation. The compressive strength values of the printed gels consequently increased during the two weeks in culture, revealing encouraging results for future applications in regenerative medicine. (paper)

  12. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  13. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  14. Evaluation of shot peened surfaces using characterization technique of three-dimensional surface topography

    International Nuclear Information System (INIS)

    Kurokawa, S; Ariura, Y

    2005-01-01

    Objective parameters to characterize global topography of three-dimensional surfaces have been derived. The idea of this evaluation is to separate the topography into two global form deviations and residual ones according to the degree of curved surfaces. A shot peened Almen strip is measured by profilometer and concrete parameters of inclination and circular-arc shaped global topography are extracted using the characterization technique. The arc height is calculated using the circular arc-shaped part and compared with a value measured by an Almen gauge. The relation between the coverage and roughness parameters is also investigated. The advantage of this evaluation is that it is possible to determine the arc height and the coverage at the same time from single measured topography. In addition, human error can be excluded from measurement results. This method has the wide application in the field of measurement

  15. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  16. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  17. Three-diemensional materials science: An intersection of three-dimensional reconstructions and simulations

    DEFF Research Database (Denmark)

    Thornton, Katsuyo; Poulsen, Henning Friis

    2008-01-01

    The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties. Comb...... an overview of this emerging field of materials science, as well as brief descriptions of selected methods and their applicability.......The recent development of experimental techniques that rapidly reconstruct the three-dimensional microstructures of solids has given rise to new possibilities for developing a deeper understanding of the evolution of microstructures and the effects of microstructures on materials properties....... Combined with three-dimensional (3D) simulations and analyses that are capable of handling the complexity of these microstructures, 3D reconstruction, or tomography, has become a powerful tool that provides clear insights into materials processing and properties. This introductory article provides...

  18. Three-dimensional touch interface for medical education.

    Science.gov (United States)

    Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert

    2007-05-01

    We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.

  19. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  20. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  1. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  2. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    International Nuclear Information System (INIS)

    Yu, L.; Batlle, F.

    2011-01-01

    Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

  3. [Precision of three-dimensional printed brackets].

    Science.gov (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J

    2017-08-18

    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  4. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  5. Three-dimensional shape analysis of coarse aggregates: New techniques for and preliminary results on several different coarse aggregates and reference rocks

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Quiroga, P.N.; Fowler, D.W.; Saleh, H.A.; Livingston, R.A.; Garboczi, E.J.; Ketcham, P.M.; Hagedorn, J.G.; Satterfield, S.G.

    2006-01-01

    The shape of aggregates used in concrete is an important parameter that helps determine many concrete properties, especially the rheology of fresh concrete and early-age mechanical properties. This paper discusses the sample preparation and image analysis techniques necessary for obtaining an aggregate particle image in 3-D, using X-ray computed tomography, which is then suitable for spherical harmonic analysis. The shapes of three reference rocks are analyzed for uncertainty determination via direct comparison to the geometry of their reconstructed images. A Virtual Reality Modeling Language technique is demonstrated that can give quick and accurate 3-D views of aggregates. Shape data on several different kinds of coarse aggregates are compared and used to illustrate potential mathematical shape analyses made possible by the spherical harmonic information

  6. Effect of Using Logo on Pupils' Learning in Two-Dimensional Shapes

    Science.gov (United States)

    Yi, Boo Jia; Eu, Leong Kwan

    2016-01-01

    The integration of technology in mathematics instruction is an important step in the 21st century learning style. At the primary level, some studies have explored how technology could help in mathematics learning. The purpose of this study is to determine the effect of using Logo on pupils' learning of the properties of two-dimensional shapes. A…

  7. Three-dimensional imagery by encoding sources of X rays

    International Nuclear Information System (INIS)

    Magnin, Isabelle

    1987-01-01

    This research thesis addresses the theoretical and practical study of X ray coded sources, and thus notably aims at exploring whether it would be possible to transform a standard digital radiography apparatus (as those operated in radiology hospital departments) into a low cost three-dimensional imagery system. The author first recalls the principle of conventional tomography and improvement attempts, and describes imagery techniques based on the use of encoding openings and source encoding. She reports the modelling of an imagery system based on encoded sources of X ray, and addresses the original notion of three-dimensional response for such a system. The author then addresses the reconstruction method by considering the reconstruction of a plane object, of a multi-plane object, and of real three-dimensional object. The frequency properties and the tomographic capacities of various types of source codes are analysed. She describes a prototype tomography apparatus, and presents and discusses three-dimensional actual phantom reconstructions. She finally introduces a new principle of dynamic three-dimensional radiography which implements an acquisition technique by 'gating code'. The acquisition principle should allow the reconstruction of volumes animated by periodic deformations, such as the heart for example [fr

  8. Revealing the sub-nanometere three-dimensional microscture of a metallic meteorite

    Science.gov (United States)

    Einsle, J. F.; Harrison, R.; Blukis, R.; Eggeman, A.; Saghi, Z.; Martineau, B.; Bagot, P.; Collins, S. M.; Midgley, P. A.

    2017-12-01

    Coming from from the core of differentiated planetesimals, iron-nickel meteorites provide some of the only direct material artefacts from planetary cores. Iron - nickel meteorites contain a record of their thermal and magnetic history, written in the intergrowth of iron-rich and nickel-rich phases that formed during slow cooling over millions of years. Of intense interest for understanding the thermal and magnetic history is the `'cloudy zone''. This nanoscale intergrowth that has recently been used to provide a record of magnetic activity on the parent body of stony-iron meteorites. The cloudy zone consists of islands of tetrataenite surrounded by a matrix phase, Here we use a multi-scale and multidimensional comparative study using high-resolution electron diffraction, scanning transmission electron tomography with chemical mapping, atom probe tomography and micromagnetic simulations to reveal the three-dimensional architecture of the cloudy zone with sub-nanometre spatial resolution. Machine learning data deconvolution strategies enable the three microanalytical techniques to converge on a consistent microstructural description for the cloudy zone. Isolated islands of tetrataenite are found, embedded in a continuous matrix of an FCC-supercell of Fe27Ni5 structure, never before identified in nature. The tetrataenite islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure during slow cooling. The new compositional, crystallographic and micromagnetic data have profound implications for how the cloudy zone acquires magnetic remanence, and requires a revision of the low-temperature metastable phase diagram of the Fe-Ni system. This can lead to a refinement of core dynamics in small planetoids.

  9. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  10. Nanoscale magnetic ratchets based on shape anisotropy

    Science.gov (United States)

    Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.

    2017-02-01

    Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

  11. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    International Nuclear Information System (INIS)

    Huang, Yan; Sun, Jizhong; Hu, Wanpeng; Sang, Chaofeng; Wang, Dezhen

    2016-01-01

    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m"2 in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  12. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  13. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  14. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  15. Electrostatic potential fluctuation induced by charge discreteness in a nanoscale trench

    International Nuclear Information System (INIS)

    Lee, Taesang; Kim, S. S.; Jho, Y. S.; Park, Gunyoung; Chang, C. S.

    2007-01-01

    A simplified two-dimensional Monte Carlo simulation is performed to estimate the charging potential fluctuations caused by strong binary Coulomb interactions between discrete charged particles in nanometer scale trenches. It is found that the discrete charge effect can be an important part of the nanoscale trench research, inducing scattering of ion trajectories in a nanoscale trench by a fluctuating electric field. The effect can enhance the ion deposition on the side walls and disperse the material contact energy of the incident ions, among others

  16. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  17. A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines

    Science.gov (United States)

    Wu, Chung-Hua

    1993-01-01

    This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.

  18. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    International Nuclear Information System (INIS)

    Jiang Jiu-Xing; Zhang Xu-Zhi; Wang Zhen-Hua; Xu Jian-Jun

    2016-01-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g −1 at 2 mV/s compared to pristine PANI of 397 F·g −1 . (paper)

  19. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  20. Resonance fluorescence microscopy via three-dimensional atom localization

    Science.gov (United States)

    Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar

    2018-02-01

    A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

  1. Clinical value of virtual three-dimensional instrument and cerebral aneurysm models in the interventional preoperative simulation

    International Nuclear Information System (INIS)

    Wei Xin; Xie Xiaodong; Wang Chaohua

    2007-01-01

    Objective: To establish virtual three-dimensional instrument and cerebral aneurysm models by using three-dimensional moulding software, and to explore the effect of the models in interventional preoperative simulation. Methods: The virtual individual models including cerebral arteries and aneurysms were established by using the three-dimensional moulding software of 3D Studio MAX R3 based on standard virtual cerebral aneurysm models and individual DSA image. The virtual catheter, guide wire, stent and coil were also established. The study of interventional preoperative simulation was run in personal computer, and included 3 clinical cases. Results: The simulation results of the working angle and the moulding angle of the head of catheter and guide wire in 3 cases were identical with that of operation results. The simulation results of the requirement of number and size of coil in 1 case of anterior communicating aneurysm and 1 case of posterior communicating aneurysm were identical with that of operation results. The simulation results of coil for aneurysmal shape in 1 case of giant internal carotid artery aneurysm were more than 2 three-dimensional coils with size of 3 mm x 3 cm from the operation results, and the position of the second coil in aneurysmal neck was adjusted according to the results of real-time simulation. The results of retrospective simulation of operation procedure indicated that the simulation methods for regular and small aneurysms could become a routine simulation means but more simulation experience was needed to build up for the giant aneurysms. Conclusions: The virtual three-dimensional instrument and cerebral aneurysm models established by the general software provided a new study method for neuro-interventional preoperative simulation, and it played an important guidance role in developing neuro-interventional operation. (authors)

  2. Three-dimensional visualisation of the large bowel: a potential tool for assessing targeted drug delivery and colonic pathology

    International Nuclear Information System (INIS)

    Perkins, A.C.; Mann, C.; Wilson, C.G.

    1995-01-01

    A study has been undertaken to assess the feasibility of three-dimensional imaging of the dispersion of a non-absorbable tracer released into the colon of normal subjects. Six healthy volunteers were selected who were participating in a scintigraphic study designed to assess the spreading of 1 MBq indium-111 Amberlite resin delivered from a delayed capsule system targeted to release in the ascending colon. In each case subjects were imaged using a rotating gamma camera over a data collection period of approximately 20 min. Three-dimensional volume rendered images demonstrated good visualisation of the dispersion of the tracer throughout the ascending, transverse and descending colon and provided good anatomical visualisation of the shape of the colon, not previously apparent from the planar views. The present study demonstrates for the first time, the successful three-dimensional imaging of a radiolabelled tracer dispersed throughout the colon and opens up the prospects for more detailed study of quantification of the volume and distribution of tracers contained within the colon. (orig.). With 1 fig

  3. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper

  4. Inverted V's and/or discrete arcs: a three-dimensional phenomenon at boundaries between magnetic flux tubes

    International Nuclear Information System (INIS)

    Atkinson, G.

    1982-01-01

    If discrete arcs and inverted V's are associated with current sheets and the U shaped electric potential structure, then existing two-dimensional models are probably inadequate. The rapid east-west electric-field associated flow in the arms of the U shaped potential structure requires that there must be a substantial inflow to the outflow from each arm somewhere along the system since arcs and inverted V's have a limited east-west extent. Thus strong north-south polarization currents occur as the plasma enters and leaves the arms of the U. It is hypothesized that these currents, determine the north-south thickness. Three representative three-dimensional models are considered in which the current sheets are either tangential or rotational discontinuities modified by the U shaped potential structure. Thicknesses of the order of a few tens of kilometers are obtained. The occurence and type of discontinuity expected at various locations in the magnetosphere are considered. Discontinuities and hence inverted V's and/or arcs are expected at the interface between open and closed field lines, which explains quiet time polar cap sun-aligned arcs, and at interfaces between plasmas which have merged or been injected on the dayside or reconnected on the nightside in different impulsive events. The last two account for arcs occurring near the throat at active times and for parallel arcs within the oval. The occurrence of long parallel arcs within the oval is encouraged by the convective flow pattern and by the differences in precipitation from flux tubes with differential histories

  5. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  6. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  7. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.

    Science.gov (United States)

    Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J

    2015-05-01

    The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions’ components.

  8. Three-dimensional CT imaging of soft-tissue anatomy

    International Nuclear Information System (INIS)

    Fishman, E.K.; Ney, D.R.; Magid, D.; Kuhlman, J.E.

    1988-01-01

    Three-dimensional display of computed tomographic data has been limited to skeletal structures. This was in part related to the reconstruction algorithm used, which relied on a binary classification scheme. A new algorithm, volumetric rendering with percentage classification, provides the ability to display three-dimensional images of muscle and soft tissue. A review was conducted of images in 35 cases in which muscle and/or soft tissue were part of the clinical problem. In all cases, individual muscle groups could be clearly identified and discriminated. Branching vessels in the range of 2.3 mm could be identified. Similarly, lymph nodes could be clearly defined. High-resolution three-dimensional images were found to be useful both in providing an increased understanding of complex muscle and soft tissue anatomy and in surgical planning

  9. THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY

    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar

    2014-03-01

    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  10. TITAN: an advanced three-dimensional coupled neutronic/thermal-hydraulics code for light water nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Griggs, D.P.; Kazimi, M.S.; Henry, A.F.

    1984-06-01

    The three-dimensional nodal neutronics code QUANDRY and the three-dimensional two-fluid thermal-hydraulics code THERMIT are combined into TITAN. Steady-state and transient coupling methodologies based upon a tandem structure were devised and implemented. Additional models for nuclear feedback, equilibrium xenon and direct moderator heating were added. TITAN was tested using a boiling water two channel problem and the coupling methodologies were shown to be effective. Simulated turbine trip transients and several control rod withdrawal transients were analyzed with good results. Sensitivity studies indicated that the time-step size can affect transient results significantly. TITAN was also applied to a quarter core PWR problem based on a real reactor geometry. The steady-state results were compared to a solution produced by MEKIN-B and poor agreement between the horizontal power shapes was found. Calculations with various mesh spacings showed that the mesh spacings in the MEKIN-B analysis were too large to produce accurate results with a finite difference method. The TITAN results were shown to be reasonable. A pair of control rod ejection accidents were also analyzed with TITAN. A comparison of the TITAN PWR control rod ejection results with results from coupled point kinetics/thermal-hydraulics analyses showed that the point kinetics method used (adiabatic method for control rod reactivities, steady-state flux shape for core-averaged reactivity feedback) underpredicted the power excursion in one case and overpredicted it in the other. It was therefore concluded that point kinetics methods should be used with caution and that three-dimensional codes like TITAN are superior for analyzing PWR control rod ejection transients

  11. Prenatal diagnosis of parapagus diprosopus dibrachius dipus twins with spina bifida in the first trimester using two- and three-dimensional ultrasound

    OpenAIRE

    Pei-Yin Yang; Ching-Hua Wu; Guang-Perng Yeh; Charles Tsung-Che Hsieh

    2015-01-01

    Objective: Here, we report a case of parapagus diprosopus twins with spina bifida diagnosed in the first trimester of pregnancy using two-dimensional (2D) and three-dimensional (3D) ultrasound. Case report: A 28-year-old Taiwanese woman, gravid 1, para 0, visited our hospital due to an abnormal fetal head shape discovered by 2D ultrasound at 11-weeks gestation. Parapagus diprosopus twins with spina bifida were diagnosed after ultrasound examination. The characteristics of parapagus diproso...

  12. Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals

    International Nuclear Information System (INIS)

    Nong-Yu, Fang; Fu-Gen, Wu; Xin, Zhang

    2008-01-01

    We present the acoustic band gaps (ABGs) for a geometry of three-dimensional complex acoustic crystals: the NaCl-type structure. By using the super cell method based on the plane-wave expansion method (PWE), we study the three configurations formed by water objects (either a sphere of different sizes or a cube) located at the vertices of simple cubic (SC) lattice and surrounded by mercury background. The numerical results show that ABGs larger than the original SC structure for all the three configurations can be obtained by adjusting the length-diameter ratio of adjacent objects but keeping the filling fraction (f = 0.25) of the unit cell unchanged. We also compare our results with that of 3D solid composites and find that the ABGs in liquid composites are insensitive to the shapes as that in the solid composites. We further prove that the decrease of the translation group symmetry is more efficient in creating the ABGs in 3D water-mercury systems. (fundamental areas of phenomenology (including applications))

  13. Impaired capacity of cerebellar patients to perceive and learn two-dimensional shapes based on kinesthetic cues.

    Science.gov (United States)

    Shimansky, Y; Saling, M; Wunderlich, D A; Bracha, V; Stelmach, G E; Bloedel, J R

    1997-01-01

    This study addresses the issue of the role of the cerebellum in the processing of sensory information by determining the capability of cerebellar patients to acquire and use kinesthetic cues received via the active or passive tracing of an irregular shape while blindfolded. Patients with cerebellar lesions and age-matched healthy controls were tested on four tasks: (1) learning to discriminate a reference shape from three others through the repeated tracing of the reference template; (2) reproducing the reference shape from memory by drawing blindfolded; (3) performing the same task with vision; and (4) visually recognizing the reference shape. The cues used to acquire and then to recognize the reference shape were generated under four conditions: (1) "active kinesthesia," in which cues were acquired by the blindfolded subject while actively tracing a reference template; (2) "passive kinesthesia," in which the tracing was performed while the hand was guided passively through the template; (3) "sequential vision," in which the shape was visualized by the serial exposure of small segments of its outline; and (4) "full vision," in which the entire shape was visualized. The sequential vision condition was employed to emulate the sequential way in which kinesthetic information is acquired while tracing the reference shape. The results demonstrate a substantial impairment of cerebellar patients in their capability to perceive two-dimensional irregular shapes based only on kinesthetic cues. There also is evidence that this deficit in part relates to a reduced capacity to integrate temporal sequences of sensory cues into a complete image useful for shape discrimination tasks or for reproducing the shape through drawing. Consequently, the cerebellum has an important role in this type of sensory information processing even when it is not directly associated with the execution of movements.

  14. Application status of three-dimensional CT reconstruction in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2017-02-01

    Full Text Available With the development of imaging technology, three-dimensional CT reconstruction has been widely used in hepatobiliary surgery. Three-dimensional CT reconstruction can divide and reconstruct two-dimensional images into three-dimensional images and clearly show the location of lesion and its relationship with the intrahepatic bile duct system. It has an important value in the preoperative assessment of liver volume, diagnosis and treatment decision-making process, intraoperative precise operation, and postoperative individualized management, and promotes the constant development of hepatobiliary surgery and minimally invasive technology, and therefore, it holds promise for clinical application.

  15. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    Science.gov (United States)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  16. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro

    1998-01-01

    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  17. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  18. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  19. An intelligent three dimensional reconstruction system for cerebral arteries from biplane cineangiograms

    International Nuclear Information System (INIS)

    Fujii, Susumu; Guan, Yang; Tsukamoto, Yasuo; Kumamoto, Etsuko; Asada, Katsunobu; Matsuo, Michimasa; Yamasaki, Katsuhito.

    1993-01-01

    In this study, an intelligent system is developed for the three dimensional reconstruction of cerebral arteries from biplane cineangiograms. The system is composed of two blocks, i.e., an inferencing-control-block and a processing-block. The inferencing-control block controls the flow of the image-processing by inferencing with the knowledge stored in the block and is a production system based on 'IF, THEN' rule. The processing-block is a collection of image processing procedures activated by a call from the inferencing-control-block. On the other hand, the flow of the image-processing is outlined as follows: After the extraction of vessel center lines from the angiograms, the blood flow directions and connectivity states of vessels are determined and the vessel graph is translated to a vessel connectivity tree. Then, by utilizing the knowledge about anatomic structure of cerebral arteries and characteristics of angiograms, important arteries are distinguished and vessel groups classified. Finally, by using a shape-oriented matching method, the vessels on the two projected planes are matched and the three dimensional structure of vessels constructed. An example is presented to demonstrate the effectiveness of the use of the knowledge which enables the system to improve the efficiency and precision of the processing, such as vessel analysis and matching. (author)

  20. THREEDANT: A code to perform three-dimensional, neutral particle transport calculations

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1994-01-01

    The THREEDANT code solves the three-dimensional neutral particle transport equation in its first order, multigroup, discrate ordinate form. The code allows an unlimited number of groups (depending upon the cross section set), angular quadrature up to S-100, and unlimited Pn order again depending upon the cross section set. The code has three options for spatial differencing, diamond with set-to-zero fixup, adaptive weighted diamond, and linear modal. The geometry options are XYZ and RZΘ with a special XYZ option based upon a volume fraction method. This allows objects or bodies of any shape to be modelled as input which gives the code as much geometric description flexibility as the Monte Carlo code MCNP. The transport equation is solved by source iteration accelerated by the DSA method. Both inner and outer iterations are so accelerated. Some results are presented which demonstrate the effectiveness of these techniques. The code is available on several types of computing platforms

  1. A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT

    International Nuclear Information System (INIS)

    S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS

    1998-01-01

    A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems

  2. Semi-automated analysis of three-dimensional track images

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.

    2001-01-01

    In the past, three-dimensional (3-d) track images in solid state detectors were difficult to obtain. With the introduction of the confocal scanning laser microscope it is now possible to record 3-d track images in a non-destructive way. These 3-d track images can latter be used to measure typical track parameters. Preparing the detectors and recording the 3-d images however is only the first step. The second step in this process is enhancing the image quality by means of deconvolution techniques to obtain the maximum possible resolution. The third step is extracting the typical track parameters. This can be done on-screen by an experienced operator. For large sets of data however, this manual technique is not desirable. This paper will present some techniques to analyse 3-d track data in an automated way by means of image analysis routines. Advanced thresholding techniques guarantee stable results in different recording situations. By using pre-knowledge about the track shape, reliable object identification is obtained. In case of ambiguity, manual intervention is possible

  3. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  4. Gyrokinetic Vlasov code including full three-dimensional geometry of experiments

    International Nuclear Information System (INIS)

    Nunami, Masanori; Watanabe, Tomohiko; Sugama, Hideo

    2010-03-01

    A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in the Large Helical Device (LHD) configuration are carried out by the GKV-X code for a benchmark test against the GKV code. The frequency, the growth rate, and the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers, while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD region. (author)

  5. Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Simons, Hugh

    2015-01-01

    cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6.......32 ± 0.06) lm, i.e., with 1% accuracy, while the ROC linearly increases by (0.52 ± 0.03) lm from the top to the bottom of the sidewalls. Nanometer sized surface defects are also well replicated. In addition, the method allows combining multiple features from differently processed wafers into a single...... sample, accelerating characterization in process optimization tasks. To access the sidewall shape samples needed to be cleaved. The method was applied to study X-ray refractive optics, whose performance is crucially affected by their three dimensional shapes....

  6. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    Science.gov (United States)

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  7. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.

    2009-01-01

    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  8. A TQFT of Tuarev-Viro type on shaped triangulations

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Rinat [Geneva Univ. (Switzerland); Luo, Feng [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Vartanov, Grigory [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-10-15

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.

  9. A TQFT of Tuarev-Viro type on shaped triangulations

    International Nuclear Information System (INIS)

    Kashaev, Rinat; Luo, Feng

    2012-10-01

    A shaped triangulation is a finite triangulation of an oriented pseudo three manifold where each tetrahedron carries dihedral angles of an ideal hyberbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3-2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann-Zagier Poisson bracket. Similarly to Turaev-Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed 3-manifolds, our partition function is twice the absolute value squared of the partition function of Techmueller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev-Viro and the Witten-Reshetikhin-Turaev invariants of three manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.

  10. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  11. Three-dimensional magnetophotonic crystals based on artificial opals

    Science.gov (United States)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  12. Three-dimensional magnetophotonic crystals based on artificial opals

    International Nuclear Information System (INIS)

    Baryshev, A.V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-01-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties

  13. A three-dimensional magnetostatics computer code for insertion devices

    International Nuclear Information System (INIS)

    Chubar, O.; Elleaume, P.; Chavanne, J.

    1998-01-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented

  14. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  15. Possibility of estimating three-dimensional mandibular morphology by cephalogram analysis

    International Nuclear Information System (INIS)

    Kim, S.; Motegi, Etsuko; Kikuchi, Yu; Yamaguchi, Hideharu; Takaki, Takashi; Shibahara, Takahiko

    2007-01-01

    The purpose of this study was to investigate the possibility of a surmise of three-dimensional mandibular morphology by two-dimensional cephalogram analysis. The materials were three-dimensional CT and cephalogram of 20 female mandibular prognathism patients (average age: 25.20±7.49) before there orthognathic surgery. Mandibular bone volume and sponge bone width were calculated from three-dimensional images constructed from CT images using imaging software (Real Intage, KGT inc.). There was a positive correlation (r=0.72) between mandibular volume value and mandibular ramus width. There was a positive correlation between sponge bone width at the site of the mandibular cuspid and mandibular ramus width and SNB angle (r=0.80), and between sponge bone width at the site of the mandibular molar and symphysis height and mandibular ramus width (r=0.81). It was thought that these results will be useful for a surmise of three-dimensional mandibular morphology by cephalogram analysis. (author)

  16. Three-dimensional interpretation of TEM soundings

    Science.gov (United States)

    Barsukov, P. O.; Fainberg, E. B.

    2013-07-01

    We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.

  17. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components

    Science.gov (United States)

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng

    2017-12-01

    Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can

  18. Three-dimensional protein shape rendering in magnetized solution with Lambert-Beer law.

    Science.gov (United States)

    Gu, HongYan; Chang, WeiShan

    2012-07-10

    When monochromatic light passes through a homogeneous absorbing medium, the absorbance is proportional to the growth of concentration and thickness of the medium, which is the Lambert-Beer law. The shade selection of protein solution magnetized for a certain time from different angles makes different absorbance, which does not meet the Lambert-Beer law. Accordingly, we derive that the absorbance A is not only proportional to the concentration and thickness of the medium but also proportional to the light area S(S) of a certain direction. For the same protein solution, we can obtain the absorbance A of six directions and thus get six values for S(S) the relative ratio of which will inevitably reveal plentiful information of the protein shape. The conformation of the protein can be easily drawn out by software (MATLAB 7.0.1). We have drawn out the molecular shape of lysozyme and bovine serum albumin. In brief, we have developed the Lambert-Beer law A=K·C·b·S(s) and a new method of exploring protein spatial structure.

  19. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  20. The Architectural Designs of a Nanoscale Computing Model

    Directory of Open Access Journals (Sweden)

    Mary M. Eshaghian-Wilner

    2004-08-01

    Full Text Available A generic nanoscale computing model is presented in this paper. The model consists of a collection of fully interconnected nanoscale computing modules, where each module is a cube of cells made out of quantum dots, spins, or molecules. The cells dynamically switch between two states by quantum interactions among their neighbors in all three dimensions. This paper includes a brief introduction to the field of nanotechnology from a computing point of view and presents a set of preliminary architectural designs for fabricating the nanoscale model studied.

  1. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  2. Three-dimensional imaging technology offers promise in medicine.

    Science.gov (United States)

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  3. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  4. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Synthesis, dynamics and photophysics of nanoscale systems

    Science.gov (United States)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  6. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  7. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    International Nuclear Information System (INIS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-01-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  8. Tactical Routing Using Two-Dimensional and Three-Dimensional Views of Terrain

    National Research Council Canada - National Science Library

    St

    2001-01-01

    Consoles for military and civilian occupations such as air warfare, command and control, air traffic control, piloting, and meteorological forecasting will be capable of displaying three-dimensional (3-D) perspective views...

  9. Crystallization of a self-assembled three-dimensional DNA nanostructure

    International Nuclear Information System (INIS)

    Rendek, Kimberly N.; Fromme, Raimund; Grotjohann, Ingo; Fromme, Petra

    2013-01-01

    In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The powerful and specific molecular-recognition system present in the base-pairing of DNA allows for the design of a plethora of nanostructures. In this work, the crystallization of a self-assembling three-dimensional B-DNA nanostructure is described. The DNA nanostructure consists of six single-stranded oligonucleotides that hybridize to form a three-dimensional tetrahedron of 80 kDa in molecular mass and 20 bp on each edge. Crystals of the tetrahedron have been successfully produced and characterized. These crystals may form the basis for an X-ray structure of the tetrahedron in the future. Nucleotide crystallography poses many challenges, leading to the fact that only 1352 X-ray structures of nucleic acids have been solved compared with more than 80 000 protein structures. In this work, the crystallization optimization for three-dimensional tetrahedra is also described, with the eventual goal of producing nanocrystals to overcome the radiation-damage obstacle by the use of free-electron laser technology in the future

  10. A method of image improvement in three-dimensional imaging

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.

    1988-01-01

    In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)

  11. Usefulness Of Three-Dimensional Printing Models for Patients with Stoma Construction

    Directory of Open Access Journals (Sweden)

    Tetsuro Tominaga

    2016-04-01

    Full Text Available The use of patient-specific organ models in three-dimensional printing systems could be helpful for the education of patients and medical students. The aim of this study was to clarify whether the use of patient-specific stoma models is helpful for patient education. From January 2014 to September 2014, 5 patients who underwent colorectal surgery and for whom a temporary or permanent stoma had been created were involved in this study. Three-dimensional stoma models and three-dimensional face plates were created. The patients’ ages ranged from 59 to 81 years. Four patients underwent stoma construction because of rectal cancer, and 1 underwent stoma construction because of colon stenosis secondary to recurrent cancer. All patients were educated about their stoma and potential stoma-associated problems using three-dimensional stoma models, and all practiced cutting face plates using three-dimensional face plates. The models were also used during medical staff conferences to discuss current issues. All patients understood their problems and finally became self-reliant. The recent availability of three-dimensional printers has enabled the creation of many organ models, and full-scale stoma and face plate models are now available for patient education on cutting an appropriately individualized face plate. Thus, three-dimensional printers could enable fewer skin problems than are currently associated with daily stomal care.

  12. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    Science.gov (United States)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  13. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  14. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  15. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    Science.gov (United States)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  16. Two- and three-dimensional characterizations of hot tears in a Al-Mg-Si alloy laser weld

    Energy Technology Data Exchange (ETDEWEB)

    Fabregue, D. [Universite de Lyon, INSA-Lyon, MATEIS, CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)], E-mail: damien.fabregue@insa-lyon.fr; Deschamps, A.; Suery, M. [SIMAP, Grenoble-INP, CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Proudhon, H. [Universite de Lyon, INSA-Lyon, MATEIS, CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2008-08-15

    Hot tears in 6xxx aluminium alloy laser welds are characterized. They are shown to be intergranular, originating from fracture of liquid films without plasticity of the surrounding grains. The hot tear initiates on both sides of the fusion zone, follows the liquid films between the columnar grains of the weld line and then propagates around the equiaxed grains of the fusion zone centre. By using three-dimensional X-ray tomography, the exact shape of the hot tears has been visualized.

  17. Two- and three-dimensional characterizations of hot tears in a Al-Mg-Si alloy laser weld

    International Nuclear Information System (INIS)

    Fabregue, D.; Deschamps, A.; Suery, M.; Proudhon, H.

    2008-01-01

    Hot tears in 6xxx aluminium alloy laser welds are characterized. They are shown to be intergranular, originating from fracture of liquid films without plasticity of the surrounding grains. The hot tear initiates on both sides of the fusion zone, follows the liquid films between the columnar grains of the weld line and then propagates around the equiaxed grains of the fusion zone centre. By using three-dimensional X-ray tomography, the exact shape of the hot tears has been visualized

  18. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  19. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  20. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    International Nuclear Information System (INIS)

    BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.

    1999-01-01

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance